高浓度难降解有机废水处理研究进展
生物处理技术在高浓度有机废水处理中的研究进展
生物处理技术在高浓度有机废水处理中的研究进展一、本文概述随着工业化的快速发展,高浓度有机废水的产生量逐年增长,已成为环境保护领域面临的重要挑战。
这类废水含有大量有毒有害物质,若未经处理直接排放,将对生态环境和人类健康造成严重影响。
因此,研究和开发高效、环保的废水处理技术具有重要意义。
生物处理技术作为其中的一种重要方法,以其独特的优势在高浓度有机废水处理中得到了广泛关注和应用。
本文旨在综述生物处理技术在高浓度有机废水处理中的研究进展,包括常见的生物处理技术类型、应用实例、优势与挑战等。
通过对国内外相关文献的梳理和评价,本文旨在为读者提供一个全面、深入的了解生物处理技术在高浓度有机废水处理中的应用现状和未来发展的视角。
本文还将探讨生物处理技术的发展趋势和研究方向,以期为相关领域的科研工作者和工程技术人员提供有益的参考和启示。
二、高浓度有机废水的特性高浓度有机废水是一种特殊类型的废水,主要来源于化工、制药、食品加工、造纸和印染等行业。
这类废水具有以下几个显著特性:高有机物浓度:高浓度有机废水中含有大量溶解或悬浮的有机物,这些有机物来源于生产过程中的原材料、副产品和中间产物。
这些有机物通常以溶解性有机碳(DOC)或生物可降解溶解性有机碳(BDOC)的形式存在,其浓度远超过普通生活污水或工业废水。
成分复杂:高浓度有机废水的化学成分复杂多变,可能包含多种有机化合物,如酚类、醛类、醇类、酮类、酯类、胺类、烃类等,这些化合物可能单独存在,也可能相互结合形成更复杂的有机物。
高毒性:部分高浓度有机废水含有有毒有害物质,如重金属、卤代烃、硝基化合物、多环芳烃等,这些物质对微生物具有较强的抑制作用,增加了废水处理的难度。
高色度和浑浊度:部分高浓度有机废水(如印染废水)具有较高的色度和浑浊度,这些特征不仅影响废水的外观,还可能对废水处理过程中的光照、氧传递等过程产生影响。
难降解性:部分高浓度有机废水中的有机物具有难降解性,这些物质在生物处理过程中难以被微生物降解,导致废水处理效果不佳。
电催化氧化技术处理高浓度有机废水
电催化氧化技术处理高浓度有机废水高浓度有机废水主要是指COD和BOD5达到或超过几千甚至几万毫克每升的废水。
该类废水直接排放会对水环境造成严重破坏,可能危害人体健康,引起急慢性中毒和致畸、致癌等远期危害。
该类废水主要来自焦化、制药、造纸、印染、石化以及食品加工等领域。
在淡水资源和能源日益短缺的今天,探索高浓度有机废水处理以及资源化利用技术已成为热门的环保议题之一。
1、行业现状目前,处理高浓度有机废水,大多采用传统的生物处理法。
该类方法本身存在较大问题,以广泛应用的AA/O 法为例,根据实际运行况,存在反应池容积较大、能耗较高、污泥回流量大、脱氮效果有限等缺点。
高浓度有机废水含有大量可溶性无机盐,具有较高的导电性能,适用于电化学法处理。
该方法主要包括电化学氧化还原、电凝聚、电气浮、光电化学氧化以及内电解等。
2、研发新方向电催化技术是在电极表面的氧化作用下或由电场作用而产生的自由基作用下促使有机物氧化分解的技术。
近年来,利用电催化技术处理难生化有机废水的方法逐渐引起关注。
电催化性能的变化本质上不是电位、电流等外部条件引起的,而是电极材料本身的影响。
对难降解有机污染物的电化学降解问题,重要的是电极材料的设计与制备。
不同的电极材料,对应着不同的转化结果和转化机制。
在废水的电解处理当中,很大限度地提高电解反应速度,增大单位电解槽的反应量一直是人们所努力的目标。
当反应物浓度低、电极反应速度慢时,就更加迫切需要更为高效的电解槽。
扩大电极表面积是增加电解反应速度,提高电解效率的一种有效的方法。
电解多相催化氧化以多类型金属为阳极,在直流电的作用下,阳极被溶蚀,产生金属离子,再经过一系列水解、聚合及亚铁的氧化过程,发展成为各种羟基络合物、多核羟基络合物以至氢氧化物,使废水中的胶态杂质、悬浮杂质凝聚沉淀而分离。
3、电解多相催化氧化技术优势:(1)反应过程中无需投加任何化学试剂,不产生污泥和二次污染,属于“绿色环保工艺”。
基于微生物共代谢作用去除废水中难降解物质的研究进展
基于微生物共代谢作用去除废水中难降解物质的研究进展【摘要】共代谢是微生物特殊的代谢类型,可对废水中难降解有机物进行高效去除,并具有技术经济优势。
本文探讨了共代谢的生化机制和特点、共代谢作用的影响因素,同时综述了共代谢作用在国内处理难降解性污染物工艺技术的应用及研究状况,其中,序批式生物膜反应器在处理难降解性污染物方面具有光明的应用前景。
【关键词】共代谢;难降解污染物;关键酶;SBMR共代谢作用是环境污染物降解的一种重要方式。
据报道,环境中能够完全矿化污染物的降解菌占总降解菌的数量还不到10%,大多数微生物是通过共代谢作用来降解污染物的。
随着工农业的迅速发展,越来越多的有机物被合成,其中难降解有机物占了很大比例,因此难降解有机物的治理研究已引起国内外有关专家的高度重视,是目前水污染防治研究的热点与难点。
1.共代谢作用的机理和特点共代谢现象最早由Leadbetter 和Foster 等[2]于1959 年报道,他们研究发现Pseudomonas methanica(甲烷假单胞菌)能够在外加甲烷情况下氧化乙烷、丙烷、丁烷,而乙烷、丙烷及丁烷三者均不能作为Pseudomonas methanica的唯一碳源支持其生长。
对此现象Leadbetter 和Foster以共氧化(Co-oxidation)来描述,将其定义为在生长基质存在的情况下,微生物对非生长基质的氧化,其中甲烷为生长基质,乙烷、丙烷等为非生长基质。
后来,Jensen扩展了其内涵,提出共代谢(Co-metabolism)的概念。
他认为在生长基质存在的情况下,微生物对非生长基质的转化无论是氧化作用还是还原作用都是共代谢作用;当生长基质被完全消耗时,处于内源呼吸状态的休眠细胞对非生长基质的转化也是共代谢作用。
现在,一般将其定义为只有在初级能源物质存在时才能进行的有机化合物的生物降解过程。
初级能源物质或是由外界提供,或是微生物细胞内储存的。
微生物对有机化合物的转化并不能为细胞提供碳源及能量,所需碳源及能量来源于对初级基质的代谢。
《2024年高级氧化法处理抗生素废水研究进展》范文
《高级氧化法处理抗生素废水研究进展》篇一一、引言随着现代医药工业的迅猛发展,抗生素类废水的排放量不断增加,其难降解性对生态环境造成了严重威胁。
传统的废水处理方法往往难以有效去除抗生素及其衍生物,这促使了高级氧化法(AOPs)在抗生素废水处理中的广泛应用。
本文旨在探讨高级氧化法处理抗生素废水的最新研究进展,分析其技术优势与挑战,为未来研究提供参考。
二、抗生素废水特性及传统处理方法局限性抗生素废水具有成分复杂、生物毒性大、难降解等特点,传统的生物处理法往往难以有效去除其中的微量抗生素。
传统的物理化学方法如吸附、沉淀等,虽然能暂时降低污染物浓度,但并不能彻底破坏抗生素的结构。
因此,探索更高效的处理技术势在必行。
三、高级氧化法原理及技术分类高级氧化法利用强氧化剂(如羟基自由基)产生的高反应活性物质,将有机污染物彻底矿化为低分子量化合物或完全矿化为二氧化碳和水。
根据使用的氧化剂和反应原理的不同,高级氧化法主要分为臭氧氧化法、湿式催化氧化法、电化学氧化法、光催化氧化法等。
四、高级氧化法在抗生素废水处理中的应用及效果(一)臭氧氧化法:臭氧能够有效地与抗生素发生反应,破坏其结构。
研究显示,通过调整臭氧投加量及反应条件,可有效提高抗生素废水的可生化性,为后续生物处理提供便利。
(二)湿式催化氧化法:此方法在高温高压条件下,利用催化剂加速反应过程,将有机物迅速转化为二氧化碳和水。
研究表明,湿式催化氧化法在处理高浓度抗生素废水时表现出色。
(三)电化学氧化法:电化学方法能够通过电生自由基或直接氧化还原反应降解抗生素。
该方法设备简单、操作方便,对环境友好,近年来受到了广泛关注。
(四)光催化氧化法:利用光催化剂(如二氧化钛)在光照条件下产生自由基团与有机物反应,光催化法对抗生素类物质具有良好的去除效果,具有较好的发展前景。
五、研究进展与挑战近年的研究表明,高级氧化法在处理抗生素废水方面取得了显著成效。
多种高级氧化技术的联合使用更是提高了处理效率,如臭氧-生物活性炭联合工艺、电-Fenton工艺等。
难降解有机废水处理技术研究进展
好氧生物处理是在ห้องสมุดไป่ตู้氧条件下,利用好氧微生物的作用降解废水中的有机物, 厌氧生物处理则是在无氧条件下,利用厌氧微生物的作用将废水中的有机物转化 为甲烷和二氧化碳等无机物。
化学法主要包括高级氧化、电化学氧化、光化学氧化等。高级氧化是通过产 生具有强氧化性的自由基来氧化废水中的有机物,电化学氧化是通过电解废水产 生具有氧化性的自由基来氧化废水中的有机物,光化学氧化则是通过光敏剂在光 照条件下产生具有氧化性的自由基来氧化废水中的有机物。
1、活性污泥法:活性污泥法利用微生物絮体(活性污泥)吸附和分解废水 中的有机物。该方法操作简单,适用于各种废水,但处理周期较长。
2、生物膜法:生物膜法利用附着在固体表面上的微生物膜降解废水中的有 机物。生物膜具有较高的比表面积,能高效降解有机物。这种方法处理效果好, 但运行成本较高。
3、厌氧生物处理:厌氧生物处理是在无氧条件下利用厌氧微生物将废水中 的有机物转化为甲烷和二氧化碳。该方法适用于高浓度有机废水的处理,但出水 水质较差。
2、光催化氧化:光催化氧化利用光能激发催化剂,产生羟基自由基 (·OH),进而氧化废水中的有机物。常用的光催化剂有TiO2、ZnO等。
3、电化学氧化:电化学氧化是将废水作为电解质,通过电解产生羟基自由 基(·OH)。此方法在较低的温度和压力下能有效地氧化废水中的有机物。
三、生物处理技术
生物处理技术是一种低成本、环境友好的废水处理方法。其原理是通过微生 物的代谢作用将废水中的有机物转化为无机物。该技术包括活性污泥法、生物膜 法、厌氧生物处理等。
四、展望
虽然Fenton氧化在处理难降解有机废水方面取得了一定的进展,但仍存在一 些问题需要解决。例如,H2O2的投加量较大、运行成本较高、产生的铁泥难以处 理等。因此,未来的研究需要进一步优化反应条件和反应装置,探索低成本、高 效率的Fenton氧化技术,同时加强与其他技术的联合使用,提高废水处理的深度 和广度。
《2024年高级氧化技术处理难降解有机废水的研究》范文
《高级氧化技术处理难降解有机废水的研究》篇一摘要:随着工业的快速发展,难降解有机废水的处理成为了环境保护的重要课题。
本文系统介绍了高级氧化技术在处理难降解有机废水中的应用,并详细阐述了该技术的原理、特点及实际应用情况。
本文通过实验数据和案例分析,探讨了高级氧化技术的优势与挑战,并对其未来发展进行了展望。
一、引言难降解有机废水是指那些含有复杂有机物、难以被传统生物处理方法降解的废水。
这类废水的处理对环境造成极大压力,也是工业可持续发展面临的挑战之一。
高级氧化技术作为一种新兴的废水处理方法,以其高效的降解能力和对难降解有机物的良好处理效果,成为了研究的热点。
二、高级氧化技术概述高级氧化技术(AOPs)是利用强氧化剂(如羟基自由基等)与废水中的有机物进行反应,从而将大分子有机物分解为小分子有机物或完全矿化为二氧化碳和水的一种技术。
其核心在于产生高活性的羟基自由基,能够无选择性地对有机物进行氧化。
三、高级氧化技术的原理及特点(一)原理高级氧化技术主要依靠羟基自由基的强氧化性来降解有机物。
在适当的反应条件下,羟基自由基能够与废水中的有机物发生加成、取代、电子转移等反应,最终将有机物分解为小分子物质或完全矿化。
(二)特点1. 高效性:高级氧化技术能够在短时间内快速降解有机物。
2. 无选择性:羟基自由基对有机物无选择性,能够处理多种类型的有机废水。
3. 适用范围广:适用于处理难降解有机废水,尤其对含有有毒有害物质的废水处理效果显著。
四、高级氧化技术的应用(一)光催化氧化法光催化氧化法是利用紫外线或可见光激发催化剂产生羟基自由基,从而对有机物进行氧化降解的方法。
该方法具有反应条件温和、能耗低等优点。
(二)湿式氧化法湿式氧化法是在高温(一般为120-350℃)和高压(一般为数MPa)条件下,利用氧气或空气作为氧化剂,将废水中的有机物氧化为二氧化碳和水的方法。
该方法具有处理效率高、反应速度快等优点。
(三)电化学氧化法电化学氧化法是通过电解过程在阳极产生羟基自由基来降解有机物的方法。
SBR 法在难降解废水处理中的研究及应用
间歇式活性污泥法(SBR) 又称序批式活性污泥法, 是一种不同于传统活性污泥法的废水处理工艺。
1914年英国的Arden 和Lokett 首创活性污泥法时采用的就是间歇法〔1〕。
受当时技术条件的限制, 曝气池水流不断切换, 操作起来较为烦琐,而且沉淀时绝对静止, 曝气设备易被堵塞。
在连续式活性污泥法出现之后, 很快将其取代, 占据了主导地位。
20 世纪70 年代以来, 为解决连续污水处理法存在的问题, 由R. L.Irvine发起, 日本、澳大利亚等国学者对SBR 进行了重新评价和研究〔2〕。
特别是近年来由于计算机控制技术的发展, 通过溶解氧测定仪、氧化还原电位计等仪表对工艺运行进行过程控制的技术出现, 使得初期的SBR 反应器间歇运行的复杂操作问题得以解决。
20世纪80 年代以后, SBR 法引起越来越多国家的重视,并陆续得到开发应用。
1 SBR 工艺流程和优点SBR 工艺的核心是SBR 反应池, 它是按一定时间顺序间歇操作运行的生物反应器。
所谓“序批间歇式”有两种含义: 一是运行操作在空间上是按序列的方式进行的, 为匹配多数情况下废水的连续排放规律, 必须 2 个或多个SBR 池并联, 按次序间歇运行;二是每个SBR 的操作在时间上也是按次序排列的。
一个运行周期按次序分为五个阶段: 进水、反应、沉淀、排水和闲置阶段〔3〕。
典型的SBR 系统包括一座或几座反应池以及初沉池等预处理设施。
反应池兼有调节池和沉淀池的功能。
当反应池进水结束后, 开始曝气反应, 待有机物浓度达到排放标准后, 停止曝气, 使混合液在反应器中处于静止状态进行固液分离, 经过一段时间后排除上清液, 沉淀污泥进入闲置阶段, 反应器又处于准备进行下一周期运行的待机状态。
在进水阶段,又可根据是否曝气分为限制曝气、非限制曝气和半限制曝气三种。
限制曝气是指在进水时不曝气, 并尽量缩短进水时间, 这种限制曝气方式适合于处理无毒性的污水。
煤化工废水难降解有机物的处理技术进展
煤化工废水难降解有机物的处理技术进展目录一、内容综述 (2)1. 煤化工废水的特点与危害 (2)2. 难降解有机物的定义与影响 (4)3. 处理技术的必要性及挑战 (5)二、煤化工废水处理技术现状 (6)1. 物理法 (7)2. 化学法 (8)3. 生物法 (9)3.1 微生物降解 (10)3.2 生物膜法 (12)3.3 活性污泥法 (13)三、难降解有机物处理技术进展 (14)1. 高效预处理技术 (16)1.1 深度氧化 (17)1.2 电化学预处理 (19)2. 创新降解技术 (20)2.1 超临界水氧化 (21)2.2 电化学协同降解 (22)2.3 生物强化技术 (23)3. 多技术联合应用 (24)3.1 物理化学联用 (25)3.2 化学生物联用 (26)3.3 物理生物化学联用 (27)四、技术应用与案例分析 (29)1. 工业应用案例 (30)1.1 烯烃厂废水处理 (32)1.2 煤气化废水处理 (34)2. 学术研究案例 (35)2.1 高效预处理技术研究 (36)2.2 新型降解技术研究 (37)2.3 多技术联合应用研究 (39)五、结论与展望 (40)1. 技术成果总结 (42)2. 存在问题与不足 (43)3. 未来发展趋势与展望 (44)一、内容综述煤化工废水难降解有机物的处理技术进展,是当前环保领域的重要研究方向之一。
随着煤化工产业的迅速发展,产生的废水处理问题日益突出,其中难降解有机物的处理更是技术难点和重点。
本文旨在对煤化工废水难降解有机物的处理技术进展进行全面综述,介绍相关技术的最新研究成果、应用现状及发展趋势。
煤化工废水中的难降解有机物主要包括酚类、芳香烃、多环芳烃等,这些物质具有稳定的高分子结构,难以通过传统的生物处理或物理处理方法实现有效降解。
针对这些难降解有机物的处理技术一直是研究的热点,随着科技的不断进步,新的处理技术不断出现并得以应用,为煤化工废水处理提供了新的解决途径。
焦化废水类高浓度难降解有机废水处理的研究进展
水, 针对其水 质特点 , 充分考虑各种有效 的处理方法 ( 如非 生物
法 及 其 与 生 物法 的联 合 等 ) 。
般而言 , 于那些生 物难 降解 物含量高 、 对 种类多 , 可生 化
性 较 差 ( B D C D )03且 水 量 较 小 , 水 水 质 、 量 变 化较 m( O J O 。 < .) 来 水
更高,O 5 1 0 m , 00 g , H - B D 为 0  ̄. 0 m / N ;N为 40  ̄, 0 g 。 2 - . 2 L 0 m - 00m / . - l L 另外 , 焦化废 水 中的油分 、 、 酚 氰化物 、 化 物也分 别高 达 2 0 硫 0
在 实施 有 效 的 源 头 治理 后 , 可采 用非 生物 手 段 结 合 生物 法 的 处理 思路 , 介 绍 了这 方 并
面最 近 几年 的主 要研 究成 果。
关键词: 焦化 废 水 ; 生物 处理 技 术 ; 究进 展 非 研 中 图分 类号 : 7 3 X 0 文 献 标识 码 : A
N 4 C 3 ( H ) 4N 4lN 4 N、 H H 、 H N、 N 4223 HH O、N 4 0 、 H C 、 H C N 4 S N  ̄C ( H ) 0 s
至f水难以全面达标等诸多问题。而且 , 【 { 将雌生物降解 的废水转
变为易生物降解的废水 、将各种污染物在各 自优势菌种适宜的 条件下分别降解去除 、将 污染 物从 水中转移至沉泥中或大气巾 等方法是应用生物法的基本思路。
企 业 采 取 有 效 的 源 头 治理 措 施 的前 提 下 ,对 外 排 的 较 小 水 量 废
m ,一 0 g 。 H +N浓度太高 , gL 1 0m / N ' 0 L - 会严重抑制硝化菌的活性发 挥 , N 4 N经硝化生成 N N、 O-N 消耗水 中的溶解氧 , 且 H* - O一 N 3 , - - 会造成水 体缺氧使水质恶化 , 并且 N 3 N也是~种致癌物质。 O- - () 4 含有危害水生生物和人体 的剧毒及致癌物质。剧毒物质 包括一些 氰化物和硫氰化物 , 通过反应可以转化为 H N, C 以低浓 度致死 ; 或者转化为 N 4 N, H * 对硝化菌产生抑制作用 。废水 巾的 一 不少多环芳烃和杂环化合物是“ 三致” 物质 , 危害人体健康 。 () 5 可生 化性较差。 典型焦化废水 的 m( o , O 。 值较低 , 8 D/ D ) C
铁基催化剂高级氧化技术降解废水研究进展
铁基催化剂高级氧化技术降解废水研究进展铁基催化剂高级氧化技术降解废水研究进展1. 引言随着工业化和城市化的快速发展,废水排放成为严重的环境问题。
大量工业废水、生活污水中富含有机物和有害物质,如重金属离子、有机溶剂、农药等,对环境和人类健康造成巨大威胁。
因此,寻找高效、经济、环保的废水处理技术成为当务之急。
2. 高级氧化技术简介高级氧化技术是指一类利用活性氧化物(包括自由基、离子、过氧化物等)对有机物进行氧化分解的技术。
它具有高效、全程无二次污染、适应性强等特点,被广泛应用于废水处理领域。
其中,铁基催化剂高级氧化技术由于其低成本、易得性、良好的催化活性而备受关注。
3. 铁基催化剂高级氧化技术的研究进展3.1 铁基催化剂高级氧化技术的原理铁基催化剂高级氧化技术的原理是通过在催化剂的作用下产生活性氧化物,将废水中的有机物氧化分解为二氧化碳和水。
这种技术主要通过有机物的直接氧化、间接氧化和电化学氧化等途径来完成。
3.2 铁基催化剂制备方法的改进针对传统制备方法中催化剂活性低、稳定性差等问题,研究者通过改进合成条件、添加复合助剂等措施,提高了铁基催化剂的活性和稳定性。
例如,采用溶胶-凝胶法、水热法、共沉淀法等新的制备方法能够精确控制催化剂的形貌和物相结构,提高其催化性能。
3.3 铁基催化剂在废水处理中的应用铁基催化剂高级氧化技术在废水处理领域应用广泛。
研究表明,铁基催化剂对有机物的降解效果显著,且能够同时降解废水中的重金属离子和有机物。
此外,铁基催化剂还可以与其他技术相结合,如生物降解技术、光催化技术等,提高废水处理的效率和质量。
4. 铁基催化剂高级氧化技术存在的问题与展望4.1 技术存在的问题尽管铁基催化剂高级氧化技术在废水处理中表现出较好的效果,但仍存在一些问题。
例如,催化剂活性易受废水pH值、温度和水质污染物浓度等因素的影响,导致处理效果不稳定。
此外,催化剂的再生和循环利用问题也需要进一步研究。
4.2 技术的展望未来的研究需重点关注以下方面:一是进一步改进铁基催化剂的制备方法,探索新的合成技术,提高催化剂的活性和稳定性;二是深入研究铁基催化剂的催化机理,优化反应条件,提高处理效率;三是探索催化剂与其他技术的协同作用,寻找更加高效的废水处理方案。
铁炭微电解组合工艺预处理高浓度难降解有机废水的研究
本 实 验 以宁 波 某 制药 企 业生 产 车 间反 应 釜 底 液 为 主要 研 究对 象 ,
研 究 了 铁炭 微 电解 组合 预 处理 工 艺对 高浓 度难 降解 有 机 废水 中 C O D 的降解 效果 ,具 体有 四个 方面 的实验 : 第一 ,确 定铁 炭微 电解工 艺最 佳实验 条件 :铁 屑 与废水 的体 积 比 、 铁 炭体 积 比 、反 应 时间 、微 电解 次 数 ,以及 铁炭 微 电解 联合 微 波振 荡
一
水 中臭氧浓 度测 定采用 碘量法 口 1 ,利用 O 。 的强 氧化性 ,将 K I 氧化 四 、 结 论 本 课题 以宁波 某 制药 企 业 生产 车 间 反应 釜 底 液为 主 要研 究对 象 , 研 究 了铁 炭微 电解 组合 预 处理 工艺 对 高浓 度难 降解 有机 废 水 中 C O D ,
度槽液 或底 液对常规废水处理 系统带来的 负荷冲击 问题 ,并改善其可 生化性 。 关键词 :高浓度废水
目前 处 理高 浓 度难 降解 有机 废 水 的主要 方 法有 溶 剂 萃取 法 、吸附 法 、湿 式 氧 化 法 、催 化湿 式 氧化 法 、超临 界 水氧 化 法 、化 学 氧 化法 、 生化 处理 法和 焚烧 法等 。吸附 法对废 水 中污染 物的 去除有 明显 的效 果 , 但 吸附 法吸 附剂 容 易饱 和 。化学 氧 化法 对废 水 中污 染 物浓 度有 明 显的
2 . 浙 江省 浦江县 污水 处理 工程建设 有 限公 司 .浙 江浦江
境 安 全
3 1 0 0 0 0 ;
3 2 22 0 0)
摘
要 :通过时 高浓度难 降解的宁波某制 药企业反 应釜底液进行 了预 处理实验 ,试验结果表 明本工艺 - . q -  ̄去 除废水 中大部 分 C O D 。 ,解决高浓 槽液底液 预 处理 铁炭微 电解 水样 p H值 采用玻 璃 电极 法 [ 1 】 测定 。 4 . uV — V i s 光 谱图
《2024年高级氧化法处理难降解有机废水的研究》范文
《高级氧化法处理难降解有机废水的研究》篇一摘要:本文系统研究了高级氧化法在处理难降解有机废水中的应用。
通过分析不同高级氧化技术的原理、特点及处理效果,探讨了其在工业废水处理中的潜在优势与挑战。
本文旨在为相关领域的研究者与实践者提供理论支持和实践指导。
一、引言随着工业的快速发展,难降解有机废水的处理成为了环境保护领域的重点与难点。
这些废水通常含有有毒有害物质,直接排放将严重污染水体环境。
传统的处理方法往往难以完全降解这些有机物,而高级氧化法则是一种新兴的处理技术,能够有效地解决这一问题。
二、高级氧化法概述高级氧化法是指利用物理、化学或生物方法产生具有强氧化能力的物质(如羟基自由基等),使有机物在短时间内迅速氧化分解为低分子量化合物或完全矿化为二氧化碳和水的方法。
其特点包括反应速度快、处理效率高、无二次污染等。
三、常见的高级氧化法及其原理1. 湿式氧化法:在高温高压条件下,利用氧气或空气作为氧化剂,将有机物直接氧化为二氧化碳和水。
2. 光催化氧化法:利用光催化剂(如二氧化钛)在光照条件下产生羟基自由基等强氧化剂,进而将有机物氧化分解。
3. 电化学氧化法:通过电解水产生强氧化性的活性氯等物质,将有机物进行电化学氧化。
4. 声波空化法:利用声波产生的空化效应,使水分子在瞬间产生高温高压环境,从而引发有机物的热解和氧化。
四、高级氧化法处理难降解有机废水的实验研究本部分详细描述了采用高级氧化法处理难降解有机废水的实验过程及结果分析。
通过对不同工艺参数(如温度、pH值、反应时间等)的调整,研究各工艺条件对处理效果的影响。
同时,采用现代分析手段(如紫外-可见光谱、高效液相色谱等)对处理前后的水质进行对比分析,验证了高级氧化法的有效性。
五、处理效果与评价实验结果表明,高级氧化法在处理难降解有机废水方面具有显著优势。
其处理效果受多种因素影响,如废水的初始浓度、pH 值、温度等。
通过优化工艺参数,可以显著提高处理效率,降低处理成本。
《2024年高浓度染料废水(含偶氮染料废水)处理技术的研究》范文
《高浓度染料废水(含偶氮染料废水)处理技术的研究》篇一一、引言随着工业化的快速发展,高浓度染料废水已成为严重的环境问题。
这类废水主要来源于纺织、印染、造纸等工业生产过程,其中含有大量的有机物、重金属以及偶氮染料等有害物质。
偶氮染料废水的处理难度较大,因其具有较高的色度、毒性和生物难降解性。
因此,研究高效、环保的染料废水处理技术,对于保护环境、实现可持续发展具有重要意义。
本文将重点研究高浓度染料废水(含偶氮染料废水)的处理技术。
二、高浓度染料废水及偶氮染料废水的特点高浓度染料废水具有有机物含量高、色度高、成分复杂等特点,其中偶氮染料废水更是具有生物难降解性。
这类废水的直接排放会对水体造成严重污染,影响生态环境和人类健康。
因此,对高浓度染料废水(含偶氮染料废水)的处理技术研究具有重要意义。
三、高浓度染料废水处理技术1. 物理法:物理法主要包括吸附法、膜分离法等。
吸附法利用活性炭、膨润土等吸附剂吸附废水中的有机物和重金属,达到净化水质的目的。
膜分离法则通过半透膜将废水中的物质进行分离,从而达到净化水质的效果。
2. 化学法:化学法主要包括氧化还原法、沉淀法等。
氧化还原法通过添加氧化剂或还原剂将有机物转化为无害物质,达到净化水质的目的。
沉淀法则是通过添加化学试剂使废水中的重金属离子沉淀,达到去除有害物质的目的。
3. 生物法:生物法主要包括活性污泥法、生物膜法等。
生物法利用微生物的代谢作用将有机物转化为无害物质,具有处理效果好、成本低等优点。
四、偶氮染料废水处理技术针对偶氮染料废水的特殊性,常采用的方法有光催化氧化法、生物降解法等。
光催化氧化法利用光催化剂在光照条件下将偶氮染料分解为无害物质。
生物降解法则利用特定的微生物对偶氮染料进行降解。
此外,还可以通过组合多种处理方法提高处理效果,如物理法与生物法的结合、化学法与生物法的结合等。
五、结论高浓度染料废水(含偶氮染料废水)的处理是一个复杂的工程问题,需要综合运用物理法、化学法和生物法等多种处理方法。
好氧颗粒污泥处理高浓度及难降解废水研究进展
nt b n e ewatw tr p e o atw tr c lrp e o atw tr a in d c lra in stw tr sl i i o e zn s ae , h n lw se ae , hoo h n lw se ae , n l e a hoo l e wa e ae , ai t r e i n n i ny
12 2 处 理 含 苯 酚 废 水 ..
Ab t a t s r c :Aeo i rn lrs d e i h h rce s c fa hg et n eo i ,s l lry s p r t n,a hg rb c ga u a l g ,w t t e c aa tr t so i s t ig v l t u h i i h l c y i e s r e aa i mp u o i i h c n e t t n n a a i f s l n o s nt g n a d p o p o u e v l h s b c me o e o e mo tp p lr o c n r i ,a d a c p ct o i t e u i o e h s h r s rmo a , a e o n t s o u a ao y mu a r n f h I s ac su s i ef l f a tw trt ame t h sp p r r s nsa rve o s ac n t ea piain o eo i e e Ih i e t ed o se ae e t n .T i a e e e t i s nh i w r p e w f e rh o p l t f rb c e r h c o a
随着 我 国经 济迅 速发 展 , 水排放 量逐 年增加 , 废 水污染 情况 日益严 重 。其 中 , 猛 发 展 的化 学 工 业 迅
Fenton 试剂法处理高浓度难降解有机废水
Fenton试剂法处理高浓度难降解有机废水摘要:本文分析了难降解有机物为什么难以生物降解的原因,论述了经典Fenton试剂法、光-Fenton试剂法和电-Fenton法对有机污染物的降解机理,探讨了不同外界因素对Fenton 试剂法处理效果的影响,并提出Fenton试剂的研究发展方向。
关键词:Fenton试剂法;作用机理;影响因素一、前言高浓度难降解有机废水的处理,是目前国内外污水处理界公认的难题。
对于这类废水,目前国内外研究较多的有焦化废水、制药废水(包括中药废水)、石化/油类废水、纺织/印染废水、化工废水、油漆废水等行业性废水。
所谓“高浓度”,是指这类废水的有机物浓度(以COD计)较高,一般均在2000 mg/L以上,有的甚至高达每升几万至十几万毫克;所谓“难降解”是指这类废水的可生化性较低(BOD5/COD值一般均在0.3以下甚至更低),难以生物降解。
所以,业内普遍将COD浓度大于2000 mg/ L、BOD5/ COD值低于0.3的有机废水统一称为高浓度难降解有机废水[1]。
“高浓度”、“难降解”两大特性的叠加,使得此类废水在处理中,单独使用生物法或物化法等“常规”方法失去可能。
目前处理高浓度难降解有机废水的主要方法有高级氧化技术,如超临界水氧化技术、Fenton试剂法、光化学氧化等;物化处理技术,如萃取法、吸附法、膜分离法等,以及生化处理法。
二、难降解有机物难降解的原因难降解有机物是指微生物不能降解或再任何环境条件下不能以足够快的速度降解以阻止它在环境中的积累的有机物。
所谓难降解是相对于易生物降解而言的,所谓的“难”,“易”又是针对所在的系统而言的。
形成化合物难于生物降解的原因如下[2]:一是由废水中化合物本身的化学组成和结构来决定的,当某一有机污染物结构相对稳定。
很难通过微生物的氧化还原、脱羧、脱氨、水解等作用使其转化为无机物,即完全降解,使其具有抗微生物降解特性。
①键长C-C单键,C=C双键,C≡C三键的键长,主要原因是两个碳原子间共用电子对越多,碳原子间的电子云密度就越高,使成键的两个原子更加靠拢,键长就越短。
铁碳微电解技术处理难降解废水的分析进展
微电解法是利用金属腐蚀原理,形成原电池对废水开展处理的良好工艺,具有使用范围广、工艺简单、处理效果好、抗高色度、高盐度、高 COD 能力强、处理后生化性能提高、运行成本合理等优点。
本文介绍了铁碳微电解技术在印染废水、重金属废水、制药废水、油田废水等难降解废水处理中的应用,并列出了铁碳微电解技术工艺的影响因素。
微电解法是利用金属腐蚀原理,形成原电池对废水开展处理的良好工艺,又称为内电解法、零价***、铁屑过滤法、铁碳法。
该工艺自诞生开始就引起了许多国家的重视,如美国、苏联、日本等。
20 世纪 70 年代,由前苏联的科学工作者首先把铁屑用于印染废水的处理。
该法于 20 世纪 80 年代引入我国,是近 30 年来被广泛应用于印染、重金属、制药、油田废水等污水处理中的一种新兴的电化学方法,其具有使用范围广、工艺简单、处理效果好等特点,特别对于高盐度,高 COD 以及色度较高的废水的处理较其他工艺具有更加明显的优势。
难生物降解的废水经微电解工艺处理后 B/C 值(生化需氧量与化学需氧量的比值)大大提高,有利于后续生物处理效果的提高。
国内普通将该工艺用于废水的预处理,或者与其他工艺结合使用以到达去除污染物的目的。
1 铁碳微电解系统的组成根据铁碳微电解取出废水有机污染物的基本原理,可以将铁碳微电解系统分为两大部份,一是微电解氧化复原阶段,二是混凝沉淀阶段,具体流程如下:废水在适宜的 pH 条件下,通过(曝气)铁碳微电解反应,降解部份有机物,同时破坏一些生化难降解有机物构造,降低或者去除废水生物毒性。
将微电解出水的 pH 值调节至碱性条件下,发生混凝反应,铁离子形成 Fe(OH)2 和 Fe(OH)3 ,在供氧充足条件下,可以将 Fe2+氧化成 Fe3+ ,进一步发生氧化复原反应,降解有机物,同时新生态的 Fe(OH)3 具有更好的混凝吸附效果。
最后 Fe(OH)2 和 Fe(OH)3 在助凝剂作用下,发生絮凝吸附作用,再次吸附去除部份有机污染物,并减少污泥体积量。
有机化工废水治理及资源化技术新进展
研究与开发中国农药28 张全兴(,)1 概述,大的压力。
日益加剧,根据水利部门的监测,我国长江等14个典型水体上的取水口已经遭受了197种有机毒物的污染,其中“三致”物质25种,被美国EP A 优先控制的污染物达53种。
长江流域水环境监测中心曾对长江干流主要城市江段水、底质和鱼体中的有机污染物进行了检测,共检出12类300多种有机物,22个城市江段中,检出有机物种类最多的5个江段依次是南京、上海、重庆、武汉和攀枝花。
因此,如果不能有效治理有机化工废水,必将对我国的水环境安全产生严重的威胁。
有机化工行业排放的废水往往成分复杂、浓度高、毒性大、色泽深、难以生物降解,早已成为国内外环保界公认的治理难题。
若采用传统的氧化、生化等破坏方法处理,则使大量化工原料或产品被分解破坏而白白流失,不仅处理成本高、操作难度大,而且往往不易达标排放。
我们开发出以树脂吸附法为核心的有机化工废水,在实现达标排放的同时,可以有效回收化工原料,对我国化工行业的节能减排有重要的战略意义。
另外,近年来,在化工企业向园区集中的形势下,我们成功开发了综合化工废水的污染控制集成技术,并在一些大型化工基地和化工园区得到了应用。
本文将分别对这两项技术的原理、流程、特点、最新进展和应用情况进行介绍。
2 树脂吸附与资源化新技术211 工艺原理及流程大孔吸附树脂是上世纪70年代随着大孔离子交换树脂的发展应运而生的,通常是用单烯和双烯类单体在致孔剂和引发剂的作用下悬浮共聚而成。
在此之后,超高交联吸附树脂、复合功能树脂和耐温吸附树脂等新型吸附剂相继研制成功。
这些合成材料具有良好的物理和化学性质,已成功应用于多项有机化工废水的治理和资源化,受到了国内外环保界的广泛关注。
在实际应用过程中,废水中的有毒有机物(溶质)通过吸附树脂(吸附剂)床层时,溶质分子被吸附在吸附剂表面,从而使有毒有机废水得到净化。
被吸附的溶质选用适当的方式即可完全洗脱,洗脱液一般可通过一定的方法实现污染物的资源化,洗脱后的树脂即可重复利用。
汽提一生化法处理高浓度难降解有机废水——以新疆蓝山屯河聚酯有限公司为例
李梅英 , 赵 中腾 , 杨 尚功 ( 1 . 新疆 蓝山屯 河 聚酯有限 公司, 新 疆 昌 吉 8 3 1 1 0 0 ; 2 . 新 疆昌 吉回 族自
治州水利科学技术研究所 , 新疆 昌吉 8 3 1 1 0 0 ; 3 . 新疆庆华能源集团, 新疆 伊 宁县 8 3 5 1 0 0 )
新疆环境保护 2 0 1 3 , 3 5 ( 1 ) : 4 7— 5 0
E n v i r o n m e n t a l P r o t e c t i o n o f X i n j i a n g
汽 提一 生 化 法 处 理 高 浓 度 难 降解 有机 废 水
— —
以新 疆 蓝 山屯河 聚 酯有 限公 司为 例
环境质量的恶化将严重阻碍经济的可持续发展 , 给公众 的身心健康造成危害 。为改善生活环境 , 提高
人 们 的生 活质 量 , 推 动环 境 保 护 事 业 进一 步 发 展 , 污
T a k e X i n j i a n g B l u e R i d g e T u n h e P o l y e s t e r L i mi t e d C o mp a n y f o r E x a mp l e . L I Me i —y i n g ,Z H A O Z h o n g—
中 图分 类 号 : X 7 0 3 . 1 文献标识码 : A 文章编号 : 1 0 0 8— 2 3 0 1 ( 2 0 1 3 ) 0 1 —0 0 4 7一 nt o f hi 【 g h c o nc e nt r a t i o ns o f r e f r a c t o r y or g a ni c wa s t e wa t e r by s t r i p pi ng—bi o c he mi c a l me t h Od — —
湿式氧化处理高浓度难降解有机废水研究
果 ; 并建立基于 TOC 指数型经验模型 . 关键词 : 乳化废水 ; 湿式氧化 ; 高浓度有机废水 ; 难降解
Study on wet air oxidation of strength recalcitrant organic waste water
制因素时 ,反应 1 h 后出水 TOC 逐渐趋接近 ,供氧 3 量以 110~1125 PO2 为宜 .
21114 进 水 有 机 物 浓 度 的 影 响 实 验 条 件 : TOC 2500~ 20700 mg・ L
- 1
, 反应温度 220 ℃、 PO2 =
112 MPa ( 在初始温度为 25 ℃ 时 ) . 不同进水浓度
[5 ]
948
环 境 科 学 学 报
24 卷
尤为明显 ,工程上应用时供氧量也有一经济合理值 , 而反应级数与有机物种类和氧化条件有 关 . 因此采用关联反应温度 、 有机物浓度和供氧量 3 种影响因素的指数型经验模型 ( 式 1) , 分 析其湿式氧化动力学 ,从宏观上体现湿式氧化的实际情况 ,更具工程应用意义 .
湿式氧化处理高浓度难降解有机废水研究
曾新平 ,唐文伟
1 23
,赵建夫 ,顾国维
3
3
(1. 同济大学生命科学与技术学院 ,上海 200092 ;2. 同济
大学化学系 ,上海 200092 ;3. 同济大学污染控制与资源化研究国家重点实验室 ,上海 200092)
摘要 : 在 2 L 高压间歇反应釜中 ,系统地研究了高浓度难降解乳化废水的影响因素和动力学特征 . 结果表明 : 湿式氧化温度以
《2024年焦化废水处理技术的研究现状与进展》范文
《焦化废水处理技术的研究现状与进展》篇一一、引言焦化废水是炼焦过程中产生的含有大量有害物质的废水,由于其成分复杂、污染物浓度高、色度深等特点,若不经过处理直接排放,将给环境带来极大的污染和破坏。
近年来,随着工业化的深入推进和环境保护意识的提升,焦化废水处理技术逐渐受到重视,国内外学者和研究者也对其进行了深入的研究。
本文将就焦化废水处理技术的研究现状与进展进行详细的探讨。
二、焦化废水处理技术的现状1. 物理法物理法是焦化废水处理中常用的一种方法,主要包括吸附法、混凝沉淀法、膜分离法等。
这些方法主要是通过物理手段将废水中的杂质进行分离和去除。
然而,物理法往往只能去除部分杂质,对于一些难以去除的有机物和重金属离子等污染物效果并不明显。
2. 化学法化学法是利用化学反应将废水中的有害物质转化为无害或低害的物质。
常用的化学法包括氧化还原法、中和法等。
虽然化学法在一定程度上能够去除废水中的有害物质,但同时也可能产生新的污染物,且对于复杂成分的焦化废水处理效果并不理想。
3. 生物法生物法是利用微生物的生物化学作用对废水中的有机物进行分解和转化,达到净化水质的目的。
目前,生物法是焦化废水处理中最常用和最有效的方法之一。
其中,活性污泥法、生物膜法等都是常用的生物处理方法。
三、焦化废水处理技术的进展1. 深度处理技术随着环保要求的提高,单纯的物理法、化学法和生物法已经无法满足焦化废水处理的更高要求。
因此,深度处理技术逐渐成为研究的热点。
深度处理技术主要包括高级氧化技术、光催化技术等,这些技术能够有效地去除废水中的难降解有机物和重金属离子等污染物。
2. 组合工艺技术为了充分发挥各种处理技术的优势,提高焦化废水处理的效率和效果,组合工艺技术逐渐成为研究的新方向。
例如,将物理法、化学法和生物法进行组合,形成多级串联处理系统,能够有效去除废水中的各种污染物。
此外,将深度处理技术与组合工艺技术相结合,形成更加高效的焦化废水处理系统也是未来的发展趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Advances in Environmental Protection 环境保护前沿, 2016, 6(6), 130-136 Published Online December 2016 in Hans. /journal/aep /10.12677/aep.2016.66017文章引用: 程子洪, 李小端, 王华阳, 钟振成, 张微尘, 李国涛, 霍卫东, 李永龙, 熊日华. 高浓度难降解有机废水处Research Progress of High Concentration Organic Wastewater TreatmentZihong Cheng 1,2, Xiaoduan Li 1,2, Huayang Wang 3, Zhencheng Zhong 1,2, Weichen Zhang 1,2, Guotao Li 1,2, Weidong Huo 1,2, Yonglong Li 1, Rihua Xiong 1,21National Institute of Low-Carbon Energy, Beijing 2State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing 3Shenhua Funeng Generation Electric Co., Ltd., Quanzhou FujianReceived: Nov. 27th , 2016; accepted: Dec. 12th , 2016; published: Dec. 15th , 2016Copyright © 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY)./licenses/by/4.0/AbstractThe effective treatment of high concentration and low biodegradability wastewater turned to be urgent issues in domestic and foreign environmental technology. In this article, series of technol-ogies for no degradable organic wastewater treatment were summarized; the developments of different technologies were analyzed and compared. Finally, the development tendency of low biodegradability organic wastewater treatment in the future was proposed. KeywordsOrganic Wastewater, Low Biodegradability, High Concentration, Tendency高浓度难降解有机废水处理研究进展程子洪1,2,李小端1,2,王华阳3,钟振成1,2,张微尘1,2,李国涛1,2,霍卫东1,2,李永龙1,熊日华1,2 1北京低碳清洁能源研究所,北京 2神华集团煤炭开采水资源保护与利用国家重点实验室,北京3神华福能发电有限责任公司,福建 泉州程子洪等收稿日期:2016年11月27日;录用日期:2016年12月12日;发布日期:2016年12月15日摘要高浓度难降解有机废水的高效处理已成为国内外环境保护技术领域中亟待解决的一个难题。
本文高浓度难降解有机废水的特点,主要综述了国内外对高浓度难降解有机废水不同处理技术的现状,并对不同技术发展进行了分析对比,最后提出了针对高浓度难降解有机废水处理技术的发展趋势。
关键词有机废水,难降解,高浓度,发展趋势1. 引言高浓度难降解有机废水的处理,是目前国内外污水处理界公认的难题。
针对这类废水,如焦化废水、制药废水、石化/油类废水、纺织/印染废水、化工废水、油漆废水等行业性废水研究较多。
所谓“高浓度”,是指这类废水的有机物浓度较高,COD一般在2000 mg/L以上,有的甚至高达每升几万至十几万;“难降解”是指这类废水的可生化性较低,BOD5/COD值一般均在0.3以下甚至更低,难以生物降解。
“高浓度”和“难降解”使得此类废水在处理中,单独使用生物法或物化法等“常规”方法难以有效处理。
从而,研究生物法和物化法等其它方法的组合,力图使处理成本降到最低而且处理方法具有在国内工业企业的有效推广价值,是当前解决此类废水污染的关键性问题[1]。
2. 高浓度难降解有机废水现有处理技术高浓度难降解有机废水的处理可以分为物理法、化学法以及生化法。
物化法在高浓度难降解有机废水的处理中是较为有效、较常用的处理技术,通常用于生物处理之前的预处理或之后的深度处理工艺中。
近年来,高级氧化技术作为高浓度有机废水的预处理,既可以降低有机物的浓度,又可以改善其生物降解性,为后续生物处理创造条件。
2.1. 高浓度难降解有机废水处理技术国内外技术研究现状高浓度难降解有机废水的处理,是目前国内外污水处理界公认的难题[2]。
常用的处理方法按处理机制不同可以分为物理处理技术、化学处理技术以及生化处理技术。
1) 物理处理技术物理处理技术通常用于生物法处理之前的预处理、资源化分离,或者之后的深度处理工艺中。
对于高浓度有机废水,采用物理法进行预处理手段往往是对废水中的悬浮物、有价物质等的分离回收过程,同时为后续生物处理或化学处理创造更好的条件。
①常规物理处理技术常规物理处理技术包括混凝、沉淀、气浮、过滤、中和、吹脱等,目前研究和应用已比较成熟。
此外,物理处理方法还包括吸附、膜分离技术、热蒸发技术以及两种技术形成的组合工艺四大类。
吸附法的处理对象主要是废水中生化难以降解的有机物或用一般氧化法难以氧化的溶解性有机物。
如处理含烃类、油类废水、含酚废水、硝基化合物废水、氯或硝基取代的芳烃化合物、杂环化合物、合程子洪等成染料、DDT等。
不仅能去除难降解的有机物,降低COD,还能使废水脱色、除臭。
但是,目前吸附技术对工艺废水组分比较单一的研究较多,对多组分的体系,因为没有资源化的价值,所以吸附不是很实用,尤其是吸附饱和后不能很好的再生,或再生后的饱和吸附量下降,带来经济性问题,用吸附来解决难降解有机废水大型工程化应用不多。
目前,在化工及石油工业领域已广泛应用的膜分离技术有五种,分别是超滤、微滤、纳滤、电渗析和反渗透。
膜法进行分离回收物质具有分离效果好,设备简单,操作简便和成本低的特点。
在抗生素发酵废水、含醚废水、石油工业废水、化学工业废水中得到了一些初步的应用。
但膜分离技术也存在膜污染、堵塞、腐蚀、使用寿命短等亟待解决的问题,尤其是当TDS较高时,其脱盐率会急剧下降。
蒸发或蒸馏工艺可以达到浓缩溶液、获取溶质、制取纯净溶剂等目的,得到广泛应用。
目前,主要采用多效蒸发(MED)工艺来提高加热蒸汽的利用率和改善传热条件,从而降低蒸发单元的能耗。
为减小蒸汽耗量,又研发出采用机械蒸汽再压缩(MVR或MVC)技术的蒸发器。
蒸发或蒸馏技术面临的主要问题,一是能耗过高,在该过程中消耗大量的能量回收溶剂或溶质,因此,解决蒸发或蒸馏技术能耗过高的问题是该技术可以广泛应用的关键。
二是高浓度难降解有机废水中成分复杂,会产生腐蚀、结垢、传热系数下降以及沸点升高等不利于蒸发或蒸馏进行的因素;三是经过蒸发或蒸馏处理后会有更高浓度浓缩液(如浓盐水、浓浆等)的排放。
②有价物质物理回收技术有机废水中可用于回收的有价物质主要包括高浓度酚类、氨氮、磷等,常用方法有萃取、吹脱、沉淀等方法。
比如来自焦化厂、煤气厂、石油化工厂、绝缘材料厂等生产过程的含酚废水,采用技术主要为萃取技术,但现有脱酚技术在高浓度含酚废水中应用过程中存在萃取率低的问题,原因主要有两个方面:一是萃取剂对难挥发酚的分配系数低,二是采用传统液液萃取设备传质效率低,脱酚后污水酚含量仍在1000 mg/L以上,无法满足生化处理要求。
2) 化学处理技术①高级氧化技术[3]随着医药、化工、染料等行业的发展,人工合成有机物种类与数量与日俱增,高浓度难降解有机废水越来越多,成份越来越复杂,废水中所含有的污染物主要是难降解的有机物,BOD/COD很低,有时在0.1以下,另外污染物毒性大,许多物质如苯胺、硝基苯、多环芳烃等都被列入环境污染黑名单,通常难以用常规工艺处理,需要用到废水高级氧化技术工艺。
如芬顿氧化、催化氧化、湿式氧化、臭氧氧化及超临界氧化等。
电催化氧化法[4]尤其针对浓度高,毒性大,难生物降解的有机废水具有非常好的去除效果,为后续生化处理过程减轻负荷。
因此,电催化氧化技术在水处理领域被称为“环境友好”的技术,是一个非常具有潜力的绿色工艺。
但目前电化学氧化法最突出的问题是耗能较高,如何进一步实现大规模工业化应用,通过研制新型电极材料,以提高电流效率和催化活性,实现有机污染物低成本去除,是其进一步发展的关键。
目前研究较多较新的集中在电极材料、光电芬顿、充填三维粒子等强化技术,但仍存在产生强氧化基团的速率和密度还不够,能耗大,工业化应用放大难等问题。
催化湿式氧化技术[5]是处理难降解有机废水中有效的手段之一,也是最前沿的水处理技术之一。
该技术是在高温(125℃~320℃)高压(0.5 MPA~10 MPA)条件下以空气为氧化剂处理高浓度,难降解有机废水,其核心在于催化剂的研究。
目前应用于湿式催化氧化的主要催化剂为非均相催化剂,大致分为三大类:贵金属系列、铜系列和稀土系列三大类。
其中,贵金属系催化剂虽然具有良好的稳定性以及高效的活性,但是其价格成为了制约其大规模的工业应用的主要因素;铜系催化剂具有良好的催化活性,且廉价易得,但是Cu2+易流出,造成活性的降低;添加稀土元素,可以增加其稳定性,目前应用较多的是添程子洪等加Ce元素。
因此,研究过渡金属与稀土元素的掺杂,开发一种高稳定性、高活性、低成本的可控性催化剂,降低反应过程中所需的温度压力,提高经济性,成为该技术的发展趋势。
如国内在COD高达3 × 104 mg/L的石化废水进行处理,有机物的去除率可达到99%以上。
该技术同时在高浓度染料废水、含氰化物废水以及农药废水的处理过程中也得到了很好应用。