绝对值三角不等式
绝对值三角不等式 课件
证明:∵m 等于|a|,|b|和 1 中最大的一个,|x|>m,
|| > ≥ ||
|| > ||,
||
||
>
≥
||
∴
⇒
∴ + 2 ≤
+ 2 = +
2
||
|| > |b|.
|| > ≥ 1
||
2
|| ||
<
+ 2 =2.故原不等式成立.
2
||
||
∴-4≤y≤4.
∴yma x=4,y min =-4.
迁移与应用
如果关于 x 的不等式|x-3|+|x-4|<a 的解集为空集,求参数 a
的取值范围.
解:只要 a 不大于|x-3|+|x-4|的最小值,则|x-3|+|x-4|<a 的解集
为空集,而|x-3|+|x-4|=|x-3|+|4-x|≥|x-3+4-x|=1,
=|(x-a)(x+a-1)|
=|x-a||x+a-1|
<|x+a-1|
=|Байду номын сангаас-a+2a-1|
≤|x-a|+|2a-1|
<1+|2a|+1
=2(|a|+1),
∴|f(x)-f(a)|<2(|a|+1).
迁移与应用
已知 f(x)=x2 -2x+7,且|x-m|<3,求证:|f(x)-f(m)|<6|m|+15.
高中数学新人教A版选修4-5 绝对值三角不等式
(1)利用绝对值不等式求函数最值,要注意利用绝对 值的性质进行转化,构造绝对值不等式的形式. (2)求最值时要注意等号成立的条件,它也是解题的 关键.
3. 若 a, b∈R, 且|a|≤3, |b|≤2, 则|a+b|的最大值是________, 最小值是________.
解析:∵|a|-|b|≤|a+b|≤|a|+|b|, ∴1=3-2≤|a+b|≤3+2=5.
解:∵a<|x+1|-|x-2|对任意实数恒成立, ∴a<(|x+1|-|x-2|)min. ∵||x+1|-|x-2||≤|(x+1)-(x-2)|=3, ∴-3≤|x+1|-|x-2|≤3. ∴(|x+1|-|x-2|)min=-3. ∴a<-3.即 a 的取值范围为(-∞,-3).
“应用创新演练”见“课时跟踪检测(四)” (单击进入电子文档)
|A|+|B| 2 1 2 2 = (| A | + | B | +2|A||B|) 4 2
|A|+|B| 1 ≥ (2|A||B|+2|A||B|)=|A||B|,∴2lg ≥lg|A||B|. 4 2 |A|+|B| 1 ∴lg ≥ (lg|A|+lg|B|),④正确. 2 2 答案:A
解析:∵|a+b|=|(b-a)+2a|≤|b-a|+2|a| =|a-b|+2|a|,∴|a+b|-2|a|≤|a-b|,①正确; ∵1>|a-b|≥|a|-|b|,∴|a|<|b|+1,②正确; 1 1 |x| 2 ∵|y|>3,∴ < .又∵|x|<2,∴ < ,③正确; |y| 3 |y| 3
②若|a|<|b|, 左边>0,右边<0,∴原不等式显然成立. ③若|a|=|b|,原不等式显然成立. 综上可知原不等式成立.
绝对值三角不等式
题型一
题型二
题型三
【变式训练3】 设f(x)=x2-x+13,实数a满足|x-a|<1.求证:|f(x)f(a)|<2(|a|+1).
证明:|f(x)-f(a)|=|(x-a)·(x+a-1)|<|x+a-1|≤|x|+|a|+1.
∵|x|-|a|≤|x-a|<1,
A.|a|<|b|+|c|
B.|c|<|a|+|b|
C.b>||c|-|a||
D.b<|a|-|c|
)
题型一
题型二
题型三
解析:由|a-c|<b,知b>0,∴b=|b|.
∵|a|-|c|≤|a-c|,
∴|a|-|c|<b,则|a|<b+|c|=|b|+|c|.
故A成立.
同理由|c|-|a|≤|a-c|,得|c|-|a|<b,
∴|x|≤|a|+1.
∴|x|+|a|+1<2(|a|+1).
∴|f(x)-f(a)|<2(|a|+1).
谢谢!
1+||+||
||
||
||
||
+
≤
+
,
1+||+|| 1+||+|| 1+|| 1+||
| + |
||
||
∴
≤
+
.
1 + | + | 1 + || 1 + ||
绝对值三角不等式 课件
例 2 设 ε>0,|x-a|<ε4 ,|y-b|<ε6 .
求证:|2x+3y-2a-3b|<ε. 分析:将 2x+3y-2a-3b 写成 2(x-a)+3(y-b)的形式后利用
定理 1 和不等式性质证明.
证明:|2x+3y-2a-3b|=|2(x-a)+3(y-b)|≤ |2(x-a)|+|3(y-b)|=2|x-a|+3|y-b|< 2×ε4 +3×ε6 =ε.
证明:|xy-ab|=|xy-bx+bx-ab| =|x(y-b)+b(x-a)|≤|x(y-b)|+|b(x-a)| ≤|x||y-b|+|b||x-a| <A·2ε+A·2ε=Aε. 所以有|xy-ab|<Aε.
2.已知函数f(x)=x2-x+13,|x-a|<1,求证: |f(x)-f(a)|<2(|a|+1).
例 3 设 m 等于|a|、|b|和 1 中最大的一个.当|x|>m a b
时,求证:x+x2<2.
分析:本题的关键是对题设条件的理解和运用,|a|、 |b|和 1 这三个数中哪一个最大.如果两两比较大小,将 十分复杂,我们可得到一个重要的信息:m≥|a|,m≥|b|, m≥1.
证明:∵m 等于|a|,|b|和 1 中最大的一个,|x|>m,
总之,恒有|a|+|b|≤16. 而a=8,b=-8时, 满足|a+b+1|=1,|a+2b+4|=4,且|a|+|b|=16. 因此|a|+|b|的最大值为16.
3.求函数y=|x-3|-|x+1|的最大值和最小值.
分析:若把x-3,x+1看作两个实数,则所给的代数 式符合两个数绝对值的差的形式,因而可以联想到两个数 和(差)的绝对值与两个数绝对值的和(差)之间的关系,进而 可转化求解,另一思维是:含有这种绝对值函数式表示的 是分段函数,所以也可以视为是分段函数求最值.
绝对值三角不等式
同理,与原点距离大于3的点对应的实数 可表示为:
x 3
如图
设a,b是任意两个实数,那么|a-b| 的几 何意义是什么?
A a
|a-b| b
B x
探究
设a, b为实数, 你能比较 间的大小关系吗?
当ab>0时,
当ab<0时, 当ab=0时,
a b 与 a b
之
a b a b a b a b a b a b
c ) 练习.a、b R,且ab 0,则有(
(A) a b a b (C ) a b a b (B) a b a b (D) a b a b
解法一: (D)显然不对,(A)、(B)可两边 平方判断是错误的,故应选(C). 解法二: (特殊值法)取a=1, b=-1即可。
例2. 已知 | x |
3
, | y |
6
, | z |
9
求证: | x 2 y 3z |
证明: | x 2 y 3z | | x | | 2 y | | 3z |
| x | | 2 || y | | 3 || z |
| x |
3
绝对值三角不等式
复习
(一)绝对值的定义: 对任意实数a,
a (当a 0时) a (当 0 a 0时) a(当a 0时)
积商绝对值的性质
a a ab a b , b 0. b b
当 a 0 时,有: x ax a xa
2 2
或 x a.
| x | 2 | y | 3 | z |
, | y |
6
, | z |
绝对值三角不等式
又∵|(x-a)-(y-a) | ≤|x-a|+|y-a|,
∴|x-y|<2m,但反过来不一定成立,
如 取 x = 3 , y = 1 , a = - 2 , m = 2.5 , |3 - 1| <
2×2.5,但|3-(-2)|>2.5,|1-(-2)|>2.5,
∴|x-y|<2m不一定有|x-a|<m且|y-a|<m,故
证明: 当ab0时, ab=|ab|
|a+b| a b
2
2
2
a 2ab b
2
2
| a | 2 | ab | | b |
2
| a | | b | a b
当 ab < 0 时, ab |ab|,
|a+b| a b a 2ab b
之间的距离,即线段AB的长度
用恰当的方法在数轴上把 |a|, |b|, |a+b|表示出来,
同学们观察能发现它们之间有什么关系? ab>0 O a
a + b b
x
a+ b
b
a O a+b
x
b
a+b
O a
ab<0 x
a O
b
x
定理1: 如果a, b是实数,
则 | a + b | | a | + | b |,
当且仅当 ab 0 时,等号成立.
如果把定理1中的实数a,b分别换为向量 a , b,
能得出什么结果?
定理1的几何意义
绝对值三角不等式课件
【防范措施】 正确求参数的取值范围 应用绝对值三角不等式求参数的取值范围是重点考查题型 ,解 答本题的关键是,正确应用绝对值三角不等式求出最值,再根 据题意,求出参数的取值范围,如本例关键是对条件关于x的不 等式|x-3|+|x-4|>a的解集不是R的正确理解.
【类题试解】若不等式|x-1|+|x+3|≥a恒成立,则a的取值范 围是______. 【解析】因为a≤|x-1|+|x+3|恒成立,故a小于等于 |x-1|+|x+3|中的最小值, 又|x-1|+|x+3|=|1-x|+|x+3|≥|1-x+x+3|=4, 故a≤4,即a的取值范围是(-≦,4]. 答案:(-≦,4]
2.函数y=|x-1|+|x-5|的最小值为______,此时x的取值范围 是_____. 【解析】|x-1|+|x-5|=|x-1|+|5-x| ≥|x-1+5-x|=4, 当且仅当(x-1)(5-x)≥0, 即1≤x≤5时等号成立. 答案:4 [1,5]
类型 三
含绝对值不等式的证明
【典型例题】
(x-4)(x- 3) 0, 当且仅当 3|, | x-4 || x-
即x≤3时, f(x)取最大值1.
【变式训练】1.若不等式|x-a|+|x-2|≥1对任意的实数x均成立, 则实数a的取值范围是_____.
2.函数y=|x-1|+|x-5|的最小值为______,此时x的取值范围是_____.
【变式训练】若不等式|x-a|+|x-2|≥1对任意的实数x均 成立,则实数a的取值范围是_____. 【解析】|x-a|+|x-2|≥1恒成立, 绝对值不等式的几何意义:数轴上 x到a与x到2的距离之和的 最小值为1. 当a=1或a=3时,对任意的x距离和的最小值为1,所以当a≤1 或a≥3时该不等式恒成立, a∈(-≦,1]∪[3,+≦). 答案:(-≦,1]∪[3,+≦)
绝对值三角不等式-讲义+题目+答案-适合高一下册学生的初次学习
知识点 绝对值三角不等式3.11定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当 ab ≥0 时,等号成立. 几何解释:用向量a ,b 分别替换a ,b .当a 与b 不共线时,有|a +b |<|a |+|b |,其几何意义为三角形的两边之和大于第三边; 若a ,b 共线,当a 与b 同向 时, |a +b |=|a |+|b | ;由于定理1.定理1ab 同号取等,左边ab 同号取等)证明:把-b 代回到第一个式子的b 里面来证明第二个定理2(当且仅当 (a -b )(b -c )≥0 时,几何解释:在数轴上,a ,b ,c 所对应的点分别为A ,B ,C ,当点B 在点A ,C 之间时,|a -c | = |a -b |+|b -c |.当点B 不在点A ,C 之间时:(1)点B 在A 或C 上时,|a -c | = |a -b |+|b -c |;(2)点B 不在A ,C 上时,|a -c | < |a -b |+|b -c |.应用:利用该定理可以确定绝对值函数的值域和最值.题型一 含绝对值不等式的证明例1 设函数f (x )=x 2-2x ,实数a 满足|x -a |<1. 求证:|f (x )-f (a )|<2|a |+3.证明 ∵f (x )=x 2-2x ,且|x -a |<1, ∴|f (x )-f (a )|=|x 2-2x -a 2+2a | =|(x +a )(x -a )-2(x -a )|=|(x -a )(x +a -2)|=|x -a |·|x +a -2| <|x +a -2|=|(x -a )+(2a -2)| x 并运用绝对值三角不等式 ≤|x -a |+|2a -2|<1+|2a -2|≤1+|2a|+|-2|=2|a|+3,∴|f (x )-f (a )|<2|a |+3.题型二 利用绝对值三角不等式求最值例2 (1)求函数y =|x -3|-|x +1|的最大值和最小值;答||x -3|-|x +1||≤|(x -3)-(x +1)|=4,▲定理1推论左边∴-4≤|x -3|-|x +1|≤4,∴y max =4,y min =-4.例3 设函数f (x )=+|x -a |(a >0), (1)证明:f (x )≥2;证明 由a >0,可得f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |≥|x+1a -(x-a )|正负以消元为目的=1a +a ≥2,。
绝对值三角不等式
绝对值三角不等式
1、绝对值三角不等式定理:|a|-|b|≤|a±b|≤|a|+|b|。
三角不等式,即在三角形中两边之和大于第三边,有时亦指用不等号连接的含有三角函数的式子。
2、三角不等式等号成立的条件。
(1)|a|-
|b||≤|a+b|≤|a|+|b|的不等式当a、b同方向时(如果是实数,就是正负号相同)|a+b|=|a|+|b|成立;当a、b异向(如果是实数,就是ab正负号不同)时,||a|-|b||=|a±b|成立。
(2)绝对值三角不等式|a|-|b||≤|a+b|≤|a|+|b|当a、b同号时,|a+b|=|a|+|b|成立;当a、b异号时,绝对值三角不等式||a|-|b||=|a±b|成立。
||a|-|b||≤|a-b|≤|a|+|b|相反。
(3)||a|-|b||≤|a-b|≤|a|+|b|的不等式,当a、b异向(如果是实数,就是ab正负号不同)时,|a-b|=|a|+|b|成立.当a、b同方向时(如果是实数,就是正负号相同)时,||a|-|b||=|a-b|成立。
(4)绝对值三角不等式公式||a|-
|b||≤|a±b|≤|a|+|b|是由两个双边不等式组成。
绝对值三角不等式的变形和推广
绝对值三角不等式的变形和推广
绝对值三角不等式是解决数学问题中经常用到的一种不等式形式。
它的一般形式如下:
$$
|a + b| \leq |a| + |b|
$$
其中,a和b是实数。
绝对值三角不等式有许多重要的性质和
应用,可以通过变形和推广得到更多有用的结果。
变形
通过变形,可以得到绝对值三角不等式的其他等价形式,例如:
1. $|a - b| \leq |a| + |b|$:通过将b改为-b,得到绝对值的差形式。
2. $||a| - |b|| \leq |a - b|$:通过将a和b的绝对值分别改为其差的
绝对值和绝对值的差的绝对值,得到绝对值的绝对值形式。
这些变形形式可以根据具体问题的需要灵活运用,帮助解决各种实际问题。
推广
除了变形,绝对值三角不等式还可以推广到更多元素和更复杂的情况。
例如:
1. 绝对值三角不等式在多个变量之间的应用:当不等式中涉及多个变量时,可以利用绝对值三角不等式的性质进行推导和求解。
2. 绝对值三角不等式在向量和矩阵中的应用:绝对值三角不等式可以推广到向量和矩阵中,帮助解决各种线性代数问题。
3. 绝对值三角不等式在概率和统计中的应用:绝对值三角不等式可以应用于概率和统计领域,帮助分析和推导随机变量的性质和概率分布。
通过推广绝对值三角不等式,我们可以扩展其适用范围,从而更好地解决各种数学和实际问题。
综上所述,绝对值三角不等式的变形和推广可以帮助我们更好地应用绝对值三角不等式解决各种数学问题。
在实际问题中,我们可以根据具体情况选用适合的变形形式或推广方法,提高问题的求解效率和准确性。
绝对值三角不等式 课件
1.将文字语言“m等于|a|,|b|,1中最大的一个”转化为 符号语言“m≥|a|,m≥|b|,m≥1”是证明本题的关键.
2.运用绝对值不等式的性质证明不等式时,要注意放 缩的方向和“尺度”,切忌放缩过度.
1.本题求解的关键在于|a|-|b|≤|a-b|与|a|+|b|≥|a+b| 的理解和应用.
2.解决此类问题应从两个方向看推出关系来进行求 解.
条件不变,试求: (1)||a|a|- -b|b|||<1成立的充要条件; (2)|a|a|+ +b|b||>1成立的充要条件. 【解】 (1)因为ab<0⇔||a|-|b||<|a-b|⇔|a|a|- -b|b||<1,
含绝对值不等式的证明
设m等于|a|,|b|和1中最大的一个,当|x|>m时, 求证:|ax+xb2|<2.
【思路探究】 不管|a|,|b|,1的大小,总有m≥|a|, m≥|b|,m≥1,然后利用绝对值不等式的性质证明.
【自主解答】 依题意m≥|a|,m≥|b|,m≥1, 又|x|>m, ∴|x|>|a|,|x|>|b|,|x|>1,从而|x|2>|b|. 因此|ax+xb2|≤|ax|+|xb2| =||ax||+||xb2||<||xx||+||xx|22|=2, 即|ax+xb2|<2.
2.你能给出定理2的几何解释吗?
【提示】 在数轴上,a,b,c的对应的点分别为A, B,C.当点B在点A,C之间时,|a-c|=|a-b|+|b-c|;当点B 不在点A,C之间时,|a-c|<|a-b|+|b-c|.
绝对值不等式的理解与应用
已知a,b∈R,则有 (1)|a|a|- -b|b||≤1成立的充要条件是________; (2)|a|a|+ +b|b||≥1成立的充要条件是________. 【思路探究】 利用绝对值三角不等式定理分别求解.
绝对值三角不等式
a ,a>0 1.绝对值的定义: |a|= 0 ,a=0
-a ,a<0 2.绝对值的几何意义:
|a|
A
0
a
实数a绝对值|a|表示 数轴上坐标为A的点 到原点的距离.
|a-b|
A
B
a
b
实数a,b之差的绝对值 |a-b|,表示它们在数轴上 对应的A,B之间的距离.
3.绝对值的运算性质:
a |a|
a2 a , ab a b , | b | | b |
探究
设a, b为实数, 你能比较 a b 与之a 间 的b 大
小关系吗?
当ab>0时,a b a b 当ab<0时,a b a b 当ab=0时,a b a b
ab a b
定理1 如果a,b是实数,则 a b a b
当且仅当 ab 时0,等号成立。
你能解释它的几何意义吗?
绝对值不等式
1、绝对值三角不等式 2、绝对值不等式的解法
1、绝对值三角不等式
在数轴上,
a 的几何意义 表示点A到原点的距离 a b 的几何意义 表示数轴上A,B两点之间的距离
a b 的几何意义 表示数轴上A,B’( B与B’关
于原点对称)两点之间的距离
a A
0
a
x
ab
ab
B’
A
B
-b
a
O
bx
当向量 a, 不b 共线时,
ab a b
探究:当向量 a, b共线
时,又怎样的结论?
同向: a b a b 反向: a b a b
ห้องสมุดไป่ตู้
y
ab b
Oa
x
ab a b
绝对值三角不等式课件
与其他数学知识的结合
绝对值三角不等式与函数
绝对值三角不等式可以应用于函数的性质和图像分析,例如判断函数的单调性、求函数 的极值等。
绝对值三角不等式与数列
在数列的项间关系和求和问题中,绝对值三角不等式可以用来处理带有绝对值的项,简 化计算过程。
在实际生活中的应用
交通规划
在交通路线的规划中,绝对值三 角不等式可以用于计算最短路径 ,优化交通网络。
答案与解析
答案
$(1,0)$ 或 $(0,1)$ 或 $( - 1, - 1)$ 或 $(1, - 1)$
VS
解析
根据绝对值的性质,将不等式转化为 $2a = 2(a + 1)$,解得 $a = -1$,再代入原 式得到 $(b, a) = (0, -1)$ 或 $(1, -1)$。
THANKS
在数列求和中的应用
总结词
绝对值三角不等式可以用于简化数列求和的过程,特别是对于一 些项之间存在一定关系的数列。
详细描述
通过利用绝对值三角不等式,可以将数列中的绝对值项进行放缩, 从而将数列求和问题转化为更容易处理的形式。
举例
例如,对于数列 { a_n },其中 a_n = |a_(n-1) - a_(n-2)|,可以利 用绝对值三角不等式得出其求和结果。
03
绝对值三角不等式的应用
在不等式证明中的应用
总结词
绝对值三角不等式是证明不等式 的重要工具之一,它可以用于简
化不等式的证明过程。
详细描述
绝对值三角不等式可以用来证明 一些复杂的不等式,通过将不等 式中的绝对值项进行放缩,将其 转化为更容易处理的形式,从而
简化证明过程。
举例
例如,要证明 |a+b| ≤ |a| + |b| ,可以利用绝对值三角不等式直
绝对值三角不等式 课件
[例2] (1)求函数y=|x-3|-|x+1|的最大值和最小值. (2)设a∈R,函数f(x)=ax2+x-a(-1≤x≤1). 若|a|≤1,求|f(x)|的最大值. [思路点拨] 利用绝对值三角不等式或函数思想方法可 求解.
[解] (1)法一:||x-3|-|x+1|| ≤|(x-3)-(x+1)|=4, ∴-4≤|x-3|-|x+1|≤4. ∴ymax=4,ymin=-4.
4.求函数f(x)=|x-1|+|x+1|的最小值. 解:∵|x-1|+|x+1|=|1-x|+|x+1|≥ |1-x+x+1|=2, 当且仅当(1-x)(1+x)≥0, 即-1≤x≤1时取等号. ∴当-1≤x≤1时,函数f(x)=|x-1|+|x+1| 取得最小值2.
5.若对任意实数,不等式|x+1|-|x-2|>a恒成立,求a的 取值范围. 解:a<|x+1|-|x-2|对任意实数恒成立, ∴a<[|x+1|-|x-2|]min. ∵||x+1|-|x-2||≤|(x+1)-(x-2)|=3, ∴-3≤|x+1|-|x-2|≤3. ∴[|x+1|-|x-2|]min=-3. ∴a<-3.即a的取值范围为(-∞,-3).
绝对值三角不等式
绝对值三角不等式 (1)定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅 当 ab≥0 时,等号成立. 几何解释:用向量a,b分别替换a,b. ①当a与b不共线时,有|a+b|<|a|+|b|,其几何意义为: 三角形的两边之和大于第三边 . ②若a,b共线,当a与b 同向时,|a+b|=|a|+|b|,当a与b 反向 时,|a+b|<|a|+|b|. 由于定理1与三角形之间的这种联系,故称此不等式为绝 对值三角不等式. ③定理1的推广:如果a,b是实数,则||a|-|b||≤|a±b| ≤|a|+|b|.
绝对值三角不等式
综合法 : ab a b , 且当且仅当ab 0取等 a2 b2 2ab a2 b2 2 a b (a b)2 a 2 b 2 2 a b (a b)2 ( a b )2 当且仅当ab 0等号成立
绝对值三角不等式:
若 a,b 是实数,则 a b a b a b
oa b ba o
当a 0,b 0时,a b a b 当a 0,b 0时,a b a b
b
oa
ao
b
综上 ab 0时,a b a b ab 0时,a b a b
当a 0,b 0时,a b a b 当a 0,b 0时,a b a b 当a b 0时,a b a b
应用一: 证明不等式成立源自定理2 如果a、b、c是实数,
-
-------那么|a-c|≤|a-b|+|b-c|
-------当且仅当(a-b)(b-c) ≥0时,等号成立.
证明:由绝对值三角不等式
a b b c (a b) (b c) a c
ab bc ac
当且仅当(a b)(b c) 0时等号成立
的点 B 之间的距离.如图:
即,
a b AB a b的几何意义?
关于绝对值还有什么性质呢?
① a a2
a 2 a2
② ab a b , a a ,…… bb
猜想:
① a b 与 a b 之间有什么关系? ② a b 与 a b 之间有什么关系?
在数轴上表示 a 、b 、a b 时需要注意些什么?
rr r r 角形法则,易知 a b ≤ a b .(同向时取等号)
rr
ab
r
rb
a
rr ab
rr ab
推论 1 a1 a2 L an ≤ a1 a2 L an
绝对值三角不等式课件
在应用绝对值三角不等式求函数最值时,需要注意处理函数定义域内的特殊情况 ,以及根据函数的性质选择合适的放缩方法。
在数列求和中的应用
总结词
绝对值总是非负的,即对于任何实数x,都有|x| ≥ 0。
详细描述
绝对值表示一个数值不考虑正负的大小,因此无论x是正数、负数还是零,其绝 对值都是非负的。这是绝对值的基本性质之一,也是理解绝对值三角不等式的基 础。
绝对值的传递性
总结词
如果a ≥ b且b ≥ c,那么a ≥ c。
详细描述
绝对值的传递性是指,如果一个数a大于或等于另一个数b,而这个数b又大于或等于数c,那么这个数a必然大于 或等于数c。这个性质在数学中非常重要,也是绝对值三角不等式推导的基础。
绝对值三角不等式在数列求和问题中也有着重要的应用。例 如,在求解数列的项的和或前n项和时,可以利用绝对值三角 不等式对数列进行放缩,从而得到数列的和的上下界。
在应用绝对值三角不等式求数列和时,需要注意处理数列的 项的正负交替出现的情况,以及根据数列的性质选择合适的 放缩方法。
05
绝对值三角不等式的变式
绝对值三角不等式的几何意义
几何解释
绝对值三角不等式表示在数轴上 任意两点A和B的距离之和,等于 它们到原点O的距离之和,即 |OA|+|OB|=|AB|。
应用举例
在解决实际问题时,如测量、定 位、计算距离等问题,可以利用 绝对值三角不等式来求解。
02
绝对值三角不等式的性质
Chapter
绝对值的非负性
绝对值的可加性
总结词
对于任意实数a和b,有|a + b| ≤ |a| + |b|。
数学课件:1.4 绝对值的三角不等式
题型一 题型二 题型三
反思对于含有两个绝对值以上的代数式,通常利用分段讨论的方 法转化为分段函数,进而利用分段函数的性质解决相应的问题.利 用含绝对值不等式的性质定理进行“放缩”,有时也能产生比较好的 效果,但这需要准确地处理“数”的差或和,以达到所需要的结果.
故选项A成立. 同理,由|c|-|a|≤|a-c|,得|c|-|a|<b,
∴|c|<|a|+b=|a|+|b|.故选项B成立.
而由选项A成立,得|c|-|a|>-|b|,由选项B成立,得|c|-|a|<|b|,
∴-|b|<|c|-|a|<|b|,
即||c|-|a||<|b|=b.故选项C成立. 由选项A成立知选项D不成立,故选D. 答案:D
题型一 题型二 题型三
利用绝对值的三角不等式求函数的最值
【例2】 求函数y=|x-3|-|x+1|的最大值和最小值. 分析:若把x-3,x+1看作两个实数,则所给的代数式符合两个数绝 对值的差的形式,因而可以联想到两个数和(差)的绝对值与两个数 绝对值的和(差)之间的关系,进而可转化求解.另一种思路是:含有 这种绝对值函数式表示的是分段函数,所以也可以视为是分段函数 求最值.
12345
5已知|x-a|<1,求证:|a|-1<|x|<|a|+1.
证明:∵|x-a|=|a-x|,根据绝对值不等式定理可得||x|-|a||≤|x-a|, ∴|x|-|a|≤|x-a|<1或|a|-|x|≤|x-a|<1, ∴|x|<|a|+1或|a|-1<|x|. ∴|a|-1<|x|<|a|+1.
1、4绝对值三角不等式
解析 |x-y|=|(x-a)-(y-a)|≤|x-a|+|y-a|<h+k.
1
2
3
4
5
解析
答案
|a|-|b| |a|+|b| 3.已知|a|≠|b|,m= ,n= ,则 m,n 之间的大小关系是 |a-b| |a+b|
A.m>n B.m<n C.m=n D.m≤n √
解析
|a|-|b| |a-b| m= ≤ =1. |a-b| |a-b|
当ab≤0时,|a-b|=|a|+|b|,②不正确;
b a ∵ab≠0,a与b同号, b a b a ∴|a+b|=|a|+|b|≥2,③正确;
由|x-1|+|x-2|的几何意义知,|x-1|+|x-2|≥1恒成立,④正确.
1 2 3 4 5
解析
答案
跟踪训练 3 |f(2)|≤7.
设 f(x) = ax2 + bx+ c,当 |x|≤1 时,恒有 |f(x)|≤1 ,求证:
ab 例.3. 已知 | a | 1, | b | 1, 求证 1 1 ab
ab (a b)2 证明: 1 1 2 1 ab (1 ab)
a 2 2ab b2 1 2ab a 2 b2
1 a 2 b2 a 2 b2 0
|a|+|b| |a+b| 又 n= ≥ =1, |a+b| |a+b|
∴m≤n.
1 2 3 4 5
解析
答案
4. 已知 x∈R ,不等式 |x + 1| - |x - 3|≤a 恒成立,则实数 a 的取值范围为 A.(-∞,4] C.[1,3] B.[4,+∞) √ D.[-1,3]
解析 |x+1|-|x-3|≤|(x+1)-(x-3)|=4,
绝对值三角不等式
当ab < 0时,ab = −ab,| a + b |= (a + b) 2 = a + 2ab + b = | a | −2 | ab | + | b |
2 2 2 2 2 2 2
< | a | +2 | ab | + | b | = (| a | + | b |) =| a | + | b |, 所以 | a + b |≤| a | + | b |, 当且仅当ab ≥ 0时,等号成立。
ε
2a
, y ∈ (0, M ) ,
xy − ab < ε .
证明: − ab = xy − ya + ya − ab = y(x − a) + a( y − b) xy
ε ε ≤ y x −a + a y −b < M ⋅ +a⋅ = ε. 2M 2a
补充练习 : a−b a+b 1.已知 a ≠ b , m = ,n = , 则m , n之间的 a−b a+b 大小关系是 ( D ) A.m > n B.m < n C.m = n D.m ≤ n π
例 : 若 x − m < ε , y − m < ε , 下列不等式中一定成立 的是 ( B ) A. x - y < ε B . x − y < 2ε C . x − y > 2ε D. x − y > ε
练习: 1.求证:(1)|a+b|+|a-b|≥2|a| (2)|a+b|-|a-b|≤2|b|
小结:
理解和掌握绝对值不等式的两个定理: |a+b|≤|a|+|b|(a,b∈R,ab≥0时等号成立) |a-c|≤|a-b|+|b-c|(a,b,c∈R, (a-b)(b-c)≥0时等号成立) 能应用定理解决一些证明和求最值问题。 作业:课本 作业:课本P19第、4、5题 第 、 题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
rr
(2) 当 a , b 共线且同向时有
rr r r ab ab
探究新知
|a|-|b| ≤|a±b|≤|a|+|b|
rr
ab
r
r
b
a
rr
ab
r
r
a
b
这个不等式俗称“三角不等式”——
三角形中两边绝之对值和三大于第三边,两边 之差小于第三角边不等式
探究新知
定理的证明
求证:|a|-|b| ≤|a±b|≤|a|+|b|
·
·
·
10
x
20
典例讲评
解:如果生活区建于公路路碑的第 x km
处,两施工队每天往返的路程之和为
S(x)km 那么 S(x)=2(|x-10|+|x-20|)
-2x30 (x 10) S(x) 10 (10≤x≤20)
2x30 (x 20)
典例讲评
所 以 ( Sx) 的 最 小 值 是 10,
当10≤ x ≤20 时取到. y
60
答: 生活区建于两路 碑间的任意位置都满 40
足条件.
20
0 10 20 30 x
典例讲评
例3 已知 xa,0yb,y 0,M ,
2M
2a
求证 xyab.
证明:x a y x b y y y a a a y b x a a y b
yx aay bM a. 2 M 2a
课堂互动讲练
考点突破
考点一 含绝对值不等式的理解
例1 (1)设xy<0,x,y∈R,那么正确的是 () A.|x+y|>|x-y| B.|x-y|<|x|+|y| C.|x+y|<|x-y| D.|x-y|<||x|-|y||
(2)已知|a|≠|b|,m=|a|a|- -b|b||,n=|a|a|+ +b|b||, 则 m,n 之间的大小关系是________. 【思路点拨】 (1)由于xy<0,x,y异号,利 用|a|-|b|≤|a+b|≤|a|+|b|判定. (2)题易判定m,n与1的大小关系.
探究新知
定理2:如果a,b,c是实数,那么
acabbc
当 且 仅 当 ( a b ) ( b c ) 0 时 , 等 号 成 立
典例讲评
例 1 已 知 ε>0,x-aε, ybε, 求 2x+3y-2a-3b5ε
典例讲评
例2 两个施工队分别被安排在公路沿线的 两个地点施工,这两个地点分别位于公路路 碑的第10公里和第20公里处.现要在公路沿 线建两个施工队的共同临时生活区,每个施 工队每天在生活区和施工地点之间往返一 次,要使两个施工队每天往返的路程之和最 小,生活区应该建于何处?
A
|a-b|
B
a
b
x
探究新知
如果用恰当的方法在数轴上把|a| , |b| ,|a+b|表示出来? 定理1 如果a,b是实数,则|a+b|
≤|a| +|b| ,当且仅当 ab≥0时,等号成立.
探究新知
如为果向量把定ar ,理br 1,中能的得实出数a,b分别换
rr
(1) 当 a , b 不共线时有
变式训练1 0<a<1,下列不等式一定成立的 是( )
A.|log(1+a)(1-a)|+|log(1-a)(1+a)|>2 B.|log(1+a)(1-a)|<|log(1-a)(1+a)| C . |log(1 + a)(1 - a) + log(1 - a)(1 + a)|<|log(1 + a)(1-a)|+|log(1-a)(1+a)| D.|log(1+a)(1-a)-log(1-a)(1+a)|>|log(1+ a)(1-a)|-|log(1-a)(1+a)|
【解析】 (1)法一:特殊值法:取x=1,y =-2,则满足xy=-2<0, 这样有|x+y|=|1-2|=1, |x-y|=|1-(-2)|=3, |x|+|y|=3,||x|-|y||=1, ∴选项C成立,A,B,D不成立. 法二:由xy<0得x,y异号, 易知|x+y|<|x-y|,|x-y|=|x|+|y|, |x-y|>||x|-|y||, ∴选项C成立,A、B、D不成立.
(2)因为|a|-|b|≤|a-b|,所以|a|a|- -b|b||≤1, 即 m≤1,又因为|a+b|≤|a|+|b|, 所以|a|a|++b|b||≥1,即 n≥1,所以 m≤1≤n. 【答案】 (1)C (2)m≤n
【名师点评】 绝对值不等式性质的重要作 用在于放缩,放缩的思路主要有两种:分子 不变,分母变小,则分数值变大;分子变大, 分母不变,则分数值也变大,注意放缩后等 号是否还能成立.
绝对值三角不等式
探究新知
1.绝对值的几何意义:
如:|-3|或|3|表示数-3,3所对应的 点A或点B到坐标原点的距离.
探究新知
绝对值的几何意义:
x 3
即实数x对应的点到坐标原点的距离 小于3.
探究新知
同理,与原点距离大于3的点对应的 实数可表示为:
x 3
探究新知
设a,b是任意两个实数,那么|a-b| 的几何意义是什么?
由选择题的唯一性,其余可不判断.
考点二 含绝对值不等式的证明
例2 已知|x-a|<2εm,|y-b|<2|εa|,y∈(0, m).求证:|xy-ab|<ε. 【思路点拨】 根据所证结论,对“xy-ab” 进行凑配,凑出已知的“x-a,y-b”来.
典例讲评
例 4.已 知 |a|1,|b|1,求 证 ab1
证 明 : ab
1(ab)2
1ab
1
1ab
(1ab)2
a 2 2 a b b 2 1 2 a b a 2 b 2
1 a 2 b 2a 2 b 20
(1a2)(1b2)0
由 |a| 1 , |b| 1 ,可 知 (1a2)(1b2)0成 立 ,
所以 a b 1 1 ab
典例讲评
ab
a
b
例5 求证 1ab1a1.b
证明:在 a b 0 时,显然成立.
当 a b 0时,左边
1 1 1
ab
1 1
a
b
1 1ab 1ab
ab
a
1 a
b
1 b
.
思考感悟 如 何 理 解 |a| - |b|<|a±b|<|a| + |b| 的 几 何 意 义 ? 提示:三角形任意两边之差小于第三边,三 角形任意两边之和大于第三边.
解析:选 A.∵0<a<1, ∴1<1+a<2,0<1-a<1. ∴log(1+a)(1-a)<0.① log(1-a)(1+a)<0.② A 项左边=-log(1+a)(1-a)-log(1-a)(1+a) =-log(1+a)(1-a)-log1+a11-a. 令 log(1+a)(1-a)=t<0, ∴左边=-t-1t =(-t)+-1 t>2.