第十六保角变换法求解定解问题共37页文档

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以及解析函数的实部和虚部分别满足拉普拉斯方程的性质
x2u2 y2u2 0,
x2v2 y2v2 0(16.1.5)
将式(16.1.4)和式(16.1.5)代入到式(16.1.3)化简后得到
2 x 2 2 y 2 [ ( u x ) 2 ( v x ) 2 ] ( 2 u 2+ 2 v 2 ) |f(z )|2 ( 2 u 2+ 2 v 2 )
问题中的解析法――保角变换法,它是解决这类复杂边 界的最有效方法.它特别适合于分析平面场的问题,
例如静电场的问题,由于这种求解复杂边界的定解问 题具有较大的实用价值,所以有必要单独以一章的内 容进行介绍.复变函数论中已经系统介绍了保角变换
理论,本章主要介绍利用保角变换法求解定解问 题。
16.1 保角变换与拉普拉斯方程边值问题的关系
0 平面的实轴(正实轴辐角为零,故对应于
),
1 平面的负实轴变换为 平面的平行于实轴的直线
π (负实轴辐角为 ,故对应于 = π ).
于是,在变换 ln z a
za
(16.2.4)
之下,定解问题变换为
u
u
|
u
0
0
0
u | π u 0
(16.2.5)
在这种情况下,等温线是与实轴 平行的直线
的保角变换看成为二元(实变)函数 ( x, y ) 的变换由 x , y
u , v z w 到
的变量代换,则 平面上的边界变成了
平面上的边界.我们能证明,如果 ( x, y ) 满足拉普拉斯方
wk.baidu.com
程,则经过保角变换后得到的 (u,v )也满足拉普拉斯方程.
【证明】 利用复合函数求导法则有
u v x u x v x
w 在复变函数论中我们已经知道,由解析函数 f (z)
实现的从z平面到 w 平面的变换在 f (z) 0 的点具有保
角性质,因此这种变换称为保角变换.下面我们主要讨论一一
对应的保角变换,即假定 w f (z)和它的反函数都是单值
函数;或者如果它们之中有多值函数就规定取它的黎曼面的一 叶.
定律16.1.1 如果将由z x iy 到 wuiv
注意到上式已经使用了:
wf(z)uiv x x
对于保角变换 wf(z)0, 因而只要
( x, y ) 满足拉普拉斯方程,则 (u , v )也满足拉
普拉斯方程,即为
22
22
0 x2 y2
(u2+v2)0(16.1.6)
这样我们就有结论:如果在 z x iy 平面上给定了
( x, y ) 的拉普拉斯方程边值问题,则利用保角变换
2 2u 2 (u )2 2v x2 u x2 u2 x v x2
2 ( v )2 2 2 u v
v 2 x
uv x x
(16.1.1)
同理
2 2u 2(u)2 2v y2 u y2 u2 y v y2
2(v)2 2 2 u v (16.1.2)
v2 y
uv y y
两式相加得到
(16.2.1)
作如下的保角变换.
(1)作分式线性变换
1
1
i1
za za
(16.2.2)
y
z 平面
1
1 平面
平面
πi
a
0
1
x
图图181.16.1
可以验证,考虑实轴 zx,(y0)的对应关系:
| (i)若 x | a ,则 axa,故
1
x x
a a
0 ,即有
1
0
(ii)若 | x | a 则 xa 或 xa
发生了变化.
同理可以证明,亥姆霍兹方程
2x2 2y2 k20 (16.1.8a)
经变换后仍然变为亥姆霍兹方程
22k2|f(z)|20 (16.1.8b) u2 v2
容易注意到方程要比原先复杂,且
能不是常系数.
前的系数可
下面将举例说明如何通过保角变换法来求解拉普拉斯方程.
保角变换法的优点不仅在于拉普拉斯方程、泊松方程 等方程的类型在保角变换下保持不变,更重要的是,能将 复杂边界问题变为简单边界问题,从而使问题得到解决.
22[(u)2 (u)2]2+[(v)2 (v)2]2
x2 y2 x
y u2 x
y v2
2u +(
2u )
(2v
2v
)
x2 y2 u x2 y2 v
+2( u v + u v ) 2 x x y y uv
(16.1.3)
利用解析函数 wf(z)uiv的C-R条件
u v, v u x y x y
(16.1.4)
16.2保角变换法求解定解问题典型实例
y 例16.2.1 设有半无限平板 y 0 ,在边界 =0上,
x a (a0) 处保持温度 uu0, x a
u 处保持温度 = 0.求平板上的稳定温度分布.
【解】根据题意可得出定解问题
2u
x
2
2u y 2
0
u
y0
u 0 , ( x a ) 0 , ( x a )
xa (a)首先讨论
a 的情况,考虑到题给条件 0
则 x a 0 ,x a 2 a 0 ;

1
xa xa
0
x a (b)再考虑
的情况, 则
x a 0 ,x a 2 a 0 ,

1
x x
a a
0
如图16.1所示,根据(16.2.1)式中的边界条件,对应于
|
x
|
a
u 处温度为
,故
0
1
=常数,热流线则是与虚轴平行的直线 =常数.在( ,
平面的负实轴(即 1
0

u 温度保持为 0 ;而在| x | a 处有 1 0 ,故
1 平面的正实轴温度保持为零.
(2)作变换 ln1 ln| 1| ia rg1
(16.2.3)
把 1 平面的上半平面变成 平面上平行于实轴,宽为
π 的一个带形区域, 1 平面的正实轴变换为
保角变换法解定解问题的基本思想是:通过解析
函数的变换(或映射,这部分知识在复变函数论中已经学
z w 习过)将
平面上具有复杂边界形状的边值问题变换为
平面上具有简单形状(通常是圆、上半平面或带形域)的
边值问题,而后一问题的解易于求得.于是再通过逆变换
就求得了原始定解问题的解.
这就是本章将要介绍的一种解决数学物理方程定解
w f (z),可以将它转化为wuiv平面上
(u ,v)的拉普拉斯方程边值问题.
w = 同理可以证明,在单叶解析函数 f (z)
变换下,泊松方程
22(x,y)
x2 y2
(16.1.7a)
仍然变为泊松方程
2 u 2+ 2 v 2 |f(z)|2(x,y) (16.1.7b)
由上式可知,在保角变换下,泊松方程中的电荷密度
相关文档
最新文档