直流电机调速方法.doc
直流电机调速的方法
直流电机调速的方法
1. 电压调速法:通过改变电源的电压大小来控制电机的速度。
缺点是速度不能稳定,且电机必须在额定电压以上运行。
2. 电流调速法:通过改变电机的电流大小来控制电机的速度。
缺点是控制精度低,且在较低电流下电机难以启动。
3. 动态反馈调速法:通过电机输出信号的反馈来调整电源输出,从而控制电机的速度。
采用PID控制算法,控制准确性高。
4. PWM调速法:使用脉冲宽度调制技术,通过改变脉冲的宽度来控制电机的速度。
控制精确度高,效率高,但需要专门的PWM控制器。
5. 控制电阻调速法:通过调节电路中的电阻,改变电机的传输系数,从而控制电机的速度。
不适用于大功率电机,且控制精度低。
直流电机的调速方法
直流电机的调速方法一、前言直流电机是工业生产中常用的驱动设备,它具有调速范围广、转矩平稳等优点。
在实际应用中,为了满足不同的工艺要求,需要对直流电机进行调速。
本文将介绍直流电机的调速方法。
二、基本原理直流电机的调速原理是通过改变电源电压和/或改变电枢回路中的电阻来改变电机的转速。
当电压增大或者回路阻值减小时,会使得转矩增大,从而使得转速提高;反之亦然。
三、调速方式1. 串联型调速串联型调速是通过改变外接串联在直流电机上的可变阻值来改变回路总阻值,从而达到降低转矩和减缓转速的目的。
具体步骤如下:(1)将可变阻器串联在直流电机中;(2)当可变阻器阻值增加时,回路总阻值增加,从而使得输出功率减小;反之亦然;(3)通过逐渐增加或减小可变阻器的阻值来实现调节。
2. 并联型调速并联型调速是通过改变外接并联在直流电机上的可变阻值来改变电枢回路的总电阻,从而达到提高转矩和加快转速的目的。
具体步骤如下:(1)将可变阻器并联在直流电机中;(2)当可变阻器阻值增加时,电枢回路总电阻增加,从而使得输出功率减小;反之亦然;(3)通过逐渐增加或减小可变阻器的阻值来实现调节。
3. 电枢调速电枢调速是通过改变直流电机中的电枢回路中的电阻来改变回路总阻值,从而达到降低转矩和减缓转速的目的。
具体步骤如下:(1)将可变阻器连接在直流电机的电枢回路上;(2)当可变阻器阻值增加时,回路总阻值增加,从而使得输出功率减小;反之亦然;(3)通过逐渐增加或减小可变阻器的阻值来实现调节。
4. 磁通调速磁通调速是通过改变直流电机中励磁回路中串联在励磁线圈上的可变抵抗来改变磁通量大小,从而达到改变转速和转矩的目的。
具体步骤如下:(1)将可变抵抗串联在励磁线圈上;(2)当可变抵抗阻值增加时,回路总阻值增加,从而使得磁通量减小,输出功率减小;反之亦然;(3)通过逐渐增加或减小可变抵抗的阻值来实现调节。
四、注意事项1. 在进行调速时,应根据直流电机的额定参数和工作要求进行合理选择。
直流电机的调速方法
直流电机的调速方法
直流电机是一种常见的电动机,其调速方法也很多,下面就来介绍几种直流电
机调速方法。
1. 电压调速法
电压调速法是一种简单、实用的调速方法。
电压越大,转速就越快,电压越小,转速就越慢。
因此,可以通过改变电压的大小来调节直流电机的转速。
2. 电流调速法
电流调速法是通过改变直流电机的电枢电流来实现调速的。
电枢电流越大,转
速就越快,电枢电流越小,转速就越慢。
通过调节直流电机的电流来实现转速的控制。
3. 磁通调速法
磁通调速法是通过改变直流电机的磁通量来实现调速的。
磁通量越大,转速就
越慢,磁通量越小,转速就越快。
通过调节直流电机的励磁电流或磁通量来实现转速的控制。
4. 频率调速法
频率调速法是通过变频器控制交流电源的频率来实现调速的。
将交流电源转换
为直流电源供给直流电机,通过改变交流电源的频率来控制直流电机的转速。
5. 脉宽调制调速法
脉宽调制调速法是通过改变控制信号的脉冲宽度来控制直流电机的转速。
脉宽
调制控制器在工作中,通过改变占空比来改变输出功率,从而实现调速的目的。
以上就是几种常见的直流电机调速方法,每种方法都有其特点和适用范围,根
据具体的需求选择合适的方法来实现调速。
直流电动机调速方法有
直流电动机调速方法有
直流电动机的调速方法主要有以下几种:
1. 变电压调速法:通过改变直流电机的输入电压来调整电机的转速。
增大输入电压可以提高电机的转速,减小输入电压可以降低电机的转速。
2. 变电流调速法:通过改变电机的励磁电流来调整电机的转速。
增大励磁电流可以提高电机的转速,减小励磁电流可以降低电机的转速。
3. 变极数调速法:通过改变电枢绕组和励磁绕组的并联组合方式来调整电机的转速。
增加并联绕组的极数可以提高电机的转速,减小并联绕组的极数可以降低电机的转速。
4. 变电阻调速法:通过改变电枢绕组或励磁绕组的电阻来调整电机的转速。
增大电阻可以降低电机的转速,减小电阻可以提高电机的转速。
5. 变频调速法:通过改变电机所接受的频率来调整电机的转速。
提高频率可以提高电机的转速,降低频率可以降低电机的转速。
这些调速方法可以单独应用,也可以结合使用,以实现更精确的电机转速调节。
直流伺服电机的调速方法
直流伺服电机的调速方法
由直流伺服电机的转速公式可知,直流电机的基本调速方式有三种,即调整电阻R、调整电枢电压U和调整磁通Ф的值。
但电枢电阻调速不经济,而且调速范围有限,很少采纳。
(1)在调整电枢电压时,若保持电枢电流I不变电流,则磁场磁通Ф保持不变,由可知,电机电磁转矩T保持不变,为恒定值,因此把调压调速也称为恒转矩调速。
(2)调磁调速时,通常保持电枢电压U为额定电压,由于励磁回路的电流不能超过额定值,因此励磁电流总是向减小的趋势调整,使磁通下降,称为弱磁调速,此时转矩T也下降,则转速上升。
调速过程中,电枢电压U不变,若保持电枢电流I也不变,则输出功率维持不变,故调磁调速又称为恒功率调速。
图是直流电机在调整电枢电压和调整磁通调速方式的机械特性曲线。
在图中nN为额定转矩TN时的额定转速,ΔnN为额定转速差。
由图可知:当调整电枢电压时,直流电机的机械特性为一组平行线,即机械特性曲线的斜率不变,而只转变电机的抱负转速,保持了原有较硬的机械特性,所以数控机床伺服进给系统的调速采纳调整电枢电压调速方式。
而永磁式直流伺服电机的机械特性,正好满意于这一调速要求,因此,数控机床的进给系统常采纳永磁式直流电机。
由图可知:调磁调速不但转变了电机的抱负转速,而且使直流电机机械特性变软,所以调磁调速主要用于机床主轴电机调速。
简述直流电动机的调速方法。
简述直流电动机的调速方法。
直流电动机是一种无刷直流电机,其工作原理基于电枢的旋转,其调速方法
主要有以下几种:
1. 电阻调速:将直流电动机接入电阻器中,通过改变电阻的大小来控制电动机的转速。
这种方法的优点是调速范围宽,但缺点是调速效率低,而且电阻器易损坏。
2. 电容调速:在直流电动机的转轴上加装电容,通过改变电容的大小来控制电动机的转速。
这种方法的优点是调速效率高,但缺点是需要较大的电容,而且容易引起电动机故障。
3. 串激调速:在直流电动机的转轴上串联一个电阻和一个电感,通过改变它们的相对大小来控制电动机的转速。
这种方法的优点是调速范围宽,但缺点是需要复杂的电路,而且容易引起电动机故障。
4. 反相调速:在直流电动机的转轴上加装一个电容器和一个电阻,通过改变它们的相对大小来控制电动机的转速。
这种方法的优点是调速效率高,但缺点是需要较大的电容器,而且容易引起电动机故障。
除了以上几种调速方法外,还有一些其他的方法,例如脉冲调速、积分调速等。
这些方法在实际应用中要根据具体情况选择使用。
直流电动机的调速方法的选择应该考虑到调速范围、调速效率、电动机的性能和稳定性等因素。
在实际应用中,需要根据具体的情况和要求选择合适的调速方法。
直流电机调速的三种方法及公式
直流电机调速的三种方法及公式嘿,朋友们!今天咱来聊聊直流电机调速的那些事儿。
直流电机调速啊,就好比是驾驭一匹烈马,得有合适的方法和技巧才能让它乖乖听话,按照咱的心意跑起来。
先来说说第一种方法,那就是改变电枢电压啦。
就像给马调整缰绳的松紧一样,通过改变电枢电压,就能控制电机的速度。
这就好比你开车的时候,踩油门轻重不一样,车速也就不一样啦。
这其中的公式呢,就是转速和电枢电压成正比关系哦。
再讲讲第二种方法,改变电枢回路电阻。
这就像是给马走的路设置不同的阻力,电阻大了,电机转得就慢些;电阻小了,电机就跑得快啦。
不过这种方法不太常用哦,毕竟改变电阻有时候不太方便呢。
最后说说第三种,改变励磁电流。
这就好像是调整马的精神状态,励磁电流一变,电机的速度也跟着变啦。
咱举个例子啊,想象一下,直流电机就像是一个大力士,电枢电压就是他的力量源泉,决定他能使多大劲儿;电枢回路电阻就是他脚下的绊脚石,多了就跑不快;励磁电流呢,就是他的心情,心情好干劲足,速度就快。
这三种方法各有各的特点和用处呢。
有时候我们根据实际情况,选择最合适的那种来给直流电机调速。
就像我们出门,得根据天气、路程等因素选择是走路、骑车还是开车一样。
在实际应用中,可不能马虎哦。
要仔细研究电机的特性,根据需要来选择调速方法。
不然啊,就像是让马乱了套,可就不好啦。
所以啊,直流电机调速可不是一件简单的事儿,得好好琢磨琢磨。
要把这三种方法都掌握好,就像有了三把钥匙,能打开不同情况下电机调速的大门。
朋友们,你们说是不是这个理儿呀?咱可得把这直流电机调速给玩转咯,让它为我们的各种设备好好服务呀!这就是直流电机调速的三种方法及公式啦,大家都记住了吗?。
直流电机调速方法
1.改变电枢回路电阻调速当负载一定时,随着串入的外接电阻R的增大,电枢回路总电阻增大,电动机转速就降低。
2.改变电枢电压调速连续改变电枢供电电压,可以使直流电动机在很宽的范围内实现无级调速。
3.采用晶闸管变流器供电的调速方法变电枢电压调速是直流电机调速系统中应用最广的一种调速方法。
4.采用大功率半导体器件的直流电动机脉宽调速方法我比较喜欢这种调速方法。
5.改变励磁电流调速当电枢电压恒定时,改变电动机的励磁电流也能实现调速。
电动机的转速与磁通Ф(也就是励磁电流)成反比,即当磁通减小时,转速升高;反之,则降低。
由于电动机的转矩是磁通和电枢电流的乘积,电枢电流不变时,随着磁通的减小,其转速升高,转矩也会相应地减小。
典型恒功率调速。
2.从调整的部位来讲有:1.调整电枢电流。
2.调整励磁电流。
从调整电流的方式来讲有:1.电阻调速。
2.斩波调速。
常用的有:磁场消弱,磁极减对,电枢串联电阻降压。
直流电动机分为有换向器和无换向器两大类。
直流电动机调速系统最早采用恒定直流电压给直流电动机供电,通过改变电枢回路中的电阻来实现调速。
这种方法简单易行、设备制造方便、价格低廉;但缺点是效率低、机械特性软,不能得到较宽和平滑的调速性能。
该法只适用在一些小功率且调速范围要求不大的场合。
30年代末期,发电机-电动机系统的出现才使调速性能优异的直流电动机得到广泛应用。
这种控制方法可获得较宽的调速范围、较小的转速变化率和平滑的调速性能。
但此方法的主要缺点是系统重量大、占地多、效率低及维修困难。
近年来,随着电力电子技术的迅速发展,由晶闸管变流器供电的直流电动机调速系统已取代了发电机-电动机调速系统,它的调速性能也远远地超过了发电机-电动机调速系统。
特别是大规模集成电路技术以及计算机技术的飞速发展,使直流电动机调速系统的精度、动态性能、可靠性有了更大的提高。
电力电子技术中IGBT等大功率器件的发展正在取代晶闸管,出现了性能更好的直流调速系统。
普通直流电机调速控制方法
普通直流电机调速控制方法哎呀,说起直流电机调速控制,这玩意儿听起来挺高大上的,其实呢,就跟我们平时调电风扇的风速差不多,只不过这玩意儿更精细,更复杂一些。
首先,咱们得明白直流电机是怎么转起来的。
简单来说,就是给电机通电,电流通过电机的线圈,产生磁场,然后磁场推动电机转起来。
就像你拿个磁铁靠近一个铁块,铁块就会被吸过去一样。
调速呢,就是控制电机转得快还是慢。
这就好比你控制电风扇的风速,你想让风大点就调高,风小点就调低。
直流电机调速,一般有两种方法:一种是改变电压,另一种是改变电流。
先说电压调速吧。
这就像你给电池充电,电压高了,电池就充得快,电压低了,就充得慢。
直流电机也一样,你给电机的电压高了,它转得就快,电压低了,它转得就慢。
但是电压不能随便调,得有个控制器,就像你给手机充电,得有个充电器一样。
电流调速呢,就是控制通过电机线圈的电流大小。
电流大了,磁场就强,电机转得就快;电流小了,磁场就弱,电机转得就慢。
这跟电压调速有点像,但是原理上有点不同。
电流调速更精细一些,因为它能更精确地控制电机的速度。
说到控制器,这就得提提PID控制器了。
PID控制器就像个智能管家,它能根据电机的实际转速和我们设定的目标转速,自动调整电压或电流,让电机的转速达到我们想要的速度。
PID控制器有三个参数:P、I、D。
P就是比例,I是积分,D是微分。
这三个参数调好了,电机的转速就能控制得非常准确。
举个例子吧,我有一次在实验室里调试一个小型的直流电机,用来驱动一个小型的传送带。
一开始,电机转得飞快,传送带都快飞起来了。
我得慢慢调PID参数,先调P,让电机的转速稳定下来,然后再调I和D,让转速更平滑,更准确。
这个过程挺考验耐心的,因为参数调得不对,电机要么转得太快,要么转得太慢,甚至还会停转。
最后,经过一番折腾,我终于调出了一个满意的速度。
传送带稳稳地运行着,就像一个老师傅在悠闲地泡茶,不急不慢,恰到好处。
所以你看,直流电机调速虽然听起来复杂,但其实跟我们日常生活中的很多东西都有相似之处。
他励直流电动机的调速【精品-PDF】
他励直流电动机的调速【精品-PDF】直流电动机是一种重要的电动机类型,广泛应用于各种机械和工业设备中。
直流电动机有广泛的应用范围,从家用电器到工业机械,都有其使用的市场。
直流电动机的特点是其调速性能非常优越,可以实现比其他电动机更好的速度控制。
因此,在各种应用中,调速技术是直流电动机使用中关键的一个因素。
本文将重点介绍直流电动机的调速技术,包括直流电动机的调速控制器、调速方法以及相关技术应用等方面的内容,以帮助读者了解直流电动机和其调速技术。
一、直流电动机及其调速直流电动机是一种可以将电能转换为机械能、实现运动的电动机,其构造简单,使用方便,广泛应用于各种机械和工业设备中。
直流电动机的转速高、速度调节范围大,并且可以实现快速反应,因此被用于需要精确控制转速的系统中。
直流电动机有以下几个特点:(1)调速性能好:直流电动机的转速可以通过改变电枢电流大小或改变励磁电流大小调节,因此其调速性能非常优越,可以实现比其他电动机更好的速度控制。
(2)启动性能好:直流电机启动时,电枢和励磁电流都比较小,在其转速上升之前可以承受一段时间较大的负载,具有启动性能好的特点。
(3)负载能力强:直流电机的负载能力强,可承受瞬时负载、过载和其他恶劣的工况条件。
(4)电机效率高:直流电机效率高,因为在高负载时,电机磁通强、因而转子铜损耗小,从而水平轴的效率高。
直流电动机可以通过两种方式进行调速:改变电枢电流大小、改变励磁电流大小。
(1)改变电枢电流大小当直流电机的励磁电流保持不变时,电枢电流决定了电机的转矩大小,从而对电机的速度和负载产生影响。
当电枢电流增加时,可以增加电机的转矩和速度,当电枢电流减小时,可以降低电机的转矩和速度。
3.直流电动机的调速控制器为了控制直流电动机的转速,需要使用一个调速控制器。
调速控制器是电子电路装置,以实现直流电动机的调速控制为目的,能够根据需求变化,控制直流电机的运行状态和输出功率。
例如,当直流电机需要解决急剧变化的工作负荷时,调速控制器可以根据工作要求,自动调节电机运行状态,以输出恰当的功率。
直流电动机调速方法
n0
调节过程:
增加电阻 Ra R R n ,n0不变;
调速特性:
转速下降,机械特性 O 曲线斜率变大,特性
变软。
第6页/共32页
n U R I Ke Ke
nN
n1
Ra
n2 n3
R1
R2
R3
IL
I
图2-1 调阻调速特性曲线 6
2.1.1 改变电枢回路电阻调速
工作效率:
工作效率
电机电磁功率 电源输出功率
14
第14页/共32页
2.2.1 旋转变流机组
图2-4旋转变流机组供第电15页的/共直3流2页调速系统(G-M系统)
15
• G-M系统工作原理
由原动机(柴油机、交流异步或同步电动机) 拖动直流发电机 G 实现变流
由 G 给需要调速的直流电动机 M 供电,拖动 直流发电机 G E发电作为G的励磁电源。
20
第20页/共32页
晶闸管整流电路原理
➢ 为便于讨论,假设电路已工作
于稳态,id的平均值不变。
2
O
➢ 假设负载电感很大,负载电流 u
d
id连续且波形近似为一水平线
O
i
d
在许多需要调速和快速正反向的电力拖动领 域中得到了广泛的应用
2
第2页/共32页
2.1 直流电机调速方法
他励直流电动机等效电路
他励直流电动机等效 回路:定子电感,定 子电阻,供电电压, 定子电流,励磁绕组
+
-
U
+ Ea -
Ia
M
Ra+Rc If
以及励磁电流。
+ Uf
-
3
第3页/共32页
直流电机调速方法
直流电机调速方法
n=(U-I*R)/K,n为转速,K为常数。
1. 直流电机调速可以有三种方法:1是改变电机两端的电压,2是改变磁通量,3是串调节电阻。
2. 改变电压调速是常用办法,使用脉冲控制PWM方法,输入变化的不同占空量的方波,改变输入直流电机电枢两端的电压,改变直流电机转速,实现调速功能,可以实现无级调速,属于恒转矩调速。
这种调速的问题在于一般只能在额定转速以下调节;改变磁通量,通过弱磁进行调速,可实现无级调速,缺点是只能实现在额定转速以上调节,调速时U、I不变,属于恒功率调速;串调节电阻是在电枢电路之外串联一个可调电阻R0,通过R0增大/减小的改变电阻R+R0来实现调速功能,缺点是只能实现分级调速,且串联电阻电消耗多,现在不怎么常用了。
3. 选择脉冲控制元件PWM,目前很多单片机都有这个模块,可以试试。
直流电机的转速计算公式如下:n=(U-IR)/Kφ,其中U为电枢端电压,I为电枢电流,R为电枢电路总电阻,φ为每极磁通量,K为电动机结构参数。
可以看出,转速和U、I有关,并且可控量只有这两个,我们可以通过调节这两个量来改变转速。
我们知道,I可以通过改变电压进行改变,而我们常提到的PWM控制也就是用来调节电压波形的常用方法,这里我们也就是用PWM控制来进行电机转速调节的。
通过单片机输出一定频率的方波,方波的占空比大小绝对平均电压的大小,也决定了电机的转速大小。
直流他励电动机调速方法
直流他励电动机调速方法直流他励电动机是一种常见的电机类型,用于控制其转速以满足不同工况下的需求。
有许多调速方法和技术用于直流他励电动机,本文将对一些常见的调速方法进行详细介绍。
1. 电压调节法电压调节法是直流他励电动机调速的最基本方法之一。
通过调整电源的输出电压来控制电动机的转速。
当电压增大时,电机的转速也相应增加,反之亦然。
这种调速方法简单易行,但能效较低,且难以实现精确的调速控制。
2. 电阻调节法电阻调节法是通过改变电动机的励磁电流来控制电机的转速。
在电机的励磁回路中串联一个可变电阻,通过调节电阻值来改变励磁电流,从而实现调速。
这种方法可以实现较大范围的调速,但同样能效较低,而且需要维护电阻器的散热和稳定性。
3. 电枢调压法电枢调压法是通过改变电动机的电枢电压来实现调速。
在电动机的电枢回路中串联一个变压器或者换流器,通过调节输出电压来控制电动机的转速。
这种方法可以实现较为精确的调速控制,但也有能效低的问题,且对设备和维护要求较高。
4. 电枢反接法电枢反接法是将电动机的电枢端子与电源直接相接,而将励磁回路中串联一个可变电阻或变压器,通过改变励磁电流来控制电动机的转速。
这种方法可以实现较大范围的调速,但同样需要额外的功耗用于调整励磁电流,也存在一定的效率损失。
5. PWM调速法PWM调速法是通过脉宽调制技术来控制电机的转速。
通过改变开关管的通断时间比,即调整脉冲宽度,来控制电机的平均电压和电流,从而实现调速。
这种方法可以实现较为精确的调速控制,且能效较高,是目前较为常用的调速方法之一。
6. 磁场调节法磁场调节法是通过改变电动机的磁场强度来控制电机的转速。
可以通过改变励磁电流或者改变永磁体的磁场强度来实现调速。
这种方法可以实现较大范围的调速,但会影响电机的动态特性和响应速度。
7. 软启动调速法软启动调速法是通过控制电机的起动电压和电流,来实现较为平稳的起动和调速过程。
通过软启动器或者变频器等设备来实现,可以有效降低对电机和设备的冲击和损伤,也可以实现较为平滑的调速过程。
直流电机的调速方法
-----精品文档------
三、直流电动机调速的方法
(1)改变电枢回路总电阻Ra; (2)改变电源电压调速Ua; (3)改变励磁Ф。
-----精品文档------
(1)改变电枢回路总电阻Ra
电枢回路串电阻调速的原理及调速过程可用下图说明。设电动机拖动恒转矩负载TL在固有特性 上A点运行,其转速为nN。若电枢回路串入电阻Rs1,则达到新的稳态后,工作点变为人为 特性上的B点,转速下降到n1。从图中可以看出,串入的电阻值越大,稳态转速就越低。现 以转速由nN降至n1为例,说明其调速过程。电动机原来在A点稳定运行时,Tem=TL, n=nN,当串入Rs1后,电动机的机械特性变为直线n0B,因串电阻瞬间转速不突变,故Ea不 突变,于是Ia及Tem突变减小,工作点平移到A/点。在A/点,Tem<TL,所以电动机开始减速 ,随着n的减小,Ea减小,Ia及Tem增大,即工作点沿A/B方向移动,当到达B点时, Tem=TL,达到了新的平衡,电动机便在n1转速下稳定运行。调速过程中转速n和电流ia(或 Tem)随时间的变化规律下图所示。
-----精品文档------
(2)改变电源电压(Ua)调速
电动机的工作电压不允许超过额定电压,因此电枢电压只能在额定电压以下进行调节。降低电源电 压调速的原理及调速过程可用下图说明。
降低电压调速 设电动机拖动恒转矩负载TL在固有特性上A点运行,其转速为nN。若电源电压由UN下降至U1,则达到 新的稳态后,工作点将移到对应人为特性曲线上的B点,其转速下降为n1。从图中可以看出,电压越 低,稳态转速也越低。 转速由nN下降至n1的调速过程如下:电动机原来在A点稳定运行时,Tem=TL,n=nN。当电压降至U1后 ,电动机的机械特性变为直线n01B。在降压瞬间,转速n不突变,Ea不突变,所以Ia和Tem突变减小 ,工作点平移到A/点。在A/点,Tem<TL,电动机开始减速,随着n减小,Ea减小,Ia和Tem增大,工 作点沿A/B方向移动,到达B点时,达到了新的平衡:Tem=TL,此时电动机便在较低转速n1下稳定运 行。降压调速过程与电枢串电阻调速过程类似,调速过程中转速和电枢电流(或转矩)随时间的变 化曲线也与图1—40类似。
直流电机的调速方法
第八章直流调速系统8.1 概述调速方法通常有机械的、电气的、液压的、气动的几种,仅就机械与电气调速方法而言,也可采用电气与机械配合的方法化机械变速机构,提高传动效率,操作简单,易于获得无极调速,便于实现远距离控制和自动控制,因此,在生产机械中广泛采由于直流电动机具有极好的运动性能和控制特性,尽管它不如交流电动机那样结构简单、价格便宜、制造方便、维护容易,但是近年来,随着计算机技术、电力电子技术和控制技术的发展,交流调速系统发展很快,在许多场合正逐渐取代直流调速系统。
但是主要形式。
在我国许多工业部门,如轧钢、矿山采掘、海洋钻探、金属加工、纺织、造纸以及高层建筑等需要高性能可控电力拖动调速系统在理论上和实践上都比较成熟,从控制技术的角度来看,它又是交流调速系统的基础。
因此,我们先着重讨论直流调速8.1.1直流电机的调速方法根据第三章直流电机的基本原理,由感应电势、电磁转矩以及机械特性方程式可知,直流电动机的调速方法有三种:(1)调节电枢供电电压U。
改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩系统来说,这种方法最好。
变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。
(2)改变电动机主磁通。
改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。
(3)改变电枢回路电阻。
在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。
但是只能进行有级调速么调速作用;还会在调速电阻上消耗大量电能。
改变电阻调速缺点很多,目前很少采用,仅在有些起重机、卷扬机及电车等调速性能要求不高或低速运转时间不长的传动速配合使用,在额定转速以上作小范围的升速。
因此,自动控制的直流调速系统往往以调压调速为主,必要时把调压调速和弱磁直流电动机电枢绕组中的电流与定子主磁通相互作用,产生电磁力和电磁转矩,电枢因而转动。
并励直流电动机调速
并励直流电动机调速1. 引言直流电动机是一种常见的电动机类型,广泛应用于各种工业设备和家用电器中。
为了满足不同的工作需求,需要对直流电动机进行调速,以实现电机的转速控制。
本文将介绍并励直流电动机调速的原理、方法和常见的调速系统。
2. 并励直流电动机调速原理并励直流电动机调速是通过调节电机的电压或电流来改变电机的输出转矩和转速。
在直流电动机中,电枢电压和电流控制了电机的转速,而磁场励磁系统的电压和电流则影响了电机的转矩。
3. 并励直流电动机调速方法3.1 电压调速法电压调速法是最常见的调速方法之一,通过改变电机的供电电压来控制电机的转速。
这种方法简单可靠,但对电机的负载变化较为敏感,容易引起转速和转矩的波动。
3.2 电枢电流调速法电枢电流调速法是通过改变电机的电枢电流来控制电机的转速。
这种调速方法对电机的负载变化较不敏感,转速和转矩波动较小,适用于负载变化较大的场合。
3.3 励磁电流调速法励磁电流调速法是通过改变电机的励磁电流来控制电机的转速。
这种调速方法适用于对电机转矩和转速要求较高的场合,但相对复杂和成本较高。
4. 并励直流电动机调速系统并励直流电动机调速系统由电机、调速器、传感器和控制器等组成。
调速器根据输入信号调节电机的电源,传感器用于监测电机的转速和转矩,控制器根据传感器的反馈信号控制调速器的输出。
常见的调速器包括可变电阻器、可控硅和PWM 调速器等。
5. 并励直流电动机调速应用并励直流电动机调速广泛应用于各种场合,例如机械传动、风机调节、泵站控制等。
调速系统可根据实际需求选择不同的调速方法和调速器,以实现精准的转速控制。
6. 结论并励直流电动机调速是一种常见且重要的技术,在各种工业领域中有广泛的应用。
掌握并励直流电动机调速的原理、方法和调速系统的设计,对于提高电机的运行效率和可靠性具有重要意义。
在实际应用中,需要根据具体要求选择合适的调速方法和调速器,以满足不同工作场景的需求。
以上就是关于并励直流电动机调速的文档,介绍了其原理、方法、调速系统以及应用领域。
直流电机的调速方法
图8.6 晶闸管的等效电路
(a)结构分解图
(b)三极管等效电路
当晶闸管的阳极与阴极之间加上正向电压时,这时VT1和VT2都承受正向电压,如果在控制 的电压,就有控制电流Ig流过,它就是VT2的基极电流Ib2 ,经过VT2的放大,在VT2的集电极就 Ig(β2为VT2的电流放大系数),而这个IC2又恰恰是VT1的基极电流Ib1,这个电流再经过VT 集电极电流IC2=β1 Ib1=β1β2Ig(β1为VT1的电流放大系数),由于VT1的集电极和VT2的基极
晶闸管是由四层半导体构成的,如图8.5(b)所示。它由单晶硅薄片P1、N1、P2、N2四层 个PN结。晶闸管的图形符号如图8.5(c)所示。
图8.5 晶闸管外形、结构及图形符号
(a)外形封装 (b)内部结构
(c)图形符号
晶闸管的工作原理
实验证明,当在晶闸管的阳极与阴极之间加反向电压时,这时不管控制极的信号情况如何 在晶闸管的阳极与阴极之间加正向电压时,若在控制极与阴极之间没有电压或加反向电压,晶 当在晶闸管的阳极与阴极之间加正向电压时,在控制极与阴极之间加正向电压,晶闸管才会导 不管控制极有没有电压,只要阳极与阴极之间维持正向电压,则晶闸管就维持导通。下面来分
电压(UBR)。可见,晶闸管的反向伏安特性与二极管反向特性类似。
晶闸管的主要参数
为了正确选用晶闸管元件,必须要了解它的主要参数,一般在产品的目录上都给出了参数 合格证上标有元件的实测数据。
(1)断态重复峰值电压UDRM 在控制极断路和晶闸管正向阻断的条件下,可以重复加在晶闸管两端的正向峰值电压称为 其数值比正向转折电压小10%左右。 (2)反向重复峰值电压URRM 在控制极断路时,可以重复加在晶闸管元件上的反向峰值电压称为反向重复峰值电压URR 击穿电压小10%左右。 通常把UDRM与URRM中较小的一个数值标作器件型号上的额定电压。由于瞬时过电压也会使 选用元件的时候,额定电压一般应该为正常工作峰值电压的2~3倍作为安全系数。 (3)额定通态平均电流(额定正向平均电流)IT 在环境温度不大于40oC和规定的冷却条件下,晶闸管元件在电阻性负载的单相工频半波电 即全导通的条件下,可以连续通过的电流(在一个周期内)的平均值,称为额定通态平均电流
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三相交流电机调速有哪些方法
1 变极调速.2变频调速.3变转差率调速...
三相交流电机有很多种。
1.普通三相鼠笼式。
这种电机只能通过变频器改变电源频率和电压调速(F/U)。
2.三相绕线式电机,可以通过改变串接在转子线圈上的电阻改变电机的机械特性达到调速的目的。
这种方式常用在吊车上。
长时间工作大功率的绕线式电机调速不用电阻串接,因为电阻会消耗大量的电能。
通常是串可控硅,通过控制可控硅的导通角控制电流。
相当于改变回路中的电阻达到同上效果。
转子的电能经可控硅组整流后,再逆变送回电网。
这种方式称为串级调速。
配上好的调速控制柜,据说可以和直流电机调速相比美。
3.多极电机。
这种电机有一组或多组绕组。
通过改变接在接线合中的绕组引线接法,改变电机极数调速。
最常见的4/2极电机用(角/双Y)接。
4.三相整流子电机。
这是一种很老式的调速电机,现在很用了。
这种电机结构复杂,它的转子和直流电机转子差不多,也有换向器,和电刷。
通过机械机构改变电刷相对位置,改变转子组绕组的电动势改变电流而调速。
这种电机用的是三相流电,但是,严格上来说,其实它是直流机。
原理是有点象串砺直流机。
5.滑差调速器。
这种方式其实不是改变电机转速。
而是改变和是电机轴相连的滑差离合器的离合度,改变离合器输出轴的转速来调速的。
还有如,硅油离合器,磁粉离合器,等等,一此离合机械装置和三相电机配套,用来调速的方式。
严格上来说不算是三相电机的调还方式。
但是很多教材常常把它们算作调速方式和一种。
直流电机的调速方法
一是调节电枢电压,二是调节励磁电流,
而常见的微型直流电机,其磁场都是固定的,不可调的永磁体,
所以只好调节电枢电压,要说有那几种调节电枢电压方法,
常用的一是可控硅调压法,再就是脉宽调制法(PWM)。
PWM的H型属于调压调速。
PWM的H桥只能实现大功率调速。
国内的超大功率调速还要依靠可控硅实现可控整流来实现直流电机的调压调速。
还有弱磁调速,通过适当减弱励磁磁场的办法也可以调速。
直流电机的3种调速方法各有什么优缺点?
不同的需要,采用不同的调速方式,应该说各有什么特点。
1.在全磁场状态,调电枢电压,适合应用在0~基速以下范围内调速。
不能达到电机的最高转
速。
2.在电枢全电压状态,调激磁电压,适合应用在基速以上,弱磁升速。
不能得到电机的较低转速。
3.在全磁场状态,调电枢电压,电枢全电压之后,弱磁升速。
适合应用在调速范围大的情况。
这是直流电机最完善的调速方式,但设备复杂,造价高。