2019-2020年扬州市初三中考数学一模模拟试题

合集下载

2019年江苏省扬州市高邮市八校联考中考数学模拟试卷(4月份)(含答案)

2019年江苏省扬州市高邮市八校联考中考数学模拟试卷(4月份)(含答案)

2019年江苏省扬州市高邮市八校联考中考数学模拟试卷(4月份)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)在下列各数中,比﹣1.5小的数是()A.1B.﹣1C.﹣2D.02.(3分)下列运算正确的是()A.a6+a3=a9B.a2•a3=a6C.(2a)3=8a3D.(a﹣b)2=a2﹣b23.(3分)如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()A.B.C.D.4.(3分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.5.(3分)如图,给出了过直线AB外一点P,作已知直线AB的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线品行D.过直线外一点有且只有一条直线与这条直线平行6.(3分)某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数为:6,10,5,3,4,8,4,这组数据的中位数和极差分别是()A.4,7B.7,5C.5,7D.3,77.(3分)△ABC的三边AB,BC,CA的长分别为6cm,4cm,4cm,P为三边角平分线的交点,则△ABP,△BCP,△ACP的面积比等于()A.1:1:1B.2:2:3C.2:3:2D.3:2:28.(3分)如图,在反比例函数y=﹣的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y =的图象上运动.若tan∠CAB=2,则k的值为()A.2B.4C.6D.8二、填空题(本大题10小题,每小题3分,共30分,不需要写出解答过程)9.(3分)月球距离地球平均为384000000米,用科学记数法表示其结果是米.10.(3分)因式分解:9x2y﹣y=.11.(3分)如图,是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动指针,指针落在有阴影的区域内的概率为a;如果投掷一枚硬币,正面向上的概率为b,则a b(填“>”“<”或“=”)12.(3分)已知圆锥的底面半径是3cm,母线长是5cm,则圆锥的侧面积为cm2.(结果保留π)13.(3分)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心,若∠B=25°,则∠C的度数为°.14.(3分)如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件.15.(3分)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F.若∠EAF=55°,则∠B=.16.(3分)关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,b,m均为常数,a ≠0),则方程a(x﹣m+2)2+b=0解是.17.(3分)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为.18.(3分)如图,边长为3的等边△ABC,D、E分别为边BC、AC上的点,且BD=CE,AD、BE交于P点,则CP的最小值为.三、解答题(本大题共10小题,共96分解答时应写出文字说明、证明过程或演算步骤)19.(8分)计算或化简:(1)2cos45°﹣(﹣2)0+(2)先化简,再求值:(﹣x﹣1)÷,其中x=﹣;20.(8分)求不等式组的解集,并将解集在数轴上表示出来.21.(8分)某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.根据以上信息完成下列问题:(1)统计表中的m=,n=,并补全条形统计图;(2)扇形统计图中“C组”所对应的圆心角的度数是;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.22.(8分)一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出一个球是白球的概率是多少?(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图.23.(10分)已知,一张矩形纸片ABCD,把顶点A和C叠合在一起,得折痕EF(如图).(1)猜猜四边形AECF是什么特殊四边形,并证明你的猜想;(2)若AB=9cm,BC=3cm,求折痕EF的长.24.(10分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?25.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC于点G,交AB的延长线于点F.(1)求证:直线FG是⊙O的切线;(2)若AC=10,cos A=,求CG的长.26.(10分)如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹)(1)作△ABC的外接圆圆心O;(2)设D是AB边上一点,在图中作出一个等边△DFH,使点F,点H分别在边BC和AC上;(3)在(2)的基础上作出一个正六边形DEFGHI.27.(12分)如图,在矩形ABCD中,AB=3,BC=4,动点P从点D出发沿DA向终点A 运动,同时动点Q从点A出发沿对角线AC向终点C运动.过点P作PE∥DC,交AC 于点E,动点P、Q的运动速度是每秒1个单位长度,运动时间为x秒,当点P运动到点A时,P、Q两点同时停止运动.设PE=y;(1)求y关于x的函数关系式;(2)探究:当x为何值时,四边形PQBE为梯形?(3)是否存在这样的点P和点Q,使P、Q、E为顶点的三角形是等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.28.(12分)如图1,已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,抛物线y=﹣x2+bx+c过A、B两点,且与x轴交于另一点C.(1)求b、c的值;(2)如图1,点D为AC的中点,点E在线段BD上,且BE=2ED,连接CE并延长交抛物线于点M,求点M的坐标;(3)将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,如图2,P 为△ACG内一点,连接P A、PC、PG,分别以AP、AG为边,在他们的左侧作等边△APR,等边△AGQ,连接QR①求证:PG=RQ;②求P A+PC+PG的最小值,并求出当P A+PC+PG取得最小值时点P的坐标.2019年江苏省扬州市高邮市八校联考中考数学模拟试卷(4月份)参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.【解答】解:∵1>﹣1.5,﹣1>﹣1.5,﹣2<﹣1.5,0>﹣1.5,∴所给的各数中,比﹣1.5小的数是﹣2.故选:C.2.【解答】解:A、a6与a3不是同类项,不能合并,此选项错误;B、a2•a3=a5,此选项错误;C、(2a)3=8a3,此选项正确;D、(a﹣b)2=a2﹣2ab+b2,此选项错误;故选:C.3.【解答】解:根据题意的主视图为:,故选:B.4.【解答】解:A、不是中心对称图形,是轴对称图形,故本选项不符合题意;B、既是中心对称图形又是轴对称图形,故本选项符合题意;C、不是中心对称图形,是轴对称图形,故本选项不符合题意;D、不是中心对称图形,是轴对称图形,故本选项不符合题意.故选:B.5.【解答】解:由图形得,有两个相等的同位角,所以只能依据:同位角相等,两直线平行.故选:A.6.【解答】解:把数据重新排序后为3,4,4,5,6,8,10,∴中位数为5,极差为10﹣3=7.故选:C.7.【解答】解:∵P为三边角平分线的交点,∴点P到△ABC三边的距离相等,∵AB,BC,CA的长分别为6cm,4cm,4cm,∴△ABP,△BCP,△ACP的面积比=6:4:4=3:2:2.故选:D.8.【解答】解:连接OC,过点A作AE⊥y轴于点E,过点C作CF⊥x轴于点F,如图所示.由直线AB与反比例函数y=﹣的对称性可知A、B点关于O点对称,∴AO=BO.又∵AC=BC,∴CO⊥AB.∵∠AOE+∠EOC=90°,∠EOC+∠COF=90°,∴∠AOE=∠COF,又∵∠AEO=90°,∠CFO=90°,∴△AOE∽△COF,∴.∵tan∠CAB==2,∴CF=2AE,OF=2OE.又∵AE•OE=|﹣2|=2,CF•OF=|k|,∴k=±8.∵点C在第一象限,∴k=8.故选:D.二、填空题(本大题10小题,每小题3分,共30分,不需要写出解答过程)9.【解答】解:384000000=3.84×108,故答案为:3.84×108.10.【解答】解:原式=y(9x2﹣1)=y(3x+1)(3x﹣1).故答案为:y(3x+1)(3x﹣1).11.【解答】解:∵正六边形被分成相等的6部分,阴影部分占3部分,∴a==,∵投掷一枚硬币,正面向上的概率b=,∴a=b,故答案为:=.12.【解答】解:底面圆的半径为3cm,则底面周长=6πc,侧面面积=×6π×5=15πcm2.13.【解答】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故答案为:40.14.【解答】解:添加的条件应为:AC=BD.证明:∵E,F,G,H分别是边AB、BC、CD、DA的中点,∴在△ADC中,HG为△ADC的中位线,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,则HG∥EF且HG=EF,∴四边形EFGH为平行四边形,又AC=BD,所以EF=EH,∴四边形EFGH为菱形.故答案为:AC=BD15.【解答】解:∵AE⊥BC于点E,AF⊥CD于点F.∴∠AEC=∠AFC=90°∵∠AEC+∠AFC+∠C+∠EAF=360°,且∠EAF=55°∴∠C=360°﹣90°﹣90°﹣55°=125°∵四边形ABCD是平行四边形∴∠B+∠C=180°∴∠B=55°故答案为55°16.【解答】解:方程a(x+m)2+b=0可变形为ax2+2amx+am2+b=0,∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,∴x1+x2=﹣2m=1,∴m=﹣.∵关于x的方程a(x﹣)2+b=0的解是x1=2,x2=﹣1,∴抛物线y=a(x﹣)2+b与x轴交于点(﹣1,0)和(2,0).将抛物线y=a(x﹣)2+b向左平移2个单位长度可得出抛物线y=a(x+)2+b,∴抛物线y=a(x+)2+b与x轴交于点(﹣3,0)和(0,0),∴方程a(x+)2+b=0的解为x1=﹣3,x2=0.故答案为:x1=﹣3,x2=0.17.【解答】解:将△DAF绕点A顺时针旋转90度到△BAF′位置,由题意可得出:△DAF≌△BAF′,∴DF=BF′,∠DAF=∠BAF′,∴∠EAF′=45°,在△F AE和△EAF′中,∴△F AE≌△EAF′(SAS),∴EF=EF′,∵△ECF的周长为4,∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=DF+FC+BC=4,∴2BC=4,∴BC=2.故答案为:2.18.【解答】解:∵在等边△ABC中,∠ABC=∠C=60°,AB=BC,BD=CE,∴△ABD≌△BCE,∴∠CBE=∠BAP,而∠CBE+∠ABP=60°,∴∠BAP+∠ABP=∠APE=60°,若CP取最小值,可得∠APC=120°,所以CP=,故答案为:三、解答题(本大题共10小题,共96分解答时应写出文字说明、证明过程或演算步骤)19.【解答】解:(1)原式=2×﹣1+﹣1﹣=﹣1+﹣1﹣2=﹣2;(2)(﹣x﹣1)÷===﹣(x+2)(x﹣1)=﹣x2﹣x+2当x=﹣时,原式=﹣(﹣)2﹣(﹣)+2=﹣2++2=20.【解答】解:,解①得x>﹣2,解②得x≤,所以不等式组的解集为﹣2<x≤.用数轴表示为:.21.【解答】解:(1)从条形图可知,B组有15人,从扇形图可知,B组所占的百分比是15%,D组所占的百分比是30%,E组所占的百分比是20%,15÷15%=100,100×30%=30,100×20%=20,∴m=30,n=20;(2)“C组”所对应的圆心角的度数是25÷100×360°=90°;(3)估计这所学校本次听写比赛不合格的学生人数为:900×(10%+15%+25%)=450人.22.【解答】解:(1)从箱子中任意摸出一个球是白球的概率是;(2)记两个白球分别为白1与白2,画树状图如右所示:从树状图可看出:事件发生的所有可能的结果总数为6,两次摸出球的都是白球的结果总数为2,因此其概率.23.【解答】解:(1)四边形AECF是菱形.理由如下:∵四边形ABCD为矩形,∴AB∥CD,∴∠AFE=∠CEF,∵矩形ABCD沿EF折叠,顶点A和C叠合在一起,∴AF=CF,∠AFE=∠CFE,∴∠CFE=∠CEF,∴CE=CF,∴CE=AF,而CE∥AF,∴四边形AFCE为平行四边形,∵AF=CF,∴四边形AFCE为菱形;(2)连结AC,如图,在Rt△ABC中,AB=9cm,BC=3cm,∴AC==3cm,设BF=xcm,则AF=CF=(9﹣x)cm,在Rt△BFC中,∵BF2+BC2=CF2,∴x2+32=(9﹣x)2,解得x=4,∴AF=5cm,∵S菱形AFCE=EF•AC=AF•BC,∴EF==(cm).24.【解答】解:设工作总量为1,规定日期为x天,则若单独做,甲队需x天,乙队需x+3天,根据题意列方程得2(+)+=1,解方程可得x=6,经检验x=6是分式方程的解.答:规定日期是6天.25.【解答】(1)证明:如图1,连接OD,∵AB=AC,∴∠C=∠ABC,∵OD=OB,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴∠ODG=∠DGC,∵DG⊥AC,∴∠DGC=90°,∴∠ODG=90°,∴OD⊥FG,∵OD是⊙O的半径,∴直线FG是⊙O的切线.(2)解:如图2,∵AB=AC=10,AB是⊙O的直径,∴OA=OD=10÷2=5,由(1),可得OD⊥FG,OD∥AC,∴∠ODF=90°,∠DOF=∠A,在△ODF和△AGF中,∴△ODF∽△AGF,∴,∵cos A=,∴cos∠DOF=,∴=,∴AF=AO+OF=5,∴,解得AG=7,∴CG=AC﹣AG=10﹣7=3,即CG的长是3.26.【解答】解:(1)如图所示:点O即为所求.(2)如图所示,等边△DFH即为所求;(3)如图所示:六边形DEFGHI即为所求正六边形.27.【解答】解:(1)∵矩形ABCD,∴∠D=90°,AB=DC=3,AD=BC=4,∴在Rt△ACD中,利用勾股定理得:AC==5,∵PE∥CD,∴∠APE=∠ADC,∠AEP=∠ACD,∴△APE∽△ADC,又PD=x,AD=4,AP=AD﹣PD=4﹣x,AC=5,PE=y,DC=3,∴==,即==,∴y=﹣x+3;(2)若QB∥PE,四边形PQBE是矩形,非梯形,故QB与PE不平行,当QP∥BE时,∠PQE=∠BEQ,∴∠AQP=∠CEB,∵AD∥BC,∴∠P AQ=∠BCE,∴△P AQ∽△BCE,由(1)得:AE=﹣x+5,P A=4﹣x,BC=4,AQ=x,∴==,即==,整理得:5(4﹣x)=16,解得:x=,∴当x=时,QP∥BE,而QB与PE不平行,此时四边形PQBE是梯形;(3)存在.分两种情况:当Q在线段AE上时:QE=AE﹣AQ=﹣x+5﹣x=5﹣x,(i)当QE=PE时,5﹣x=﹣x+3,解得:x=;(ii)当QP=QE时,∠QPE=∠QEP,∵∠APQ+∠QPE=90°,∠P AQ+∠QEP=90°,∴∠APQ=∠P AQ,∴AQ=QP=QE,∴x=5﹣x,解得:x=;(iii)当QP=PE时,过P作PF⊥QE于F,可得:FE=QE=(5﹣x)=,∵PE∥DC,∴∠AEP=∠ACD,∴cos∠AEP=cos∠ACD==,∵cos∠AEP===,解得:x=;当点Q在线段EC上时,△PQE只能是钝角三角形,如图所示:∴PE=EQ=AQ﹣AE,AQ=x,AE=﹣x+5,PE=﹣x+3,∴﹣x+3=x﹣(﹣x+5),解得:x=.综上,当x=或x=或x=或x=时,△PQE为等腰三角形.28.【解答】解:(1)∵一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,∴A(﹣3,0),B(0,3),∵抛物线y=﹣x2+bx+c过A、B两点,∴解得,∴b=﹣2,c=3.(2),对于抛物线y=﹣x2﹣2x+3,令y=0,则﹣x2﹣2x+3=0,解得x=﹣3或1,∴点C坐标(1,0),∵AD=DC=2,∴点D坐标(﹣1,0),∵BE=2ED,∴点E坐标(﹣,1),设直线CE为y=kx+b,把E、C代入得到解得,∴直线CE为y=﹣x+,由解得或,∴点M坐标(﹣,).(3)①∵△AGQ,△APR是等边三角形,∴AP=AR,AQ=AG,∠QAC=∠RAP=60°,∴∠QAR=∠GAP,在△QAR和△GAP中,,∴△QAR≌△GAP,∴QR=PG.②如图3中,∵P A+PG+PC=QR+PR+PC=QC,∴当Q、R、P、C共线时,P A+PG+PC最小,作QN⊥OA于N,AM⊥QC于M,PK⊥OA于K.∵∠GAO=60°,AO=3,∴AG=QG=AQ=6,∠AGO=30°,∵∠QGA=60°,∴∠QGO=90°,∴点Q坐标(﹣6,3),在RT△QCN中,QN=3,CN=7,∠QNC=90°,∴QC==2,∵sin∠ACM==,∴AM=,∵△APR是等边三角形,∴∠APM=60°,∵PM=PR,cos30°=,∴AP=,PM=RM=∴MC==,∴PC=CM﹣PM=,∵==,∴CK=,PK=,∴OK=CK﹣CO=,∴点P坐标(﹣,).∴P A+PC+PG的最小值为2,此时点P的坐标(﹣,).。

2023年江苏省扬州市邗江区梅岭中学教育集团中考数学一模试卷(含解析)

2023年江苏省扬州市邗江区梅岭中学教育集团中考数学一模试卷(含解析)

2023年江苏省扬州市邗江区梅岭中学教育集团中考数学一模试卷学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共8小题,共24.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列运算结果为−2的是( )A. (−2)×1B. −1+1C. +|−2|D. −122. 下列计算正确的是( )A. 12=32B. 3+2=5C. 6=3 D. (3)2=323. 如图,某天气预报软件显示“扬州市邗江区明天的降水概率为85%”,对这条信息的下列说法中,正确的是( )扬州市邗江区天气12−16℃日出06:43日落17:18体感温度降水概率降水量空气质量14℃85%1.0mm优A. 邗江区明天将有85%的时间下雨B. 邗江区明天将有85%的地区下雨C. 邗江区明天下雨的可能性较大D. 邗江区明天下雨的可能性较小4.如图是《九章算术》中“堑堵”的立体图形,它的左视图为( )A.B.C.D.5. 下列方程中,有两个相等实数根的是( )A. x2−2x+1=0B. x2+1=0C. x2−2x−3=0D. x2−2x=06. 能说明“相等的角是对顶角”是假命题的一个反例是( )A. B.C. D.7. 如图,一次函数y1=k1x+b与反比例函数y2=k2的图象相交于A,B两点,点A的横坐标x的解集是( )为2,点B的横坐标为−1,则不等式k1x+b<k2xA. −1<x<0或x>2B. x<−1或0<x<2C. x<−1或x>2D. −1<x<28. 如图,是某企业甲、乙两位员工的能力测试结果网状图,以O为圆心的五个同心圆分别代表能力水平的五个等级,由低到高分别赋分1至5分,由原点出发的五条线段分别指向能力水平的五个维度,网状图能够更加直观的描述测试者的优势和不足,观察图形,有以下几个推断:①甲和乙的动手操作能力都很强;②缺少探索学习的能力是甲自身的不足;③与甲相比,乙需要加强与他人的沟通和合作能力;④乙的综合评分比甲要高.其中合理的是( )A. ①③B. ②④C. ①②③D. ①②③④第II卷(非选择题)二、填空题(本大题共10小题,共30.0分)9. 2023年春节期间,扬州市83家景区接待游客约为2700000人次,与2019年同期相比增长12.4%,增幅居全省第一.将2700000用科学记数法表示为______ .10. 分解因式:5x2−10xy+5y2=______ .11. 写出一个比11大且比21小的整数为______ .12. 若点A(−1,y1),B(2,y2),C(3,y3)在反比例函数y=6的图象上,则y1,y2,y3的大小关x系是______ (用“<”连接).13. 若x、y满足方程组{2x−y=22x+5y=6,则x+y的值是______.14. 如图,在平面直角坐标系中,△AOB的边AO,AB的中点C,D的横坐标分别是1,4,则点B的横坐标是______ .15.如图,正方形ABCD的边长是2,将对角线AC绕点A顺时针旋转∠CAD的度数,点C旋转后的对应点为E,则弧CE的长是______(结果保留π).16. 幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为.17. 如图,已知在菱形ABCD中,∠A=30°,以点A、B为圆心,取大于1AB的长为半径,分2别作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE、BD,若AE=2,则菱形ABCD的面积为______ .18. 在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是______.三、解答题(本大题共10小题,共96.0分。

2019年最新版初三中考数学模拟试卷及答案9935513

2019年最新版初三中考数学模拟试卷及答案9935513

中考数学模拟试卷及答案解析学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.从一 副扑克牌(除去大小王)中任取一张,抽到的可能性较小的是( ) A .红桃B .6C .黑桃8D .梅花6或82.在①(65)65ab a a b +÷=+;②(8x2y 22(84)(4)2x y xy xy x y -÷-=--;③ 22(1510)(5)32x yz xy xy x y -÷=-;④222(33)33x y xy x x xy y -+÷=-中,不正确的有( ) A .1 个B .2 个C .3 个D . 4 个3.A .B 两地相距 48km ,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用去 9h .已知水流速度为 4 km/h ,若设该轮船在静水中的速度为 x (km /h ),则可列方程( ) A .4848944x x +=+- B .4848944x x +=+- C .4849x+= D .9696944x x +=+- 4.下列多项式中,含有因式)1(+y 的多项式是( ) A .2232x xy y -- B .22)1()1(--+y y C .)1()1(22--+y yD .1)1(2)1(2++++y y5.下列事件中,属于不确定事件的是( ) A .2008年奥运会在北京举行B .太阳从西边升起C .在1,2,3,4中任取一个数比5大D .打开数学书就翻到第10页6.若)3)(1(+-x x =n mx x ++2 ,则m 、n 的值分别为 ( ) A .m=1,n=3B .m=4 ,n=5C .m=2 ,n= —3D .m= —2 ,n=37.一个暗箱里装有10个黑球,8个白球,12个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到白球的概率是( )A .13B .18C .415D .4118.分式11a b+计算的结果是( ) A .b a + B .1a b+C .2a b+ D .a bab+ 9.在1()n m n x x -+⋅=中,括号内应填的代数式是( )A .1m n x++ B .2m x+C .1m x+D .2m n x++10.一列列车自 2004年全国铁路第 5次大提速后,速度提高了26 km/h ,现在该列车从甲站 到乙站所用的时间比原来减少了1h ,已知甲、乙两站的路程是312 km ,若设列车提速前的速度是x (km/h ),则根据题意所列方程正确的是( ) A .312312126x x -=+ B .312312126x x -=+ C .312312126x x -=- D .312312126xχ-=- 11.老师对某班同学中出现的错别字情况进行抽样调查,一个小组10位同学在一篇作文中 出现的错别字个数统计如下(单位:个):0,2,0,2,3,0,2,3,1,2.有关这组数据的下列说法中,正确的是( ) A .平均数是2B .众数是3C .中位数是1.5D .方差是1.2512.在下面四个图形中,既包含图形的旋转,又有图形的轴对称设计的是( )A .B .C .D .13.某园林占地面积约为800000 m 2,若按比例尺1:2000缩小后,其面积大约相当于( )A .一个篮球的面积B .一张乒乓球台面的面积C .《钱江晚报》一个版面的面积D .《数学》课本封面的面积14.以下列各组数为长度的线段,能组成三角形的是( ) A .1cm, 2cm , 3cmB .2cm , 3cm , 6cmC .4cm , 6cm , 8cmD .5cm , 6cm , 12cm15.如图,直线a 、b 被c 所截,a ∥b ,已知∠1 =50°,则∠2 等于( ) A .30°B .50°C .130D .150°16.若两条平行直线被第三条直线所截得的八个角中有一个角的度数已知. 则()A.只能求出其余三个角的度数B.只能求出其余五个角的度数C.只能求出其余六个角的度数D.能求出其余七个角的度数17.三角形内到三角形各边的距离都相等的点必在三角形的()A.中线上B.平分线上C.高上D.中垂线上18.下列图形中,可以折成正方体的是()A.B.C.D.19.下列图形中是四棱柱的侧面展开图的是()A.B.C.D.20.数据5,7,4,0,5,4,8,8,6,4的中位数和众数分别是()A. 5,4 B.4,5 C.5,5 D.4.5,421.根据中央电视台2006年5月8日19时30分发布的天气预报,我国内地31个省会城市及直辖市5月9日的最高气温(℃)统计如下表:那么这些城市5月9日的最高气温的中位数和众数分别是()A.27℃,30°C B.28.5°C,29℃C.29℃,28℃D.28℃,28℃22.小伟五次数学考试成绩分别为86分,78分,80分,85分,92分,李老师想了解小伟数学学习变化情况,则李老师最关注小伟数学成绩的()A.平均数B.众数C.中位数D.方差23.为了解噪声污染的情况,某市环保局抽样调查了80个测量点的噪声声级(单位:分贝),并进行整理后分成五组,绘制出频数分布直方图如图所示.已知从左到右的前四组的频数分别为l2,20,24,16,且噪声高于69.5分贝就会影响工作和生活,那么影响到工作和生活而需对附近区域进行治理的测量点所占百分比为()A.10%B.15%C.20%D.25%24.下列图形中,与如图1形状相同的是()图 1 A. B. C. D.25.已知直线AB上有一点0,射线OC和射线OD在射线OB同侧,∠BOC=50°,∠COD=100°,则∠BOC与∠AOD的平分线的夹角的度数是()A.130°B.135°C.140°D.145°26.已知数据:25,21,23,25,29,27,28,25,27,30,22,26,25,24,26,28,26,25,24,27.在列频数分布表时,如果取组距为2,那么落在24.5~26.5这一组的频率是()A.0.6 B.0.5 C.0.4 D.0.327.-3 不是()A.有理数B.整数C.自然数D.负有理数28.12-的绝对值是()A.-2 B.12-C.2 D.1229.数学课上老师给出下面的数据,精确的是()A.2002年美国在阿富汗的战争每月耗费10亿美元B.地球上煤储量为5万亿吨以上C.人的大脑有l×1010个细胞D.七年级某班有51个人30.按表示算式()A .72÷(-5)×3.2B .-72÷5×3.2C .-72÷5×(-3.2)D .72÷(-5)×(-3.2)31.有下列计算 :①0-(-5)=-5;②(-3)+(-9)=-12;③293()342⨯-=-;④(36)(9)4-÷-=-.其中正确的有( ) A . 1个B . 2个C .3个D .4个32.如图,△A8C ≌△BAD ,A 和B ,C 和D 是对应点,若AB=4 cm ,BD=3 cm ,AD=2 cm ,则BC 的长度为( ) A .4 cmB .3 cmC .2 cmD .不能确定33.下列多项式能用平方差公式分解因式的是( ) A .22a b +B .443a ab -C .22()a b ---D .22a b -+34.已知||2(3)18m m x --=是关于x 的一元一次方程,则( ) A .2m =B .3m =-C .3m =±D .1m =35. 解方程45(30)754x -=,较简便的是( )A .先去分母B .先去括号C .先两边都除以45D .先两边都乘以5436.已如图是L 型钢条截面,它的面积是( ) A .ct lt +B .2()c t t lt ct lt t -+=+-C . 2()()2c t t l t t ct lt t -+-=+-D .2()()22l c t c t l t l c +++-+-=+37.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件服装仍可获利l5元,则这种服装每件的成本价是 ( ) A .120元B .125元C .135元D .14038.小王照镜子时,发现T 恤衫上英文为“”,则T 恤衫上的英文实际是( ) A .APPLEB .AqqELC .ELqqAD .ELPPA39.55°角的余角是()A. 55°B.45°C. 35°D. 125°40.由5 个顶点、8条棱、5个面构成的几何体是()A.立方体B.三棱锥C.四棱锥D.不存在41.过一个钝角的顶点作这个角两边的垂线,若这两条垂线的夹角为 40°,则此钝角为()A.140°B.160°C.120°D.110°42)A. 9 B.9±C.3 D.3±43.有一些乒乓球装在一个口袋中,不知其个数,先取出6个做上标记,放回袋中混合均匀后取出 20个,发现含有 2个做了标记的. 据此可以估计袋中乒乓球的数目约为()A. 100个B.60个C. 40个 26个44.如图是甲、乙两户居民家庭全年各项支出的统计图.根据统计图,下列对两个家庭的教育支出占全年总支出的百分比的判断中,正确的是()A.甲户大于乙户 B.乙户大于甲户C.甲、乙两户一样大 D.无法确定哪一户大45.如图所示,AD⊥BC于D,那么以AD为高的三角形有()A. 3个B.4个C. 5个D.6个46.下列各组图形中成轴对称的是()A.B.C.D.47.一个四边形通过旋转形成另一个四边形,下列说法中,正确的是( ) A .这两个四边形一定是轴对称图形 B .这两个四边形一定可以通过互相平移得到 C .旋转中,任意一对对应点的连线必过旋转中心D .旋转中,一个四边形上的每一点绕旋转中心沿相同的方向转动的角度相等48.某种商品的进价为 800 元,出售时标价为1200 元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至少可打( ) A .6 折B .7 折C .8 折D .9 折49.800 m 跑道上有两人在练长跑,甲的速度为320 m /min ,乙的速度为280 m /min ,两人同时同地同向出发t (min )后,甲、乙两人第一次相遇,则t 等于( ) A .10 minB .15 minC .20 minD .30 min50.△ABC 与△A ′B ′C ′相似,相似比为23,△A ′B ′C ′与△A 〞B 〞C 〞相似,相似比为54,则△ABC 与△A 〞B 〞C 〞的相似比为( )A .56B .65C .56或65D .81551.关于二次函数y =-12 x 2,下列说法不正确的是( ) A .图像是一条抛物线 B .有最大值0 C .图像的对称轴是y 轴 D .图像都在x 轴的下方52.二次函数2x y =的图象向右平移3个单位,得到新的图象的函数表达式是( ) A .32+=x yB .32-=x yC .2)3(+=x yD .2)3(-=x y53.关于二次函数247y x x =+-的最值,叙述正确的是( ) A .当x=2 时,函数有最大值 B .当 x=2时,函数有最小值 C .当 x=-2 时,函数有最大值D .当 x= 一2 时,函数有最小值54.二次函数342++=x x y 的图象可以由二次函数2x y =的图象平移而得到,下列平移正确的是( )A .先向左平移2个单位长度,再向上平移1个单位长度B .先向左平移2个单位长度,再向下平移1个单位长度C .先向右平移2个单位长度,再向上平移1个单位长度D .先向右平移2个单位长度,再向下平移1个单位长度 55.若a 、b 分别表示圆中的弦和直径的长,则( ) A .a>bB .a<bC . a=bD .a ≤b56.如图所示,⊙O 中,点A 、O 、D 以及点B 、O 、C 分别在一直线上,图中弦的条数为( )A .2 条B .3 条C .4 条D ..5 条57.将一圆形纸片对折后再对折,得到如图的形状,然后沿着虚线剪开,得到两部分,其中一部分展开后得到的图形是( )A .B .C .D .58.如图,AB 是⊙O 的直径,弦 CD ⊥AB ,垂足为E ,若 AB = 10,AE =8,则CD 的长为( )A .8B .6C .4D .559.如图,△ABC 中,延长 BC 到点 D ,使 CD=BC ,E 是 AC 中点,DE 交 AB 于点 F ,则DEDF=( ) A .23B .34C .35D .4560.已知二次函数223y ax x =-+的图象如图所示,则一次函数3y x =+的图象不经过( )A .第一象限B . 第二象限C .第三象限D .第四象限61. 如图,DE ∥BC ,点D 、E 分别在 AB 、AC 上,且AD : AB= 1 : 3 , CE=4,则 AC 的长为( ) A .6B .5C .7D . 8362.如图,正方形ABOC 的边长为2,反比例函数ky x=过点A ,则k 的值是( ) A .2B .2-C .4D .4-63. 如图,□ABCD 中,E 是 BC 上一点,BE :EC=2:1,AE 与 BD 相交于点 F ,则 F 到BC 、AD 的距离之比是( ) A .1 : 2B .2 : 3C . 1: 4D .4 : 964.下列图形不相似的是( ) A . 所有的圆B .所有的正方形C .所有的等边三角形D .所有的菱形65.二次函数22,,04y ax bx c b ac x y =++===-且时,则( ) A .=4y -最大 B .=4y -最小 C .=3y -最大 D .=3y -最小66.已知二次函数263y kx x =-+,若k 在数组{3211234}---,,,,,,中随机取一个,则所得抛物线的对称轴在直线1x =的右方时的概率为( ) A .17B .27C .47D .5767.下列模拟掷硬币的实验不正确的是( )A .用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下B .袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上C .在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上D .将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上68.下列计算错误的是( ) A .sin60° - sin30°= sin30°B .22045cos 451o sin +=C .00sin 60tan 60cos 60o = D .00301sin 30tan 30o cos = 69.河堤的横断面如图所示,堤坝 BC 高 5m ,迎水斜坡的长是 10 m ,则斜坡 AB 的坡度是( )A .1:2B .2:3C .`1D .1:370.如图所示,小明周末到外婆家,到十字路口处,记不清哪条路通往外婆家,那么他能一次选对路的概率是( )A .12B .13C .14D . 071.如图,是一水库大坝横断面的一部分,坝高h=6m ,迎水斜坡AB=10m ,斜坡的坡角为α,则tan α的值为( )A .53 B .54 C .34 D .43 72.如图,下列判断正确的是( )A .图①是在阳光下的影子,图②是在灯光下的影子B .图②是在阳光下的影子,图①是在灯光下的影子C .图①和图②都是在阳光下的影子D .图①和图②都是在灯光下的影子 73.下面说法正确的是( )A .弦相等,则弦心距相等B .弧长相等的弧所对的弦相等C .垂直于弦的直线必平分弦D .圆的两条平行弦所夹的弧长相等74.下列各式计算:正确的是( )A 431=-=B .3235=+=C .(2462=--D 1=75.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a 的长应(罐壁的厚度和小圆孔的大小忽格不计)范围是( ) A .1213a ≤≤B .1215a ≤≤C .512a ≤≤D .513a ≤≤76.如果点(3,-4)在反比例函数ky x=的图象上,那么下列各点中,在此图象上的是( ) A .(3,4)B . (-2,-6)C .(-2,6)D .(-3,-4)77.已知函数y =x -5,令x =21、1、23、2、25、3、27、4、29、5,可得函数图象上的十个点.在这十个点中随机取两个点P (x 1,y 1)、Q (x 2,y 2),则P 、Q 两点在同一反比例函数图象上的概率是( ) A .91B .454 C .457 D .5278.如果关于x 的方程2435x a x b++=的解不是负值,那么a 与b 的关系是( ) A .35a b >B .53b a ≥C .53a b =D .53a b ≥79.如图所示,小明在A 处,小红在B 处,小李在C 处,AB=10 m ,BC=8 m ,下列说法正确的是( )A .小红在小明东偏北35°处B .小红在小明南偏西55°处C .小明在小红南偏西55°的距离为10 m 处D .小明在小李北偏东35°的距离为18 m 处80.在平面直角坐标系中,点P 的坐标为(0,-3),则点P 在( ) A .x 轴上B .y 轴上C .坐标原点D .第一象限81.半径为R ,弧长为l 的扇形可用计算公式12S lR =计算面积,其中变量是( )A .RB .lC .S 、RD .S 、l 、R82.已知,一次函数b kx y +=的图象如图,下列结论正确的是( ) A .0>k ,0>bB .0>k ,0<bC .0<k ,0>bD .0<k ,0<b83.某公司市场营销部的营销人员的个人收入与其每月的销售业绩满足一次函数关系.其图象如图所示.由图中给出的信息可知,营销人员的销售业绩为1.5万件时的收入是( ) A . 300元B .500元C .750元D .1050元84.样本数据3,6,a ,4,2的平均数是5,则这个样本的方差是( )A .8B .5C . 3D .85.如图所示是抛物线2y ax bx c =++的图象,则下列完全符合条件的是( ) A .a>0,b<=0 ,c>0,24b ac < B .a<0,b>0,c=0 ,24b ac < C .a<=0 ,b>0 ,c>0 ,24b ac >D .a>0,b<0,c>0 ,24b ac >86. )A . a ,b 均为非负数B .0a ≥且0b >C .0ab> D .0ab≥87.如图,在直角坐标系中,⊙O 的半径为1,则直线y x =-O 的位置关系是( )A .相离B .相交C .相切D .以上三种情形都有可能 88.已知213y x x =-,226y x =-,当12y y =时,x 的值为( ) A .2x =或3x =B .1x =或6x =C .1x =-或6x =D .2x =-或3x =-89. 将方程2440y y ++=的左边配成完全平方后得( ) A .2(4)0y +=B .2(4)0y -=C .2(2)0y +=D .2(2)0y -=90.如图,下列条件中能得到△ABC ≌△FED 的有( ) ①AB ∥EF ,AC ∥FD ,BD=CE ; ②AC=DF ,BC=DE ,AB=EF ; ③∠A=∠F ,BD=CE ,AB=EF ; ④BD=CE ,BA+AC=EF+FD ,BA=EF . A .1个B .2个C .3个D .4个91.如图,一块长a (m ),宽b (m )的矩形土地被踩出两条小路(过A ,B 间任意一点作AD 的平行线,被每条小路截得的线段的长都是2 m ),若小路①,②的面积分别为S 1,,S 2,则( ) A .S l >S 2B .S l <S 2C .S l =S 2D .无法确定92.在对2006个数据进行整理的频数分布表中,各组频数之和与频率之和分别等于( ) A .2006,1B .2006,2006C .1,2006D .1,193.如图,BD 是□ABCD 的对角线,点E ,F 在BD 上,要使四边形AECF 成为平行四边形,还需添加的一个条件不能是( ) A .BE=DFB .BF=DEC .AF ∥CED .FA=FE94.在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,且AC=5 cm ,BD=12cm ,则梯形中位线的长等于( ) A . 7.5cmB . 7cmC . 6.5cmD . 6cm95.如图,沿Rt ABC △的中位线DE 剪切一刀后,用得到的ADE △和四边形DBCE 拼图,下列图形中不一定能拼出的是( ) A .平行四边形B .矩形C .菱形D .等腰梯形96.下列各图中,为轴对称图形的是( )97.方程29x =的解是( )A .9x =B .19x =,29x =-C .3x =D .13x =,23x =-98.如图,OA ,BA 分别表示甲、乙两名学生运动的一次函数的图象,图中 s 和t 分别表示运动的路程和时间,根据图象判断快者的速度比慢者的速度每秒快( ) A . 2.5mB .2mC .1.5 mD . 1m99.16的平方根是±4,用算式表示正确的是( ) A4=±B.4=C.4=±D4±100.某校八年级有六个班.一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同.下列说法中,正确的是( )A. 全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B. 将六个平均成绩之和除以6,就得到全年级学生的平均成绩 C .这六个平均成绩的中位数就是全年级学生的平均成绩 D .这六个平均成绩的众数不可能是全年级学生的平均成绩【参考答案】***试卷处理标记,请不要删除一、选择题A .B .C .D .1.C 2.C 3.A 4.C 5.D 6.C 7.C 8.D 9.C 10.A 11.D 12.D 13.C 14.C 15.C 16.D 17.B 18.B 19.A 20.A 21.D 22.D 23.A 24.B 25.C 26.C 27.C 28.D 29.D 30.A 31.B 32.C 33.D35.B 36.B 37.B 38.A 39.C 40.C 41.A 42.D 43.B 44.B 45.D 46.C 47.D 48.B 49.C 50.A 51.D 52.D 53.D 54.B 55.D 56.B 57.C 58.A 59.B 60.C 61.A 62.D 63.B 64.D 65.C 66.B 67.D69.C 70.B 71.D 72.B 73.D 74.C 75.A 76.C 77.B 78.D 79.C 80.B 81.D 82.B 83.D 84.A 85.D 86.D 87.C 88.A 89.C 90.C 91.C 92.A 93.D 94.C 95.C 96.C 97.D 98.C 99.C 100.A。

2019年最新版初三中考数学模拟试卷及答案3659406

2019年最新版初三中考数学模拟试卷及答案3659406

中考数学模拟试卷及答案解析学校:__________考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1. 若a 的值使得224(2)1x x a x ++=+-成立,则a 值为( )A . 5B .4C . 3D . 22.多项式21a -和2(1)a -的公因式是( )A .1a +B .1a -C .2(1)a -D . 21a -3.以下各题中运算正确的是( )A .2266)23)(32(y x y x y x -=+-B .46923232))((a a a a a a a +-=--C .2222512531009)2.03.0(y xy x y x ++=-- D .ca bc ab c b a c b a ---++=--2222)(4.已知ΔABC 中,∠A ∶∠B ∶∠C=3∶7∶8,则ΔABC 的形状是( )A .钝角三角形B .直角三角形C .锐角三角形D .都有可能5.在Rt △ABC 中,∠BAC=90度,AD 是高,则图中互余的角有 ( )A . 一对B . 二对C . 三对D .四对6.A .6a 2-3abB .[12a 3+(-6a 2)]÷(-3a )=-4a 2+2aC .(12y 2+32 D .[(-4x 2y )+2xy 2]÷2xy=-2x+y 7.小马虎在下面的计算中只做对了一道题,则他做对的题目是 ( )A .222)(b a b a -=-B .6234)2(a a =- B C DC .5232a a a =+D .1)1(--=--a a8.下面计算正确的是( )A .22(1)1a a +=+B .2(1)(1)1b b b ---=-C .22(21)441a a a -+=++D .2(1)(2)32x x x x ++=++ 9.如图,将四边形AEFG 变换到四边形ABCD ,其中E ,G 分别是AB ,AD 的中点,下列叙述不正确的是 ( )A .这种变换是相似变换B .对应边扩大到原来的2倍C .各对应角度数不变D .面积扩大到原来的2倍10.某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是 乒乓球比赛,1场是羽毛球比赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛 的概率是( )A .14B .13C .12D .2311.在ABC △中,90C ∠=,若1sin 3B =,则cos A 的值为( )A .13BC .1D 12.小王的衣柜里有两件上衣,一件红色,一件黄色;还有三条裤子,分别是白色、蓝色和黄色,任意取出一件上衣和一条裤子,正好都是黄色的概率为( )A . 56B . 16C .13D .1513.下列四个式子中,结果为1210的有( )①661010+;②10102(25)⨯;③56(2510)10⨯⨯⨯;④34(10)A . ①②B . ③④C . ②③D . ①④14.若关于x 的分式方程311x m x x -=--有增根,则m 的值为( ) A .1m = B .2m =- C .0m = D .无法确定15. 根据图中所给数据,能得出( )A .a ∥b ,c ∥d。

2019年最新版初三中考数学模拟试卷及答案4774675

2019年最新版初三中考数学模拟试卷及答案4774675

中考数学模拟试卷及答案解析学校:__________考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.若)3)(1(+-x x =n mx x ++2 ,则m 、n 的值分别为 ( )A .m=1,n=3B .m=4 ,n=5C .m=2 ,n= —3D .m= —2 ,n=32.若242(1)36x m x -++是完全平方式,则m 的值是( )A .11B .13±C .11±D .-13 或 113.将一圆形纸片对折后再对折,得到右图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是 ( )4.如图,AB 是ABC ∆和ABD ∆的公共边,要判定△ABC ≌△ABD 还需补充的条件不能..是( )A .∠1= ∠2,∠C= ∠D B .AC=AD ,∠3= ∠4C .∠1= ∠2,∠3= ∠4D .AC=AD ,∠1= ∠25.如图,将四边形AEFG 变换到四边形ABCD,其中E 、G 分别是AB 、AD 的中点.下列叙述不正确的是( )A .这种变换是相似变换B .对应边扩大原来的2倍C .各对应角角度不变D .面积扩大到原来的2倍6.某市气象预报称:“明天本市的降水概率为70%”,这句话指的是( )A .明天本市70%的时间下雨,30%的时间不下雨B .明天本市70%的地区下雨,30%的地区不下雨C .明天本市一定下雨D .明天本市下雨的可能性是70%7.下列不是二元一次方程组的是( )A .⎪⎩⎪⎨⎧=-=+141y x y xB .⎩⎨⎧=+=+42634y x y xC . ⎩⎨⎧=-=+14y x y xD . ⎩⎨⎧=+=+25102553y x y x A B C D8.要使))(2(2q x px x -++的乘积中不含2x 项,则p 与q 的关系是( )A .互为倒数B .互为相反数C .相等D .关系不能确定9.下列各式从左到右的变形中,是因式分解的为( )A .bx ax b a x -=-)(B .222)1)(1(1y x x y x ++-=+-C .)1)(1(12-+=-x x xD .c b a x c bx ax ++=++)(10.2222)(4)(12)(9b a b a b a ++-+-因式分解的结果是( )A .2)5(b a -B .2)5(b a +C .)23)(23(b a b a +-D .2)25(b a - 11.已知12506x y -+=,用含x 的代数式表示y 应有( ) A .6(25)x y =+ B .6(25)x y =- C .11(5)26y x =+ D .11(5)26y x =-+ 12.下列方程中,是二元一次方程的是( )A .5=+y xB .132=+y xC .3=xyD .21=+y x13.顶角为20°的等腰三角形放大2倍后得到的三角形是( )A .其顶角为40°B .其底角为80°C .周长不变D .面积为原来的2倍14.下列计算正确的是( )A .(2a )3=6a 3B .a 2·a =a 2C .a 3+a 3=a 6D .(a 3)2=a 615.如图,AD 、AE 分别是△ABC 的高和角平分线,∠DAE=20°,∠B=65°,则∠C 等于( )A .25°B .30°C .35°D .40°16.下列各式中,能用平方差公式分解因式的是( ) A .x 2+4y 2 B .x 2-2y +1 C .-x 2+4y 2 D .-x 2-4y 217.在下列条件中,不能说明△ABC ≌△A ′B ′C ′的是( )A .∠A=∠A ′,∠B=∠B ′,AC=A ′C ′B .∠A=∠A ′,AB=A ′B ′,BC=B ′C ′C .∠B=∠B ′,BC=B ′C ′、AB=A ′B ′D .AB=A ′B ′,BC=B ′C ′,AC=A ′C ′18.如图,AD ,BE 都是△ABC 的高,则与∠CBE 一定相等的角是( )A .∠ABEB .∠BADC .∠DACD .以上都不是19.如图,正方形ABCD 的边长是3 cm ,一个边长为1cm 的小正方形沿着正方形ABCD 的边AB →BC → CD →DA →AB 连续地翻转,那么这个小正方形第一次回到起始位置时,小正方形中箭头的方向( )A .朝左B .朝上C .朝右D .朝下20.下列各式与x y x y-+相等的是( ) A .55x y x y -+++ B . 22x y x y -+ C .222()x y x y --(x y ≠) D .2222x y x y -+ 21.考试开始了,你所在的教室里,有一位同学数学考试成绩会得90分,这是( )A .必然事件B .不确定事件C .不可能事件D .无法判断22.如图,把图形沿BC 对折,点A 和点D 重合,那么图中共有全等三角形( )A . 1对B .2对C .3对D .4对23.从图形的几何性质考虑,下列图形中,有一个与其他三个不同,它是( )A .B .C .D .24.下列各式中从左到右的变形,是因式分解的是( )A .(a+3)(a-3)=a 2-9;B .x 2+x-5=(x-2)(x+3)+1;C .a 2b+ab 2=ab (a+b )D .x 2+1=x (x+x1) 25. 某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过 10立米,每立方米按 a 元收费;用水超过 10立方米的,超过部分加倍收费. 某职工6 份缴水费 l6a 元,则该职工 6 月份实际月水量为( )A .13 立方米B .14 立方米C .15 立方米D .16 立方米326.一块长方形木板可划分为 3 个小正方形 (如图),破裂后阴影部分的面积为1.2 m 2,则原长方形木板的面积是( )A .2.4m 2B .2.2m 2C .1.8m 2D .2.6m 227.有理数:-7,3. 5,12-,112,0,π,1317中正分数有( ) A .1 个 B . 2 个 C .3 个 D .4 个28.一个数的绝对值等于这个数本身,这个数是( )A .1B .+1,-1,0C .1 或-1D .非负数29.若1aa =,则a ( ) A .是正数或负数B .是正数C .是有理数D .是正整数 30.计算11(3)()333⨯-÷-⨯等于( )A .1B .9C .-3D . 2731.一块木板厚20.4 mm ,一大卡车中有10000块木板,若平放到地上,它的高度用科学记 数法表示为( )A .204×103 mmB .20.4×104 mmC .2.O4×105 mmD .20.4×10000 mm32. M 、N 、0、P 代表四个简单图形(线段或圆),M ※N 表示 M 、N 两个图形组合而成的图形,根据图中的四个组合图形,可以知道图(b )表示的是( )A .MB .NC .0D .P33.下列说法中,错误的是( )A .-1 的立方根是-1B .-1的立方是-1C .-1的平方是 1D .-1的平方根是-134.下列等式中是一元一次方程的是( )A .31x y =-B .11x x =+C .312(1)4x x +=--+D .23213x -=35.如图①,在△ABC 中,D ,E 分别是AB ,AC 的中点,把△ADE 沿线段DE 向下折叠.使点A 落在BC 上,记作点A ′,得到图②,下列四个结论中,不一定成立的是( )A .DB=DAB .∠B+∠C+∠l=180°C .BA=CAD .△ADE ≌△A ′DE36.若 x ,y 是正整数,且5222x y ⋅=,则x ,y 的值有( )A .4 对B .3 对C .2 对D .1 对37.已知||2(3)18m m x --=是关于x 的一元一次方程,则( )A .2m =B .3m =-C .3m =±D .1m =38.如图所示,一 块正方形铁皮的边长为 a ,如果一边截去6,另一边截去 5,那么所剩铁皮的面积( 阴影部分)表示成:①(5)(6)a a --;②256(5)a a a ---;③265(6)a a a ---;④25630a a a --+其中正确的有( )A .1 个B . 2 个C .3 个D . 4 个39.七年级(1)班有48位学生.春游前,班长把全班学生对春游地点的意向绘制成了扇形统计图,其中,“想去苏州乐园的学生数”的扇形圆心角是60°,则下列说法正确的是 ( )A .想去苏州乐园的学生占全班学生的60%B .想去苏州乐园的学生有l2人C .想去苏州乐园的学生肯定最多D .想去苏州乐园的学生占全班学生的1640.如图,∠BAC=90°,AD ⊥BC ,则下列结论中正确的个数是( )①点B 到AC 的垂线段是线段AB ;②点C 到AB 的距离是垂线段AC ;③线段BD 是点B 到AD 的垂线;④线段AD是点A到BC的垂线段;A.1个B.2个C.3个D.4个41.如图,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB、DC重合,则所围成的几何体是()A. B.C.D.42.下列选项中,A、B、C三点不可能在同一直线上的是()A.AB=1cm, BC=3cm, AC=2cmB.AB=8cm , BC=5cm ,AC=4cmC.AB=18cm, BC=8cm ,AC=10cmD.AB=4cm , BC=5cm ,AC=9 cm43.若∠AOB=50°,∠BOC=20°,则∠AOC的度数是()A.30°B.70°C.30°或 70°D.100°44.关于三角形的高的位置,下列判断中正确的是()A.必在三角形内B.必在三角形外C.不在三角形内,就在三角形外D.以上都不对45.如图所示,已知∠A=∠D,∠l=∠2,那么,要得到△ABC≌△DEF,还应给出的条件是()A.∠E=∠B B.ED=BC C.AB=EF D.AF=CD46.下列四个图案中,从对称的角度考虑,其中不同于其他三个的图案是()47.按照图①的排列规律,在d内应选②中的()48.如图所示,在下列给出的条件中,不能判定 AB ∥DF 的是( )A .∠A+∠2=180°B .∠A=∠3C .∠1=∠AD .∠1=∠449.下列说法中,正确的是( )A .a -是负数B .a 一定是非负数C .不论a 是什么数,都有11a a ⋅=D .7a 一定是分数 50.下列说法正确的是( )A .矩形都是相似的B .有一个角相等的菱形都是相似的C .梯形的中位线把梯形分成两个相似图形D .任意两个等腰梯形相似51.如图,EF 过□ABCD 的对角线的交点O 交AD 于E ,交BC 于F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为( )A .16B .14C .12D .1052.顺次连结菱形的各边中点所得到的四边形是 ( )A .平行四边形B .菱形C .矩形D .正方形53.对于反比例函数y =2x,下列说法不正确...的是( ) A .点(―2,―1)在它的图象上B .它的图象在第三象限C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小54.如图,P 1、P 2、P 3是双曲线上的三点,过这三点分别作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O ,设它们的面积分别是S 1、S 2、S 3,则( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 3<S 1<S 2D .S 1=S 2=S 355. 下列关于二次函数2132y x =-+与213()2y x =-- 的图象关系说法错误的是( ) A . 开口方向、大小相同 B .顶点相同C . 可以相互平移得到D . 对称轴不同56. 一个二次函数的图像经过A (0,0),B (-1,-11),C (1,9)三点,则这个二次函数的解析式是( )A .y =-10x 2+xB .y =-10x 2+19xC .y =10x 2+xD .y =-x 2+10x57.若二次函数2y ax bx c =++的图象的对称轴是y 轴,则必须有( )A .b 2 =4acB .b=c=0C .b=2aD .b=058.关于二次函数247y x x =+-的最值,叙述正确的是( )A .当x=2 时,函数有最大值B .当 x=2时,函数有最小值C .当 x=-2 时,函数有最大值D .当 x= 一2 时,函数有最小值59.已知抛物线y =x 2-x -1与x 轴的一个交点为(m ,0),则代数式m 2-m +2008的值为( )A .2006B .2007C .2008D .2009 60.已知:⊙O 的半径为5,PO=6,则点P 是在( )A .圆外B .圆上C .圆内D .不能确定61.从1~9这9个自然数中任取一个,是2的倍数或3的倍数的概率为( )A .79B .29C . 23D . 5962.如图,梯形 ABCD 中,AB ∥CD ,如果ODC S :1:3BDC S ∆∆=,那么:ODC ABC S S ∆∆=( )A .1:5B .1:6C .1:7D .1:963.用直接开平方法解方程2(3)8x -=,得方程的根为( )A .3x =+B .3x =-C .13x =+23x =-D .13x =+23x =-64.二次函数221(0)y kx x k =++<的图象可能是( )65.在锐角三角形ABC中,若sinA=2,∠B=750,则tanC=()A B C.2D.166.已知⊙O 的半径为 5 cm,如果一条直线和圆心0的距离为 5 cm,那么这条直线和⊙O 的位置关系是()A.相交B.相切C.相离 D . 相交或相离67.已知关于x的一元二次方程x2-2(R+r)x+d2=0没有实数根,其中R、r分别为⊙O1、⊙O2的半径,d为两圆的圆心距,则⊙O1与⊙O2的位置关系是()A.外离B.相交C.外切D.内切68.下列命题中,假命题的是()A.圆的切线垂直于过切点的半径B.垂直于切线的直线必经过圆心C.若圆的两条切线平行,那么经过两切点的直线必经过圆心D.经过半径的外揣并且垂直于这条半径的直线是圆的切线69.如图,⊙O是直角△ABC 的内切圆,切斜边AB于D,切直角边 BC、CA 于点 E、F,已知 AC=5,BC=12,则四边形 OFCE的面积为()A.1 B. 15 C.152D.470.如图,奥运五连环中的五个圆的位置关系是()A.相离B.相交与外离C.相切D.外切与相交71.如图,EB为半圆O的直径,点A在EB的延长线上,AD切半圆O于点D,BC⊥AD 于点C,AB=2,半圆O的半径为2,则BC的长为()A.2 B.1 C.1.5 D.0.572.如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,那么塔高AB为()A.24m B.22m C.20 m D.18 m73.如图,小芳和爸爸正在散步,爸爸身高1.8m,他在地面上的影长为2.1m.若小芳比爸爸矮0.3m,则她的影长为()A.1.3m B.1.65m C.1.75m D.1.8m74.下面说法正确的是()A.弦相等,则弦心距相等B.弧长相等的弧所对的弦相等C.垂直于弦的直线必平分弦D.圆的两条平行弦所夹的弧长相等75.某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检.发现其中有5件不合格.那么你估计该厂这20万件产品中合格品约为()A. 1万件B.9万件C.15万件D. 20万件76.如图,∠AEF和∠EFD是一对()A.同位角B.内错角C.同旁内角D.以上都不对77.平行线之间的距离是指()A.从一条直线上的一点到另一条直线的垂线段B.从一条直线上的一点到另一条直线的垂线段的长度C.从一条直线上的一点到另一条直线的垂线的长度D.从一条直线上的一点到另一条直线上的一点间线段的长78.已知,有一条直的宽纸带,按图所示折叠,则∠ 等于()A. 50°B.60°C. 75°D. 85°79.如图,EA⊥AB,BC⊥AB,AB=AE=2BC,D为AB的中点,有以下判断:(1)DE=AC;(2)DE⊥AC;(3)∠CAB=30°;(4)∠EAF=∠ADE,其中不正确结论的个数有()A.0个B.l个C.2个D.以上选项均错误80.已知等腰三角形的两边长分别为 2cm cm,那么它的周长为()A4) cm B.(2) cmC4) cm 或(2) cm D.以上都不对81.下面的四个展开图中,如图所示的正方体的展开图是()A. B.C.D.82.一个几何体的三视图中有一个是长方形,则该几何体不可能是()A.直五棱柱B.圆柱C.长方体D.球83.下列各图中,是正方体展开图的是()A.B.C.D.84.有下列三个调查:①了解杭州市今年夏季冷饮市场冰琪淋的质量;②调查八年级(1)班50名学生的身高;③了解一本300页的书稿的错别字个数.其中不适合采用普查而适合采用抽样调查方式的有()A.3个B.2个C.1个D.0个85.体育老师对九年级(1)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成频数分布直方图(如图).由图可知,最喜欢篮球的频率是()A.0.16 B.0.24 C.0.3 D.0.486.10名工人某天生产同一种零件,生产的件数分别是:15,17,14,10,15,17,17,16,14,12.若其平均数为a,中位数为 b,众数为c,则有()A.a>b>c B.b>c>a C. c>a>b D.c>b>a87.将方程2440y y++=的左边配成完全平方后得()A.2y+=D.2y-=(2)0(2)0(4)0(4)0y+=B.2y-=C.288.若4a <,则关于x 的不等式(4)4a x a ->-的解集是( ) A .1x >-B .1x <-C .1x >D .1x <89.下列计算正确的是( )A BC 4=D 3=-90.在实数范围内有意义,则x 的取值范围是( ) A .2x ≥ B .1x ≥ C .2x ≠D .1x ≥且2x ≠91.已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( ) A .1y <- B .1y ≤- C .1y ≤- 或0y > D .1y <-或0y ≥92.当x=-2时,二次函数21-312y x x =-+的值是( ) A .9B .8C .6D .593.若关于x 的不等式x -m ≥-1的解集如图所示,则m 等于( ) A .0B .1C .2D .394.点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( ) A .(-4,3)B .(-3,-4)C .(-3,4)D .(3,-4)95.若等腰三角形中有一个角等于50,则这个等腰三角形的顶角的度数为( ) A .50B .80C .65或50D .50或8096.根据下列表述,能确定位置的是( ) A .某电影院2排 B .北京北海南路 C .北偏东 30°D .东经 118°,北纬40°97.如果|2|0x -,那么x ,y 的值需满足( ) A .且3y = B .2x =且3y = C .2x =且3y =-D . 2x =-且3y =-98.抛物线223y x x =--的顶点坐标是( ) A .(-1,-4) B .(3,0) C .(2,-3)D .(1,-4)99.在一组50个数据的数组中,平均数是42,将其中两个数l30和50舍去,则余下的数的平均数为()A.38 B.39 C. 40 D.41100.相传有个人不讲究说话艺术常引起误会.一天他摆宴席请客,他看到还有几个人没来,就自言自语:“怎么该来的还不来呢?”客人听了,心想难道我们是不该来的,于是有一半客人走了,他一看十分着急,又说:“不该走的倒走了!”剩下的人一听,是我们该走啊!又有剩下的三分之二的人离开了,他着急地一拍大腿,连说:“我说的不是他们.”于是最后剩下的四个人也都告辞走了,聪明的你能知道开始来了几位客人吗?()A.15 B.16 C.18 D.24【参考答案】***试卷处理标记,请不要删除一、选择题1.C2.D3.C4.D5.D6.D7.A8.C9.C10.A11.B12.A13.B14.D15.A16.C17.B18.C19.B21.B 22.C 23.C 24.C 25.A 26.A 27.C 28.D 29.B 30.B 31.C 32.A 33.D 34.C 35.C 36.A 37.B 38.D 39.D 40.B 41.D 42.B 43.C 44.D 45.D 46.C 47.B 48.C 49.B 50.B 51.C 52.C 53.C55.B 56.D 57.D 58.D 59.D 60.A 61.C 62.B 63.D 64.C 65.A 66.B 67.A 68.B 69.D 70.B 71.B 72.A 73.C 74.D 75.B 76.B 77.B 78.C 79.B 80.B 81.B 82.D 83.C 84.C 85.D 86.D 87.C89.B 90.D 91.C 92.D 93.D 94.C 95.D 96.D 97.C 98.D 99.C 100.D。

2019年中考数学模拟试题及答案分析118763

2019年中考数学模拟试题及答案分析118763

2019年中考数学模拟试题及答案分析学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.下列说法中正确的是( )A .两个全等三角形一定成轴对称B .两个成轴对称的三角形一定是全等的C .三角形的一条中线把三角形分成以中线为对称轴的两个图形D .三角形的一条高把三角形分成以高线为对称轴的两个图形2.下列说法中正确的个数有( )①全等i 角形对应角所对的边是对应边,对应边所夹的角是对应角②全等三角形对应边所对的角是对应角,对应边所夹的角是对应角③全等三角形中的公共边是对应边,公共角是对应角,对顶角是对应角④两个全等三角形中,相等的边是对应边,相等的角是对应角A .1个B 2个C .3个D .4个3.如图所示,△ABC 中,AB=AC ,BE=CE ,则由“SSS”可直接判定( )A .△ABD ≌△ACDB .△ABE ≌△ACEC .△BED ≌△CED D .以上答案都不对4.如图所示,A ,B 是数轴上的两点,C 是AB 的中点,则0C 等于( )A .34OB B .1()2OB OA -C .1()2OA OB +D .以上都不对5.如图所示,△ABC 平移后得到△DEF ,若∠BNF=100°,则∠DEF 的度数是( )A .120°B .100°C .80°D .50°6.某园林占地面积约为800000 m 2,若按比例尺1:2000缩小后,其面积大约相当于( )A .一个篮球的面积B .一张乒乓球台面的面积C .《钱江晚报》一个版面的面积D .《数学》课本封面的面积7.在多项式①2263a ab b ++;②221449m mn n -++;③21025a a -+;④2221ab a b +-;④6321y y -+中,不能用完全平方公式分解因式的有( )A .①②⑤B .③④C .①②④D .②④⑤8.下列计算中,正确的是( )A .9338(4)2x x x ÷=B .23234(4)0a b a b ÷=C .2m 2m a a a ÷=D .2212()4c 2ab c ab ÷-=- 9.下面三种说法:①两个能够重合的三角形是全等三角形;②全等三角形的形状和大小相同;③全等三角形的面积相等.其中正确的个数有 ( )A .3个B .2个C .1个D .0个10. 一个三角形的三个内角中,至少有( )A . 一个锐角B . 两个锐角C . 一个钝角D .一个直角11.下列成语所描述的事件是必然发生的是( )A .水中捞月B .拔苗助长C .守株待免D .瓮中捉鳖 12.如图1所示是一张画有小白兔的卡片,卡片正对一面镜子,这张卡片在镜子里的影像是下列各图中的( )图1 A . B . C . D .13.已知线段AB ,在BA 的延长线上取一点C ,使CA=3AB ,则线段CA 与线段CB 之比为( )A .3:4B .2:3C .3:5D .1:2 14.若关于x 的方程1011--=--m x x x 有增根,则m 的值是( )。

江苏省扬州市2019年中考:数学考试真题与答案解析

江苏省扬州市2019年中考:数学考试真题与答案解析

江苏省扬州市2020年中考:数学考试真题与答案解析一、 选择题本大题共有8小题,每小题3分,共24分. 在每小题给出的四个选项中,只有一顶是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上。

1. 实数3的相反数是( )A. ﹣3B.C. 3D. 133±2. 下列各式中,计算结果为的是( )6m A.B. C.D. 23m m ⋅33+m m 122m m ÷()32m3. 在平面直角坐标系中,点所在的象限是()()22,3P x +-A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限4. “致中和,天地位焉,万物育焉”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光. 在下列与扬州有关的标识或简图中,不是轴对称图形的是()A B. C. D.5. 某班级组织活动,为了了解同学们喜爱的体育运动项目,设计了如下尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是( )A. ①②③B.①③⑤C. ②③④D. ②④⑤6. 如图,小明从点A 出发沿着直线前进10米到达点B ,向左转45°后又沿直线前进10米到达点C ,再向左转45°后沿直线前进10米到达点D.........照这样走下去,小明第一次回到出发点A 时所走的路程为( )A. 100米B. 80米C. 60米D. 40米(第6题)(第7题)(第8题)7. 如图,由边长为1的小正方形构成的网格中,点A 、B 、C 都各点上,以AB 为直径的圆经过点C 、D ,则sin ∠ACD 的值为( )A.B.C.D.23328. 小明同学利用计算机软件绘制函数(a ,b 为常数)的图像如图所示,由学习()2axy x b =+函数的经验,可以推断常数a 、b 的值满足( )A. a >0,b >0B. a >0,b<0C. a<0,b >0D. a<0,b<0二、 填空题本大题共有10小题,每小题3分,共30分. 不需写出解答过程,请把答案直接填写在答题卡相应位置上。

2019-2020年九年级数学中考模拟调研试卷及答案

2019-2020年九年级数学中考模拟调研试卷及答案

2019-2020年九年级数学中考模拟调研试卷及答案班级___________ 姓名_________ 学号_________ 总分____一、精心选一选(本大题共8小题,每题4分,共32分. 在每题所给出的四个选项中,只有一项是符合题意的. 把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)1、已知x =-1是方程x 2+mx +1=0的一个实数根,则m 的值是( )A 、0B 、1C 、2D 、-2 2、下列各式中,与3是同类二次根式的是( )A 、9B 、27C 、18D 、243、如图所示,在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),再把剩余的部分剪拼成一个矩形,通过计算图形(阴影部分)的面积,验证了一个等式是( )A 、()()b a b a b a -+=-22B 、()2222b ab a b a ++=-C 、()2222b ab a b a +-=-D 、()()2222b ab a b a b a -+=-+4、相信同学们都玩过万花筒,右图是某个万花筒的造型,图中的小三角形均是全等的等边三角形,那么图中的菱形AEFG 可以看成是把菱形ABCD 以A 为旋转中心( )A 、顺时针旋转60°得到B 、顺时针旋转120°得到C 、逆时针旋转60°得到D 、逆时针旋转120°得到5、在“抛一枚均匀硬币”的实验中,如果现在没有硬币,则下面各个试验中哪个不能代替( )A 、两张扑克,“黑桃” 代替“正面”,“红桃” 代替“反面”B 、两个形状大小完全相同,但一红一白的两个乒乓球C 、扔一枚图钉D 、人数均等的男生、女生,以抽签的方式随机抽取一人 6. 如图,直线a 与直线b 互相平行,则角α的度数是( ) A 30°B 70° C 110°D 150°ababa bbb第15题A B C DF EG 第19题ab7. 在实数范围内分解因式224b a -,结果是( ) A 、 ))((4b a b a -+ B 、)4)(4(b a b a -+ C 、 )2)(2(b a b a -+ D 、))((2b a b a -+ 8. 函数xy 1=的图象与函数4-=x y 的图象( ) A 、无交点 B 、交点分别在第一、三象限上 C 、交点均第一象限上 D 、交点均第三象限上.二、细心填一填(本大题共有5小题,每题5分,共20分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)9、函数y =11-x 中,自变量x 的取值范围是__________;函数y 中,自变量x 的取值范围是_________.10、在实数内分解因式:x 4-2x 2= .11、一个多边形的每个外角都等于30,这个多边形的内角和为_________度. 12.有一直角梯形零件ABCD ,AD ∥BC ,斜腰DC 的长为10cm , ∠D =120,则该零件另一腰AB 的长是___________cm.13.据中新社报道:2010年我国粮食产量将达到540 000 000 000千克,这个粮食产量用科学记数法可表示为______________________千克.三、认真答一答(本大题共有5小题,每题7分,共35分.)14. 计算:(-2)3+12(2004)0tan60.15.先化简,再求值:112223+----x x xx x x ,其中x =2.16 .已知:AB 为⊙O 的直径,AC 平分∠DAB ,AD ⊥DC 于D 求证:DC 是⊙O 的切线。

人教版2019-2020年度中考数学一模试卷A卷(模拟)

人教版2019-2020年度中考数学一模试卷A卷(模拟)

人教版2019-2020年度中考数学一模试卷A卷姓名:________ 班级:________ 成绩:________一、单选题1 . 根据下列表述,能确定一个点位置的是()A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°,北纬42°2 . 如图,甲、乙、丙图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是()A.仅有甲和乙相同B.仅有甲和丙相同C.仅有乙和丙相同D.甲、乙、丙都相同3 . 下列图案既是中心对称、又是轴对称图形的有()A.1个B.2个C.3个D.4个4 . 已知:如图,AB//CD,∠1=50°,那么∠2等于()A.40°B.50°C.130°D.150°5 . 反比例函数与正比例函数在同一坐标系中的大致图象可能是()A.B.C.D.6 . 某图书馆有图书约985000册,数据985000用科学记数法可表示为()A.B.C.D.7 . 大于-3而又不大于2的整数有()A.7个B.6个C.5个D.4个8 . 周长为厘米,点是边上一点,且厘米,动点从点出发,沿折线运动.设动点运动的长度为厘米,线段、、所围成图形的面积为平方厘米,作出与之间的函数图像如图所示.根据图像可以判定点运动所在的图形是()A.B.C.D.9 . 甲、乙、丙三个箱子原本各装有相同数量的球,已知甲箱内的红球占甲箱内球数的,乙箱内没有红球,丙箱内的红球占丙箱内球数的.小蓉将乙、丙两箱内的球全倒入甲箱后,要从甲箱内取出一球,若甲箱内每球被取出的机会相等,则小蓉取出的球是红球的机率为何?()A.B.C.D.10 . 小璇5次仰卧起坐的测试成绩(单位:个)分别为:48、50、52、50、50,对此成绩描述错误的是()A.平均数是50B.众数是50C.方差是0D.中位数是50二、填空题11 . 在实数范围内因式分解:x3﹣2x2y+xy2=________.12 . 作图:已知线段a、b,请用尺规作线段EF使EF=a+b.请将下列作图步骤按正确的顺序排列出来(只填序号)_____.作法:①以M为端点在射线MG上用圆规截取MF=b;②作射线EG;③以E为端点在射线EG上用圆规截取EM =a;④EF即为所求的线段.13 . 如图,△ABC中,∠ACB=90°,AB=,BC=,则斜边AB上的高CD=___________.14 . 如图是一个边长为a的正方形草坪,在草坪中修两条互相垂直的宽度为b的小路,则剩下草坪(即空白部分)的面积可以表示为_____.15 . 如图,是两种品牌的方便面销售增长率折线统计图,则AA牌方便面2003年的销售量________2002年的销售量,2002年BB牌方便面的销售量______AA牌方便面的销售量(填“高于”“低于”“不一定高于”)16 . 要使有意义,则x可以取的最小整数是三、解答题17 . 小明在学习过程中,对教材中的一个有趣问题做如下探究:(习题回顾)已知:如图1,在中,,是角平分线,是高,、相交于点.求证:;(变式思考)如图2,在中,,是边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,则与还相等吗?说明理由;(探究延伸)如图3,在中,上存在一点,使得,的平分线交于点.的外角的平分线所在直线与的延长线交于点.直接写出与的数量关系.18 . 如图,线段AC与线段BD相交于点O,连结AB,BC,CD,∠A=∠D,OA=OA.求证:∠1=∠2.19 . 先化简(1-)÷,然后a在-2,0,2,3中选择一个合适的数代入并求值.20 . (1)解不等式.(2)解不等式组,并将其解集在数轴上表示出来.21 . 如图,在平面直角坐标系中,已知点和点.(1)求直线所对应的函数表达式;(2)设直线与直线相交于点,求的面积.22 . 如图1,已知是Δ的一个外角,我们容易证明=,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:()如图2,与分别为的两个外角,则(横线上填 >、< 或=)初步应用:()如图3,在纸片中剪去,得到四边形,,则.()解决问题:如图4,在中,、分别平分外角、,与有何数量关系?请利用上面的结论直接写出答案.()如图5,在四边形中,、分别平分外角、,请利用上面的结论探究与、的数量关系.图1 图2 图3图4 图523 . 一次函数的图象经过点A(-6,4),B(3,0).(1)求这个函数的解析式;(2)画出这个函数的图象;(3)若该直线经过点(9,m),求m的值;(4)求△AOB的面积.24 . 如图,二次函数的图象交轴于两点,交轴于点,点的坐标为,顶点的坐标为.(1)求二次函数的解析式和直线的解析式;(2)点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;(3)在抛物线上是否存在异于的点,使中边上的高为,若存在求出点的坐标;若不存在请说明理由.25 . 山西汾酒,又称“杏花村酒”.酿造汾酒是选用晋中平原的“一把抓高粱”为原料.汾阳县某村民合作社2016年种植“一把抓高粱”100亩,2018年该合作社扩大了“一把抓高梁”的种植面积,共种植144亩.(1)求该合作社这两年种植“一把抓高梁”亩数的平均增长率;(2)某粮店销售“一把抓高粱”售价为13元/斤,每天可售出30斤,每斤的盈利是1.5元.为了减少库存,粮店决定搞促销活动.在销售中发现:售价每降价0.1元,则可多售出2斤.若该粮店某天销售“一把抓高梁”的盈利为40元,则该店当天销售单价降低了多少元?26 . 如图,在平面直角坐标系中,点O为坐标原点,AB∥OC,点B,C的坐标分别为(15,8),(21,0),动点M从点A沿A→B以每秒1个单位的速度运动;动点N从点C沿C→O以每秒2个单位的速度运动.M,N同时出发,当一个点到达终点后另一个点继续运动,直至到达终点,设运动时间为t秒.(1)在t=3时,M点坐标,N点坐标;(2)当t为何值时,四边形OAMN是矩形?(3)运动过程中,四边形MNCB能否为菱形?若能,求出t的值;若不能,说明理由;(4)运动过程中,当MN分四边形OABC的面积为1:2两部分时,求出t的值.27 . 对于有理数.,定义一种新运算“☆”,规定☆= .(1)计算-2☆3的值.(2)当.在数轴上位置如图所示时,化简☆.28 . 如图,已知直线AB∥CD,直线分别交,于,两点,若,分别是,的角平分线,试说明:ME∥NA.解:∵AB∥CD,(已知)∴,()∵,分别是,的角平分线,(已知)∴∠EMN=∠AMN,∠FNM=∠DNM,(角平分线的定义)∴,(等量代换)∴ME∥NF,()由此我们可以得出一个结论:两条平行线被第三条直线所截,一对角的平分线互相.29 . 某中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动朱老师先跑,当小明出发时,朱老师已经距起点200米了,他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).根据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是,因变量是;(2)朱老师的速度为米/秒;小明的速度为米/秒;(3)小明与朱老师相遇次,相遇时距起点的距离分别为米.参考答案一、单选题1、2、3、4、5、6、7、8、9、10、二、填空题1、2、3、4、5、6、三、解答题1、2、3、4、5、6、7、8、9、10、11、12、13、第11 页共11 页。

2020年江苏省扬州市邗江区中考数学一模试卷含解析

2020年江苏省扬州市邗江区中考数学一模试卷含解析

2020年江苏省扬州市邗江区中考数学一模试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)的绝对值是()A.﹣3B.C.3D.2.(3分)若分式有意义,则x的取值范围是()A.x>﹣2B.x≠2C.x≠0D.x≠﹣2 3.(3分)如图是由一个长方体和一个球组成的几何体,它的主视图是()A.B.C.D.4.(3分)下列计算正确的是()A.a3+a2=a5B.a3•a2=a6C.(a2)3=a5D.a6÷a2=a4 5.(3分)实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.|a|<|b|C.a+b<0D.>0 6.(3分)下列命题是真命题的是()①方程x2=2x的解为x=2;②矩形对角线互相垂直;③五边形内角和为540°;④一条斜边和一条直角边分别相等的两个直角三角形全等A.①②B.③④C.①③D.②④7.(3分)下列图形中一定是相似形的是()A.两个等边三角形B.两个菱形C.两个矩形D.两个直角三角形8.(3分)如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记P A=x,点D到直线P A的距离为y,则y关于x的函数大致图象是()A.B.C.D.二、填空题(本大题共10小题,每小题3分,共30分)9.(3分)1970年4月24日,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,它的运行轨道距地球最近点439000米.将439000用科学记数法表示应为.10.(3分)计算的结果是.11.(3分)分解因式:3x2﹣6x+3=.12.(3分)如图,已知a∥b,∠l=78°,则∠2=°.13.(3分)已知x=2y﹣3,则代数式4x﹣8y+9的值是.14.(3分)在平面直角坐标系中,▱OABC的三个顶点O(0,0)、A(3,0)、B(5,3),则其第四个顶点C的坐标是.15.(3分)已知关于x、y的方程组的解满足x+y=7,则k的值为.16.(3分)如图,P A,PB是⊙O的切线,A,B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于度.17.(3分)如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B 点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是米(结果保留根号).18.(3分)如图,在Rt△ABC中,∠ABC=90°,C(0,﹣4),AC=3AD,点A在反比例函数y=图象上,且y轴平分∠ACB,则k=.三、解答题(本大题共10小题,共96分)19.(8分)(1)计算:;(2)先化简,再求值:(2﹣x)(x+2)+x(x﹣1),其中x=﹣1.20.(8分)解不等式组,并写出它的所有非负整数解.21.(8分)某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图.(1)这次共抽取名学生进行调查,扇形统计图中的x=;(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有名.22.(8分)某校举行趣味运动会共有三个项目:A.“协力竞走”、B.“快乐接力”、C.“摸石过河”.小明和小刚参与了该运动会的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)小明被分配到A.“协力竞走”项目组的概率为;(2)列表或画树状图求小明和小刚被分配到同一项目组的概率.23.(8分)端午节前后,张阿姨两次到超市购买同一种粽子.节前,按标价购买,用了96元;节后,按标价的6折购买,用了72元,两次一共购买了27个.这种粽子的标价是多少?24.(10分)如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=4,求四边形BEFD的周长.25.(10分)如图,四边形ABCD是⊙O的内接四边形,AC为直径,=,DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)判断直线ED与⊙O的位置关系,并说明理由;(3)若CE=2,AC=8,求阴影部分的面积.26.(10分)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD 上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=2BE,QB=6,求邻余线AB的长.27.(12分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P 与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB 的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8<t≤24时,求P关于t的函数表达式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数表达式;②未来两年内,当月销售量P为时,月毛利润为w达到最大.28.(14分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N.点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y).(1)如图2,ω=45°,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,OA =2,OC=1.①点A、B、C在此斜坐标系内的坐标分别为A,B,C.②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为.③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为.(2)若ω=120°,O为坐标原点.①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=,求圆M的半径及圆心M的斜坐标.②如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是.2020年江苏省扬州市邗江区中考数学一模试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)的绝对值是()A.﹣3B.C.3D.【分析】根据绝对值的定义直接进行计算.【解答】解:根据绝对值的概念可知:|﹣|=,故选:B.【点评】本题考查了绝对值.解题的关键是掌握绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)若分式有意义,则x的取值范围是()A.x>﹣2B.x≠2C.x≠0D.x≠﹣2【分析】根据分式有意义的条件可得x+2≠0,再解即可.【解答】解:由题意得:x+2≠0,解得:x≠﹣2.故选:D.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义,分母不为零.3.(3分)如图是由一个长方体和一个球组成的几何体,它的主视图是()A.B.C.D.【分析】从正面看几何体,确定出主视图即可.【解答】解:几何体的主视图为:故选:C.【点评】此题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.4.(3分)下列计算正确的是()A.a3+a2=a5B.a3•a2=a6C.(a2)3=a5D.a6÷a2=a4【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.【解答】解:A、a3与a2不是同类项,故不能合并,故选项A不合题意;B、a3•a2=a5故选项B不合题意;C、(a2)3=a6,故选项C不合题意;D、a6÷a2=a4,故选项D符合题意.故选:D.【点评】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.5.(3分)实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.|a|<|b|C.a+b<0D.>0【分析】直接利用数轴得出a,b的取值范围进而分别分析得出答案.【解答】解:由数轴可得:﹣2<a<﹣1,0<b<1,A、a<b,故此选项错误;B、|a|>|b|,故此选项错误;C、a+b<0,正确;D、<0,故此选项错误;故选:C.【点评】此题主要考查了实数与数轴,正确得出a,b的取值范围是解题关键.6.(3分)下列命题是真命题的是()①方程x2=2x的解为x=2;②矩形对角线互相垂直;③五边形内角和为540°;④一条斜边和一条直角边分别相等的两个直角三角形全等A.①②B.③④C.①③D.②④【分析】根据方程的解、矩形的性质、多边形的内角和和全等三角形进行判断即可.【解答】解:①方程x2=2x的解为x=2或x=0,原命题是假命题;②矩形对角线互相相等,原命题是假命题;③五边形内角和为540°,是真命题;④一条斜边和一条直角边分别相等的两个直角三角形全等,是真命题;故选:B.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题叫定理.7.(3分)下列图形中一定是相似形的是()A.两个等边三角形B.两个菱形C.两个矩形D.两个直角三角形【分析】如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.【解答】解:∵等边三角形的对应角相等,对应边的比相等,∴两个等边三角形一定是相似形,又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,故选:A.【点评】本题主要考查了相似多边形的性质,相似多边形的性质为:①对应角相等;②对应边的比相等.8.(3分)如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记P A=x,点D到直线P A的距离为y,则y关于x的函数大致图象是()A.B.C.D.【分析】根据题意,分两种情况:(1)当点P在AB上移动时,点D到直线P A的距离不变,恒为4;(2)当点P在BC上移动时,根据相似三角形判定的方法,判断出△P AB∽△ADE,即可判断出y=(3<x≤5),据此判断出y关于x的函数大致图象是哪个即可.【解答】解:(1)当点P在AB上移动时,点D到直线P A的距离为:y=DA=BC=4(0≤x≤3).(2)如图1,当点P在BC上移动时,,∵AB=3,BC=4,∴AC=,∵∠P AB+∠DAE=90°,∠ADE+∠DAE=90°,∴∠P AB=∠ADE,在△P AB和△ADE中,∴△P AB∽△ADE,∴,∴,∴y=(3<x≤5).综上,可得y关于x的函数大致图象是:.故选:D.【点评】(1)此题主要考查了动点问题的函数图象,要熟练掌握,解答此题的关键是要明确:通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.(2)此题还考查了相似三角形的判定和性质的应用,要熟练掌握.二、填空题(本大题共10小题,每小题3分,共30分)9.(3分)1970年4月24日,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,它的运行轨道距地球最近点439000米.将439000用科学记数法表示应为 4.39×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:439000=4.39×105.故答案为:4.39×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)计算的结果是4.【分析】根据算术平方根的定义解答即可.【解答】解:==4.故答案为:4.【点评】此题主要考查了算术平方根的定义,本题易错点在于符号的处理.11.(3分)分解因式:3x2﹣6x+3=3(x﹣1)2.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3x2﹣6x+3,=3(x2﹣2x+1),=3(x﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(3分)如图,已知a∥b,∠l=78°,则∠2=102°.【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【解答】解:如图,∵∠1=78°,∴∠3=180°﹣∠1=180°﹣78°=102°,∵a∥b,∴∠2=∠3=102°.故答案为:102.【点评】本题考查了平行线的性质和邻补角的定义,熟练掌握性质和概念是解题的关键.13.(3分)已知x=2y﹣3,则代数式4x﹣8y+9的值是﹣3.【分析】根据x=2y﹣3,可得:x﹣2y=﹣3,据此求出代数式4x﹣8y+9的值是多少即可.【解答】解:∵x=2y﹣3,∴x﹣2y=﹣3,∴4x﹣8y+9=4(x﹣2y)+9=4×(﹣3)+9=﹣12+9=﹣3故答案为:﹣3.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.14.(3分)在平面直角坐标系中,▱OABC的三个顶点O(0,0)、A(3,0)、B(5,3),则其第四个顶点C的坐标是(2,3).【分析】由题意得出OA=3,由平行四边形的性质得出BC∥OA,BC=OA=3,即可得出结果.【解答】解:∵O(0,0)、A(3,0),∴OA=3,∵四边形OABC是平行四边形,∴BC∥OA,BC=OA=3,∵B(5,3),∴点C的坐标为(5﹣3,3),即C(2,3);故答案为:(2,3).【点评】本题考查了平行四边形的性质、坐标与图形性质;熟练掌握平行四边形的性质是解题的关键.15.(3分)已知关于x、y的方程组的解满足x+y=7,则k的值为3.【分析】方程组中两方程相加表示出x+y,代入已知方程计算即可求出k的值.【解答】解:①+②得:3x+3y=6k+3,整理得:x+y=2k+1,代入x+y=7得:2k+1=7,解得:k=3,则k的值为3.故答案为:3.【点评】此题考查了二元一次方程组的解,以及二元一次方程的解,方程组的解即为能使方程组中两方程都成立的未知数的值.16.(3分)如图,P A,PB是⊙O的切线,A,B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于70度.【分析】连接OA、OB,先由切线的性质得∠OAP=90°,∠OBP=90°,再由四边形的内角和为360°,得出∠AOB+∠APB=180°,然后利用同弧所对的圆周角和圆心角的关系,得出∠AOB=110°,从而求得答案.【解答】解:如图,连接OA、OB,∵P A,PB是⊙O的切线,A,B为切点,∴∠OAP=90°,∠OBP=90°,∵∠AOB+∠OAP+∠OBP+∠APB=360°,∴∠AOB+90°+90°+∠APB=360°,∴∠AOB+∠APB=180°,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=180°﹣110°=70°,故答案为:70.【点评】本题考查了圆的切线的性质、四边形的内角和及同弧所对的圆周角和圆心角的关系,属于基础知识的考查,难度不大.17.(3分)如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是(15+15)米(结果保留根号).【分析】首先分析图形:根据题意构造直角三角形.本题涉及到两个直角三角形△BEC、△ABE,进而可解即可求出答案.【解答】解:过点B作BE⊥AB于点E,在Rt△BEC中,∠CBE=45°,BE=15;可得CE=BE×tan45°=15米.在Rt△ABE中,∠ABE=30°,BE=15,可得AE=BE×tan30°=15米.故教学楼AC的高度是AC=15米.答:教学楼AC的高度是(15)米.【点评】本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.18.(3分)如图,在Rt△ABC中,∠ABC=90°,C(0,﹣4),AC=3AD,点A在反比例函数y=图象上,且y轴平分∠ACB,则k=.【分析】作AE⊥y轴于E,如图,由于OD∥AE,利用平行线分线段成比例定理得==,所以OD=AE,CE=6,设A(t,2),则OD=t,再证明△CBD为等腰三角形得到OB=OD=t,则B(﹣t,0),接着利用勾股定理得到AB2+BC2=AC2,即(t+t)2+22+(t)2+42=t2+62,解方程求出t得A(,2),然后根据反比例函数图象上点的坐标特征求k的值.【解答】解:作AE⊥y轴于E,如图,∵C(0,﹣4),∴OC=4,∵OD∥AE,∴==,而AC=3AD,即CD:CA=2:3,∴==,∴OD=AE,CE=6,∴OE=2,设A(t,2),则OD=t,∵OC平分∠ACB,OC⊥BD,∴△CBD为等腰三角形,∴OB=OD=t,∴B(﹣t,0),∵∠ABC=90°,∴AB2+BC2=AC2,∴(t+t)2+22+(t)2+42=t2+62,解得t=,∴A(,2),把A(,2)代入y=得k=A×2=.故答案为.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数图象上点的坐标满足其解析式.也考查了勾股定理.三、解答题(本大题共10小题,共96分)19.(8分)(1)计算:;(2)先化简,再求值:(2﹣x)(x+2)+x(x﹣1),其中x=﹣1.【分析】(1)直接利用零指数幂的性质和负整数指数幂的性质、特殊角的三角函数值、绝对值的性质分别化简得出答案;(2)直接利用整式的混合运算法则分别化简得出答案.【解答】解:(1)原式=﹣1+2×+4=﹣1++4=2+3;(2)(2﹣x)(x+2)+x(x﹣1)=4﹣x2+x2﹣x=4﹣x当x=﹣1时,原式=4+1=5.【点评】此题主要考查了实数运算以及整式的混合运算,正确掌握相关运算法则是解题关键.20.(8分)解不等式组,并写出它的所有非负整数解.【分析】分别计算出两个不等式的解集,根据大小小大中间找确定不等式组的解集,再找出解集范围内的非负整数即可.【解答】解:,由①得:x≥﹣1;由②得x<3.∴不等式组的解集为﹣1≤x<3,∴非负整数解为:0,1,2.【点评】此题主要考查了一元一次不等式组的整数解,解决此类问题的关键在于正确求得不等式组的解集,再根据得到的条件确定不等式组的特殊解.21.(8分)某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图.(1)这次共抽取200名学生进行调查,扇形统计图中的x=15%;(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是36度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有900名.【分析】(1)依据喜爱古筝的人数数据,即可得到调查的学生人数,根据喜欢竹笛的学生数占总人数的百分比即可得到结论;(2)求二胡的学生数,即可将条形统计图补充完整;(3)依据“扬琴”的百分比,即可得到“扬琴”所占圆心角的度数;(4)依据喜爱“二胡”的学生所占的百分比,即可得到该校最喜爱“二胡”的学生数量.【解答】解:(1)80÷40%=200,x=×100%=15%,故答案为:200;15%;(2)喜欢二胡的学生数为200﹣80﹣30﹣20﹣10=60,补全统计图如图所示,(3)扇形统计图中“扬琴”所对扇形的圆心角是:360°×=36°,故答案为:36;(4)3000×=900,答:该校喜爱“二胡”的学生约有有900名.故答案为:900.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.22.(8分)某校举行趣味运动会共有三个项目:A.“协力竞走”、B.“快乐接力”、C.“摸石过河”.小明和小刚参与了该运动会的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)小明被分配到A.“协力竞走”项目组的概率为;(2)列表或画树状图求小明和小刚被分配到同一项目组的概率.【分析】(1)直接根据概率公式求解即可;(2)根据题意画出树状图得出所有等情况数,找出小明和小刚被分配到同一项目组的情况数,然后根据概率公式即可得出答案.【解答】解:(1)∵共有三个项目,分别是:A.“协力竞走”、B.“快乐接力”、C.“摸石过河”,∴小明被分配到A.“协力竞走”项目组的概率为;故答案为:;(2)根据题意画图如下:共有9种等情况数,其中小明和小刚被分配到同一项目组的有3种,则P(同一项目组)==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)端午节前后,张阿姨两次到超市购买同一种粽子.节前,按标价购买,用了96元;节后,按标价的6折购买,用了72元,两次一共购买了27个.这种粽子的标价是多少?【分析】设这种粽子的标价是x元/个,则节后的价格是0.6x元/个,根据数量=总价÷单价结合两次一共购买了27个,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设这种粽子的标价是x元/个,则节后的价格是0.6x元/个,依题意,得:+=27,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:这种粽子的标价是8元/个.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(10分)如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=4,求四边形BEFD的周长.【分析】(1)根据三角形的中位线的性质得到DF∥BC,EF∥AB,根据平行四边形的判定定理即可得到结论;(2)根据直角三角形的性质得到DF=DB=DA=AB=2,推出四边形BEFD是菱形,于是得到结论.【解答】(1)证明:∵D,E,F分别是AB,BC,AC的中点,∴DF,EF分别是△ABC的中位线,∴DF∥BC,EF∥AB,∴DF∥BE,EF∥BD,∴四边形BEFD是平行四边形;(2)解:∵∠AFB=90°,D是AB的中点,AB=4,∴DF=DB=DA=AB=2,∵四边形BEFD是平行四边形,∴四边形BEFD是菱形,∵DB=2,∴四边形BEFD的周长为8.【点评】本题考查了平行四边形的性质和判定,菱形的判定和性质,直角三角形的斜边中线的性质,熟练掌握平行四边形的性质是解题的关键.25.(10分)如图,四边形ABCD是⊙O的内接四边形,AC为直径,=,DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)判断直线ED与⊙O的位置关系,并说明理由;(3)若CE=2,AC=8,求阴影部分的面积.【分析】(1)根据圆周角定理,由=,得到∠BAD=∠ACD,再根据圆内接四边形的性质得∠DCE=∠BAD,所以∠ACD=∠DCE;(2)连结OD,如图,利用内错角相等证明OD∥BC,而DE⊥BC,则OD⊥DE,于是根据切线的判定定理可得DE为⊙O的切线;(3)作OH⊥BC于H,易得四边形ODEH为矩形,所以OD=EH=4,则CH=HE﹣CE =2,于是有∠HOC=30°,得到∠COD=60°,然后根据扇形面积公式、等边三角形的面积公式和阴影部分的面积=S扇形OCD﹣S△OCD进行计算.【解答】(1)证明:∵=,∴∠BAD=∠ACD,∵∠DCE=∠BAD,∴∠ACD=∠DCE,即CD平分∠ACE;(2)解:直线ED与⊙O相切.理由如下:连结OD,如图,∵OC=OD,∴∠OCD=∠ODC,而∠OCD=∠DCE,∴∠DCE=∠ODC,∴OD∥BC,∵DE⊥BC,∴OD⊥DE,∴DE为⊙O的切线;(3)解:作OH⊥BC于H,则四边形ODEH为矩形,∴OD=EH,∵CE=2,AC=8,∴OC=OD=4,∴CH=HE﹣CE=4﹣2=2,在Rt△OHC中,∠HOC=30°,∴∠COD=60°,∴阴影部分的面积=S扇形OCD﹣S△OCD=﹣×42=π﹣4.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形的计算.26.(10分)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD 上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=2BE,QB=6,求邻余线AB的长.【分析】(1)由等腰三角形的“三线合一“性质可得AD⊥BC,则可得∠DAB与∠DBA 互余,即∠F AB与∠EBA互余,从而可得答案;(2)画出图形即可.(3)先由等腰三角形的“三线合一“性质可得BD=CD、DM=ME,再判定△DBQ∽△ECN,从而列出比例式,将已知线段的长代入即可得解.【解答】解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠F AB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴==,∵QB=6,∴NC=10,∵AN=CN,∴AC=2CN=20,∴AB=AC=20.【点评】本题考查了四边形的新定义,综合考查了等腰三角形的“三线合一“性质、相似三角形的判定与性质等知识点,读懂定义并明确相关性质及定理是解题的关键.27.(12分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P 与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB 的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8<t≤24时,求P关于t的函数表达式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数表达式;②未来两年内,当月销售量P为23时,月毛利润为w达到最大.【分析】(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入求解可得P=t+2;(2)直接利用每件利润×总销量=总利润,进而得出代数式求出即可.【解答】解:(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入,得:,解得:,∴当8<t≤24时,求P关于t的函数解析式为:P=t+2;(2)①当0<t≤8时,w=(2t+8)×=240;当8<t≤12时,w=(2t+8)(t+2)=2t2+12t+16;当12<t≤24时,w=(﹣t+44)(t+2)=﹣t2+42t+88;综上所述,w关于t的函数解析式为:w=,②当0<t≤8时,w=240;当8<t≤12时,w=2t2+12t+16=2(t+3)2﹣2,∴8<t≤12时,w随t的增大而增大,当t=12时,w取得最大值,最大值为448,当12<t≤24时,w=﹣t2+42t+88=﹣(t﹣21)2+529,当t=21时,w取得最大值529,∵529>448>240∴t=21时,w取得最大值此时P=t+2=23.故答案为:23.【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.28.(14分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N.点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y).(1)如图2,ω=45°,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,OA =2,OC=1.①点A、B、C在此斜坐标系内的坐标分别为A(2,0),B(1,),C(﹣1,).②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为y=x.③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为y=﹣x+.(2)若ω=120°,O为坐标原点.①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=,求圆M的半径及圆心M的斜坐标.②如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是2<r<4.【分析】(1)①如图2﹣1中,作BE∥OD交OA于E,CF∥OD交x轴于F.求出OE、OF、CF、OD、BE即可解决问题;②如图2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行线分线段成比例定理即可解决问题;。

2020年中考数学一模试卷(带答案)

2020年中考数学一模试卷(带答案)

2020年中考数学一模试卷(带答案)一、选择题1.在数轴上,与表示6的点距离最近的整数点所表示的数是( ) A .1B .2C .3D .42.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( ) A .15 B .14C .15 D .4173.如图,在菱形ABCD 中,E 是AC 的中点,EF ∥CB ,交AB 于点F ,如果EF=3,那么菱形ABCD 的周长为( )A .24B .18C .12D .94.定义一种新运算:1an nnbn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .255.下表是某学习小组一次数学测验的成绩统计表: 分数/分 70 80 90100 人数/人13x1已知该小组本次数学测验的平均分是85分,则测验成绩的众数是( ) A .80分 B .85分C .90分D .80分和90分6.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣17.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( ) A .只有乙B .甲和丁C .乙和丙D .乙和丁8.下列图形是轴对称图形的有( )A .2个B .3个C .4个D .5个9.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A .14cmB .4cmC .15cmD .3cm10.已知直线//m n ,将一块含30°角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30°D .40︒11.如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )A .50°B .20°C .60°D .70°12.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A.10B.12C.16D.18二、填空题13.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE <15°,∠C的度数为整数,则∠C的度数为_____.14.如果a是不为1的有理数,我们把11a-称为a的差倒数如:2的差倒数是1112=--,-1的差倒数是111(1)2=--,已知14a=,2a是1a的差倒数,3a是2a的差倒数,4a是3a的差倒数,…,依此类推,则2019a=___________.15.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.16.如图,在平面直角坐标系xOy中,函数y=kx(k>0,x>0)的图象经过菱形OACD的顶点D和边AC的中点E,若菱形OACD的边长为3,则k的值为_____.17.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.18.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10020050010002000A出芽种子数961654919841965发芽率0.960.830.980.980.98B出芽种子数961924869771946发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).19.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.20.二元一次方程组627x yx y+=⎧⎨+=⎩的解为_____.三、解答题21.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?22.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?23.如图1,已知二次函数y=ax2+32x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+32x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.24.已知:如图,点E,A,C在同一条直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.25.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt△ABC三个顶点都在格点上,请解答下列问题:(1)写出A,C两点的坐标;(2)画出△ABC关于原点O的中心对称图形△A1B1C1;(3)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,并直接写出点C旋转至C2经过的路径长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】的大小,即可得到结果. 【详解】46 6.25<<Q ,2 2.5∴<<,的点距离最近的整数点所表示的数是2, 故选:B . 【点睛】此题考查了实数与数轴,以及算术平方根,熟练掌握各自的性质是解本题的关键.2.A解析:A 【解析】∵在Rt △ABC 中,∠C =90°,AB =4,AC =1,∴BC ,则cos B =BC AB , 故选A3.A解析:A 【解析】【分析】易得BC 长为EF 长的2倍,那么菱形ABCD 的周长=4BC 问题得解. 【详解】∵E 是AC 中点, ∵EF ∥BC ,交AB 于点F , ∴EF 是△ABC 的中位线, ∴BC=2EF=2×3=6, ∴菱形ABCD 的周长是4×6=24, 故选A .【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.4.B解析:B 【解析】根据新定义运算得到一个分式方程,求解即可. 【详解】 根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-, 则25m =-, 经检验,25m =-是方程的解, 故选B. 【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.5.D解析:D 【解析】 【分析】先通过加权平均数求出x 的值,再根据众数的定义就可以求解. 【详解】解:根据题意得:70+80×3+90x+100=85(1+3+x+1), x=3∴该组数据的众数是80分或90分. 故选D . 【点睛】本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x 是解答问题的关键.6.B解析:B 【解析】 【分析】 由题意可知A=111)11x x ++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果. 【详解】 解:A=11111x x ++-=111xx x +-g =21x x -故选B. 【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.解析:D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x -÷--=2221·1x x x x x ---=() 2212·1xx xx x----=()()221·1x x xx x----=()2xx --=2xx-,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.8.C解析:C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.9.A解析:A【解析】运用直角三角形的勾股定理,设正方形D的边长为x,则22222(65)(5)10x+++=,x=(负值已舍),故选A解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】解:Q直线//m n,21180ABC BAC∴∠+∠∠+∠=+︒,30ABC=︒∠Q,90BAC∠=︒,140∠=︒,218030904020∴∠=---︒︒=︒︒︒,故选:B.【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.11.D解析:D【解析】题解析:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故选D.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.12.C解析:C【解析】【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP= S矩形MPFD ,又∵S△PBE=12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.二、填空题13.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BA E+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C的度数.详解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.14.【解析】【分析】利用规定的运算方法分别算得a1a2a3a4…找出运算结果的循环规律利用规律解决问题【详解】∵a1=4a2=a3=a4=…数列以4−三个数依次不断循环∵2019÷3=673∴a2019 解析:34. 【解析】【分析】 利用规定的运算方法,分别算得a 1,a 2,a 3,a 4…找出运算结果的循环规律,利用规律解决问题.【详解】∵a 1=4a 2=11111143a ==---, a 3=211311413a ⎛⎫ ⎪⎝=⎭=---, a 4=31143114a ==--, …数列以4,−1334,三个数依次不断循环, ∵2019÷3=673, ∴a 2019=a 3=34, 故答案为:34. 【点睛】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.15.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程通过解关于m 的方程求得m 的值即可【详解】∵关于x 的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程,通过解关于m 的方程求得m 的值即可.【详解】∵关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,∴m 2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.16.【解析】【分析】过D作DQ⊥x轴于Q过C作CM⊥x轴于M过E作EF⊥x 轴于F设D点的坐标为(ab)求出CE的坐标代入函数解析式求出a再根据勾股定理求出b即可请求出答案【详解】如图过D作DQ⊥x轴于Q解析:25【解析】【分析】过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),求出C、E的坐标,代入函数解析式,求出a,再根据勾股定理求出b,即可请求出答案.【详解】如图,过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),则C点的坐标为(a+3,b),∵E为AC的中点,∴EF=12CM=12b,AF=12AM=12OQ=12a,E点的坐标为(3+12a,12b),把D、E的坐标代入y=kx得:k=ab=(3+12a)12b,解得:a=2,在Rt△DQO中,由勾股定理得:a2+b2=32,即22+b2=9,解得:5∴5故答案为5【点睛】本题考查了勾股定理、反比例函数图象上点的坐标特征、菱形的性质等,得出关于a、b的方程是解此题的关键.17.2【解析】由D是AC的中点且S△ABC=12可得;同理EC=2BE即EC=可得又等量代换可知S△ADF-S△BEF=2解析:2【解析】由D是AC的中点且S△ABC=12,可得1112622ABD ABCS S∆∆==⨯=;同理EC=2BE即EC=13BC,可得11243ABES∆=⨯=,又,ABE ABF BEF ABD ABF ADFS S S S S S∆∆∆∆∆∆-=-=等量代换可知S△ADF-S△BEF=218.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 19.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.20.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解法本题属于基础题比较简单解析:15x y =⎧⎨=⎩ 【解析】【分析】由加减消元法或代入消元法都可求解.【详解】627x y x y +=⎧⎨+=⎩①②, ②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为:15x y =⎧⎨=⎩ 【点睛】本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单.三、解答题21.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.【解析】分析:(1)找出当x=6时,y 1、y 2的值,二者作差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y 1、y 2关于x 的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y 1﹣y 2的值,设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t 的一元一次方程,解之即可得出结论.详解:(1)当x=6时,y 1=3,y 2=1,∵y 1﹣y 2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y 1=mx+n ,y 2=a (x ﹣6)2+1.将(3,5)、(6,3)代入y 1=mx+n ,3563m n m n +=⎧⎨+=⎩,解得:237m n ⎧=-⎪⎨⎪=⎩,∴y1=﹣23x+7;将(3,4)代入y2=a(x﹣6)2+1,4=a(3﹣6)2+1,解得:a=13,∴y2=13(x﹣6)2+1=13x2﹣4x+13.∴y1﹣y2=﹣23x+7﹣(13x2﹣4x+13)=﹣13x2+103x﹣6=﹣13(x﹣5)2+73.∵﹣13<0,∴当x=5时,y1﹣y2取最大值,最大值为73,即5月份出售这种蔬菜,每千克的收益最大.(3)当t=4时,y1﹣y2=﹣13x2+103x﹣6=2.设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+73(t+2)=22,解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y1﹣y2的值;(2)根据点的坐标,利用待定系数法求出y1、y2关于x的函数关系式;(3)找准等量关系,正确列出一元一次方程.22.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,根据题意得:1200090001501.5x x+=解得:x=120,经检验x=120是原分式方程的解,∴1.5x=180.答:银杏树的单价为120元,则玉兰树的单价为180元.23.(1)y=﹣14x2+32x+4;(2)△ABC是直角三角形.理由见解析;(3)点N的坐标分别为(﹣8,0)、(8﹣0)、(3,0)、(0).(4)当△AMN面积最大时,N点坐标为(3,0).【解析】【分析】(1)由点A、C的坐标利用待定系数法即可求出二次函数的解析式;(2)令二次函数解析式中y=0,求出点B的坐标,再由两点间的距离公式求出线段AB、AC、BC的长度,由三者满足AB2+AC2=BC2即可得出△ABC为直角三角形;(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一点,即可求得点N的坐标;(4)设点N的坐标为(n,0)(-2<n<8),通过分割图形法求面积,再根据相似三角形面积间的关系以及三角形的面积公式即可得出S△AMN关于n的二次函数关系式,根据二次函数的性质即可解决最值问题.【详解】(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S△AMN=S△ABN﹣S△BMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点睛】本题考查了二次函数的综合问题,熟练掌握二次函数的知识点是本题解题的关键. 24.见解析【解析】【分析】首先由AB∥CD,根据平行线的性质可得∠BAC=∠ECD,再由条件AB=CE,AC=CD可证出△BAC和△ECD全等,再根据全等三角形对应边相等证出CB=ED.【详解】证明:∵AB∥CD,∴∠BAC=∠ECD,∵在△BAC和△ECD中,AB=EC,∠BAC=∠ECD ,AC=CD,∴△BAC≌△ECD(SAS).∴CB=ED.【点睛】本题考查了平行线的性质,全等三角形的判定和性质.25.(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)见解析;(3)10π.【解析】【分析】(1)利用第二象限点的坐标特征写出A,C两点的坐标;(2)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(3)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2,然后描点得到△A2B2C2,再利用弧长公式计算点C旋转至C2经过的路径长.【详解】解:(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)如图,△A1B1C1为所作;(3)如图,△A2B2C2为所作,OC2213+10,点C旋转至C29010π⋅⋅10π.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了弧长公式.。

江苏省扬州市邗江区2020年中考数学一模试卷含解析

江苏省扬州市邗江区2020年中考数学一模试卷含解析

江苏省扬州市邗江区2020年中考数学一模试卷一、选择题1.下列各数中,2020的倒数是()A.B.﹣2020 C.|﹣2020| D.﹣2.下列计算结果正确的是()A.=±6 B.(﹣ab2)3=﹣a3b6C.tan45°=D.(x﹣3)2=x2﹣93.如图是由3个大小相同的小正方体组成的几何体,它的左视图是()A.B.C.D.4.一组数据2,1,2,5,3,4的中位数和众数分别是()A.2,2 B.3,2 C.2.5,2 D.3.5,25.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于等于3的数的概率是()A.B.C.D.6.平行四边形的一边长为6cm,则它的两条对角线长可以是()A.4cm,6cm B.5cm,6cm C.4cm,8cm D.2cm,12cm7.如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则BF的长为()A.B.C.D.8.在平面直角坐标系xOy中,过点A(﹣5,0)作垂直于x轴的直线AB,直线y=x+b与双曲线y=﹣相交于点P(x1,y1)、Q(x2,y2),与直线AB相交于点R(x3,y3).若y1>y2>y3时,则b的取值范围是()A.b>4 B.b>4或b<﹣4C.﹣<b<﹣4或b>4 D.4<b<或b<﹣4二.填空题(本大题共10小题,每小题3分,共30分)9.一般冠状病毒衣原体的直径约为0.000011cm,把0.000011用科学记数法可以表示为.10.因式分解:9x2﹣81=.11.某多边形内角和与外角和共1080°,则这个多边形的边数是.12.使代数式有意义的x的取值范围是.13.已知圆锥的底面圆的半径为2cm,侧面展开图的圆心角为60°,则该圆锥的母线长为cm.14.关于x的方程mx2+4x+1=0有两个不相等的实数根,则m的取值范围是.15.如图,AB是⊙O的弦,OC⊥AB.连接OA、OB、BC,若BC是⊙O的内接正十二边形的一边,则∠ABC=.16.某种商品每件进价为20元,调查表明:在某段时间内,若以每件x元(20≤x≤40,且x为整数)出售,可卖出(40﹣x)件,若要使利润最大,则每件商品的售价应为元.17.如图,直线y=x﹣2与x轴交于点A,以OA为斜边在x轴的上方作等腰直角三角形OAB,将△OAB沿x轴向右平移,当点B落在直线y=x﹣2上时,则线段AB在平移过程中扫过部分的图形面积为.18.如图,A、B两点的坐标分别为(﹣4,0),(0,4),C、F分别是直线x=6和x轴上的动点,CF=12,D是CF的中点,连接AD交y轴与点E,△ABE面积的最小值为cm.三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.计算或化简:(1)﹣﹣|2﹣4|﹣()﹣1+2cos60°;(2)已知a是方程x2+2x﹣1=0的一个实数根,求代数式(a+3)2﹣4(a﹣2)的值.20.解不等式组:,并写出它的所有整数解.21.某校组织学生参加“新冠肺炎”防疫知识竞赛,从中抽取了部分学生成绩进行统计,并按照成绩从低到高分成A,B,C,D,E五个小组,绘制统计图如表(未完成),解答下列问题:(1)样本容量为,频数分布直方图中a=;(2)扇形统计图中E小组所对应的扇形圆心角为n°,求n的值并补全频数分布直方图;(3)若成绩在80分以上(不含80分)为优秀,全校共有3000名学生,估计成绩优秀的学生有多少名?22.五张正面分别写有数字:﹣3,﹣2,0,1,2的卡片,它们的背面完全相同,现将这五张卡片背面朝上洗匀.(1)从中任意抽取一张卡片,则所抽卡片上数字的绝对值不小于1的概率是;(2)先从中任意抽取一张卡片,以其正面数字作为m的值,然后再从剩余的卡片中随机抽一张,以其正面的数字作为n的值,请用列表法或画树状图法,求点Q(m,n)在第四象限的概率.23.某药店准备用9000元购进一批口罩,很快销售一空;药店又用15000元购进了第二批该款口罩,购进时的单价是第一批的倍,所购数量比第一批多1000只.求第一批口罩购进时的单价是多少?24.如图,E,F是正方形ABCD的对角线AC上的两点,AE=CF,连接DE、BE、BF、DF.(1)求证:四边形BEDF为菱形;(2)若菱形BEDF的边长为2,AE=2,求正方形ABCD的边长.25.如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)求证:直线DE是⊙O的切线;(2)若⊙O半径为1,BC=4,求图中阴影部分的面积.26.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等,则称这个点为“美好点”,如图,过点P分别作x轴,y轴的垂线,与坐标轴围成的矩形OAPB的周长与面积相等,则P为“美好点”.(1)在点M(2,2),N(4,4),Q(﹣6,3)中,是“美好点”的有.(2)若“美好点”P(a,﹣3)在直线y=x+b(b为常数)上,求a和b的值;(3)若“美好点”P恰好在抛物线y=x2第一象限的图象上,在x轴上是否存在一点Q使得△POQ为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.27.【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明:如图①,在矩形ABCD中,EF⊥GH,EF分别交AD、BC于点E、F,GH分别交AB、DC于点G、H,求证:=;【结论应用】(2)如图②,将矩形ABCD沿EF折叠,使得点B和点D重合,若AB=2,BC=3.求折痕EF的长;【拓展运用】(3)如图③,将矩形ABCD沿EF折叠.使得点D落在AB边上的点G处,点C落在点P处,得到四边形EFPG,若AB=2,BC=3,EF=,请求BP的长.28.如图1,已知抛物线顶点C(1,4),且与y轴交于点D(0,3).(1)求该抛物线的解析式及其与x轴的交点A、B的坐标;(2)将直线AC绕点A顺时针旋转45°后得到直线AE,与抛物线的另一个交点为E,请求出点E的坐标;(3)如图2,点P是该抛物线上位于第一象限的点,线段AP交BD于点M、交y轴于点N,△BMP和△DMN的面积分别为S1,S2,求S1﹣S2的最大值.参考答案一.选择题(本大题共8小题,每小题3分,共24分)1.下列各数中,2020的倒数是()A.B.﹣2020 C.|﹣2020| D.﹣【分析】直接利用倒数的定义得出答案.解:2020的倒数是:.故选:A.2.下列计算结果正确的是()A.=±6 B.(﹣ab2)3=﹣a3b6C.tan45°=D.(x﹣3)2=x2﹣9【分析】各式计算得到结果,即可作出判断.解:A、原式=6,不符合题意;B、原式=﹣a3b6,符合题意;C、原式=1,不符合题意;D、原式=x2﹣6x+9,不符合题意.故选:B.3.如图是由3个大小相同的小正方体组成的几何体,它的左视图是()A.B.C.D.【分析】根据左视图就是从物体的左边进行观察,得出左视图有1列,小正方形数目为2.解:如图所示:它的左视图是:.故选:D.4.一组数据2,1,2,5,3,4的中位数和众数分别是()A.2,2 B.3,2 C.2.5,2 D.3.5,2【分析】将数据从小到大排列,再根据中位数和众数的概念求解可得.解:将数据重新排列为1、2、2、3、4、5,则这组数据的中位数为=2.5,众数为2,故选:C.5.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于等于3的数的概率是()A.B.C.D.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解:∵共6个数,大于等于3的有4个,∴P(大于等于3)=.故选:B.6.平行四边形的一边长为6cm,则它的两条对角线长可以是()A.4cm,6cm B.5cm,6cm C.4cm,8cm D.2cm,12cm【分析】根据平行四边形的性质,结合三角形三边关系:三角形的第三边大于两边之差小于两边之和即可判断.解:A、∵2+3<6,不能够成三角形,故此选项错误;B、2.5+3<6,不能够成三角形,故此选项错误;C、2+4=6,不能够成三角形,故此选项错误;D、1+6>6,能构成三角形,故此选项正确;故选:D.7.如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则BF的长为()A.B.C.D.【分析】先利用含30度角的直角三角形的性质求出BD,再利用直角三角形的性质求出DE=BE=2,即:∠BDE=∠ABD,进而判断出DE∥AB,再求出AB=3,即可得出结论.解:如图,在Rt△BDC中,BC=4,∠DBC=30°,∴BD=2,∵∠BDC=90°,点E是BC中点,∴DE=BE=CE=BC=2,∵∠DCB=30°,∴∠BDE=∠DBC=30°,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠BDE,∴DE∥AB,∴△DEF∽△BAF,∴=,在Rt△ABD中,∠ABD=30°,BD=2,∴AB=3,∴=,∴=,∴DF=BD=×2=,∴BF=DF=.故选:C.8.在平面直角坐标系xOy中,过点A(﹣5,0)作垂直于x轴的直线AB,直线y=x+b与双曲线y=﹣相交于点P(x1,y1)、Q(x2,y2),与直线AB相交于点R(x3,y3).若y1>y2>y3时,则b的取值范围是()A.b>4 B.b>4或b<﹣4C.﹣<b<﹣4或b>4 D.4<b<或b<﹣4【分析】先利用直线y=x+b与双曲线y=﹣有两个交点和判别式的意义得到b>4或b <﹣4,讨论:当反比例函数图象与直线y=x+b在第二象限相交于P、Q时,直线AB与反比例函数y=﹣相交于C点,如图,C(﹣5,),利用点R在C点下方得到﹣5+b <,此时b的范围为4<b<,当反比例函数与直线y=x+b在第一象限相交于P、Q 时,b的范围为b<﹣4满足y1>y2>y3.解:∵直线y=x+b与双曲线y=﹣有两个交点,∴x+b=﹣有两个实数解,整理得x2+bx+4=0,∵△=b2﹣4×4>0,∴b>4或b<﹣4,当反比例函数图象与直线y=x+b在第二象限相交于P、Q时,直线AB与反比例函数y=﹣相交于C点,如图,当x=﹣5时,y=﹣=,则C(﹣5,),当点R在C点下方时,y1>y2>y3,即x=﹣5时,y<,∴﹣5+b<,解得b<,∴b的范围为4<b<,当反比例函数与直线y=x+b在第一象限相交于P、Q时,b的范围为b<﹣4满足y1>y2>y3,综上所述,b的范围为4<b<或b<﹣4.故选:D.二.填空题(本大题共10小题,每小题3分,共30分)9.一般冠状病毒衣原体的直径约为0.000011cm,把0.000011用科学记数法可以表示为 1.1×10﹣5.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000011=1.1×10﹣5.故答案为:1.1×10﹣5.10.因式分解:9x2﹣81=9(x+3)(x﹣3).【分析】先提公因式,然后根据平方差公式可以对原式进行因式分解.解:9x2﹣81=9(x2﹣9)=9(x+3)(x﹣3),故答案为:9(x+3)(x﹣3).11.某多边形内角和与外角和共1080°,则这个多边形的边数是 6 .【分析】先根据多边形的外角和为360°求出其内角和,再根据多边形内角和定理即可求出多边形的边数.解:∵多边形内角和与外角和共1080°,∴多边形内角和=1080°﹣360°=720°,设多边形的边数是n,∴(n﹣2)×180°=720°,解得n=6.故答案为:6.12.使代数式有意义的x的取值范围是x≥3,且x≠4 .【分析】分式的分母不为零,二次根式的被开方数是非负数.解:根据题意,得x﹣3≥0且x﹣4≠0,解得,x≥3,且x≠4;故答案是:x≥3,且x≠4.13.已知圆锥的底面圆的半径为2cm,侧面展开图的圆心角为60°,则该圆锥的母线长为12 cm.【分析】设该圆锥的母线长为lcm,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2π×2=,然后解关于l的方程即可.解:设该圆锥的母线长为lcm,根据题意得2π×2=,解得l=12,即该圆锥的母线长为12cm.故答案为12.14.关于x的方程mx2+4x+1=0有两个不相等的实数根,则m的取值范围是m<4且m≠0 .【分析】由关于x的一元二次方程mx2+4x+1=0有两个不相等的实数根,根据一元二次方程的定义和根的判别式的意义可得m≠0且△>0,即42﹣4•m•1>0,两个不等式的公共解即为m的取值范围.解:∵关于x的一元二次方程mx2+4x+1=0有两个不相等的实数根,∴m≠0且△>0,即42﹣4•m•1>0,解得m<4,∴m的取值范围为m<4且m≠0.故答案为:m<4且m≠0.15.如图,AB是⊙O的弦,OC⊥AB.连接OA、OB、BC,若BC是⊙O的内接正十二边形的一边,则∠ABC=15°.【分析】根据已知条件得到∠BOC==30°,根据等腰三角形的性质得到∠AOC=∠BOC=30°,由圆周角定理即可得到结论.解:∵BC是⊙O的内接正十二边形的一边,∴∠BOC==30°,∵OA=OB,OC⊥AB,∴∠AOC=∠BOC=30°,∴∠ABC=AOC=15°,故答案为:15°.16.某种商品每件进价为20元,调查表明:在某段时间内,若以每件x元(20≤x≤40,且x为整数)出售,可卖出(40﹣x)件,若要使利润最大,则每件商品的售价应为30 元.【分析】设商品所获利润为w元,依题意得w关于x的二次函数,写成顶点式,按照二次函数的性质可得出答案.解:设商品所获利润为w元,由题意得:w=(x﹣20)(40﹣x)=﹣x2+60x﹣800=﹣(x﹣30)2+100,∵二次项系数﹣1<0,20≤x≤40,且x为整数,∴当x=30时,w取得最大值,最大值为100元.∴每件商品的售价应为30元.故答案为:30.17.如图,直线y=x﹣2与x轴交于点A,以OA为斜边在x轴的上方作等腰直角三角形OAB,将△OAB沿x轴向右平移,当点B落在直线y=x﹣2上时,则线段AB在平移过程中扫过部分的图形面积为12 .【分析】根据等腰直角三角形的性质求得点BC、OC的长度,即点B的纵坐标,表示出B′的坐标,代入函数解析式,即可求出平移的距离,进而根据平行四边形的面积公式即可求得.解:y=x﹣2,当y=0时,x﹣2=0,解得:x=4,即OA=4,过B作BC⊥OA于C,∵△OAB是以OA为斜边的等腰直角三角形,∴BC=OC=AC=2,即B点的坐标是(2,2),设平移的距离为a,则B点的对称点B′的坐标为(a+2,2),代入y=x﹣2得:2=(a+2)﹣2,解得:a=6,即△OAB平移的距离是6,∴Rt△OAB扫过的面积为:6×2=12,故答案为:12.18.如图,A、B两点的坐标分别为(﹣4,0),(0,4),C、F分别是直线x=6和x轴上的动点,CF=12,D是CF的中点,连接AD交y轴与点E,△ABE面积的最小值为 2 cm.【分析】设直线x=6交x轴于K.由题意KD=CF=6,推出点D的运动轨迹是以K为圆心,6为半径的圆,推出当直线AD与⊙K相切时,△ABE的面积最小.解:如图,设直线x=6交x轴于K.由题意KD=CF=6,∴点D的运动轨迹是以K为圆心,6为半径的圆,∴当直线AD与⊙K相切时,△ABE的面积最小,∵AD是切线,点D是切点,∴AD⊥KD,∵AK=10,DK=6,∴AD=8,∵tan∠EAO==,=,∴OE=3,∴BE=4﹣3=1,∴S△ABE=×BE•OA==2.故答案为2.三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.计算或化简:(1)﹣﹣|2﹣4|﹣()﹣1+2cos60°;(2)已知a是方程x2+2x﹣1=0的一个实数根,求代数式(a+3)2﹣4(a﹣2)的值.【分析】(1)根据绝对值的意义、负整数指数幂和特殊角的三角函数值进行计算;(2)利用a是方程x2+2x﹣1=0的一个实数根得到a2+2a=1,再计算(a+3)2﹣4(a﹣2)得到a2+2a+17,然后利用整体代入的方法计算代数式的值.解:(1)原式=﹣3+2﹣4﹣3+2×=﹣3+2﹣4﹣3+1=﹣﹣6;(2)∵a是方程x2+2x﹣1=0的一个实数根,∴a2+2a﹣1=0,∴a2+2a=1,∴(a+3)2﹣4(a﹣2)=a2+6a+9﹣4a+8=a2+2a+17=1+17=18.20.解不等式组:,并写出它的所有整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,继而可得答案.解:解不等式﹣1﹣3(x+3)<2x,得:x>﹣2,解不等式x﹣1≤,得:x≤3,则不等式组的解集为﹣2<x≤3,所以不等式组的整数解为﹣1、0、1、2、3.21.某校组织学生参加“新冠肺炎”防疫知识竞赛,从中抽取了部分学生成绩进行统计,并按照成绩从低到高分成A,B,C,D,E五个小组,绘制统计图如表(未完成),解答下列问题:(1)样本容量为200 ,频数分布直方图中a=16 ;(2)扇形统计图中E小组所对应的扇形圆心角为n°,求n的值并补全频数分布直方图;(3)若成绩在80分以上(不含80分)为优秀,全校共有3000名学生,估计成绩优秀的学生有多少名?【分析】(1)根据B组的频数以及百分比,即可求得总人数,然后根据百分比的意义求得a的值;(2)利用360°乘以E小组所占的百分比,求出n的值,用总人数乘以C组的人数所占的百分比,从而补全统计图;(3)利用全校总人数乘以对应的百分比,即可求解.解:(1)学生总数是40÷20%=200(人),则a=200×8%=16;故答案为:200;16;(2)n=360°×=43.2°.C组的人数是:200×25%=50.如图所示:(3)根据题意得:3000×=1410(名)答:成绩优秀的学生有1410名.22.五张正面分别写有数字:﹣3,﹣2,0,1,2的卡片,它们的背面完全相同,现将这五张卡片背面朝上洗匀.(1)从中任意抽取一张卡片,则所抽卡片上数字的绝对值不小于1的概率是;(2)先从中任意抽取一张卡片,以其正面数字作为m的值,然后再从剩余的卡片中随机抽一张,以其正面的数字作为n的值,请用列表法或画树状图法,求点Q(m,n)在第四象限的概率.【分析】(1)直接利用概率公式计算可得;(2)通过列表展示所有20种等可能情况,利用第四象限的点的坐标特点得到点Q(m,n)在第四象限的结果数,然后根据概率公式求解.解:(1)从中任意抽取一张卡片,则所抽卡片上数字的绝对值不小于1的概率为,故答案为:;(2)列表如下:﹣3 ﹣2 0 1 2﹣3 (﹣2,﹣3)(0,﹣3)(1,﹣3)(2,﹣3)﹣2 (﹣3,﹣2)(0,﹣2)(1,﹣2)(2,﹣2)0 (﹣3,0)(﹣2,0)(1,0)(2,0)1 (﹣3,1)(﹣2,1)(0,1)(2,1)2 (﹣3,2)(﹣2,2)(0,2)(1,2)共有20种等可能情况,其中在第四象限的点有4个,所以点Q(m,n)在第四象限的概率为=.23.某药店准备用9000元购进一批口罩,很快销售一空;药店又用15000元购进了第二批该款口罩,购进时的单价是第一批的倍,所购数量比第一批多1000只.求第一批口罩购进时的单价是多少?【分析】设第一批口罩购进时的单价是x元,则第二批口罩购进时的单价是x元,根据数量=总价÷单价结合第二批比第一批多购进1000只,即可得出关于x的分式方程,解之经检验后即可得出结论.解:设第一批口罩购进时的单价是x元,则第二批口罩购进时的单价是x元,依题意,得:﹣=1000,解得:x=1,经检验,x=1是原方程的解,且符合题意.答:第一批口罩购进时的单价是1元.24.如图,E,F是正方形ABCD的对角线AC上的两点,AE=CF,连接DE、BE、BF、DF.(1)求证:四边形BEDF为菱形;(2)若菱形BEDF的边长为2,AE=2,求正方形ABCD的边长.【分析】(1)连接BD交AC于点O,则可证得OE=OF,OD=OB,可证四边形BEDF为平行四边形,且BD⊥EF,可证得四边形BEDF为菱形;(2)设AO=x,则OE=x﹣2,在直角三角形BEO中利用勾股定理可建立关于x的方程,解方程求出x的值,进而可求出正方形ABCD的边长.解:(1)证明:连结BD交AC于点O,∵四边形ABCD为正方形,∴OA=OB=OC=OD,AC⊥BD,又∵AE=CF,∴OE=OF,∴四边形BEDF为平行四边形,∵EF垂直平分BD,∴EB=ED,∴四边形BEDF是菱形;(2)设AO=x,则OE=x﹣2,在Rt△EOB中,BE2=BO2+OE2,即20=x2+(x﹣2)2,解得:x=4或﹣2(舍),∴AO=4,∴AB==4.25.如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)求证:直线DE是⊙O的切线;(2)若⊙O半径为1,BC=4,求图中阴影部分的面积.【分析】(1)连接OE、OD,根据切线的性质得到∠OAC=90°,根据三角形中位线定理得到OE∥BC,证明△AOE≌△DOE(SAS),根据全等三角形的性质、切线的判定定理证明;(2)求出AC,AE的长,得出∠AOD=120°,根据扇形的面积公式计算即可.解:(1)证明:连接OE、OD,如图,∵AC是⊙O的切线,∴AB⊥AC,∴∠OAC=90°,∵点E是AC的中点,O点为AB的中点,∴OE∥BC,∴∠1=∠B,∠2=∠3,∵OB=OD,∴∠B=∠3,∴∠1=∠2,在△AOE和△DOE中,∴△AOE≌△DOE(SAS)∴∠ODE=∠OAE=90°,∴DE⊥OD,∵OD为⊙O的半径,∴DE为⊙O的切线;(2)∵⊙O半径为1,∴AB=2,∵∠BAC=90°,BC=4,∴∠C=30°,AC===2,∴∠B=60°,∴∠AOD=2∠B=120°,又∵点E是AC的中点,∴AE=AC=,∴图中阴影部分的面积=2S△AOE﹣S扇形AOD=2×××1﹣=﹣.26.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等,则称这个点为“美好点”,如图,过点P分别作x轴,y轴的垂线,与坐标轴围成的矩形OAPB的周长与面积相等,则P为“美好点”.(1)在点M(2,2),N(4,4),Q(﹣6,3)中,是“美好点”的有N、Q.(2)若“美好点”P(a,﹣3)在直线y=x+b(b为常数)上,求a和b的值;(3)若“美好点”P恰好在抛物线y=x2第一象限的图象上,在x轴上是否存在一点Q使得△POQ为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.【分析】(1)根据“美好点”的定义逐个验证即可;(2)对于P点,对应图形的周长为:2×(|a|+3)=2|a|+6,面积为3|a|,因为点P 是“美好点”,故2|a|+6=3|a|,即可求解;(3)根据点P是“美好点”确定点P的坐标,再分PQ=PO、PQ=OQ、PO=QO三种情况,分别求解即可.解:(1)对于M点,对应图形的周长为:2×(2+2)=8,面积为2×2=4≠8,故点M 不是“美好点”;对于点N,对应图形的周长为:2×(4+4)=16,面积为4×4=16,故点N是“美好点”;对于点Q,对应图形的周长为:2×(6+3)=18,面积为6×3=18,故点Q是“美好点”;故答案为:N、Q;(2)对于P点,对应图形的周长为2×(|a|+3)=2|a|+6,面积为3|a|,∵点P是“美好点”,∴2|a|+6=3|a|,解得:a=±6,将点P的坐标代入直线的表达式得:﹣3=a+b,则b=﹣3﹣a,故b=﹣9或3,故s=6,b=﹣9或a=﹣6,b=3;(3)存在,理由:设点P的坐标为(m,n),n=m2(m>0,n>0),由题意得:2m+2n=mn,即m+m2=m3,解得:m=6或﹣4(舍去)或0(舍去),故点P的坐标为(6,3);设点Q的坐标为(x,0),则PQ2=(x﹣6)2+32=(x﹣6)2+9,PO2=36+9=45,OQ2=x2,当PQ=PO时,则(x﹣6)2+9=45,解得:x=0(舍去)或12;当PQ=OQ时,同理可得:x=;当PO=QO时,同理可得:x=±3;综上点Q的坐标为:(12,0)或(,0)或(3,0)或(﹣3,0).27.【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明:如图①,在矩形ABCD中,EF⊥GH,EF分别交AD、BC于点E、F,GH分别交AB、DC于点G、H,求证:=;【结论应用】(2)如图②,将矩形ABCD沿EF折叠,使得点B和点D重合,若AB=2,BC=3.求折痕EF的长;【拓展运用】(3)如图③,将矩形ABCD沿EF折叠.使得点D落在AB边上的点G处,点C落在点P处,得到四边形EFPG,若AB=2,BC=3,EF=,请求BP的长.【分析】(1)过点A作AP∥EF,交CD于P,过点B作BQ∥GH,交AD于Q,BQ交AP于T,如图1,易证AP=EF,GH=BQ,△ABP∽△BCQ,然后运用相似三角形的性质就可解决问题.(2)利用探究的结论解决问题即可.(3)如图③中,过点F作FH⊥EG于H,过点P作PJ⊥BF于J.利用探究的结论求出DG,利用勾股定理求出AG,设ED=EG=x,在Rt△AEG中,根据EG2=AE2+AG2,求出DE,EG,证明△AEG∽△JFP,推出==,求出FJ,PJ即可解决问题.解:(1):如图①,过点A作AP∥EF,交BC于P,过点B作BQ∥GH,交CD于Q,BQ交AP于T.∵四边形ABCD是矩形,∴AB∥DC,AD∥BC.∴四边形AEFP、四边形BGHQ都是平行四边形,∴AP=EF,GH=BQ.又∵GH⊥EF,∴AP⊥BQ,∴∠BAT+∠ABT=90°.∵四边形ABCD是矩形,∴∠ABP=∠C=90°,AD=BC,∴∠ABT+∠CBQ=90°,∴∠BAP=∠CBQ,∴△ABP∽△BCQ,∴=,∴=.(2)如图②中,连接BD.∵四边形ABCD是矩形,∴∠C=90°,AB=CD=2,∴BD===,∵D,B关于EF对称,∴BD⊥EF,∴=,∴=,∴EF=.(3)如图③中,过点F作FH⊥EG于H,过点P作PJ⊥BF于J.∵四边形ABCD是矩形,∴AB=CD=2,AD=BC=3,∠A=90°,∴=,∴DG=,∴AG===1,由翻折可知:ED=EG,设ED=EG=x,在Rt△AEG中,∵EG2=AE2+AG2,∴x2=AG2+AE2,∴x2=(3﹣x)2+1,∴x=,∴DE=EG=,∵FH⊥EG,∴∠FHG=∠HGP=∠GPF=90°,∴四边形HGPF是矩形,∴FH=PG=CD=2,∴EH===,∴GH=FP=CF=EG﹣EH=﹣=1,∵PF∥EG,EA∥FB,∴∠AEG=∠IPF,∵∠A=∠FJP=90°,∴△AEG∽△JFP,∴==,∴==,∴FJ=,PJ=,∴BJ=BC﹣FJ﹣CF=3﹣﹣1=,在Rt△BJP中,BP===.28.如图1,已知抛物线顶点C(1,4),且与y轴交于点D(0,3).(1)求该抛物线的解析式及其与x轴的交点A、B的坐标;(2)将直线AC绕点A顺时针旋转45°后得到直线AE,与抛物线的另一个交点为E,请求出点E的坐标;(3)如图2,点P是该抛物线上位于第一象限的点,线段AP交BD于点M、交y轴于点N,△BMP和△DMN的面积分别为S1,S2,求S1﹣S2的最大值.【分析】(1)设抛物线的表达式为:y=a(x﹣h)2+k=a(x﹣1)2+4,将点D的坐标代入上式,即可求解;(2)构建△ACH,用解直角三角形的方法求出点H的坐标,进而求解;(3)设S=S△ABM,则S1﹣S2=(S1+S)﹣(S+S2)=S△ABP﹣S△BDO,即可求解.解:(1)设抛物线的表达式为:y=a(x﹣h)2+k=a(x﹣1)2+4,将点D的坐标代入上式并解得:a=﹣1,故抛物线的表达式为:y=﹣(x﹣1)2+4=﹣x2+2x+3①;令y=0,则x=﹣1或3,故点A、B的坐标分别为:(﹣1,0)、(3,0);(2)如图,设函数的对称轴交x轴于点G,交AE于点H,过点H作HN⊥AC于点N,在△AGC中,tan∠ACG====tan∠HCN,在Rt△CHN中,设HN=x,则CN=HN tan∠HCN=2x,在Rt△ANH中,∠NAH=45°,则AN=NH=x,故AC=AN+CN=3x==2,故x=,在Rt△CHN中,CH==x=,故点H(1,),由点A、H的坐标得,直线AH的表达式为:y=x+②,联立①②并解得:x=或﹣1(舍去﹣1),故点E(,);(3)设点P的坐标为(x,y),y=﹣x2+2x+3,设S=S△ABM,则S1﹣S2=(S1+S)﹣(S+S2)=S△ABP﹣S△BDO=×AB×y﹣×OB×OD=×4×y×3×3=﹣2x2+4x+,∵﹣2<0,故S1﹣S2有最大值,当x=1时,其最大值为;故S1﹣S2的最大值为.。

2019年中考数学模拟试题及答案分析531279

2019年中考数学模拟试题及答案分析531279

2019年中考数学模拟试题及答案分析学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题 1.下列说法中,正确的是( )A .图形平移的方向只有水平方向和竖直方向B .图形平移后,它的位置、大小、形状都不变C .图形平移的方向不是唯一的,可向任何方向平行移动D .图形平移后对应线段不可能在一条直线上2.设有12个型号相同的杯子,其中一等品7个,二等品3个,三等品2个.从中任意取一个,是二等品或三等品的概率是( )A .127B .41C .61D .125 3.下列各式中从左到右的变形,是因式分解的是( )A .(a+3)(a-3)=a 2-9;B .x 2+x-5=(x-2)(x+3)+1;C .a 2b+ab 2=ab (a+b )D .x 2+1=x (x+x1) 4. 如果三角形的一个内角等于其他两个内角的差,那么这个三角形是( )A . 锐角三角形B .钝角三角形C .直角三角形D .无法确定5.如图,每个小正方形网格的边长都为1,右上角的圆柱体是由左下角的圆柱体经过平移得到的.下列说法错误..的是( ) A .先沿水平方向向右平移4个单位长度,再向上沿垂直的方向平移4个单位长度,然后再沿水平方向向右平移3个单位长度B .先沿水平方向向右平移7个单位长度,再向上沿垂直的方向平移4个单位长度C .先向上沿垂直的方向平移4个单位长度,再沿水平方向向右平移7个单位长度D .直接沿正方形网格的对角线方向移动7个单位长度6.下列说法正确的是( )A .足球在草地上滚动,可看作足球在作平移变换B .我们可以把“火车在一段笔直的铁轨上行驶了一段距离”看作“火车沿着铁轨方向作平移变换”C .小明第一次乘观光电梯,随着电梯的上升,他高兴地对同伴说:太棒了,•我现在比大楼还高呢,我长高了D .在图形平移变换过程中,图形上可能会有不动点7.下列计算错误..的有( ) ①a 8÷a 2=a 4;②(-m )4÷(-m )2=-m 2;③x 2n ÷x n =x n ;④-x 2÷(-x )2=-1.A .1个B .2个C .3个D .4个8.下列各等式中正确的是( )A .(x-2y )2=x 2-2xy+4y 2B .(3x+2)2=3x 2+12x+4C .(-3x-y )2=9x 2-6xy+y 2D .(-2x-y )2=4x 2+4xy+y 29.用放大镜将图形放大,应该属于( ) )A .相似变换B .平移变换C .对称变换D .旋转变换 10. 若216x mx ++是完全平方式,则m 的值等于( )A .-8B .8C .4D .8或一811.用反证法证明“a b >”时应假设( )A .a b >B .a b <C .a b =D .a b ≤12. 下列方程中,是二元一次方程的是( )A .230x +=B .122x y -=C .351x y -=D .3xy =13.某商店销售一批服装,每件售价 150 元,可获利 25%,求这种服装的成本价. 设这种服装的成本价为x 元,则得到方程( )A .15025%x =⨯B .25%150x ⋅=C .15025%x x -=D .15025%x -=14.若2212m n n x y --与13218m m x y --是同类项,则2m n +值为( )。

江苏省扬州市广陵区2020届中考数学模拟试卷(含解析)

江苏省扬州市广陵区2020届中考数学模拟试卷(含解析)

江苏省扬州市广陵区2020届中考模拟试卷数学一.选择题(共8小题)1.﹣的倒数是()A. B.﹣ C.﹣ D.2.给出一列数,在这列数中,第50个值等于1的项的序号是()A.4900 B.4901 C.5000 D.50013.(3分)若二次根式有意义,则a的取值范围是()A.a≥2 B.a≤2 C.a>2 D.a≠24.(3分)下列图形中,属于中心对称图形的是()A. B. C. D.5.(3分)如图是由10把相同的折扇组成的“蝶恋花”(图1)和梅花图案(图2)(图中的折扇无重叠),则梅花图案中的五角星的五个锐角均为()A.36° B.42° C.45° D.48°6.(3分)某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是()捐款(元)10 15 20 50人数 1 5 4 2A.15,15 B.17.5,15 C.20,20 D.15,207.(3分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是()A.12cm2 B.(12+π)cm2 C.6πcm2 D.8πcm28.(3分)如图,有一住宅小区呈三角形ABC形状,且周长为2 000m,现规划沿小区周围铺上宽为3m的草坪,则草坪的面积(精确到1)是()A.6000m2 B.6016m2 C.6028m2 D.6036m2二.填空题(共10小题,满分30分,每小题3分)9.(3分)科学家发现,距离地球2540000光年之遥的仙女星系正在向银河系靠近.其中2540000用科学记数法表示为.10.(3分)分解因式:a2﹣a+2= .11.(3分)反比例函数和一次函数y=k2x+b的图象交于点M(3,﹣)和点N(﹣1,2),则k1= ,k2= ,一次函数的图象交x轴于点.12.(3分)某电信局现有300部已申请装机的电话等待装机.假设每天新申请装机的电话部数相同,该电信局每个电话装机小组每天装的电话部数也相同,那么安排3个装机小组,恰好30天可将需要装机的电话全部装完;如果安排5个装机小组,则恰好10天可将需要装机的电话全部装完.试求每个电话装机小组每天装机多少部?每天有多少部新申请装机的电话?13.(3分)抛物线y=ax2+bx+c(a≠0)过点A(1,﹣3)、B(3,﹣3)、C(﹣1,5),顶点为M点.在抛物线上是找一点P使∠POM=90°,则P点的坐标.14.(3分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.15.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.若∠E n=1度,那∠BEC等于度16.(3分)如图,在菱形ABCD中,∠B=60°,对角线AC平分角∠BAD,点P是△ABC内一点,连接PA、PB、PC,若PA=6,PB=8,PC=10,则菱形ABCD的面积等于.17.(3分)如图,AB是⊙O的直径,AB=15,AC=9,则tan∠ADC= .18.(3分)如图,直线y1=kx+b与直线y2=mx交于点P(1,m),则不等式mx>kx+b的解集是.三.解答题(共10小题,满分96分)19.(8分)(1)(﹣2)﹣1﹣|﹣|+(3.14﹣π)0+4cos45°(2)已知x2﹣2x﹣7=0,求(x﹣2)2+(x+3)(x﹣3)的值.20.(8分)当x满足条件时,求出方程x2﹣2x﹣4=0的根.21.(8分)某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)求共抽取了多少名学生的征文;(2)将上面的条形统计图补充完整;(3)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少;(4)如果该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有多少名.22.(8分)小明学习电学知识后,用四个开关按键(每个开关按键闭合的可能性相等)、一个电源和一个灯泡设计了一个电路图(1)若小明设计的电路图如图1(四个开关按键都处于打开状态)如图所示,求任意闭合一个开关按键,灯泡能发光的概率;(2)若小明设计的电路图如图2(四个开关按键都处于打开状态)如图所示,求同时时闭合其中的两个开关按键,灯泡能发光的概率.(用列表或树状图法)23.(10分)列方程解应用题:某城市为了治理污水,需要铺设一条全长为3000米的污水排放管道.为使工程提前10天完成,在保证质量的前提下,必须把工作效率提高25%.问原计划每天铺设管道多少米?24.(10分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,延长BE到F,使BE=EF,连接AF、CF、DF.(1)求证:AF=BD;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.25.(10分)有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x2,y2)(点B在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣2.(1)请根据以上信息求出二次函数表达式;(2)将该函数图象x>x2的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.26.(10分)如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB于点E,OE:EA=1:2,PA=6,∠POC=∠PCE.(1)求证:PC是⊙O的切线;(2)求⊙O的半径;(3)求sin∠PCA的值.27.(12分)在△ABC中,AB=AC,∠BAC=α,点P是△ABC内一点,且∠PAC+∠PCA=,连接PB,试探究PA、PB、PC满足的等量关系.(1)当α=60°时,将△ABP绕点A逆时针旋转60°得到△ACP′,连接PP′,如图1所示.由△ABP≌△ACP′可以证得△APP′是等边三角形,再由∠PAC+∠PCA=30°可得∠APC的大小为度,进而得到△CPP′是直角三角形,这样可以得到PA、PB、PC满足的等量关系为;(2)如图2,当α=120°时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;(3)PA、PB、PC满足的等量关系为.28.(12分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB= ,BC= ,AC= ;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC 全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.2020年江苏省扬州市广陵区中考数学模拟试卷参考答案与试题解析一.选择题(共8小题,满分18分)1.【解答】解:﹣的倒数是﹣,故选:B.2.【解答】解:第50个值等于1的项的分子分母的和为2×50=100,由于从分子分母的和为2到分子分母的和为99的分数的个数为:1+2+…+98=4851.第50个值等于1的项为.故4851+50=4901.故选:B.3.【解答】解:∵二次根式有意义,∴a﹣2≥0,即a≥2,则a的范围是a≥2,故选:A.4.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确,故选:D.5.【解答】解:如图,梅花扇的内角的度数是:360°÷3=120°,180°﹣120°=60°,正五边形的每一个内角=(5﹣2)•180°÷5=108°,∴梅花图案中的五角星的五个锐角均为:108°﹣60°=48°.故选:D.6.(15+20)【解答】解:共有数据12个,第6个数和第7个数分别是15元,20元,所以中位数是:÷2=17.5(元);捐款金额的众数是15元.故选:B.7.【解答】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选:C.8.【解答】解:∵如图:草坪是由长分别为AB、BC、AC,宽为3m的3个矩形与三个半径为3m 的扇形组成的,又∵AB+AC+BC=2000m,三个扇形正好组成一个圆,∴草坪的面积为:S=2000×3+9π=6000+9π=6028m2.故选:C.二.填空题(共10小题,满分30分,每小题3分)9.【解答】解:2540000用科学记数法表示为2.54×106.故答案为:2.54×106.10.【解答】解:a2﹣a+2=(a2﹣6a+9)=(a﹣3)2.故答案为:(a﹣3)2.11.【解答】解:∵M(3,﹣)和点N(﹣1,2)为两函数的交点,∴x=﹣1,y=2代入反比例函数y=中得:2=,即k1=﹣2;将两点坐标代入y=k2x+b得:,解得:k1=﹣,b=,∴一次函数解析式为y=﹣x+,令y=0,解得:x=2,∴一次函数与x轴交点为(2,0).故答案为:﹣2;﹣;(2,0)12.【解答】解:设每个电话装机小组每天装机x部,每天有y部新申请装机的电话,根据题意得:,解得:,答:每个装机小组每天装机10部,每天有20部新申请装机的电话.13.【解答】解:抛物线y=ax2+bx+c(a≠0)过点A(1,﹣3)、B(3,﹣3)、C(﹣1,5),所以,解得:,所以抛物线的解析式为:y=x2﹣4x=(x﹣2)2﹣4,顶点M坐标是(2,﹣4),因此直线OM的解析式为y=﹣2x,由于直线PO与直线OM垂直,因此直线PO的解析式为y=x,联立抛物线的解析式有:,解得,,因此P点坐标为(,).14.【解答】解:该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为,故答案为:1600015.【解答】解:如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠DCE的平分线交点为E1,∴∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BE C.∵∠ABE1和∠DCE1的平分线交点为E2,∴∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;如图②,∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推,∠E n=∠BE C.∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n.16.【解答】解:将线段AP绕点A顺时针旋转60°得到线段AM,连接PM,作AH⊥BP于H.∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∵AM=AP,∠MAP=60°,∴△AMP是等边三角形,∵∠MAP=∠BAC,∴∠MAB=∠PAC,∴△MAB≌△PAC,∴BM=PC=10,∵PM2+PB2=100,BM2=100,∴PM2+PB2=BM2,∴∠MPB=90°,∵∠APM=60°,∴∠APB=150°,∠APH=30°,∴AH=PA=3,PH=3,BH=8+3,∴AB2=AH2+BH2=100+48,∴菱形ABCD的面积=2•△ABC的面积=2××AB2=50+72,故答案为50+72.17.【解答】解:∵AB为⊙O直径,∴∠ACB=90°,∴BC==12,∴tan∠ADC=tanB===,故答案为.18.【解答】解:∵直线y1=kx+b与直线y2=mx交于点P(1,m),∴不等式mx>kx+b的解集是x>1,故答案为:x>1.三.解答题(共10小题,满分96分)19.【解答】解:(1)原式=﹣﹣2+1+2=;(2)原式=x2﹣4x+4+x2﹣9=2x2﹣4x﹣5=2(x2﹣2x)﹣5,∵x2﹣2x﹣7=0,即x2﹣2x=7,∴原式=14﹣5=9.20.【解答】解:解不等式x+1<3x﹣3,得:x>2,解不等式3(x﹣4)<2(x﹣4),得:x<4,则不等式组的解集为2<x<4,∵x2﹣2x=4,∴x2﹣2x+1=4+1,即(x﹣1)2=5,则x﹣1=±,∴x=1或x=1﹣,∵2<x<4,∴x=1.21.【解答】解:(1)本次调查共抽取的学生有3÷6%=50(名).(2)选择“友善”的人数有50﹣20﹣12﹣3=15(名),条形统计图如图所示:(3)∵选择“爱国”主题所对应的百分比为20÷50=40%,∴选择“爱国”主题所对应的圆心角是40%×360°=144°;(4)该校九年级共有1200名学生,估计选择以“友善”为主题的九年级学生有1200×30%=360名.22.【解答】解:(1)一共有四个开关按键,只有闭合开关按键K2,灯泡才会发光,所以P(灯泡发光)=(2)用树状图分析如下:一共有12种不同的情况,其中有6种情况下灯泡能发光,所以P(灯泡发光)=.23.【解答】解:设原计划每天铺设多长管道设原计划每天铺设x米管道,根据题意得.解得x=60,经检验x=60是原分式方程的解.答:原计划每天铺设60米长的管道.24.【解答】(1)证明:∵AE=ED,BE=EF,∴四边形ABDF是平行四边形,∴AF=B D.(2)结论:四边形ADCF是菱形.理由:∵AB⊥AC,∴∠CAB=90°,∵CD=DB,∴AD=BC=DC,∵四边形ABDF是平行四边形,∴AF∥CD,AF=BD,∴AF=CD,∴四边形AFCD是平行四边形,∵DA=DC,∴四边形AFCD是菱形.25.【解答】解:(1)有上述信息可知该函数图象的顶点坐标为:(3,﹣2)设二次函数表达式为:y=a(x﹣3)2﹣2.∵该图象过A(1,0)∴0=a(1﹣3)2﹣2,解得a=.∴表达式为y=(x﹣3)2﹣2(2)如图所示:由已知条件可知直线与图形“G”要有三个交点1当直线与x轴重合时,有2个交点,由二次函数的轴对称性可求x3+x4=6,∴x3+x4+x5>11.当直线过y=(x﹣3)2﹣2的图象顶点时,有2个交点,由翻折可以得到翻折后的函数图象为y=﹣(x﹣3)2+2∴令(x﹣3)2+2=﹣2时,解得x=3+2或x=3﹣2(舍去)∴x3+x4+x5<9+2.综上所述11<x3+x4+x5<9+2.26.【解答】解:(1)证明:∵弦CD⊥AB于点E,∴在Rt△COE中∠COE+∠OCE=90°,∵∠POC=∠PCE,∴∠PCE+∠OCE=90°,即PC⊥OC,∴PC是⊙O的切线;(2)∵OE:EA=1:2,PA=6,∴可设OE=k,EA=2k,则半径r=3k,在Rt△COP中,∵CE⊥PO垂足为E,∴△COE∽△POC,∴CO2=OE•OP即(3k)2=k•(3k+6),解得k=0(舍去)或k=1,∴半径r=3;(3)过A作AH⊥PC,垂足为H,∵PC⊥OC∴AH∥OC,∴,即,解得AH=2,在Rt△COE中,由OC=3,OE=1,解得CE=,在Rt△ACE中,由CE=,AE=2,解得AC=,在Rt△ACH中,由AC=,AH=2,∴sin∠PCA===.27.【解答】解:(1)∵△ABP≌△ACP′,∴AP=AP′,由旋转变换的性质可知,∠PAP′=60°,P′C=PB,∴△PAP′为等边三角形,∴∠APP′=60°,∵∠PAC+∠PCA==30°,∴∠APC=150°,∴∠P′PC=90°,∴PP′2+PC2=P′C2,∴PA2+PC2=PB2,故答案为:150,PA2+PC2=PB2;(2)如图2,作将△ABP绕点A逆时针旋转120°得到△ACP′,连接PP′,作AD⊥PP′于D,由旋转变换的性质可知,∠PAP′=120°,P′C=PB,∴∠APP′=30°,∵∵∠PAC+∠PCA==60°,∴∠APC=120°,∴∠P′PC=90°,∴PP′2+PC2=P′C2,∵∠APP′=30°,∴PD=PA,∴PP′=PA,∴3PA2+PC2=PB2;(3)如图2,与(2)的方法类似,作将△ABP绕点A逆时针旋转α得到△ACP′,连接PP′,作AD⊥PP′于D,由旋转变换的性质可知,∠PAP′=α,P′C=PB,∴∠APP′=90°﹣,∵∵∠PAC+∠PCA=,∴∠APC=180°﹣,∴∠P′PC=(180°﹣)﹣(90°﹣)=90°,∴PP′2+PC2=P′C2,∵∠APP′=90°﹣,∴PD=PA•cos(90°﹣)=PA•sin,∴PP′=2PA•sin,∴4PA2sin2+PC2=PB2,故答案为:4PA2sin2+PC2=PB2.28.【解答】解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(,),而点P2与点O关于AC对称,∴P2(,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),即:满足条件的点P的坐标为:(0,0),(,),(﹣,).。

2019年数学中考一模试卷(附答案)

2019年数学中考一模试卷(附答案)

2019年数学中考一模试卷(附答案)一、选择题1.在下面的四个几何体中,左视图与主视图不相同的几何体是( )A .B .C .D .2.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( )A .15B .14C .15D .417 3.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( )A .94B .95分C .95.5分D .96分4.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :y=kx+43与x 轴、y 轴分别交于A 、B ,∠OAB=30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A .6B .8C .10D .12 5.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).A .B .C .D .6.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC V 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A.35B.53C.73D.547.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED度数为( )A.110°B.125°C.135°D.140°8.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=27,CD=1,则BE的长是()A.5B.6C.7D.89.下面的几何体中,主视图为圆的是()A.B.C.D.10.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.1201508x x=-B.1201508x x=+C.1201508x x=-D.1201508x x=+11.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个12.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是()A .B .C .D .二、填空题13.色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:抽取的体检表数n501002004005008001000120015002000色盲患者的频数m37132937556985105138色盲患者的频率m/n0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).14.一列数123,,,a a a……na,其中1231211111,,,,111nna a a aa a a-=-===---L L,则1232014a a a a++++=L L__________.15.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.16.如图,边长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数kyx=在第一象限的图象经过点D,交BC于E,若点E是BC的中点,则OD的长为_____.17.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_____.18.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.19.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算)20.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点处,当△为直角三角形时,BE 的长为 .三、解答题21.先化简,再求值:(2)(2)(4)a a a a +-+-,其中14a =. 22.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.23.解不等式组3415122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来24.材料:解形如(x+a)4+(x+b)4=c的一元四次方程时,可以先求常数a和b 的均值,然后设y=x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.例:解方程:(x﹣2)4+(x ﹣3)4=1解:因为﹣2和﹣3的均值为,所以,设y=x﹣,原方程可化为(y+)4+(y ﹣)4=1,去括号,得:(y2+y+)2+(y2﹣y+)2=1y 4+y2++2y3+y 2+y+y 4+y2+﹣2y3+y 2﹣y=1整理,得:2y4+3y2﹣=0(成功地消去了未知数的奇次项)解得:y2=或y2=(舍去)所以y=±,即x﹣=±.所以x=3或x=2.(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.(2)用这种方法解方程(x+1)4+(x+3)4=70625.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.2.A解析:A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC224115,则cos B=BCAB=154,故选A 3.B解析:B 【解析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4.A解析:A【解析】试题解析:∵直线l:y=kx+43与x轴、y轴分别交于A、B,∴B(0,43),∴OB=43,在RT△AOB中,∠OAB=30°,∴OA=3OB=3×43=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=12 PA,设P(x,0),∴PA=12-x,∴⊙P的半径PM=12PA=6-12x,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,∴使得⊙P成为整圆的点P个数是6.故选A.考点:1.切线的性质;2.一次函数图象上点的坐标特征.5.C【解析】从上面看,看到两个圆形,故选C .6.B解析:B【解析】【分析】由折叠的性质得到AE=AB ,∠E=∠B=90°,易证Rt △AEF ≌Rt △CDF ,即可得到结论EF=DF ;易得FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中利用勾股定理得到关于x 的方程x 2=42+(6-x )2,解方程求出x 即可.【详解】∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置,∴AE=AB ,∠E=∠B=90°,又∵四边形ABCD 为矩形,∴AB=CD ,∴AE=DC ,而∠AFE=∠DFC ,∵在△AEF 与△CDF 中,AFE CFD E DAE CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AEF ≌△CDF (AAS ),∴EF=DF ;∵四边形ABCD 为矩形,∴AD=BC=6,CD=AB=4,∵Rt △AEF ≌Rt △CDF ,∴FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6-x )2,解得x =133, 则FD =6-x=53. 故选B .【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理. 7.B解析:B【分析】由AB ∥CD ,根据两直线平行,同旁内角互补可得∠CAB=110°,再由角平分线的定义可得∠CAE=55°,最后根据三角形外角的性质即可求得答案.【详解】∵AB ∥CD ,∴∠BAC+∠C=180°,∵∠C=70°,∴∠CAB=180°-70°=110°,又∵AE 平分∠BAC ,∴∠CAE=55°,∴∠AED=∠C+∠CAE=125°,故选B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握相关知识是解题的关键.8.B解析:B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2 )2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键9.C解析:C【解析】试题解析:A 、的主视图是矩形,故A 不符合题意;B 、的主视图是正方形,故B 不符合题意;C 、的主视图是圆,故C 符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.10.D解析:D【解析】【分析】首先用x表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x=+,故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.11.C解析:C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C.12.A解析:A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.二、填空题13.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故解析:07【解析】【分析】随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.【详解】解: 观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右, 故男性中,男性患色盲的概率为0.07故答案为:0.07.【点睛】本题考查利用频率估计概率.14.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a3+…+a2014=671×(-1++2 解析:20112【解析】【分析】分别求得a 1、a 2、a 3、…,找出数字循环的规律,进一步利用规律解决问题.【详解】 解:123412311111,,2,1,1211a a a a a a a =-======----… 由此可以看出三个数字一循环,2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+12+2)+(-1)=20112. 故答案为20112. 考点:规律性:数字的变化类.15.2【解析】由D 是AC 的中点且S △ABC=12可得;同理EC=2BE 即EC=可得又等量代换可知S △ADF -S △BEF=2解析:2【解析】由D 是AC 的中点且S △ABC =12,可得1112622ABD ABC S S ∆∆==⨯=;同理EC=2BE 即EC=13BC ,可得11243ABE S ∆=⨯=,又,ABE ABF BEF ABD ABF ADF S S S S S S ∆∆∆∆∆∆-=-=等量代换可知S △ADF -S △BEF =216.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E ∴2x =x+2解析:12x x 【解析】【分析】设D (x ,2)则E (x+2,1),由反比例函数经过点D 、E 列出关于x 的方程,求得x 的值即可得出答案.【详解】解:设D (x ,2)则E (x+2,1), ∵反比例函数k y x=在第一象限的图象经过点D 、点E , ∴2x =x+2,解得x =2,∴D (2,2),∴OA =AD =2,∴OD ==故答案为:【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D 、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k . 17.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x ,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6, ∴这组数据的中位数为352+=4, 故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键. 18.6【解析】分析:根据BD=CDAB=CD 可得BD=BA 再根据AM ⊥BDDN ⊥AB 即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB ∠ABD=∠P+∠BAP 即可得到△APM 是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.19.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.20.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x 2+22=(4-x )2,解得,∴BE=; ②当点B′落在AD 边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE 的长为或3. 故答案为:或3.三、解答题21.44a -,3-.【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=14代入化简后的式子,即可解答本题.试题解析:原式=2244a a a -+-=44a -; 当a=14时,原式=1444⨯-=14-=3-. 考点:整式的混合运算—化简求值. 22.(1)DE=3;(2)ADB S 15∆=.【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:2222AB AC BC 6810=+=+=,∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 23.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】 解:341{5122x x x x ≥--->①② 解不等式①可得x≤1,解不等式②可得x >-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键.24.(1)4,4,1,1;(2)x =2或x =﹣6.【解析】【分析】(1)可以先求常数3和5的均值4,然后设y =x+4,原方程可化为(y ﹣1)4+(y+1)4=1130;(2)可以先求常数1和3的均值2,然后设y =x+2,原方程可化为(y ﹣1)4+(y+1)4=706,再整理化简求出y 的值,最后求出x 的值.【详解】(1)因为3和5的均值为4,所以,设y =x+4,原方程可化为(y ﹣1)4+(y+1)4=1130,故答案为4,4,1,1;(2)因为1和3的均值为2,所以,设y =x+2,原方程可化为(y ﹣1)4+(y+1)4=706,去括号,得:(y 2﹣2y+1)2+(y 2+2y+1)2=706,y 4+4y 2+1﹣4y 3+2y 2﹣4y+y 4+4y 2+1+4y 3+2y 2+4y =706,整理,得:2y 4+12y 2﹣704=0(成功地消去了未知数的奇次项),解得:y 2=16或y 2=﹣22(舍去)所以y =±4,即x+2=±4.所以x =2或x =﹣6. 【点睛】本题考查了解高次方程,求出均值把原方程换元求解是解题的关键.25.(1)y=5x+400.(2)乙.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;试题解析:(1)设y=kx+b ,则有400100900b k b =⎧⎨+=⎩ ,解得5400k b =⎧⎨=⎩, ∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.。

扬州市中考四校联考2020年中考数学模拟考试试卷

扬州市中考四校联考2020年中考数学模拟考试试卷

扬州市中考四校联考2020年中考数学模拟考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)下列式子中错误的是()A . —3.14>—πB . 3.5>—4C . —17/3>—23/4D . —0.21<—0.212. (2分)计算﹣的结果是()A . -3B . 3C . -9D . 93. (2分)下列四个几何体中,主视图是三角形的是()A .B .C .D .4. (2分) (2017八下·南通期末) 下列式子从左到右变形一定正确的是()A .B .C .D .5. (2分)(2018·湘西模拟) 下列图形中,中心对称图形有()A . 1个B . 2个C . 3个D . 4个6. (2分) (2018九上·西峡期中) 如图,四边形ABCD和A'B'C'D'是以点O为位似中心的位似图形,若OA:OA'=2:3,则四边形ABCD与A'B'C'D'的面积比是()A . 4:9B . 2:5C . 2:3D . :二、填空题 (共7题;共7分)7. (1分) (2016八上·靖远期中) -2的绝对值是________,相反数是________,倒数是________.8. (1分)(2019·晋宁模拟) 合肥市初中毕业学业体育考试项目分必考项1项和选考项2项,在8个选考项目中,张明同学可在立定跳远、跳绳和坐位体前屈三个项目模考中基本拿满分,现计划从这三个项目中任选两项作为中考选考项,则跳绳能被选上的概率为________.9. (1分)如图,为了测量某建筑物AB的高度,在地面上的C处测得建筑物顶端A的仰角为30°,沿CB方向前进30m到达D处,在D处测得建筑物顶端A的仰角为45°,则建筑物AB的高度等于________ m.10. (1分)(2011·淮安) 如图,在△ABC中,D、E分别是边AB、AC的中点,BC=8,则DE=________.11. (1分) (2019九上·瑞安开学考) 如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为________。

2019年最新版初三中考数学模拟试卷及答案7998929

2019年最新版初三中考数学模拟试卷及答案7998929

中考数学模拟试卷及答案解析学校:__________ 考号:__________题号一总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息评卷人得分一、选择题1.在下列的计算中,正确的是()A.2x+3y=5xy B.(a+2)(a-2)=a2+4C.a2•ab=a3b D.(x-3)2=x2+6x+92.一个物体由多个完全相同的小立方体组成,它的三视图如图所示,那么组成这个物体的小立方体的个数为()A.2 B.3 C.4 D.53.如图,∠B=∠C,BF=CD,BD=CE,则∠α与∠A 的关系是()A.2∠α+∠A= 180°B.∠α+∠A= 180°C.∠α+∠A= 90°D.2∠α+∠A= 90°4.我们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.右上图是看到的万花筒的一个图案,图中所有小三角形均是全等的等边三角形,其中菱形AEFG可以看成是把菱形ABCD以点A为中心()A.顺时针旋转60°得到B.顺时针旋转120°得到C .逆时针旋转60°得到D .逆时针旋转120°得到5.由123=-yx ,可以得到用x 表示y 的式子( ) A . 322-=x y B . 3132-=x y C .232-=xy D .322x y -=6.下列各项中的两个幂,其中是同底数幂的是( )A .-a 3 与(-a )3B .-a 3 与a 3C .a 3 与(-a )3D .(a-b )3 与(b-a )37.16a 4b 3c 除以一个单项式得8ab ,则这个单项式为( )A .2a 2b 2B .21a 3b 2c C .2a 3b 2c D .2a 3b 28.c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形9.下列方程中,是二元一次方程的是( ) A .5=+y xB .132=+y xC .3=xyD .21=+y x10.不改变分式yx x 7.0213.1--的值,把它的分子、分母的系数化为整数,其结果正确的是( ) A .yx x 72113--B .yx x 721013--C .yx x 7201013--D .yx x 720113--11.下列计算正确的是( ) A .(2a )3=6a 3B .a 2·a =a 2C .a 3+a 3=a 6D .(a 3)2=a 612.下列多项式的运算中正确的是( ) A .222()x y x y -=-B .22(2)(22)24a b a b a b ----C . 11(1)(1)1222l a b ab +-=-D .2(1)(2)2x x x x +-=--13.如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能..与其自身重合的是( ) A .72B .108C .144D .21614.下列各式的因式分解中,正确的是( ) A .236(36)m m m m m -=- B .2()a b ab a a ab b ++=+ C .2222()x xy y x y -+-=--D .222()x y x y +=+15.下列各式中,运算结果为22412xy x y -+的是( )A .22(1)xy -+B .22(1)xy --C .222(1)x y -+D .222(1)x y --16.如图,线段AC 、BD 交于点0,且AO=CO ,BO=DO ,则图中全等三角形的对数有( ) A .1对B . 2对C .3对D .4对17.计算3223[()]()x x -÷所得的结果是( ) B .-1B .10x -C .0D .12x -18.同时抛掷两枚 1 元硬币,其中正面同时朝上的概率是( ) A .1B .12C .13D .1419.如图,直线a ∥b ,∠1=x °,∠2=y °,∠3=z °,那么下列代数式的值为180的是( ) A .x+y+zB .x —y+zC .y-x+zD .x+y-z20.如图,若∠1=∠2, 则( ) A .AC ∥DEB .AC ∥EFC .CD ∥EFD . 以上都不是21.如图,两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北、向东驶去.如果自行车的速度为2.5 m /s ,摩托车的速度为10 m /s ,那么10 s 后,两车大约相距 ( ) A .55 mB .l03 mC .125 mD .153 m22.等腰三角形形一个底角的余角等于30°,它的顶角等于()A.30°B.60°C.90°D.以上都不对23.如图是由五个大小相同的正方体搭成的几何体,则关于它的视图,下列说法正确的是()A.正视图的面积最小B.左视图的面积最小C.俯视图的面积最小D.三个视图的面积一样大24.小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为69千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈同坐在跷跷板的一端,这是爸爸的一端仍然着地.后来小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果爸爸被跷起离地.小宝体重可能是()A.23.3千克 B.23千克 C.21.1千克 D.19.9千克25.AD是△ABC中BC边上的中线,若AB=4,AC=6,则AD的取值范围是()A.AD>1 B.AD<5 C.1<AD<5 D.2<AD<1026.平面上有A、B、C三个点,那么以下说法正确的是()A.经过这三点,必能画一条直线B.经过这三点中的每一个点,必可画三条平行直线C.一定可以画三条直线,使它们两两相交于这三个点D.经过这三点中的每一个点,至多能画二条平行直线27.下列各组量中具有相反意义的量是()A.向东行 4km 与向南行4 kmB.队伍前进与队伍后退C.6 个小人与 5 个大人D.增长3%与减少2%28.7个有理数相乘的积是负数,那么其中负因数的个数最多有()A.2 种可能B.3 种可能C.4 种可能D.5 种可能29.23232(3)(1)(1)---⨯---的值为()A.-30 B.0 C.-1 D.2430.近似数91.60万精确到()A.百位B.千位C.百分位D.千分位31.通过四舍五入得到的近似值3.56万精确到()A.万位B.千位C.百位D.百分位32.与数轴上的点一一对应的数是()A.有理数B.无理数C.实数D.整数33.解方程中,移项的依据是()A.加法交换律B.乘法分配律C.等式性质1 D.等式性质 234.要锻造直径为200 mm,厚为18 mm的钢圆盘,现有直径为40 mm的圆钢,不计损耗,则应截取的圆钢长为()A.350 mm B.400 mm C.450 mm D.500 mm35.随着计算机技术的迅速发展,电脑价格不断降低,某品牌电脑按原售价降低m元后,又降20%,现售价为n元,那么该电脑的原售价为()A.(45n m+)元B.(54n m+)元C.(5m n+)元D.(5n m+)元36.下列方程中,解是2x=的是()A.360x+=B.1142x-+=C.223x=D.531x-=37.33422232481632a bc abc a b c+-在分解因式时,应提取的公因式是()A.316s a bc B.2228a b c C.228a bc D.2216a bc38.如图,以下四个图形中,∠1和∠2是对顶角的共有()A.0个B.l个C.2个D.3个39.如图1是一个圆柱体钢块,正中央被挖去了一个长方体孔,其俯视图如图2所示,则此圆柱体钢块的左视图是().A.B. C. D.40.已知直线AB上有一点0,射线OC和射线OD在射线OB同侧,∠BOC=50°,∠COD=100°,则∠BOC与∠AOD的平分线的夹角的度数是()A.130°B.135°C.140°D.145°41.如果一个角等于它的余角的2倍,那么这个角是它补角的()A.2倍B.12C.5倍D.1542.如图,点P是直线MN外一点,PD⊥MN,垂足为D,A、B是直线MN上的两点,连结PA、PB,已知PA=4cm,PB=5cm,PD=3cm,则点P到直线MN的距离是()A.4cm B.5cm C.3cm D.无法确定43.如图,已知直线 AB、CD相交于点 0,OA平分∠EOC, ∠EOC =100°,则∠BOD的度数是()A.20°B.40°C.50°D. 80°44.若一个角的余角是这个角的2倍,则这个角的度数是()A.30°B.60°C.45°D.90°45.以下列各组线段的长为边,能构成三角形的是()A.4 cm,5 cm,6 cm B.2 cm,3 cm,5 cmC.4 cm,4 cm。

2019年江苏省扬州市中考数学模拟考试试卷A卷附解析

2019年江苏省扬州市中考数学模拟考试试卷A卷附解析

2019年江苏省扬州市中考数学模拟考试试卷A卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下面四个判断中正确的是( )A .过圆内一点的无数条弦中,有最长的弦,没有最短的弦B .过圆内一点的无数条弦中,有最短的弦,没有最长的弦C .过圆内一点的无数条弦中,有且只有一条最长的弦,也有且只有一条最短的弦D .过圆内一点的无数条弦中,既没有最长的弦,也没有最短的弦2.将抛物线21y x =+向下平移3个单位,再向左平移 2个单位,则新抛物线是( )A .2(2)3y x =+−B .2(2)2y x =+−C .2(2)3y x =−−D .2(2)2y x =−−3.如图,直线y kx b =+交坐标轴于A B ,两点,则不等式0kx b +>的解集是( )A .2x >−B .3x >C .2x <−D .3x <4.为了调查某校八年级学生的身高情况,现在对该校八年级(1)班的全班学生进行调查. 下列说法中,正确的是( )A .总体是该校八年级学生B .总体是该校八年级学生的身高C .样本是该校八年级(1)班学生D .个体是该校八年级的每个学生5.下列图形中不能折成一个立方体的是( )A .B .C .D . 6.下列说法中正确的是( )A .直四棱柱是四面体B .直棱柱的侧棱长不一定相等C 直五棱柱有五个侧面D .正方体是直四棱柱,长方体不是直四棱柱7.有四个三角形,分别满足下列条件:(1)一个内角的的度等于另两个内角的度数之和;(2)三个内角的度数之比为 3:4:5;(3)三边长之比为3:4:5;(4)三边长分别为 7、24、25. 其中直角三角形有( )A . 1个B .2个C .3个D .4个 8. 在同一平面内,作已知直线 l 的平行线,且到l 的距离为7 cm ,这样的平行线最多可 以作( )A .1 条B .2 条C .3 条D . 无数条9.同时向空中掷两枚质地完全相同的硬币,则出现同时正面朝上的概率为( )A . 41B .31C .21 D .1 10.下列图案,能通过某基本图形旋转得到,但不能通过平移得到的是 ( )11.用长为 20m 的铁丝围成一个长方形方框使长为 6.2m ,宽为 x (m ),则可列方程为( )A .2 6.220x +⨯=B . 6.220x +=C .2 6.220x +=D .2( 6.2)20x +=二、填空题12.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连结BC .若36A ∠=,则______C ∠=.13.若y 是关于x 的反比例函数,当x=-3 时,y=4,则y 关于x 的函数解析式为 .14.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,应邀请 个球队参加比赛.15.用直接开平方法解一元二次方程时,方程应具备的特征是: .16.写出一个分子至少含有两项且能够约分的分式: .17.把一个 化成几个 的的形式,这种变形叫做把这个多项式分解因式.三、解答题18.如图,P 为⊙O 上一点,⊙P 交⊙O 于A 、B ,AD 为⊙P 的直径,延长 DB 交⊙O 于 C ,求证:PC ⊥AD.19.如图,平移方格纸中的图形,使点A平移到A′处,画出放大一倍后的图形. (所画图中线段必须借助直尺画直,并用阴影表示)20.某中学八年级共有400名学生,学校为了增强学生的国防意识,在本年级进行了一次国防知识测验.为了了解这次测验的成绩状况,从中抽取了50名学生的成绩,将所得数据整理后,画出频数分布直方图如图所示.(1)第五个小组的频数是多少? 图中第四个小组和第五个小组的频率各是多少?(2) 50名学生的成绩的中位数在哪一组?(3)这次测验中,八年级全体学生成绩在59.5~69.5中的人数约是多少?(4)试估计这次测验中,八年级全体学生的平均成绩?21.已知:四边形ABCD中,AB=CD,E,F,G分别是AD,BC,AC的中点.求证:∠GEF=∠GFE.22.如图所示,在四边形ABCD中,∠A:∠B:∠C:∠D=3:2:3:2,那么四边形ABCD 是平行四边形吗?请证明你的判断.23.某校为了奖励获奖的学生,买了若干本课外读物. 如果每人送3本,还余8本;如果每人送5本,则最后一人能得到课外物,但不足3本.设该校买了m本课外读物,有x名学生获奖,试解:(1)用含x的代数式表示m;(2)求出获奖人数及所买课外读物的本数.24.如图,已知∠ABC、∠ADC都是直角,BC=DC.说明:DE=BE.25.如图,把4×4的正方形方格图形分割成两个全等图形,请在下图中,沿虚线画出四种不同的分法,把4×4的正方形分割成两个全等图形.26.已知28mx y +=,564x y −=,2590x y +−=三个方程有公共解,求m 的值.27.请通过平移如图所示的图形,设计两种图案.28.在暑期社会实践活动中,小明所在小组的同学与一 家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A 、B 、C 三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示:若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A 型玩具有 套,B 型玩具有 套,C 型玩具有 套.(2)若每人组装A 型玩具16套与组装C 型玩具12套所画的时间相同,那么a 的值为 ,每人每小时能组装C 型玩具 套.29.某县教育局专门对该县2004年初中毕业生毕业去向做了详细调查,将数据整理后,绘制成统计图,根据图中信息回答:(1)已知上非达标高中的毕业生有2328人,求该县2004年共有初中毕业生多少人?(2)上职业高中和赋闲在家的毕业生各有多少人?(3)今年被该县政府确定为教育发展年,比较各组的百分率,你对该县教育发展有何积极建议?请写出一条建议.30.举一个可以用 5x 表示结果的实际问题.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.A4.B5.D6.C7.C8.B9.A10.A11.D二、填空题12.2713. 12y x=−14. 7 15.2()(0)x a b b +=≥16.如:22a b a b +−等 17.多项式, 整式,乘积三、解答题18.连结 AB ,则∠A=∠C .∵AD 是直径,∴∠ABD= 90°,∴∠D+∠A=∠D+∠C=90°,即∠DPC= 90°,从而 PC ⊥AD19.如图所示.20.(1)10;0.26;0.2.(2)中位数在69.5~79.5这一组中(3)400×950=72人 (4)77.321.EG=12DC=12AB=GF 22.略23.(1)38m x ++;(2)由题意,得05(1)3m x <−−<,即0385(1)3x x <+−−<.∴5 6.5x <<.∵x 整数,∴6x =,∴m=26.∴获奖人数为6,课外读物的本数为26.24.先说明Rt △ADC ≌Rt △ABC ,再说明△DCE ≌△BCE25.26.564(1)2590(2)x y x y −=⎧⎨+−=⎩,由①,②得21x y =⎧⎨=⎩,代入28mx y +=,得228m +=,所以3m =. 27.略28.(1) 132,48,60,(2) 4,629.(1)7760人 (2)1017人;923人 (3)如“赋闲在家的学生比例大,而职高发展不足,建议发展职高以吸纳赋闲在家的学生.”又如“普通高中之中,达标高中所占比例偏低,建议把更多的非达标高中发展为达标高中.”30.若糖果每千克x 元,买 5kg 糖果,则需 5x 元钱(答案不唯一)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年扬州市初三中考数学一模模拟试题一、选择题(每小题4分,共40分)1.﹣2019的相反数是()A.2019 B.﹣2019 C.D.﹣2.如图所示的几何体的左视图是()A.B.C.D.3.鞋店要进一批新鞋,你是店长,应关注下列哪个统计量()A.平均数B.方差C.众数D.中位数4.下列四幅图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.下列运算正确的是()A.x3+x2=x5B.(x﹣3)2=x2﹣9C.(x2)3=x5D.5x2•x3=5x56.一个圆锥的高是4cm,底面半径是3cm,那么这个圆锥的侧面积为()A.15cm2B.12cm2C.15πcm2D.12πcm27.某公司承担了制作300个道路交通指引标志的任务,原计划x天完成,实际平均每天多制作了5个,因此提前10天完成任务.根据题意,下列方程正确的是()A.B.C.D.8.已知m是方程x2﹣2019x+1=0的一个根,则代数式m2﹣2018m++2的值是()A.2018 B.2019 C.2020 D.20219.如图,将矩形ABCD的四边BA,CB,DC,AD分别延长至点EF,G,H,使得AE=BF=CG =DH.已知AB=1,BC=2,∠BEF=30°,则tan∠AEH的值为()A.2 B.C.﹣1 D. +1 10.如图,一次函数分别与x轴,y轴交于AB两点,与反比例函数交于C、D两点,若CD=5AB,则k的值是()A.B.6C.8D.﹣4二、填空题(每小题5分,共30分)11.因式分解:a2+2ab=.12.不等式的解集是.13.如图,AB∥CD,EF平分∠AEC,EG⊥EF.若∠C=110°,则∠BEG的度数为度.14.如图,已知直线y=+b交y轴正半轴于点B,在x轴负半轴上取点A,使2BO=3AO,AC⊥x轴交直线y=+b于点C,若△OAC的面积为,则b的值为.15.如图,在直角坐标系中,⊙A的圆心坐标为(,a)半径为,函数y=2x﹣2的图象被⊙A截得的弦长为2,则a的值为.16.如图,在正方形ABCD中,AB=3,点E是对角线BD上的一点,连结AE,过点E作EF 垂直AE交BC于点F,连结AF,交对角线BD于G.若三角形AED与四边形DEFC的面积之比为3:8,则cos∠GEF=.三、解答题17.(10分)(1)计算:2﹣1++(2019+π)0﹣7sin30°(2)先化简,再求值:(x+4)2﹣x(x﹣3),其中x=18.(8分)两块完全相同的直角三角形纸板ABC和DEF,按如图所示的方式叠放,其中∠ABC =∠DEF=90°,点O为边BC和EF的交点.(1)求证:△BOF≌△COE.(2)若∠F=30°,AE=1,求OC的长.19.(8分)在一个不透明的布袋里装有4个球,其中3个白球,1个红球,它们除颜色外其余都相同.(1)若从中任意摸出一个球,求摸出白球的概率;(2)若摸出1个球,记下颜色后不放回,再摸出1个球,求两次摸出的球恰好颜色相同的概率(要求画树状图或列表)20.(8分)已知网格的小正方形的边长均为1,格点三角形ABC如图所示,请仅使用无刻度的直尺,且不能用直尺中的直角,画出满足条件的图形(保留作图痕迹)(1)在图甲AB边上取点D,使得△BCD的面积是△ABC的;(2)在图乙中,画出△ABC所在外接圆的圆心位置.21.(10分)如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE∥AB,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE.(2)若AB=10,sin∠DAC=,求AD的长.22.(10分)如图,过抛物线y=ax2+bx上一点A(4,﹣2)作x轴的平行线,交抛物线于另一点B,点C在直线AB上,抛物线交x轴正半轴于点D(2,0),点B与点E关于直线CD对称.(1)求抛物线的表达式;(2)①若点E落在抛物线的对称轴上,且在x轴下方时,求点C的坐标.②AE最小值为.23.(12分)某水产经销商从批发市场以30元每千克的价格收购了1000千克的虾,了解到市场价在一个月内会以每天0.5元每千克的价格上涨,经销商打算先在塘里放养几天后再出售(但不超过一个月).假设放养期间虾的个体质量保持不变,但每天有10千克的虾死去.死去的虾会在当天以20元每千克的价格售出.(1)若放养10天后出售,则活虾的市场价为每千克元.(2)若放养x天后将活虾一次性售出,这1000千克的虾总共获得的销售额为36000元,求x的值.(3)若放养期间,每天会有各种其他的各种费用支出为a元,经销商在放养x天后全部售出,当20≤x≤30时,经销商日获利的最大值为1800元,则a的值为(日获利=日销售总额﹣收购成本﹣其他费用)24.(14分)如图,在ABC中,已知AB=BC=10,AC=4,AD为边BC上的高线,P为边AD上一点,连结BP,E为线段BP上一点,过D、P、E三点的圆交边BC于F,连结EF.(1)求AD的长;(2)求证:△BEF∽△BDP;(3)连结DE,若DP=3,当△DEP为等腰三角形时,求BF的长;(4)把△DEP沿着直线DP翻折得到△DGP,若G落在边AC上,且DG∥BP,记△APG、△PDG、△GDC的面积分别为S1、S2、S3,则S1:S2:S3的值为.参考答案一、选择题1.解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:A.2.解:从左边看第一层是两个小正方形,第二层是一个小正方形,故选:B.3.解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:C.4.解:A、不是轴对称图形,也不是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、不是中心对称图形,是轴对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.5.解:A、x3和x2不能合并同类项,故本选项不符合题意;B、结果是x2﹣6x+9,故本选项不符合题意;C、结果是x6,故本选项不符合题意;D、结果是5x5,故本选项,符合题意;故选:D.6.解:圆锥的母线长==5,所以这个圆锥的侧面积=×5×2π×3=15π(cm2).故选:C.7.解:设原计划x天完成,根据题意得:﹣=5.故选:B.8.解:∵m是方程x2﹣2019x+1=0的一个根,∴m2﹣2019m+1=0,∴m2=2019m﹣1,∴m2﹣2018m++2=2019m﹣2018m﹣1++2=m++1=+1=+1=2019+1=2020.故选:C.9.解:设AE=BF=CG=DH=x,∵四边形ABCD是矩形,∴∠ABC=∠BAD=90°,∴∠EAD=∠EBF=90°,∵AB=1,∠BEF=30°,∴BE=BF,∴x+1=x,解得:x=,∴AE=BF=CG=DH=,∴AH=AD+DH=2+=,∴tan∠AEH===2﹣1,故选:C.10.解:作CE⊥y轴于E,DF⊥x轴于F,连接EF,DE、CF,设D(x,),则F(x,0),由图象可知x>0,k>0,∴△DE F的面积是וx=k,同理可知:△CEF的面积是k,∴△CEF的面积等于△DEF的面积,∴边EF上的高相等,∴CD∥EF,∵BD∥EF,DF∥BE,∴四边形BDFE是平行四边形,∴BD=EF,同理EF=AC,∴AC=BD,∵CD=5AB,∴AD=3AB,由一次函数分别与x轴,y轴交于AB两点,∴A(﹣1,0),B(0,),∴OA=1,OB=,∵OB∥DF,∴===,∴DF=3,AF=3,∴OF=3﹣1=2,∴D(2,3),∵点D在反比例函数图象上,∴k=2×=6,故选:B.二、填空题11.解:原式=a(a+2b),故答案为:a(a+2b)12.解:,由①得:x≤,由②得:x>0,∴不等式组的解集为:0<x≤.故答案为:0<x≤.13.解:∵AB∥CD,∴∠C+∠AEC=180°,∵∠C=110°,∴∠AEC=70°,∵EF平分∠AEC,∴∠AEF=35°,∵EF⊥EG,∴∠FEG=90°,∴∠BEG=90°﹣35°=55°,故答案为:5514.解:∵y=+b交y轴正半轴于点B,∴B(0,b),∵在x轴负半轴上取点A,使2BO=3AO,∴B(0,b),当x=﹣时,y=2b,∴C(﹣,2b),∴△OAC的面积=×2b=,∴b=,故答案为.15.解:作AC⊥x轴于C,交CB于D,作AE⊥CB于E,连结AB,如图,∵⊙A的圆心坐标为(,a),∴OC=,AC=a,把x=代入y=2x﹣2得y=2﹣2,∴D点坐标为(,2﹣2),∴CD=2﹣2,∵AE⊥CB,∴CE=BE=BC=1,在Rt△ACE中,AC=,∴AE===2,∵y=2x﹣2,当x=0时,y=﹣2;当y=0时,x=1,∴G(0,﹣2),F(1,0),∴OG=2,OF=1,∵AC∥y轴,∴∠ADE=∠CDF=∠OGF,∴tan∠ADE==tan∠OGF==,∴DE=2AE=4,∴AD===2,∴a=AC=AD+CD=2+2﹣2=4﹣2,故答案为:4﹣2.16.解:连接CE,作EH⊥CD于H,EM⊥BC于M,如图所示:则四边形EMCH是矩形,∴EM=CH,CM=EH,∵四边形ABCD是正方形,∴BC=CD=3,∠ABC=90°,AB=CB,∠ABE=∠CBE=∠BDC=45°,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴EA=EF,∠BAE=∠BCE,同理:△ADE≌△CDE,∴△ADE的面积=△CDE的面积,∵△AED与四边形DEFC的面积之比为3:8,∴△CDE:△CEF的面积=3:5,∵EF⊥AE,∴∠AEF=90°,∴∠ABC+∠AEF=180°,∴A、B、F、E四点共圆,∴∠GEF=∠BAF,∠EFC=∠BAE=∠BCE,∴EF=EC,∵EM⊥BC,∴FM=CM=EH=DH,设FM=CM=EH=DH=x,则FC=2x,EM=HC=3﹣x,∵△CDE:△CEF的面积=3:5,∴,解得:x=,∴FC=1,BF=BC﹣FC=2,∴AF==,∴cos∠GEF=cos∠BAF===;故答案为:.三、解答题17.解:(1)原式=+2+1﹣﹣=2﹣2;(2)原式=x2+8x+16﹣x2+3x=11x+16,当x=时,原式=11×+16=25.18.(1)证明:∵△ABC≌△DEF,∴AB=DE,AC=DF,∠F=∠C,∴BF=CE,在△BOF与△EOC中,,∴△BOF≌△COE(AAS);(2)解:∵∠ABC=∠DEF=90°,∠F=30°,AE=1,∴∠C=∠F=30°,∴AC=2AE=2,∴CE=1,∵∠CEO=∠DEO=90°,∴OC==.19.解:(1)若从中任意摸出一个球,则摸出白球的概率为;(2)树状图如下所示:∴两次摸出的球恰好颜色相同的概率为=.20.解:(1)如图点D即为所求.(2)如图点O即为所求.21.(1)证明:∵AE与⊙O相切,AB是⊙O的直径∴∠BAE=90°,∠ADB=90°,∴∠ADC=90°,∵CE∥AB,∴∠BAE+∠E=180°,∴∠E=90°,∴∠E=∠ADB,∵在△ABC中,AB=BC,∴∠BAC=∠BCA,∵∠BAC+∠EAC=90°,∠ACE+∠EAC=90°,∴∠BAC=∠ACE,∴∠BCA=∠ACE,在△ADC和△AEC中,,∴△ADC≌△AEC(AAS),∴AD=AE;(2)解:连接BF,如图所示:∵∠CBF=∠DAC,∠AFB=90°,∴∠CFB=90°,sin∠CBF==sin∠DAC=,∵AB=BC=10,∴CF=2,∵BF⊥AC,∴AC=2CF=4,在Rt△ACD中,sin∠DAC==,∴CD=×4=4,∴AD===8.22.解:(1)将点A(4,﹣2)、D(2,0)代入,得:,解得:,∴抛物线的表达式为y=﹣x2+x;(2)①如图1,连接BD、DE,作EP⊥AB,并延长交OD于Q,∵抛物线的对称轴为直线x=﹣=1,∴点A(4,﹣2)关于对称轴对称的点B坐标为(﹣2,﹣2),∴BD==2,设C(m,﹣2),则BC=CE=m+2,DE=BD=2,∵QD=1,PQ=2,∴PE=QE﹣PQ=﹣1=﹣1,∵PC=1﹣m,∴由PC2+PE2=CE2可得(1﹣m)2+(﹣1)2=(m+2)2,解得m=,∴点C的坐标为(,﹣2);②如图2,∵DB=DE=2,∴点E在以D为圆心、2长为半径的⊙D上,连接DA,并延长交⊙D于点E′,此时AE′取得最小值,∵DA==2,则AE的最小值为DE﹣DA=2﹣2,故答案为:2﹣2.23.解:(1)30+0.5×10=35元,答:放养10天后出售,则活虾的市场价为每千克35元,故答案为:35;(2)由题意得,(30+0.5x)(1000﹣10x)+200x=36000,解得:x1=20,x2=60(不合题意舍去),答:x的值为20;(3)设经销商销售总额为y元,根据题意得,y=(30+0.5x)(1000﹣10x)+200x﹣30000﹣ax,且20≤x≤30,整理得y=﹣5x2+(400﹣a)x,对称轴x=,当0≤a≤100时,当x=30时,y有最大值,则﹣4500+30(400﹣a)=1800,解得a=190(舍去);当a≥200时,当x=20时,y有最大值,则﹣2000+20(400﹣a)=1800,解得a=210;当100<a<200时,当x=时,y取得最大值,y=(a2﹣800a+16000),最大值由题意得(a2﹣800a+16000)=1800,解得a=400(均不符合题意,舍去);综上,a的值为210.故答案为:210.24.解:(1)设CD=x,则BD=10﹣x,在Rt△ABD和Rt△ACD中,AD2=AB2﹣BD2=AC2﹣CD2,依题意得:,解得x=6,∴AD==8.(2)∵四边形BFEP是圆内接四边形,∴∠EFB=∠DPB,又∵∠FBE=∠PDB,∴△BEF∽△BDP.(3)由(1)得BD=6,∵PD=3,∴BP==,∴cos∠PBD=,当△DEP为等腰三角形时,有三种情况:Ⅰ.当PE=DP=3 时,BE=BP﹣EP=,∴BF===.Ⅱ.当DE=PE时,E是BP中点,BE=,∴BF===,Ⅲ.当DP=DE=3时,PE=2×PD cos∠BPD==,∴BE=3,∴BF===,若DP=3,当△DEP为等腰三角形时,BF的长为、、.(4)连接EG交P D于M点,∵DG∥BP∴∠EPD=∠EDF=∠PDG,∴PG=DG,∵EP=PG,ED=DG,∴四边形PEDG是菱形,∴EM=MG,PM=DM,EG⊥AD,又∵BD⊥AD,∴EG∥BC,∴EM=,∴,∴AM=6,∴DM=PM=2,∴PD=4,AP=4,∴S△APG==×4×3=6,S△PDG==×4×3=6,S△GDC===4.∴S1:S2:S3=6:6:2=3:3:2.中学数学一模模拟试卷一、选择题(每小题3分,计30分)1.若a是绝对值最小的有理数,b是最大的负整数,c是倒数等于它本身的自然数,则代数式a﹣b+c的值为()A.0 B.1 C.2 D.32.如图是一个全封闭的物体,则它的俯视图是()A.B.C.D.3.若点A(1,a)和点B(4,b)在直线y=﹣x+m上,则a与b的大小关系是()A.a>b B.a<bC.a=b D.与m的值有关4.一副三角板如图摆放,边DE∥AB,则∠1=()A.135°B.120°C.115°D.105°5.不等式9﹣3x<x﹣3的解集在数轴上表示正确的是()A.B.C.D.6.如图,在△ABC中,BC=4,BC边上的中线AD=2,AB+AC=3+,则S等于()△ABCA.B.C.D.7.一次函数图象经过A(1,1),B(﹣1,m)两点,且与直线y=2x﹣3无交点,则下列与点B(﹣1,m)关于y轴对称的点是()A.(﹣1,3)B.(﹣1,﹣3)C.(1,3)D.(1,﹣3)8.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A.5 B.C.D.9.已知:⊙O为△ABC的外接圆,AB=AC,E是AB的中点,连OE,OE=,BC=8,则⊙O 的半径为()A.3 B.C.D.510.二次函数y=ax2﹣4ax+2(a≠0)的图象与y轴交于点A,且过点B(3,6)若点B关于二次函数对称轴的对称点为点C,那么tan∠CBA的值是()A.B.C.2 D.二、填空题(每小题3分,计12分)11.因式分解:x2﹣y2﹣2x+2y=.12.如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC =105°,则∠A的度数是.13.如图,点B是双曲线y=(k≠0)上的一点,点A在x轴上,且AB=2,OB⊥AB,若∠BAO=60°,则k=.14.如图,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E,若AE=17,BC=8,CD=6,则四边形ABCD的面积为.三、解答题15.(5分)计算;﹣tan30°+(π﹣1)0+16.(5分)解方程: +﹣=1.17.(5分)如图,在四边形ABCD中,AB=AD.在BC上求作一点P使△ABP≌△ADP.(要求:用尺规作图,不写作法,保留作图痕迹)18.(5分)如图,点P是正方形ABCD的对角线AC上的一点,PM⊥AB,PN⊥BC,垂足分别为点M,N,求证:DP=MN.19.(7分)为了解某中学去年中招体育考试中女生“一分钟跳绳”项目的成绩情况,从中抽取部分女生的成绩,绘制出如图所示的频数分布直方图(从左到右依次为第一到第六小组,每小组含最小值,不含最大值)和扇形统计图,请根据下列统计图中提供的信息解决下列问题:(1)本次抽取的女生总人数为,第六小组人数占总人数的百分比为,请补全频数分布直方图;(2)题中样本数据的中位数落在第组内;(3)若“一分钟跳绳”不低于130次的成绩为优秀,这个学校九年级共有女生560人,请估计该校九年级女生“一分钟跳绳”成绩的优秀人数.20.(7分)如图,河对岸有一路灯杆AB,在灯光下,小亮在点D处测得自己的影长DF=3m,沿BD方向从D后退4米到G处,测得自己的影长GH=5,如果小亮的身高为1.7m,求路灯杆AB的高度.21.(7分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地的距离是千米;(2)两车行驶多长时间相距300千米?(3)求出两车相遇后y与x之间的函数关系式.22.(7分)有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.(1)求甲选择A部电影的概率;(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).23.(8分)如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.(1)求证:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的长.24.(10分)如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0)、B两点,与y轴交于点C (0,﹣3).(1)求抛物线的函数解析式;(2)已知点P(m,n)在抛物线上,当﹣2≤m<3时,直接写n的取值范围;(3)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线上是否存在点P,使△ABP与△ABD全等?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.25.(12分)问题提出;(1)如图1,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P为BC上的动点,CP=时,△APE的周长最小.(2)如图2,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P、点Q为BC上的动点,且PQ=2,当四边形APQE的周长最小时,请确定点P的位置(即BP的长)问题解决;(3)如图3,某公园计划在一片足够大的等边三角形水域内部(不包括边界)点P处修一个凉亭,设计要求PA长为100米,同时点M,N分别是水域AB,AC边上的动点,连接P、M、N的水上浮桥周长最小时,四边形AMPN的面积最大,请你帮忙算算此时四边形AMPN面积的最大值是多少?参考答案一、选择题1.解:根据题意得:a=0,b=﹣1,c=1,则a﹣b+c=0﹣(﹣1)+1=2,故选:C.2.解:从上面观察可得到:.故选:D.3.解:因为k=﹣1<0,所以在函数y=﹣x+m中,y随x的增大而减小.∵1<4,∴a>b.故选:A.4.解:∵DE∥AB,∴∠D+∠DAB=180°,又∵∠D=45°,∠BAC=30°,∴∠1=180°﹣∠D﹣∠BAC=105°,故选:D.5.解:移项,得:﹣3x﹣x<﹣3﹣9,合并同类项,得:﹣4x<﹣12,系数化为1,得:x>3,将不等式的解集表示如下:故选:B.6.解:∵BC=4,AD=2,∴BD=CD=2,∴AD=BD,AD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=180°÷2=90°,即△ABC是直角三角形,设AB=x,则AC=3+﹣x,根据勾股定理得x2+(3+﹣x)2=42,解得x=3或,∴AB=3或,AC=或3,=×3×=.∴S△ABC故选:D.7.解:∵一次函数图象与直线y=2x﹣3无交点,∴设一次函数的解析式为y=2x+b,把A(1,1)代入得1=2+b,∴b=﹣1,∴一次函数的解析式为y=2x﹣1,把B(﹣1,m)代入得m=﹣3,∴B(﹣1,﹣3),∴点B(﹣1,m)关于y轴对称的点是(1,﹣3),故选:D.8.解:∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,又∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=;∴DE=8﹣,故选:C.9.解:如图,作直径AD,连接BD;∵AB=AC,∴=,∴AD⊥BC,BE=CE=4;∵OE⊥AB,∴AE=BE,而OA=OB,∴OE为△ABD的中位线,∴BD=2OE=5;由勾股定理得:DF2=BD2﹣BF2=52﹣42,∴DF=3;∵AD为⊙O的直径,∴∠ABD=90°,由射影定理得:BD2=DF•AD,而BD=5,DE=3,∴AD=,⊙O半径=.故选:C.10.解:∵y=ax2﹣4ax+2,∴对称轴为直线x=﹣=2,A(0,2),∵点B(3,6)关于二次函数对称轴的对称点为点C,∴C(1,6),∴BC∥x轴,∴∠ADB=90°,∴tan∠CBA===,故选:B.二、填空题11.解:x2﹣y2﹣2x+2y=(x2﹣y2)﹣(2x﹣2y)=(x+y)(x﹣y)﹣2(x﹣y)=(x﹣y)(x+y﹣2).故答案为:(x﹣y)(x+y﹣2).12.解:∵BA=BD,∴∠A=∠BDA,设∠A=∠BDA=x,∠ABD=∠ECD=y,则有,解得x=85°,故答案为85°.13.解:∵AB=2,0A⊥OB,∠ABO=60°,∴OA=AB÷cos60°=4,作AD⊥OB于点D,∴AD=AB×sin60°=,BD=AB×cos60°=1,∴OD=OA﹣BD=3,∴点B的坐标为(3,),∵B 是双曲线y =上一点, ∴k =xy =3. 故答案为:3.14.解:如图,过点A 作AF ⊥CD 交CD 的延长线于F ,连接AC ,则∠ADF +∠ADC =180°, ∵∠ABC +∠ADC =180°, ∴∠ABC =∠ADF , ∵在△ABE 和△ADF 中,∴△ABE ≌△ADF (AAS ), ∴AF =AE =17,∴S 四边形ABCD =S △ABC +S △ACD =×8×17+×6×17=119 故答案为:119 三、解答题 15.解:原式=﹣+1+﹣1=.16.解:方程两边同乘(x +2)(x ﹣2)得 x ﹣2+4x ﹣2(x +2)=x 2﹣4, 整理,得x 2﹣3x +2=0, 解这个方程得x 1=1,x 2=2, 经检验,x 2=2是增根,舍去, 所以,原方程的根是x =1. 17.解:如图所示,点P 即为所求.18.证明:如图,连结PB.∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP=45°.∵在△CBP和△CDP中,,∴△CBP≌△CDP(SAS).∴DP=BP.∵PM⊥AB,PN⊥BC,∠MBN=90°∴四边形BNPM是矩形.∴BP=MN.∴DP=MN.19.解:(1)本次抽取的女生总人数是:10÷20%=50(人),第四小组的人数为:50﹣4﹣10﹣16﹣6﹣4=10(人),第六小组人数占总人数的百分比是:×100%=8%.补全图形如下:故答案是:50人、8%;(2)因为总人数为50,所以中位数是第25、26个数据的平均数,而第25、26个数据都落在第三组,所以中位数落在第三组,故答案为:三;(3)随机抽取的样本中,不低于130次的有20人,则总体560人中优秀的有560×=224(人),答:估计该校九年级女生“一分钟跳绳”成绩的优秀人数为224人.20.解:∵CD⊥BF,AB⊥BF,∴CD∥AB,∴△CDF∽△ABF,∴=,同理可得=,∴=,∴=,解得BD=6,∴=,解得AB=5.1.答:路灯杆AB高5.1m.21.解:(1)由图象得:甲乙两地相距600千米;故答案为:600;(2)由题意得:慢车总用时10小时,∴慢车速度为(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时;设出发x小时后,两车相距300千米.①当两车没有相遇时,由题意得:60x+90x=600﹣300,解得:x=2;②当两车相遇后,由题意得:60x+90x=600+300,解得:x=6;即两车2或6小时时,两车相距300千米;(3)由图象得:(小时),60×400(千米),时间为小时时快车已到达甲地,此时慢车走了400千米,∴两车相遇后y与x的函数关系式为y=.22.解:(1)甲选择A部电影的概率=;(2)画树状图为:共有8种等可能的结果数,其中甲、乙、丙3人选择同1部电影的结果数为2,所以甲、乙、丙3人选择同1部电影的概率==.23.解:(1)∵AD是圆O的切线,∴∠DAB=90°.∵AB是圆O的直径,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB.∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD==2.∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA.∴,即.解得:DE=.∴AE=AD﹣DE=.24.解:(1)将点C坐标代入函数表达式得:y=x2+bx﹣3,将点A的坐标代入上式并解得:b=﹣2,故抛物线的表达式为:y=x2﹣2x﹣3;(2)令y=x2﹣2x﹣3=0,则x=3或﹣1,即点B(3,0),函数的对称轴为x=1,m=﹣2时,n=4+4﹣3=5,m<3,函数的最小值为顶点纵坐标的值:﹣4,故﹣4≤n≤5;(3)点D与点C(0,﹣3)关于点M对称,则点D(2,3),在x轴上方的P不存在,点P只可能在x轴的下方,如下图当点P在对称轴右侧时,点P为点D关于x轴的对称点,此时△ABP与△ABD全等,即点P(2,﹣3);同理点C(P′)也满足△ABP′与△ABD全等,即点P′(0,﹣3);故点P的坐标为(0,﹣3)或(2,﹣3).25.解:(1):∵四边形ABCD是矩形,∴∠D=90°=∠ABC,AB=CD=4,BC=AD=8,∵E为CD中点,∴DE=CE=2,在Rt△ADE中,由勾股定理得:AE===2,即△APE的边AE的长一定,要△APE的周长最小,只要AP+PE最小即可,延长AB到M,使BM=AB=4,则A和M关于BC对称,连接EM交BC于P,此时AP+EP的值最小,∵四边形ABCD是矩形,∴AB∥CD,∴△ECP∽△MBP,∴∴∴CP=故答案为:(2)点A向右平移2个单位到M,点E关于BC的对称点F,连接MF,交BC于Q,此时MQ+EQ最小,∵PQ=3,DE=CE=2,AE=2,∴要使四边形APQE的周长最小,只要AP+EQ最小就行,即AP+EQ=MQ+EQ,过M作MN⊥BC于N,∴MN∥CD∴△MNQ∽△FCQ,∴∴∴NQ=4∴BP=BQ﹣PQ=4+2﹣2=4(3)如图,作点P关于AB的对称点G,作点P关于AC的对称点H,连接GH,交AB,AC 于点M,N,此时△PMN的周长最小.∴AP=AG=AH=100米,∠GAM=∠PAM,∠HAN=∠PAN,∵∠PAM+∠PAN=60°,∴∠GAH =120°,且AG =AH , ∴∠AGH =∠AHG =30°, 过点A 作AO ⊥GH , ∴AO =50米,HO =GO =50米,∴GH =100米,∴S △AGH =GH ×AO =2500平方米, ∵S 四边形AMPN =S △AGM +S △ANH =S △AGH ﹣S △AMN , ∴S △AMN 的值最小时,S 四边形AMPN 的值最大, ∴MN =GM =NH =时∴S 四边形AMPN =S △AGH ﹣S △AMN =2500﹣=平方米.中学数学一模模拟试卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.9的平方根为( )A .3B .-3C .±3D .2.如图的几何体,它的俯视图是( )A .B .C .D .3.下列运算正确的是( ) A .(-3mn )2=-6m2n2 B .4x4+2x4+x4=6x4 C .(xy )2÷(-xy )=-xyD .(a-b )(-a-b )=a2-b24.如图,AE ∥CD ,△ABC 为等边三角形,若∠CBD=15°,则∠EAC 的度数是( )A .60°B .45°C .55°D .75°5.已知正比例函数y=kx (k≠0)的图象经过点A (a-2,b )和点B (a ,b+4),则k 的值为( )A .12B .-12C .2D .-26.如图,△ABC 中,∠A=25°,∠B=65°,CD 为∠ACB 的平分线,CE ⊥AB 于点E ,则∠ECD 的度数是( )A .25°B .20°C .30°D .15°7.直线l1:y=-12x+1与直线l2关于点(1,0)成中心对称,下列说法正确的是( )A .将l1向下平移2个单位得到l2B .将l1向右平移2个单位得到l2C .将l1向左平移1个单位,再向下平移2个单位得到l2D .将l1向左平移4个单位,再向上平移1个单位得到l28.如图,BD 为菱形ABCD 的一条对角线,E 、F 在BD 上,且四边形ACEF 为矩形,若EF=12BD ,则AEAD 的值为( )A.5B .25C .12D.29.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连接OC 、BD ,若∠AOC=110°,则∠BCD 的度数是( )A.35°B.46°C.55°D.70°10.关于x的二次函数y=mx2+(m-4)x+2(m<0),下列说法:①二次函数的图象开口向下;②二次函数与x轴有两个交点;③当x<-13,y随x的增大而增大;④二次函数图象顶点的纵坐标大于等于6,其中正确的论述是()A.①②③B.①③④C.①②④D.②③④二、填空题(共4小题,每小题3分,共12分)11.不等式442xx->-的最小整数解为12.如图,在正五边形ABCDE中,连接AC、AD,则∠CAD的度数是度13.若直线y=-x+m与双曲线y=nx(x>0)交于A(2,a),B(4,b)两点,则mn的值为.14.如图,等腰直角△ABC中,∠C=90°,,E、F为边AC、BC上的两个动点,且CF=AE,连接BE、AF,则BE+AF的最小值为三、解答题(共11小题,计78分.解答应写出过程)15.计算:312tan602-︒⎛⎫-+ ⎪⎝⎭16.解方程:13222 xx x--=--17.如图,已知四边形ABCD中,AD<BC,AD∥BC,∠B为直角,将这个四边形折叠使得点A与点C重合,请用尺规作图法找出折痕所在的直线.(保留作图痕迹,不写作法)18.如图,AB∥CD,且AB=CD,连接BC,在线段BC上取点E、F,使得CE=BF,连接AE、DF.求证:AE∥DF.19.我校“点爱”社团倡导全校学生参加“关注特殊儿童”自愿捐款活动,并对此次活动进行抽样调查,得到一组学生捐款情况的数据,将数据整理成如图所示的统计图(图中信息不完整).已知A、B两组捐款人数的比为1:5.请结合以上信息解答下列问题.(1)a= ,本次抽样调查样本的容量是;(2)补全“捐款人数分组统计图1”;(3)若记A组捐款的平均数为5元,B组捐款的平均数为15元,C组捐款的平均数为25元,D组捐款的平均数为35元,E组捐款的平均数为50元,全校共有2000名学生参加此次活动,请你估计此次活动可以筹得善款的金额大约为多少元.20.如图,在一笔直的海岸线l上有A,B两个观测站,A在B的正东方向2千米处.有一艘小船在观测点A北偏西60°的方向上航行,一段时间后,到达点C处,此时,从观测点B 测得小船在北偏西15°方向上.求点C与点B之间的距离.(结果保留根号)21.为了美化环境,建设最美西安,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用为y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为100元/m2.(1)求y与x之间的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少费用为多少元?22.甲、乙、丙、丁4人聚会,吗,每人带了一件礼物,4件礼物从外盒包装看完全相同,将4件礼物放在一起.(1)甲从中随机抽取一件,则甲抽到不是自己带来的礼物的概率是;(2)甲先从中随机抽取一件,不放回,乙再从中随机抽取一件,求甲、乙2人抽到的都不是自己带来的礼物的概率.23.如图,△ABC中,∠ACB=90°,∠A=60°,点O为AB上一点,且3AO=AB,以OA为半径作半圆O,交AC于点D,AB于点E,DE与OC相交于F.(1)求证:CB与⊙O相切;(2)若AB=6,求DF的长度.24.已知抛物线L:y=ax2+bx+3与x轴交于A(1,0),B(3,0)两点,与y轴交于点C,顶点为D.(1)求抛物线的函数表达式及顶点D的坐标;(2)若将抛物线L沿y轴平移后得到抛物线L′,抛物线L′经过点E(4,1),与y轴的交点为C′,顶点为D′,在抛物线L′上是否存在点M,使得△MCC′的面积是△MDD′面积的2倍?若存在,求出点M 的坐标;若不存在,请说明理由.25.发现问题:如图1,直线a ∥b ,点B 、C 在直线b 上,点D 为AC 的中点,过点D 的直线与a ,b 分别相交于M 、N 两点,与BA 的延长线交于点P ,若△ABC 的面积为1,则四边形AMNB 的面积为 ;探究问题:如图2,Rt △ABC 中,∠DAC=13∠BAC ,DA=2,求△ABC 面积的最小值;拓展应用:如图3,矩形花园ABCD 的长AD 为400米,宽CD 为300米,供水点E 在小路AC 上,且AE=2CE ,现想沿BC 上一点M 和CD 上一点N 修一条小路MN ,使得MN 经过E ,并在四边形AMCN 围城的区域内种植花卉,剩余区域铺设草坪根据项目的要求种植花卉的区域要尽量小.请根据相关数据求出四边形AMCN 面积的最小值,及面积取最小时点M 、N 的位置.(小路的宽忽略不计)参考答案与试题解析1. 【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个. 【解答】解:9的平方根有:.故选:C .【点评】此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.2. 【分析】找到从几何体的上面看所得到的图形即可. 【解答】解:这个几何体的俯视图为故选:A .【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3. 【分析】根据积的乘方、合并同类项、整式的乘法、除法,即可解答. 【解答】解:A 、(-3mn )2=9m2n2,故错误; B 、4x4+2x4+x4=7x4,故错误; C 、正确;D、(a-b)(-a-b)=-(a2-b2)=b2-a2,故错误;故选:C.【点评】本题考查了积的乘方、合并同类项、整式的乘法、除法,解决本题的关键是熟记相关法则.4. 【分析】如图,延长AC交BD于H.求出∠CHB即可解决问题.【解答】解:如图,延长AC交BD于H.∵△ABC是等边三角形,∴∠ACB=60°,∵∠ACB=∠CBD+∠CHB,∠CBD=15°,∴∠CHB=45°,∵AE∥BD,∴∠EAC=∠CHB=45°,故选:B.【点评】本题考查平行线的性质,等边三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5. 【分析】由正比例函数y=kx可得k=yx,将点A与B代入可得42b ba a+=-,求出b=2a-4,再将A点代入即可求解.【解答】解:由正比例函数y=kx可得k=y x,∵图象经过点A(a-2,b)和点B(a,b+4),∴42b ba a+=-,∴b=2a-4,∴A(a-2,2a-4),将点A代入y=kx可得2a-4=k(a-2),∴k=2,故选:C.【点评】本题考查正比例函数的性质;能够根据已知点建立方程求出b=2a-4是解题的关键.6. 【分析】根据∠ECD=∠DCB-∠ECB,求出∠DCB,∠ECB即可.【解答】解:∵∠ACB=180°-∠A-∠B=90°,又∵CD平分∠ACB,∴∠DCB=12×90°=45°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB=90°-65°=25°,∴∠ECD=45°-25°=20°.故选:B.【点评】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7. 【分析】设直线l2的点(x,y),则(2-x,-y)在直线l1:y=-12x+1上,代入可得直线l2解析式,根据直线l1与直线l2的解析式即可判断.【解答】解:设直线l2的点(x,y),则(2-x,-y)在直线l1:y=-12x+1上,∴-y=-12(2-x)+1,∴直线l2的解析式为:y=-12(x-2)+1,∴将l1向右平移2个单位得到l2,故选:B.【点评】本题考查了一次函数图象与几何变换,求得直线l2的解析式是解题的关键.8. 【分析】由菱形的性质可知对角线垂直且互相平分,由矩形的性质可知对角线又互相平分且相等,再加上EF=12BD,可以得到OA=OC=OE=OF=12OB=14BD,设OA=x,用勾股定理可以表示出AE、AD,进而求出他们的比值,再做出选择.【解答】解:连接AC交BD于点O,∵菱形ABCD,∴AC⊥BD,AB=BC=CD=DA,OA=OC=12AC,OB=OD=12BD,∵AFCE是矩形,∴AC=EF=2OF=2OE,又∵EF=12BD,∴OA=OF,OB=2OA,设OA=x,则OE=x,OB=2x,在Rt△AOE和Rt△AOB中,5AEAE ABAD====∴==;,故选:A.【点评】考查菱形的性质、矩形的性质、直角三角形的勾股定理等知识,合理的转化以及设参数是解决问题常用方法.9. 【分析】连接BC,根据圆周角定理求得∠ABC的度数,然后根据直角三角形的锐角互余即可求解.【解答】解:连接BC,∵∠AOC=110°,∴∠ABC=12∠AOC═55°,∵CD⊥AB,∴∠BEC=90°,∴∠BCD=90°-55°=35°,故选:A.【点评】本题考查了垂径定理以及圆周角定理,根据圆周角定理把求∠ABD的问题转化成求等腰三角形的底角的问题.10. 【分析】①由m<0即可判断出①;②令y=mx2+(m-4)x+2=0,求出根的判别式△>0,判断②;③求出抛物线的对称轴,即可判断③;④根据顶点坐标式求出抛物线的顶点,然后根据顶点纵坐标判断④.【解答】解:①∵m<0,∴二次函数的图象开口向下,故①正确,②令y=mx2+(m-4)x+2=0,求△=(m-8)2-48,∵m<0,∴△=(m-8)2-48>0,∴二次函数与x轴有两个交点,故②正确,③抛物线开口向下,对称轴42mxm-=-,∵4112236m mm m---+=<,∴4123mm--<-,。

相关文档
最新文档