现代信号处理教程
胡广书《现代信号处理教程》第一章
1. 傅里叶变换在时间、频率“定位”的不足
如果我们想求一个信号,如 x(t ) ,在某一个频 率,如 0 处的值,则
X ( j0 ) x(t )e j 0t d t
需要
t ~
;
反之,如果我们想求某一个时刻,如 t 0
处的值,需要 ~
1 x(t0 ) 2
a: 是尺度定标常数,决定频率中心及带宽; b: 是位移,决定分析位置; (t ) : 又称为基本小波或母小波。
方法四、信号的子带分解
将信号的频谱均匀或非均匀地分解成若干部分, 每一个部分都对应一个时间信号,我们称它们为 原信号的子带信号 。
H0 ( z)
x ( n)
x0 (n)
M
v0 (n)
“分辨率(resolution)”是信号处理中的基本概念, 能作出辨别的时域或频域的最小间隔(又称最小分辨
细胞)。频率分辨率是通过一个频域的窗函数来观察 频谱时所看到的频率的宽度,时间分辨率是通过一个 时域的窗函数来观察信号时所看到的时间的宽度。显 然,这样的窗函数越窄,相应的分辨率就越好。分辨
能力的好坏一是取决于信号的特点,二是取决于信号
(二)多抽样率信号处理; (三)小波变换; (四)高阶统计量分析; (五)独立分量分析(ICA); (六)压缩感知理论(CS);
现代信号处理这十多年来的新进展
一、Hilbert-Huang变换 二、信号的稀疏表达 (sparse representations) -1998;
-1998;
三、压缩感知 ( compressed sensing,CS) -2006
g ( , ) 1 then
Cohen类分布变成Wigner-Ville分布
现代信号处理教程 - 胡广书(清华)
- 230 -第8章 M 通道滤波器组8.1 M 通道滤波器组的基本关系图8.1.1是一个标准的M 通道滤波器组。
图8.1.1 M 通道滤波器组由第五章~第七章的讨论,我们不难得到图中各处信号之间的如下相互关系: ()()()k k X z X z H z = (8.1.1)1101111()()1 ()() (8.1.2)M lMk kM l M l lMMMk M l V z XW z M X Wz H W z M-=-===∑∑及 101()()()() M l lMk k Mk M l U z V z X zWH zW M-===∑ (8.1.3)滤波器组的最后输出111ˆ()()()1()()() (8.1.4)M k kk M M llM k M k l k X z G z U z X zW H zW G z M-=--====∑∑∑. . . ˆ()z (X- 231 -令 101()()() (8.1.5)M ll kM k k A z HzW G z M-==∑则 10ˆ()()() (8.1.6)M l l Ml X z A z X zW -==∑ 这样,最后的输出ˆ()X z 是()lMX zW 的加权和。
由于 (2/)()()j lj l M M z e X zW X e ωωπ-== (8.1.7)在0l ≠时是()j X e ω的移位,因此,ˆ()j Xe ω是()j X e ω及其移位的加权和。
由上一章的讨论可知,在0l ≠时,(2/)()j l M X e ωπ-是混迭分量,应想办法去除。
显然,若保证()0 1~1l A z l M ==- (8.1.8)则可以去除图8.1.1所示滤波器组中的混迭失真.再定义1001()()()()M kk k T z A z Hz G z M-==∑ (8.1.9)显然,()T z 是在去除混迭失真后整个系统的转移函数。
这时,ˆ()Xz 是否对()X z 产生幅度失真和相位失真就取决于()T z 的性能。
现代信号处理教程 - 胡广书(清华)
33及 ∑+==NL n nx x d 122),(α(1.7.8)此即信号正交分解的最小平方近似性质。
我们在有限项傅立叶级数的近似中曾经遇到过[19]。
现推导(1.7.7)及(1.7.8)两式。
将(1.7.6)式展开,有∑∑∑∑+-==jj Li i i nnn n x n x x x d 2122))()()((2|)(|),(βϕβ (1.7.9)将上式对k β求偏导,并使之为零,则有02)()(2),(2=+-=∑∂∂k n k x x d n n x kβϕβ及k nk k n n x αββ==∑)()(将此结果代入(1.7.9)式,即得(1.7.8)式。
若空间X 由向量N ϕϕϕ,......,,21张成,即},......,,{21N span X ϕϕϕ=,并有},......,,{211L span X ϕϕϕ=及},......,,{212N L L span X ϕϕϕ++=,我们称1X 和2X 是X 的子空间。
如果:1.021=X X ,即1X 和2X 没有交集;2.21X X X =,即X 是1X 和2X 的并集;这时,我们称X 是1X 和2X 的直和,记作:21X X X ⊕=(1.7.10)这些概念我们将在小波变换中用到。
性质5:将原始信号x 经正交变换后得到一组离散系数N ααα,......,,21。
这一组系数具有减少x 中各分量的相关性及将x 的能量集中于少数系数上的功能。
相关性去除的程度及能量集中的程度取决于所选择的基函数}{n ϕ的性质。
这一性质是信号与图像压缩编码的理论基础。
有关这一点,我们在本节还要继续讨论。
作为正交变换的最后一个性质,由于其重要性,我们现用定理的方式给出:定理 1.2:)(t ϕ是一个原型函数,其傅立叶变换为)(ΩΦ,若)}({k t -ϕ,Z k ∈是一组正交基,则34∑=+ΩΦkk 1|)2(|2π(1.7.11)若)(1k t -ϕ,)(2k t -ϕ是两组正交基,即0)(),(2211>=--<k t k t ϕϕ 21,k k ∀则0)2()2(*21=+Φ+Φ∑kk k πωπω(1.7.12)证明[13,21,8]:因为}),({Z k k t ∈-ϕ是一正交基,设x 是它构成空间中的一个元素,则x 可表示为)(k t -ϕ的线性组合,即∑-=kk k t a x )(ϕ(1.7.13)由性质3,有∑=kkax 22||||||,对(1.7.13)式两边作傅立叶变换,有∑∑⎰Ω-Ω-ΩΦ=-=Ωkjk k ktj k e a j dt ek t a j X )()()(ϕ(1.7.14)注意,该式是傅立叶变换(FT )和离散时间傅立叶变换(DTFT )的混合表达式。
现代信号处理 - 第13讲
42 15
3 、卷积同态系统
信号和噪声的关系除相加、相乘外,可以为卷积:
语音信号是声带源和声道冲激响应的卷积 地震波是地震源波形和地壳冲激响应的卷积
处理这类信号,使用卷积同态系统 卷积同态系统:输入、输出矢量空间中矢量间的运 算是卷积运算( 、为卷积运算)
x(n) *
++ ++ * L[] T* [] T*-1[] x(n) y(n)
三个子系统都是同态系统 第一个系统T []称为运算 的特征系统 -1 第三个系统 TO []称为运算O的特征系统的逆系统 第二个系统 L[]则为线性系统
42 6
三个子系统均满足广义的线性叠加原理 T 1(n) 2(n)]=T 1(n)]+T 2(n)] [x x [x [x T [cx(n)]=cT [x(n)] ˆ ˆ ˆ ˆ L[ x1 (n) x2 (n)] L[ x1 (n)] L[ x2 (n)] ˆ ˆ L[cx(n)] cL[ x(n)] ˆ ˆ ˆ ˆ To-1[ y1 (n) y2 (n)] To-1[ y1 (n)]OTo-1[ y2 (n)]
42 12
如何从图像s(x,y)中提取反射图sr(x,y)? 解:可以采用乘法同态滤波系统 第一个子系统:乘法特征系统,通过对数运算得: ln[s(x,y)]=ln[si(x,y)]+ln[sr(x,y)] 即:照度图和反射图的相乘关系被转变为相加关系 由于照度图是低频的,而反射图是高频的,因此 第二个子系统:线性系统 L[]可设计成一个二维的高 通滤波器。理想情况下,第二个子系统的输出为: ln[sr(x,y)] 第三个子系统:乘法特征系统的逆系统,通过指 数运算,将ln[sr(x,y)]变为: exp{ln[sr(x,y)]}= sr(x,y) 因此达到分离反射图的目的
现代信号处理教程 - 胡广书(清华)-推荐下载
81 为了看清图3.3.4中交叉项的行为,我们将该图作了旋转,因此,水平方向为频率,垂直方向为时间。
图3.3.3 例3.3.3的WVD 图3.3.4 例3.3.4的WVD例3.3.5 令 ()2142t x t e ααπ-⎛⎫= ⎪⎝⎭(3.3.5)可求出其WVD 为 ()22,2exp[]x W t t ααΩ=--Ω(3.3.6)这是一个二维的高斯函数,,且是恒正的,如图3.3.5所示。
()Ω,t W x 由该图可以看出,该高斯信号的WVD 的中心在处,峰值为2。
参数控()()0,0,=Ωt α制了WVD 在时间和频率方向上的扩展。
越大,在时域扩展越小,而在频域扩展越大,反α之亦然。
其WVD 的等高线为一椭圆。
当WVD 由峰值降到时,该椭圆的面积。
1-e π=A 它反映了时-频平面上的分辨率。
如果令 ,,则的谱图()2142t h t e ααπ-⎛⎫=⎪⎝⎭()2142t x t eββπ-⎛⎫= ⎪⎝⎭()t x ()⎥⎦⎤⎢⎣⎡Ω+-+-+=Ω2221exp 2,βαβααββααβt t STFT x82(3.3.7)图3.3.5 例3.3.5的WVD,(a )高斯信号,(b )高斯信号的WVD它也是时-频平面上的高斯函数。
当其峰值降到时,椭圆面积。
这一结果说明,1-e π2=A WVD 比STFT 有着更好的时-频分辨率。
如果令 ()()tj et t x t x 001Ω-=(3.3.8)式中是(3.3.5)式的高斯函数。
是的时移加调制,其WVD 是:()t x ()t x 1()t x (3.3.9)()12200,2exp[()()/]x W t t t ααΩ=---Ω-Ω它将(3.3.6)式的由移至处。
其WVD 图形请读者()Ω,t W x ()()0,0,=Ωt ()()00,,Ω=Ωt t 自己画出。
83例3.3.6令 ()2201422j tt j t z t ee e αβαπΩ-⎛⎫=⎪⎝⎭(3.3.10)它是由(3.3.5)式的与()t x ()202j t j t y t Aee βΩ=(3.3.11)相乘而得到的(在(3.3.9)式中,A=1)。
现代信号处理教程 - 胡广书(清华)
98第4章 Cohen 类时-频分布4.1 前言除了Wigner 分布和谱图以外,近几十年来人们还提出了很多其它具有双线性行式的时-频分布。
1966年,Cohen 给出了时-频分布的更一般表示形式[44]: ()()()()() ,:,⎰⎰⎰-Ω+-*-+=Ωθττθττπθτθd dud eg 2u x 2u x 21g t C u t j x (4.1.1)该式中共有五个变量,即t ,Ω,τ,θ和u ,它们的含义我们将在下一节解释。
式中()τθ,g 称为时-频分布的核函数,也可以理解为是加在原Wigner 分布上的窗函数。
给出不同的()τθ,g ,就可以得到不同类型的时-频分布。
通过后面的讨论可知,目前已提出的绝大部分具有双线性形式的时-频分布都可以看作是Cohen 类的成员。
通过对Cohen 类分布的讨论有助于我们更全面地理解时-频分布,深入地了解它们的性质,并提出改进诸如交叉项这些不足之处的方法。
在Cohen 类时-频分布的讨论及抑制交叉项的方法中,在雷达信号处理中广泛应用的模糊函数(Ambiguity Function, AF )起着重要的作用。
因此,本章首先给出模糊函数的定义及其与Wigner 分布的关系,然后讨论Cohen 类分布及其不同的成员。
在4.4节讨论为确保Cohen 类分布具有一系列好的性质而对()τθ,g 所提出的要求。
最后,在4.5节讨论核的设计问题。
文献[47]对非平稳信号的联合时-频分布给出了较为详细且是较为权威性的论述。
4.2 Wigner 分布与模糊函数令()t x 为一复信号,我们在第三章已定义()()()22τττ-+=*t x t x t r x , (4.2.1)为()t x 的瞬时自相关函数,并定义()τ,t r x 相对τ的傅立叶变换 ()()⎰Ω-=Ωτττd t r t W j x x ,, (4.2.2)为()t x 的WVD 。
除去特别说明,该式及以下各式中的积分均是从∞+∞-~。
现代信号处理教程 - 胡广书(清华)
203⎥⎦⎤⎢⎣⎡---=----)()()()(~01011010z H z z H z z H z H N N m Η (7.6.4b)利用(7.4.9b )的关系,有I ΗΗ210012~=⎥⎦⎤⎢⎣⎡=m m(7.6.5)这样,由(7.6.3)式,CQMFB 的分析滤波器组可以构成仿酉矩阵,其对应的系统也是仿酉系统。
由(7.6.4a )及(7.4.1)式有)1(2det ---=N m z Η(7.6.6)将这一结果代入(7.2.12)式,并令式中的k =0,则⎥⎦⎤⎢⎣⎡-----=--)()()()(0101)1(z H z H z H z H zN m G⎥⎦⎤⎢⎣⎡------=--------)()()()(2010)1(010)1()1(z H z H zz H z H z zN N N (7.6.7) 将(7.6.4a)及(7.6.7)代入(7.2.10)式,有X ΗG X T m m 21ˆ=X ⎥⎦⎤⎢⎣⎡---⎥⎦⎤⎢⎣⎡------=--------------)()()()()()()()(10)1(10)1(00010)1(010)1()1(z H z z H z z H z H z H z H zz H z H z zN N N N N X ⎥⎦⎤⎢⎣⎡-=--10012)1(2N z(7.6.8) 因此,实现了对X 的准确重建。
上面的结论说明,仿酉的调制矩阵m Η直接引出了对)(n x 的准确重建系统,也即CQMFB 。
由(7.6.7)式,可导出0G ,1G 和0H 的关系,即(7.4.2)式。
由上面的讨论可以看出,仿酉滤波器组总是包含了功率互补的关系。
需要指出的是,仿酉系统等效CQMFB ,可以实现准确重建。
但可实现准确重建的系统却并不一定是仿酉的。
现在利用上述讨论的结果来给出仿酉系统的多相表示形式。
记204)()()(20112000z E z z E z H -+= (7.6.9a ) )()()(21112101z E z z E z H -+=(7.6.9b ) )()()(20120010z R z R z z G +=- (7.6.9c ) )()()(21121011z R z R z z G +=-(7.6.9d )式中)(ij ij R E 的下标i 代表0H ,1H 的序号,j 代表多相结构的序号。
第5讲 现代信号处理方法(2+2)
缺乏时频分析能力、多分辨率分析能力,难以分析非平稳信号
6
第5讲现代信号处理方法
5-1 5-2 5-3 5-4 5-5 傅里叶变换存在的问题 短时傅里叶变换 连续小波 离散小波与小波包 故障诊断中的应用
机械动态信号分析与处理
第5讲现代信号处理方法
5-2 短时傅里叶变换
FT
STFT
x( f ) x(t) e
机械动态信号分析与处理
第5讲现代信号处理方法
分析的时间位置,也即时间中心。
5-3 连续小波
函数 f (t ) 的连续小波变换定义为:
1 WT (a, b) a
x(t ) (
t b t b )dt x(t ), ( ) b是时移 a a
待分析序列 基函数
a是尺度因子
把基本小波作伸缩。 思考:时域伸缩,频域?
- 2jft
dt
x(t, f) [x(t) h(t - t' )] e-2jft dt
矩形窗
h(t )
高斯窗
h(t )
三角窗
h(t )
8
机械动态信号分析与处理
短时傅里叶变换
第5讲现代信号处理方法
非平稳信号
20Hz 80Hz 120Hz
h(t )
利用高斯窗STFT对非平稳信号进行分析
×
x(t)
X
0 a 1
35
机械动态信号分析与处理
连续小波---运算过程示意图
第5讲现代信号处理方法
(s,t)
Inner product
×
x(t)
X
50
a 1
36
现代信号处理教程 - 胡广书(清华)
- 352 -第12章 双正交小波及小波包我们在上一章给出了正交小波的构造方法。
正交小波有许多好的性质,如)()(),(',,'k k t t k j k j -=δφφ,)()(),(',,'k k t t k j k j -=δψψ,0)(),(',,=t t k j k j ψφ ,此外,尺度函数和小波函数都是紧支撑的,有着高的消失矩等等。
Daubechies 给出的正交小波的构造方法可以方便的构造出所需要的小波(如DBN ,SymN ,CoifN)。
但是,正交小波也有不足之处,即)(t φ和)(t ψ都不是对称的,尽管SymN 和CoifN 接近于对称,但毕竟不是真正的对称,因此,这在实际的信号处理中将不可避免地带来相位失真。
)(t φ和)(t ψ的不对称性来自所使用的共轭正交滤波器组)(0z H 和)(1z H 的不对称性。
我们已在7.8节讨论了具有线性相位的双正交滤波器组的基本概念,给出了可准确重建的双正交滤波器组的设计方法。
本章,我们把这些内容引入到小波分析,给出适合小波变换的双正交滤波器组准确重建的条件,给出双正交条件下的多分辨率分析及双正交小波的构造方法,最后简要讨论小波包的基本概念12.1 双正交滤波器组现在,我们结合小波变换的需要来研究双正交滤波器组的内在关系及实现准确重建的条件。
所谓“小波变换的需要”是指在用)(0z H 对)(0z a 分解时需要将)(0z H 和)(1z H 的系数作时间上的翻转,即用的是)(10-z H 及)(11-z H ,或)()(00n h n h -=,)()(11n h n h -=,见(10.6.1)式及图10.6.2。
将图10.6.2的正变换和图10.6.3的反变换结合起来,我们可得到如图12.1.1所示的一级分解和重建的类似于两通道滤波器组的信号流图。
注意,图中用于重建的滤波器不再是图10.6.3中的)(0z H 和)(1z H ,而是)(ˆ0z H 和)(ˆ1z H ,它们分别是)(0z H 和)(1z H 的对偶滤波器。
现代信号处理ModernSignalProcessing40页PPT
遍历性
若 N li m E 2N 11tN Nx(tt1)Lx(ttk)(t1,L,tk)2 0
则 {x(t)}称 为 均 方 遍 历 信 号 。
2.两个随机信号的二阶统计量
互相关函数
Rxy()@E{x(t)y*(t)}
相同部分相乘(相同符号) 不同(随机)部分相乘 (平均意义上,相互抵消)。
考核方式 习题(11%) 计算机仿真(实验3次,24%) 考试(65%)
第一章 随机信号
本章主要介绍随机信号的基本概念:相关 函数、功率谱密度、两个信号的正交、统计不 相关和统计独立、相干信号以及它们的几个典 型应用。
1.信号分类
信号——信息的载体
连 续 时 间 信 号s(t) t 离 散 时 间 信 号s(k) k为 整 数
▪ 时分多址(TDMA: time-division multiple access): 各个用户的信号波形在时域上无重叠 正交(时域正交)
用户1和用户2之间有一个保护时隙
b
a si
(t)s*j (t)dt
0,
i j
共享:整个频带
正交的两个典型应用(续)
▪ 频分多址(FDMA: frequency-division multiple access): 各个用户的信号波形在频域上无重叠 频域正交
E wi 2 qiHqi
im1
im1
由wi qiHx得:E wi 2 E qiHxxHqi qiHE xxH qi qiHRxqi
正交的两个典型应用(续)
M
最优化: min Em min
q
H i
R
x
q
i
im 1
约
束
现代信号处理教程-胡广书(清华)
现代信号处理教程-胡广书(清华)jtt2g t, g,ed qt2q(4.4.2)式中g t,由(4.3.7)式定义。
由(4.3.8)和(4.3.9)及上式结果,有Cx t,21jxu2xu2qt u2qt u2dued,则上式变成令u2,u2Cx t,1j x x qt qt ed d21j jx qt ed x qt ed(4.4.3)221Xq2于是结论得证。
式中Xq是x t乘上窗函数q t后的傅立叶变换。
该式说明,如果g,是某一函数的模糊函数,那么用此g,所得到的Cx t,等效于谱图。
因此,谱图也是Cohen类成员。
2.P1,实值性,即Cxt,R,t,,Q1:g,g,证明:由(4.1.1)式,t,Cx12j t u xu2xu2g,ed du d 令,,则上式变为t,Cx12j t uxu2xu2g,ed dud显然,如要求t,Cx t,,必有g,g,Cx3、时移:P2:若s t x t t0,则Cs t,Cx t t0,Q2: g,不决定于t证明:因为g 4、频移:,处于,域,和t无关,所以它不影响分布的时移性质;若sP3:t x t ej t,则Cs t,Cx t,0Q3:g,与无关性质P2与P3称为Cohen类时-频分布的“移不变”性质,它包含了时移和频移。
5、时间边缘条件,即12Ct,d xtP4:x2Q4:g,0 1证明:将(4.1.1)式两边对积分,有Cx t,d12j t uxu2xu2g,edud d dx u2x u2g,e j t u dud d x u g,0e j t u dud2欲使上式的积分等于x t,必有欲使该式成立,必有j(t u)g(,0)ed2(t u)01,也就是说,为保证C t,具有WVD的边界性质,g,xg,在轴上始终为1。
6、频率边缘条件,即P5: Q5:Cx t,dt Xg0, 12其证明请读者自己完成。
112前已述及,为了有限的抑制AF中远离,0,0的互项,希望g,应为,平面上的2-D低通函数。
第1章 现代信号处理 (1)
ψ 若把ψ (t ) 看成一窗函数, (t / a ) 的宽度将随着的不同而不同, 看成一窗函数, 的宽度将随着的不同而不同, Ψ,由此我们可得到不同的 ( aΩ ) 这也同时影响到频域, 这也同时影响到频域,即 a 对应分析信号的高频部分, 时域分辨率和频域分辨率。 时域分辨率和频域分辨率。 小,对应分析信号的高频部分, a 对应分析信号的低频部分。 大,对应分析信号的低频部分。参数 是沿着时间轴的位 b x 尺度 位移” WTx ( a, b) 尺度- 移,所得结果 是信号 的“(t ) -位移”联合分 它也是时-频分布的一种。 析,它也是时-频分布的一种。
第1章 信号分析基础 章
Cohen时 Cohen时-频分布
C x (t , Ω : g ) =
1 2π
x (u + τ ) x * (u − τ ) g (θ ,τ )e − j (θt +Ωτ −uθ ) dudτdθ 2 2 ∫∫∫
Cohen分布即 式中g (θ , τ )是处在平面的权函数若g (θ , τ )=1,则Cohen分布即 变成Wigner-Ville分布,给定不同的权函数,我们可得到同 变成Wigner-Ville分布,给定不同的权函数, Wigner 分布 的时-频分布,统称为Cohen类时-频分布,简称Cohen类 的时-频分布,统称为Cohen类时-频分布,简称Cohen类, Cohen类时 Cohen
第1章 信号分析基础 章
小波变换
小波变换: 希望找到一个基本函 小波变换:对给定的信号 x (t ) ,希望找到一个基本函 数 ψ (t ) ,并记 ψ (t ) 的伸缩与位移
ψ a,b (t) = 1a ψ ( t −b ) a
x 为一族函数, 为一族函数,(t )和这一族函数的内积
现代信号处理教程-胡广书(清华)
现代信号处理教程-胡广书(清华)jtt2g t, g,ed qt2q(4.4.2)式中g t,由(4.3.7)式定义。
由(4.3.8)和(4.3.9)及上式结果,有Cx t,21jxu2xu2qt u2qt u2dued,则上式变成令u2,u2Cx t,1j x x qt qt ed d21j jx qt ed x qt ed(4.4.3)221Xq2于是结论得证。
式中Xq是x t乘上窗函数q t后的傅立叶变换。
该式说明,如果g,是某一函数的模糊函数,那么用此g,所得到的Cx t,等效于谱图。
因此,谱图也是Cohen类成员。
2.P1,实值性,即Cxt,R,t,,Q1:g,g,证明:由(4.1.1)式,t,Cx12j t u xu2xu2g,ed du d 令,,则上式变为t,Cx12j t uxu2xu2g,ed dud显然,如要求t,Cx t,,必有g,g,Cx3、时移:P2:若s t x t t0,则Cs t,Cx t t0,Q2: g,不决定于t证明:因为g 4、频移:,处于,域,和t无关,所以它不影响分布的时移性质;若sP3:t x t ej t,则Cs t,Cx t,0Q3:g,与无关性质P2与P3称为Cohen类时-频分布的“移不变”性质,它包含了时移和频移。
5、时间边缘条件,即12Ct,d xtP4:x2Q4:g,0 1证明:将(4.1.1)式两边对积分,有Cx t,d12j t uxu2xu2g,edud d dx u2x u2g,e j t u dud d x u g,0e j t u dud2欲使上式的积分等于x t,必有欲使该式成立,必有j(t u)g(,0)ed2(t u)01,也就是说,为保证C t,具有WVD的边界性质,g,xg,在轴上始终为1。
6、频率边缘条件,即P5: Q5:Cx t,dt Xg0, 12其证明请读者自己完成。
112前已述及,为了有限的抑制AF中远离,0,0的互项,希望g,应为,平面上的2-D低通函数。
胡广书《现代信号处理教程》第二章
mn
[
x(t)
g* m,n
(t
)dt
]hm
,n
(t
)
mn
x(t)[
g
* m,n
(t)hm,n
(t
)]dt
mn
if x(t) t h e n
gm *,n(t)hm ,n(t)(tt)
Байду номын сангаасmn
m
n
gm *,n(t)hm ,n(t)(tt)
假定内积 结果就是
x(t),gm,n(t)
x(t)g*(tna)ej2mbtdtCm,n
目标:找到 g(t), h(t) 的关系:
x(t)
Cm,nhm,n(t)
mn
Cm,nx(t),gm,n(t)
x(t)
x(t), gm,n (t) hm,n (t)
右 边 2 1 x()g(t)ej() dd
x ( ) g ( t) ( ) d x ( ) g ( t)
l e t
t
x(t)2g 1(0) STFTx(t,)ejtd
STFT的一维反变换表示
STFT的二维反变换来表示 :
0.4 0.3 0.2 0.1
0 168 84 0
Frequency [Hz]
20
40
60
80
100 120
Time [s]
例4 令 g()(),则 STFT x(t, )x(t)ej t
可准确地实现时域定位,但无法实现频域定位。
Energy spectral density
Linear scale
现代信号处理教程 - 胡广书(清华)
48第2章 短时傅立叶变换2.1连续信号的短时傅立叶变换我们在1.1节中已指出,由于在实际工作中所遇到的信号往往是时变的,即信号的频率在随时间变化,而传统的傅立叶变换,由于其基函数是复正弦,缺少时域定位的功能,因此傅立叶变换不适用于时变信号。
信号分析和处理的一个重要任务,一方面是要了解信号所包含的频谱信息,另一方面还希望知道不同频率所出现的时间。
早在1946年,Gabor 就提出了短时傅立叶变换(Short Time Fourier Transform ,STFT )的概念,用以测量声音信号的频率定位[64]。
给定一信号)()(2R L t x ∈,其STFT 定义为>-=<-==ΩΩΩ-Ω⎰⎰ττττττττττj j t x et g x d et g x d g x t STFT )(),()()()()(),(**,(2.1.1)式中τττΩΩ-=j t et g g )()(,(2.1.2) 及1||)(||=τg ,1||)(||,=Ωτt g并且窗函数)(τg 应取对称函数。
STFT 的含义可解释如下:在时域用窗函数)(τg 去截)(τx (注:将)(t x ,)(t g 的时间变量换成τ),对截下来的局部信号作傅立叶变换,即得在t 时刻得该段信号得傅立叶变换。
不断地移动t ,也即不断地移动窗函数)(τg 的中心位置,即可得到不同时刻的傅立叶变换。
这些傅立叶变换的集合,即是),(Ωt STFT x ,如图2.1.1所示。
显然,),(Ωt STFT x 是变量),(Ωt 的二维函数。
由于)(τg 是窗函数,因此它在时域应是有限支撑的,又由于τΩj e在频域是线谱,所以STFT 的基函数ττΩ-j et g )(在时域和频域都应是有限支撑的。
这样,(2.1.1)式内积的结果即可实现对)(t x 进行时-频定位的功能。
当然,我们自然要关心这一变换时域及频域的分辨49率。
对(2.1.2)式两边作傅立叶变换,有 ⎰-ΩΩ-=ττυυττd e e t g G j j t )()(,⎰''='Ω--Ω--t d e t g et j tj )()()(υυ t j e G )()(Ω--Ω-=υυ (2.1.3)式中υ是和Ω等效的频率变量。
现代信号处理教程-胡广书(清华)
第7章两通道滤波器组7.1 两通道滤波器组中各信号的关系第6.1节已提及,滤波器组分为分析滤波器组和综合滤波器组。
分析滤波器组将分成M个子带信号。
若M=2,则分析滤波器组由一个低通滤波器和一个高通滤波器所组成,它们把分成了一个低通信号和一个高通信号。
我们可依据这两个子带信号所具有的能量的不同,也即“重要性”的不同而分别给以不同的对待及处理。
例如,分别赋以不同的字长来实现信号的编码及压缩,或是别的处理。
处理后的信号经传输后再由综合滤波器组重建出原信号。
由于分析滤波器组将原信号的带宽压缩为1/M,因此,对每一个子带信号均可作M倍的抽取,从而将抽样率减低M倍。
这样可减小编码和处理的计算量,同时,在硬件实现时也可以降低对系统性能的要求,从而降低成本。
在综合滤波器组前面,再作M倍的插值,以得到和原信号相同的抽样率。
一个两通道滤波器组如图7.1.1所示。
图7.1.1 两通道滤波器组如果,或,式中和为常数,我们称是对的“准确重建(Perfect Reconstruction,PR)”。
本节首先讨论图7.1.1中各信号间的关系,然后讨论实现准确重建的途径。
也即,如何确定,,和才能去除混叠失真,幅度失真及相位失真。
由图7.1.1及第五章关于抽取与插值的输入、输出关系,对图中的分析滤波器组,有:,( 7.1.1a )_(7.1.1b)即:(7.1.2)对综合滤波器组,有:而,所以(7.1.3)将(7.1.2)式代入(7.1.3)式,有:(7.1.4)该式给出了和及分析滤波器组,综合滤波器组之间的关系(i=0,1)。
将(7.1.4)式展开,有:令(7.1.5a)(7.1.5b)则(7.1.6)由于是移位后的结果,因此它是混叠分量。
显然,若令,则可有效的去除混叠失真,这样:(7.1.7)反应了去除混叠失真后的两通道滤波器组的总的传输特性。
系统的幅度失真及相位失真均与有关,因此又称“失真传递函数(distortion transfer function)”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Q 1 ( n ), H E v1 (n) v1 (k ) 0,
若n k 其它 若n k 其它
Q 2 ( n ), E v 2 (n) v (k ) 0,
H 2
并假设状态的初始值x(0)与v1(n)、v2(n)均不相关, v1(n)与v2(n) 线性独立,即有
Kalman滤波器(续)
根据i和n的不同关系,Kalman滤波问题又可进一步分 为滤 波问题(i=n)、预测问题(i>n)和平滑问题 (1 i n ) 。
具体如下:
Kalman滤波器(续)
三个基本概念
已知 y (1), , y ( n ) , 求 x ( i ) 的估计值。
ˆ (1) i n ( 滤波 ): 已知 y (1), , y ( n ) , 求 y ( n ) ˆ ( 2 ) i < n ( 平滑 ): 已知 y (1), , y ( n ) , 求 y ( i ), ˆ ( 3 ) i n ( 预测 ): 已知 y (1), , y ( n ) , 求 y ( i ), 一步预测:已知 数学符号: i n i n
内 容
最优滤波理论与Wiener滤波器 梯度下降算法 横向LMS自适应滤波器 横向RLS自适应滤波器 自适应格型滤波器 自适应格-梯型滤波器 无限脉冲响应自适应滤波器 盲自适应滤波器 Kalman滤波器 自适应滤波器的应用
自适应滤波器的应用
系统辨识与均衡(如信道估计与均衡; 雷达和声纳波束形成(beamforming); 噪声中信号的检测、跟踪、增强等; 信号或时间序列的自适应预测; 语音和图像的自适应预测编码。
LMS、RLS、Kalman算法比较
(1)计算复杂度: LMS<RLS<Kalman 相差不大 (2)RLS算法是“无激励”状态空间模型
x ( n 1) 1 / 2 x ( n ) y (n) u H (n)x(n) v (n)
下的Kalman滤波算法 (3)收敛速率:
LMS: ( n ) 越大,学习步长越大,收敛越快 RLS: 越大, 遗忘作用越弱,收敛越慢
时变学习速率、时变遗忘因子 0 . 97 ~ 0 . 998
Kalman:无收敛问题,无收敛参数
表1 Kalman滤波算法与RLS滤波算法变量对照表
Kalman算法
参数名称 初始状态向量 状态向量 变 量 变 量 w0
ˆ x 1 ( n ) E x (1)
K (1, 0 ) E
x (1) x (1) x (1) x (1)
H
输入观测向量过程: 观测值={y(1),…y(n)} 已知参数: 状态转移矩阵=F(n+1,n) 观测矩阵=C(n) 过程噪声向量的相关矩阵=Q1(n) 观测噪声向量的相关矩阵=Q2(n)
第四章 自适应信号处理
郑宝玉
内 容
最优滤波理论与Wiener滤波器 梯度下降算法 横向LMS自适应滤波器 横向RLS自适应滤波器 自适应格型滤波器 自适应格-梯型滤波器 无限脉冲响应自适应滤波器 盲自适应滤波器 Kalman滤波器 自适应滤波器的应用
维纳滤波与卡尔曼滤波
)
α ( n ) 可代表 y ( n )
新息过程 (n ) 的相关矩阵定义为
R E ( n )
而 M N 矩阵
def
H
(n)Leabharlann HG ( n ) E x ( n 1) α ( n ) R
1
(n)
称为Kalman增益阵。
ˆ ˆ 若令x 1 ( n ) x n | y (1), , y ( n 1) 是状态向量 x (n ) 的一步预测 向量,并用 e ( n , n 1) 表示预测状态误差向量,即
H
递推计算,其中 M
) M 矩阵 K ( n由下面的递推公式定义:
K ( n ) F ( n , n 1) F ( n , n 1) G ( n ) C ( n ) K ( n , n 1)
ˆ 若定义 x ( n ) 是利用已知的 y (1), , y ( n ) 求得的状态向 量 x ( n ) 的滤波估计,则
2 2
2 v
g (1), K ( 2 ,1); g ( 2 ) K ( 3 , 2 );
Kalman滤波器(续)
结论
Kalman滤波器是一种线性的离散时间有限维系统。
Kalman滤波器的关键性质是:它将使滤波后的状态 误差的相关矩阵的迹最小化。这意味着:Kalman滤 波器使状态向量的线性最小方差估计 Kalman滤波器已重构地解决了大量的控制问题和信 号处理问题
K ( n ) K ( n , n 1) F ( n , n 1) G ( n ) C ( n ) K ( n , n 1)
K ( n 1, n ) F ( n 1, n ) K ( n ) F ( n 1, n ) Q 1 ( n )
H
Kalman滤波器(续)
def
def
ˆ e ( n , n 1) x ( n ) x 1 ( n )
则 M M 矩阵
def
K ( n , n 1) E e ( n , n 1) e ( n , n 1)
H
称为预测状态误差相关矩阵。
预测状态误差相关矩阵可以利用Riccati差分方程
K ( n , n 1)= F ( n 1, n ) K ( n ) F ( n 1, n ) Q 1 ( n )
ˆ y (1), , y ( n ) , 求 y ( n +1)
ˆ y 1 ( n 1) y ( n +1 y (1), , y ( n ) )
Kalman滤波器(续)
新息过程(innovation process)
ˆ α (n) y (n) y1 (n)
称 α ( n )为 y ( n ) 的新息过程向量,简称新息。
例:x (t )是一个时不变的标量随机变量,y ( t ) x ( t ) v ( t ) 为观测 数据,其中 v (t )为白噪声。现用Kalman滤波器自适应估计 x (t ), 即考虑设计Kalman滤波器的问题。
设计过程:(1)构造状态空间方程;(2)设计 x ( n ) 的更新公式
Kalman滤波器(续)
K ( n , n 1) g ( n ) K ( n , n 1) 2 v ˆ ˆ ˆ x ( n 1 ) x ( n ) g ( n ) y ( n ) x ( n ) K ( n 1, n ) K ( n , n 1) 1 g ( n ) g ( n ) K (1, 0 ) E x ( n ) E x (1) P0
性质 1:E α ( n ) y ( k ) 0 (正交), n k
H
α ( n ) 是不同于 y ( n )的新过程 性质 2:E α ( n ) α ( k ) 0 , n k , α ( n ) 是个白噪声过程
H
性质 3: y (1), , y ( n )
α (1), , α ( n ) ( 一一对应关系
抽头权向量的估计
输入向量相关矩阵的逆矩阵
K(n) g(n)
(n )
ˆ s (1) 0
P (n)
1 / 2
Kalman增量
新息 初始条件
k (n)
增量向量
先验估计误差 2 ( (n) E{ (n) } 初始条件
n/2
(n)
*
)
ˆ w (0 ) 0
K(0)
1
P (0 )
维纳滤波
设信号s(k)或s(k)及观测过程x(k)或x(k)是广义平稳的, 且已知 其功率谱或自相关函数的知识, 则基于观测过程x(k)或x(k), 按 线性最小均方误差估计准则, 对信号s(k)或s(k)所作的最优估 计称为维纳滤波。特点: 参数固定, 适用于平稳随机情况下 的最优滤波 , 且实现简单。
x (t ) d x (t ) dt 状态方程 x ( n 1) x ( n ) y ( n ) x ( n ) v ( n ) 观测方程 F ( n 1, n ) 1 C (n) 1 Q 1 (n) 0 Q 2 (n)
2 v
0 x ( n 1) x ( n ) 0
u
自适应滤波器
系统输入
+
y
设备 ( 待测 )
Kalman滤波器
Kalman滤波是Wiener滤波的发展, 它最早用于随机过程的
参数估计, 后来很快在各种最佳滤波器和最佳控制中获得 极其广泛的应用。 Kalman滤波器具有以下特点: 其数学公式用状态空间概念描述。 其解是递推计算的。 它提供了RLS类自适应滤波器的统一框架
Kalman滤波器
Kalman滤波器(续)
Kalman滤波算法(续) 计算:n=1,2,3,…
G ( n ) F ( n 1, n ) K ( n , n 1) C ( n ) C ( n ) K ( n , n 1) C ( n ) Q 2 ( n )
H H
1
ˆ α (n ) y (n ) C (n )x1 (n ) ˆ ˆ x 1 ( n 1) F ( n 1, n ) x 1 ( n ) G ( n ) α ( n )
n/2
RLS算法
参数名称 抽头权向量