(医学课件)生物化学 酶
合集下载
生物化学第三章-酶(Enzyme)与维生素PPt课件
![生物化学第三章-酶(Enzyme)与维生素PPt课件](https://img.taocdn.com/s3/m/241a35b776eeaeaad0f33049.png)
E+S↔ES→E+P
12
3.趋近效应与定向排列 酶可以将它的底物结合在它
的活性部位。 酶与底物之间的靠近具有一
定的取向,大大增加了ES复合 物进入活化状态的概率。
13
4.诱导契合学说
酶的活性部位并不是和底物的形状正好互补的,
而是在酶和底物的结合过程中,底物分子或酶
分子、有时是两者的构象同时发生了一定的变
在反应中起运载体的作用,传递电 子、质子或其它基团。
18
相同的辅助因子与不同的酶蛋白结合成催化特 异性不相同的结合酶。
举例:
乳酸脱氢酶
苹果酸脱氢酶
含相同:辅助因子 NAD+(递氢体)
含不同:酶蛋白, 有不同的催化特异性 : L-乳酸 + NAD+ LDH 丙酮酸 + NADH + H+ 苹果酸 + NAD+ 苹果酸脱氢酶 草酰乙酸 + NADH+H+
19
三、酶的催化活性与活性中心
在酶分子表面特定区域上有些特殊基团,可与底物 结合,并催化底物转变为产物,这个区域称为酶的 活性中心(active center)。
1.活性中心只占酶分子总体积的很小一部分,往 往只占整个酶分子体积的1%-2%。 2.酶的活性部位是一个三维实体,具有三维空间 结构。
20
3
一. 酶的概念和作用特点
酶(Enzyme) 是由活细胞产生的具有催化作用的蛋白质,
又称为生物催化剂(biocatalyst)。 目前将生物催化剂分为两类 酶 、 核酶(脱氧核酶)
反应通式
E
S
P
(substrate)
(product )
4
二. 酶的分类及命名
12
3.趋近效应与定向排列 酶可以将它的底物结合在它
的活性部位。 酶与底物之间的靠近具有一
定的取向,大大增加了ES复合 物进入活化状态的概率。
13
4.诱导契合学说
酶的活性部位并不是和底物的形状正好互补的,
而是在酶和底物的结合过程中,底物分子或酶
分子、有时是两者的构象同时发生了一定的变
在反应中起运载体的作用,传递电 子、质子或其它基团。
18
相同的辅助因子与不同的酶蛋白结合成催化特 异性不相同的结合酶。
举例:
乳酸脱氢酶
苹果酸脱氢酶
含相同:辅助因子 NAD+(递氢体)
含不同:酶蛋白, 有不同的催化特异性 : L-乳酸 + NAD+ LDH 丙酮酸 + NADH + H+ 苹果酸 + NAD+ 苹果酸脱氢酶 草酰乙酸 + NADH+H+
19
三、酶的催化活性与活性中心
在酶分子表面特定区域上有些特殊基团,可与底物 结合,并催化底物转变为产物,这个区域称为酶的 活性中心(active center)。
1.活性中心只占酶分子总体积的很小一部分,往 往只占整个酶分子体积的1%-2%。 2.酶的活性部位是一个三维实体,具有三维空间 结构。
20
3
一. 酶的概念和作用特点
酶(Enzyme) 是由活细胞产生的具有催化作用的蛋白质,
又称为生物催化剂(biocatalyst)。 目前将生物催化剂分为两类 酶 、 核酶(脱氧核酶)
反应通式
E
S
P
(substrate)
(product )
4
二. 酶的分类及命名
生物化学课件第六章 酶(化学)
![生物化学课件第六章 酶(化学)](https://img.taocdn.com/s3/m/d8601dfe55270722182ef74a.png)
相对专一性
酶的专一性
结构专一性
(表6-3)
绝对专一性
立体异构专一性
7
相对专一性(relative specificity)
①族专一性(基团专一性) A — B 作用于一类或一些结构很相似的底物。
②键专一性 CAH2—OHB
α-葡萄糖
5
OH
苷酶
OHO
O
1
O
R
+H2O
OH
酯酶:R—C—O—R′ + H2O
脂肪(:水)水解酶
16
(二)酶的命名
2、惯用名: 通常只取一个较重要的底物名称和作用方式。
乳酸:NAD+氧化还原酶
乳酸脱氢酶
对于催化水解反应的酶一般在酶的名称上省去反应类 型。如水解蛋白的酶称蛋白酶,水解淀粉的酶叫??
有时为了区分同一类酶还在前面加上来源。 如胃 蛋白酶、胰蛋白酶、木瓜蛋白酶等
17
氧转水 裂异合
12
(一)酶的分类:
1. 氧化还原酶:催化氧化还原反应的酶。
AH2 + B
A + BH2
(1)脱氢酶类:催化直接从底物上脱氢的反应。
(2)氧化酶类 ①催化底物脱氢,氧化生成H2O2: ②催化底物脱氢,氧化生成H2O:
(3)过氧化物酶
(4)加氧酶(双加氧酶和单加氧酶)
13
(一)酶的分类
1个 Fe3+ 每秒能催化6×10-4个 H2O2的分解
同一反应,酶催化反应的速度比一般催化剂的反应
速度要大106~1013倍(表6-1)。
6
2.酶的特性:——生物催化剂
(1)催化效率极高
(2)高度的专一性:
酶对底物具有严格的选择性称为酶的专一(特异)性。 如:蛋白酶只能催化蛋白质的水解,酯酶?? 淀粉酶??
生物大分子的结构与功能—酶(生物化学课件)
![生物大分子的结构与功能—酶(生物化学课件)](https://img.taocdn.com/s3/m/ca5becae6aec0975f46527d3240c844769eaa004.png)
三、调节酶
调节酶
变构酶
➢ 某些物质结合酶活 性中心外的部位
➢ 酶的构象发生改变
➢ 酶的活性发生改变
共价修饰酶
➢ 需要其他酶的催化
➢ 某些化学基团可逆 结合酶
➢ 酶的活性发生改变
(一)变构酶
变构调节:一些代谢物可与某些酶分子活性中心 外的某部分可逆地结合,使酶构象改变,改变酶 的催化活性的调节方式
指酶分子中氨基酸残基侧链的化学基团 中,一些与酶活性密切相关的化学基团。 如Ser的羟基,His的咪唑基,Cys的巯 基,Asp、Glu的侧链羧基等
活性中心与必需基团有什么关系呢?
活性中心外 的必需基团
结合基团
底物 催化基团
活性中心
必需基团
活性中心内 的必需基团
结合基团(与底物相结合) 催化基团(催化底物变成产物)
➢米氏常数(Km)
Km:当酶反应速度达到最大反
应速度的一半时的底物浓度,单
位mol/L。即:
v Vmax 2
, Km
S
Km
酶反应速度与底物浓度的关系曲线
意义: (1)Km是酶的特征性常数之一;
Km 只与酶的性质有关, 与酶的浓度无关 (2)Km可近似表示酶对底物的亲和力(反比) (3)同一酶对于不同底物有不同的Km值。
已 糖 激 酶 的 活 性 中 心
酶活性中心的特点
在酶分子整个体积中只占很小的一部分 是一个三维实体,是酶分子表面的一个裂隙 或裂缝 底物通过较弱的键结合到酶分子上形成酶和 底物的复合物(ES)(有利于产物形成)。 活性中心有结合底物的专一性,酶活性中心具 有柔性或可运动性
(二)酶的分子结构
2、必需基团(essential group)
酶(生物化学)PPT课件
![酶(生物化学)PPT课件](https://img.taocdn.com/s3/m/964fd59ec0c708a1284ac850ad02de80d4d80623.png)
详细描述
酶的活性中心是酶分子中具有特定空间结构的区域,能够与底物特异结合,并 通过催化反应将其转化为产物。活性中心的氨基酸残基通常是高度保守的,对 酶的催化活性至关重要。
酶的专一性
总结词
酶的专一性是指一种酶只能催化一种或一类化学反应的性质 。
详细描述
酶的专一性是酶的重要特性之一,它决定了酶在生物体内的 功能。一种酶通常只能催化一种或一类化学反应,这是因为 酶的活性中心具有特定的空间结构和化学环境,只能够与特 定的底物结合并催化相应的反应。
食品保鲜
酶可用于食品保鲜,如抑制果蔬 中酶的活性,延缓成熟和腐烂过 程;也可用于食品中农药残留的
降解。
功能性食品开发
酶可用于开发功能性食品,如通 过酶促反应生产低糖、低脂或高
纤维食品。
酶在环保领域的应用
有毒有害物质降解
酶可用于降解有毒有害物质,如重金属离子、有机溶剂和农药等, 降低其对环境和生物体的危害。
的诊断。
药物生产
酶可用于药物的生产和制造过程中, 如抗生素、激素和蛋白质药物等, 通过酶促反应提高生产效率和纯度。
生物治疗
酶在某些生物治疗过程中起到关键 作用,如基因疗法和细胞疗法中, 酶可促进特定基因的表达或改变细 胞代谢。
酶在食品工业中的应用
食品加工
酶在食品加工过程中起到重要作 用,如淀粉的改性、蛋白质的水 解和油脂的加工等,可改善食品 的口感、营养价值和加工性能。
计算机辅助设计
计算机辅助设计是一种利用计算 机模拟技术来预测和优化酶性能
的方法。
通过计算机模拟,可以预测酶的 催化机制、反应路径和动力学行
为,从而指导酶的优化设计。
计算机辅助设计与其他技术结合, 如量子化学计算和分子动力学模 拟,可进一步提高酶优化效率。
酶的活性中心是酶分子中具有特定空间结构的区域,能够与底物特异结合,并 通过催化反应将其转化为产物。活性中心的氨基酸残基通常是高度保守的,对 酶的催化活性至关重要。
酶的专一性
总结词
酶的专一性是指一种酶只能催化一种或一类化学反应的性质 。
详细描述
酶的专一性是酶的重要特性之一,它决定了酶在生物体内的 功能。一种酶通常只能催化一种或一类化学反应,这是因为 酶的活性中心具有特定的空间结构和化学环境,只能够与特 定的底物结合并催化相应的反应。
食品保鲜
酶可用于食品保鲜,如抑制果蔬 中酶的活性,延缓成熟和腐烂过 程;也可用于食品中农药残留的
降解。
功能性食品开发
酶可用于开发功能性食品,如通 过酶促反应生产低糖、低脂或高
纤维食品。
酶在环保领域的应用
有毒有害物质降解
酶可用于降解有毒有害物质,如重金属离子、有机溶剂和农药等, 降低其对环境和生物体的危害。
的诊断。
药物生产
酶可用于药物的生产和制造过程中, 如抗生素、激素和蛋白质药物等, 通过酶促反应提高生产效率和纯度。
生物治疗
酶在某些生物治疗过程中起到关键 作用,如基因疗法和细胞疗法中, 酶可促进特定基因的表达或改变细 胞代谢。
酶在食品工业中的应用
食品加工
酶在食品加工过程中起到重要作 用,如淀粉的改性、蛋白质的水 解和油脂的加工等,可改善食品 的口感、营养价值和加工性能。
计算机辅助设计
计算机辅助设计是一种利用计算 机模拟技术来预测和优化酶性能
的方法。
通过计算机模拟,可以预测酶的 催化机制、反应路径和动力学行
为,从而指导酶的优化设计。
计算机辅助设计与其他技术结合, 如量子化学计算和分子动力学模 拟,可进一步提高酶优化效率。
《医学生物化学》PPT课件
![《医学生物化学》PPT课件](https://img.taocdn.com/s3/m/0d8a5b71366baf1ffc4ffe4733687e21af45ffc1.png)
葡萄糖在有氧条件下彻底氧化为水和二氧化碳,并释放大量能量的 过程,关键酶包括丙酮酸脱氢酶复合体、柠檬酸合酶等。
磷酸戊糖途径
葡萄糖在磷酸戊糖途径中生成磷酸核糖和NADPH,关键酶包括6磷酸葡萄糖脱氢酶、6-磷酸葡萄糖酸脱氢酶等。
糖异生过程及其生理意义
糖异生定义
非糖物质转变为葡萄糖或糖原的过程。
糖异生主要器官
酶抑制剂的分类与作用机制
02
竞争性抑制剂、非竞争性抑制剂、反竞争性抑制剂等。
酶激活剂的研究与应用
03
提高酶活性,增强生物体代谢功能;在生物工程领域的应用。
04
糖代谢与糖异生作用
糖代谢途径及关键酶介绍
糖酵解途径
葡萄糖在无氧条件下分解为乳酸的过程,关键酶包括己糖激酶、 磷酸果糖激酶等。
糖有氧氧化途径
疾病诊断
利用表观遗传学标记物进行疾病早期诊断和预后评估。
药物研发
针对表观遗传学靶点开发新的药物,提高治疗效果和降低副作用。
个性化医疗
根据患者的表观遗传学特征制定个性化治疗方案,提高治疗效果。
基因诊断技术发展现状与挑战
发展现状
基因诊断技术不断发展和完善, 包括基因突变筛查、单基因遗传 病诊断、肿瘤基因检测等。
挑战
基因诊断技术的敏感性和特异性 仍需提高,同时面临着伦理、法 律和社会等方面的挑战。
精准医疗时代下个性化治疗方案设计
基因突变与疾病关系解析
个性化药物选择
根据患者的基因型信息,选择最适合的药物进行治 疗,提高治疗效果和降低副作用。
通过分析患者的基因突变与疾病发生发展的 关系,为个性化治疗方案提供依据。
饮食调整
减少饱和脂肪酸和胆固 醇的摄入,增加不饱和 脂肪酸、膳食纤维等的
磷酸戊糖途径
葡萄糖在磷酸戊糖途径中生成磷酸核糖和NADPH,关键酶包括6磷酸葡萄糖脱氢酶、6-磷酸葡萄糖酸脱氢酶等。
糖异生过程及其生理意义
糖异生定义
非糖物质转变为葡萄糖或糖原的过程。
糖异生主要器官
酶抑制剂的分类与作用机制
02
竞争性抑制剂、非竞争性抑制剂、反竞争性抑制剂等。
酶激活剂的研究与应用
03
提高酶活性,增强生物体代谢功能;在生物工程领域的应用。
04
糖代谢与糖异生作用
糖代谢途径及关键酶介绍
糖酵解途径
葡萄糖在无氧条件下分解为乳酸的过程,关键酶包括己糖激酶、 磷酸果糖激酶等。
糖有氧氧化途径
疾病诊断
利用表观遗传学标记物进行疾病早期诊断和预后评估。
药物研发
针对表观遗传学靶点开发新的药物,提高治疗效果和降低副作用。
个性化医疗
根据患者的表观遗传学特征制定个性化治疗方案,提高治疗效果。
基因诊断技术发展现状与挑战
发展现状
基因诊断技术不断发展和完善, 包括基因突变筛查、单基因遗传 病诊断、肿瘤基因检测等。
挑战
基因诊断技术的敏感性和特异性 仍需提高,同时面临着伦理、法 律和社会等方面的挑战。
精准医疗时代下个性化治疗方案设计
基因突变与疾病关系解析
个性化药物选择
根据患者的基因型信息,选择最适合的药物进行治 疗,提高治疗效果和降低副作用。
通过分析患者的基因突变与疾病发生发展的 关系,为个性化治疗方案提供依据。
饮食调整
减少饱和脂肪酸和胆固 醇的摄入,增加不饱和 脂肪酸、膳食纤维等的
生物化学---酶催化作用的特点PPT课件
![生物化学---酶催化作用的特点PPT课件](https://img.taocdn.com/s3/m/decaff57b90d6c85ed3ac647.png)
NAD+ (烟酰胺-腺嘌呤二核苷酸,又称为辅酶I) 和NADP+(烟酰胺-腺嘌呤磷酸二核苷酸,又称为辅 酶II )是维生素烟酰胺的衍生物,它们是多种重要 脱氢酶的辅酶。
NH2
CONH2 O- O- N
N+ O
CH2OPOPOCH2
N O
OO
N N
OH OH
OH OH(OPO3H2)
⑤ 维生素B6和磷酸吡哆醛 维生素B6包括吡哆醇、吡哆醛和吡哆胺。
(2)传递氢(递氢体):如 硫辛酸;
FMN/FAD、NAD/NADP、C0Q、
(3)传递酰基体:如 C0A、TPP、硫辛酸; (4)传递一碳基团:如 四氢叶酸;
(5)传递磷酸基:如 ATP,GTP;
(6)其它作用: 转氨基,如 VB6 ;传递CO2,如 生物素。
维生素和辅酶
维生素是机体维持正常生命活动所必不可少的一类小分子 有机物质。
NH2 N
ClCH2 N+
H3C N
S
CH3 CH2CH2 OH
焦磷酸硫胺素(TPP)是脱羧酶的辅酶,催化丙酮酸或α–酮
戊二酸的氧化脱羧反应,所以又称为羧化辅酶。
NH2 N
ClCH2 N+
H3C N
S
CH3
OO
CH2CH2 O P O P OH
OH OH
② 维生素B2和黄素辅酶 维生素B2又称核黄素,由核糖醇和6,7-二甲基异咯嗪
(1)活性中心:酶分子中直接和底物结合并起催化反应的空间 局限(部位)。
结合部位(Binding site):酶分子中与底 物结合的部位或区域
一般称为结合部位。
催化部位(Catalytic site): 酶分子中促使底物发生化 学变化的部位称为催化部 位。
NH2
CONH2 O- O- N
N+ O
CH2OPOPOCH2
N O
OO
N N
OH OH
OH OH(OPO3H2)
⑤ 维生素B6和磷酸吡哆醛 维生素B6包括吡哆醇、吡哆醛和吡哆胺。
(2)传递氢(递氢体):如 硫辛酸;
FMN/FAD、NAD/NADP、C0Q、
(3)传递酰基体:如 C0A、TPP、硫辛酸; (4)传递一碳基团:如 四氢叶酸;
(5)传递磷酸基:如 ATP,GTP;
(6)其它作用: 转氨基,如 VB6 ;传递CO2,如 生物素。
维生素和辅酶
维生素是机体维持正常生命活动所必不可少的一类小分子 有机物质。
NH2 N
ClCH2 N+
H3C N
S
CH3 CH2CH2 OH
焦磷酸硫胺素(TPP)是脱羧酶的辅酶,催化丙酮酸或α–酮
戊二酸的氧化脱羧反应,所以又称为羧化辅酶。
NH2 N
ClCH2 N+
H3C N
S
CH3
OO
CH2CH2 O P O P OH
OH OH
② 维生素B2和黄素辅酶 维生素B2又称核黄素,由核糖醇和6,7-二甲基异咯嗪
(1)活性中心:酶分子中直接和底物结合并起催化反应的空间 局限(部位)。
结合部位(Binding site):酶分子中与底 物结合的部位或区域
一般称为结合部位。
催化部位(Catalytic site): 酶分子中促使底物发生化 学变化的部位称为催化部 位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14
三、维生素与辅助因子
1. 定义:维生素是维持人体正常生理功能或细胞正常代 谢所必需的营养物质,人体的需要量极小(常以毫克 或微克计),但在体内不能合成或合成量很少,必须 由食物供给的一类小分子有机化合物。
2. 主要分为两类: ① 脂溶性维生素:包括VitA、D、E 、K 。 ② 水溶性维生素:包括B族维生素、VitC两类。
H3C
5
N
10
4 NH
8
9
1
H3C
N NO
HCH
核醇 H C OH H C OH
NH2 腺嘌呤
N N
H C OH O
O
N
N
CH2 O P O P O CH2 O
OH OH
HH
黄素单核苷酸(FMN)
H
H
Flavin mononucleotide
OH OH
黄素腺嘌呤二核苷酸(FAD)
17
Flavin adenine dinucleotide
蛋白质部分:酶蛋白
结合酶
apoenzyme
非蛋白质部分:辅助因子 cofactor
全酶 holoenzyme
12
从化学本质上来讲,辅助因子可分为两类: ① 金属离子:是最常见的辅助因子,约2/3的酶 含有金属离子。
金属酶:金属离子和酶结合紧密。如羧基肽酶。 金属激活酶:金属离子与酶的结合不甚紧密。
如己糖激酶等。
② 小分子有机化合物:通常为维生素或其体内 代谢转变生成的衍生物,见后。
13
按照与酶蛋白的结合程度,辅助因子又可分为: ① 辅酶(Coenzyme):
与酶蛋白结合疏松,可用透析或超滤方法除去。
② 辅基(Prosthetic group):
与酶蛋白结合紧密,不能用透析或超滤法除去。
同或不同亚基以非共价键连接形成的酶。 • 多酶体系:由几种不同功能的酶彼此聚合
组成的多酶复合物。 • 多功能酶:指一些多酶体系在进化过程中
由于基因的融合,多种不同催化功能存在 于一条多肽链中,这类酶称为多功能酶或 串联酶。
11
二、酶的分子组成
按照分子组成分为两种: 单纯酶:指仅由氨基酸残基组成的酶。如淀粉酶等。
7
二、酶的概念及化学本质
概念:酶是具有催化功能的生物分子。 约4000余种,催化生物体内的众多化学反应, 并受到精确调节,保证体内代谢的高效有序 进行。
SE P
* 酶促反应: 由酶催化的反应 * 底物(substrate):酶所催化的物质 * 产物(product):酶所催化的底物的转变物
8
FMN和FAD递氢机制
O
H3C
5
N
10
4 NH
8
9
1
+ 2H
H3C
N NO
R
FMN/FAD
(氧化型)
HO
H3C
5
N
10
4 NH
8
9
1
H3C
N NO
H
R
FMNH2/FADH2
(还原型)
18
(2)VitPP(尼克酸,尼克酰胺) NAD+/NADP+ ,多种脱氢酶的辅酶(传递氢)
1926年,James B. Sumner发现脲酶是一个纯的蛋白质; 并于1937年再次发现过氧化氢酶也是蛋白质。John H. Northrop和Wendell M. Stanley则确认胃蛋白酶、胰蛋 白酶和胰凝乳蛋白酶是蛋白质。
随后发现的2千余种酶均证明是蛋白质。
1946年度 诺贝尔化学奖
Thomas R. Cech Sidney Altman
6
1902年,Victor Henri提出了酶动力学ห้องสมุดไป่ตู้定量理论, 但没有得到有力的实验证实。
1913年,Leonor Michaelis和其博士后Maud Leonora Menten证实了Henri的理论并扩展为米氏方程。随后, G. E. Briggs and J. B. Haldane又对其进行了扩展。
酶
Enzyme
1
本章主要内容
第一节 概述 第二节 酶的分子结构 第三节 酶的作用特点及工作原理 第四节 影响酶促反应速度的因素 第五节 酶活性的调节 第六节 酶的分类与命名 第七节 酶和医学
2
第一节 概述
重点:酶的概念与化学本质
3
一、酶的发现与研究简史
公元前两千多年,我国已有酿酒记载。
5
1980s,Thomas R. Cech和Sidney Altman分别在四膜 虫的RNA前体加工和细菌核糖核酸酶P复合物研究中 发现:RNA具有催化作用,并提出了核酶的概念。
1994年,Gerald.F.Joyce等发现了具有催化活性的 DNA(为人工合成),称为脱氧核酶。
1989年度 诺贝尔化学奖
3. B族维生素主要参与形成酶的辅助因子,具体见下表。
15
维生素与常见的辅酶/辅基
名称 别名 活性形式 作用
VitB1 VitB2 VitPP
硫胺素 TPP
α-酮酸氧化脱羧酶的辅基
核黄素 FMN;FAD 黄素酶的辅基(传递氢)
尼克酸, NAD+; 尼克酰胺 NADP+
多种脱氢酶的辅酶(传递氢)
VitB6
吡哆醇 吡哆醛
磷酸吡哆醛 氨基酸脱羧酶和转氨酶的辅基
磷酸吡哆胺
吡哆胺
泛酸 遍多酸 CoA
酰基转移酶的辅酶
生物素 VitH 生物素 羧化酶的辅基
叶酸
FH4
一碳单位转移酶的辅酶
VitB12 钴胺素 甲钴胺素 甲基转移酶的辅酶
16
(1)VitB2(核黄素) FMN和FAD,是黄素酶的辅基(传递氢)。
异咯嗪 O
1897年,Eduard Buchner意外发现并证明发酵过程
并不需要完整的活细胞存在。这一贡献彻底推翻
“活力论”观点。也打开了通向现代酶学与现代生
物化学的大门,1907年的诺贝尔化学奖。
4
许多研究者开始鉴定酶的生物化学特性,发现与蛋白 质有关;但一些人认为酶不是蛋白质,辩称蛋白质只 是酶分子的携带者,蛋白质本身并不具有催化活性。
酶的化学本质: 几乎所有酶均为蛋白质,部分为核酸。 核酶(ribozyme):具有催化功能的RNA。
9
第二节 酶的分子结构
重点:活性中心、必需基团、辅酶/辅基等 概念;维生素→辅酶/辅基→作用
10
一、酶的不同存在形式
• 单体酶:由一条多肽链组成。 • 寡聚酶:含两条或以上多肽链,即多个相
“昔者,帝女令仪狄作酒而美,进之禹,禹饮而甘之, 曰:‘后世必有饮酒而之国者。’遂疏仪狄而绝旨酒”。刘向 <战国策>;
酶:【五音集韻】酒母也。
1700s,观察到:胃液对肉的消化;植物提取物和唾液 使淀粉转变为糖。
1878年,Wilhelm Kühne首次提出酶(enzyme)的概念。
三、维生素与辅助因子
1. 定义:维生素是维持人体正常生理功能或细胞正常代 谢所必需的营养物质,人体的需要量极小(常以毫克 或微克计),但在体内不能合成或合成量很少,必须 由食物供给的一类小分子有机化合物。
2. 主要分为两类: ① 脂溶性维生素:包括VitA、D、E 、K 。 ② 水溶性维生素:包括B族维生素、VitC两类。
H3C
5
N
10
4 NH
8
9
1
H3C
N NO
HCH
核醇 H C OH H C OH
NH2 腺嘌呤
N N
H C OH O
O
N
N
CH2 O P O P O CH2 O
OH OH
HH
黄素单核苷酸(FMN)
H
H
Flavin mononucleotide
OH OH
黄素腺嘌呤二核苷酸(FAD)
17
Flavin adenine dinucleotide
蛋白质部分:酶蛋白
结合酶
apoenzyme
非蛋白质部分:辅助因子 cofactor
全酶 holoenzyme
12
从化学本质上来讲,辅助因子可分为两类: ① 金属离子:是最常见的辅助因子,约2/3的酶 含有金属离子。
金属酶:金属离子和酶结合紧密。如羧基肽酶。 金属激活酶:金属离子与酶的结合不甚紧密。
如己糖激酶等。
② 小分子有机化合物:通常为维生素或其体内 代谢转变生成的衍生物,见后。
13
按照与酶蛋白的结合程度,辅助因子又可分为: ① 辅酶(Coenzyme):
与酶蛋白结合疏松,可用透析或超滤方法除去。
② 辅基(Prosthetic group):
与酶蛋白结合紧密,不能用透析或超滤法除去。
同或不同亚基以非共价键连接形成的酶。 • 多酶体系:由几种不同功能的酶彼此聚合
组成的多酶复合物。 • 多功能酶:指一些多酶体系在进化过程中
由于基因的融合,多种不同催化功能存在 于一条多肽链中,这类酶称为多功能酶或 串联酶。
11
二、酶的分子组成
按照分子组成分为两种: 单纯酶:指仅由氨基酸残基组成的酶。如淀粉酶等。
7
二、酶的概念及化学本质
概念:酶是具有催化功能的生物分子。 约4000余种,催化生物体内的众多化学反应, 并受到精确调节,保证体内代谢的高效有序 进行。
SE P
* 酶促反应: 由酶催化的反应 * 底物(substrate):酶所催化的物质 * 产物(product):酶所催化的底物的转变物
8
FMN和FAD递氢机制
O
H3C
5
N
10
4 NH
8
9
1
+ 2H
H3C
N NO
R
FMN/FAD
(氧化型)
HO
H3C
5
N
10
4 NH
8
9
1
H3C
N NO
H
R
FMNH2/FADH2
(还原型)
18
(2)VitPP(尼克酸,尼克酰胺) NAD+/NADP+ ,多种脱氢酶的辅酶(传递氢)
1926年,James B. Sumner发现脲酶是一个纯的蛋白质; 并于1937年再次发现过氧化氢酶也是蛋白质。John H. Northrop和Wendell M. Stanley则确认胃蛋白酶、胰蛋 白酶和胰凝乳蛋白酶是蛋白质。
随后发现的2千余种酶均证明是蛋白质。
1946年度 诺贝尔化学奖
Thomas R. Cech Sidney Altman
6
1902年,Victor Henri提出了酶动力学ห้องสมุดไป่ตู้定量理论, 但没有得到有力的实验证实。
1913年,Leonor Michaelis和其博士后Maud Leonora Menten证实了Henri的理论并扩展为米氏方程。随后, G. E. Briggs and J. B. Haldane又对其进行了扩展。
酶
Enzyme
1
本章主要内容
第一节 概述 第二节 酶的分子结构 第三节 酶的作用特点及工作原理 第四节 影响酶促反应速度的因素 第五节 酶活性的调节 第六节 酶的分类与命名 第七节 酶和医学
2
第一节 概述
重点:酶的概念与化学本质
3
一、酶的发现与研究简史
公元前两千多年,我国已有酿酒记载。
5
1980s,Thomas R. Cech和Sidney Altman分别在四膜 虫的RNA前体加工和细菌核糖核酸酶P复合物研究中 发现:RNA具有催化作用,并提出了核酶的概念。
1994年,Gerald.F.Joyce等发现了具有催化活性的 DNA(为人工合成),称为脱氧核酶。
1989年度 诺贝尔化学奖
3. B族维生素主要参与形成酶的辅助因子,具体见下表。
15
维生素与常见的辅酶/辅基
名称 别名 活性形式 作用
VitB1 VitB2 VitPP
硫胺素 TPP
α-酮酸氧化脱羧酶的辅基
核黄素 FMN;FAD 黄素酶的辅基(传递氢)
尼克酸, NAD+; 尼克酰胺 NADP+
多种脱氢酶的辅酶(传递氢)
VitB6
吡哆醇 吡哆醛
磷酸吡哆醛 氨基酸脱羧酶和转氨酶的辅基
磷酸吡哆胺
吡哆胺
泛酸 遍多酸 CoA
酰基转移酶的辅酶
生物素 VitH 生物素 羧化酶的辅基
叶酸
FH4
一碳单位转移酶的辅酶
VitB12 钴胺素 甲钴胺素 甲基转移酶的辅酶
16
(1)VitB2(核黄素) FMN和FAD,是黄素酶的辅基(传递氢)。
异咯嗪 O
1897年,Eduard Buchner意外发现并证明发酵过程
并不需要完整的活细胞存在。这一贡献彻底推翻
“活力论”观点。也打开了通向现代酶学与现代生
物化学的大门,1907年的诺贝尔化学奖。
4
许多研究者开始鉴定酶的生物化学特性,发现与蛋白 质有关;但一些人认为酶不是蛋白质,辩称蛋白质只 是酶分子的携带者,蛋白质本身并不具有催化活性。
酶的化学本质: 几乎所有酶均为蛋白质,部分为核酸。 核酶(ribozyme):具有催化功能的RNA。
9
第二节 酶的分子结构
重点:活性中心、必需基团、辅酶/辅基等 概念;维生素→辅酶/辅基→作用
10
一、酶的不同存在形式
• 单体酶:由一条多肽链组成。 • 寡聚酶:含两条或以上多肽链,即多个相
“昔者,帝女令仪狄作酒而美,进之禹,禹饮而甘之, 曰:‘后世必有饮酒而之国者。’遂疏仪狄而绝旨酒”。刘向 <战国策>;
酶:【五音集韻】酒母也。
1700s,观察到:胃液对肉的消化;植物提取物和唾液 使淀粉转变为糖。
1878年,Wilhelm Kühne首次提出酶(enzyme)的概念。