二次函数各种题型汇总

合集下载

(完整版)自己总结很经典二次函数各种题型分类总结.doc

(完整版)自己总结很经典二次函数各种题型分类总结.doc

二次函数题型分类总结题型 1、二次函数的定义(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式)1、下列函数中,是二次函数的是.① y=x2- 4x+1;② y=2x 2;③ y=2x2+4x;④ y=- 3x;⑤ y=- 2x- 1;⑥ y=mx2+nx+p;⑦ y =(4,x) ;⑧ y=- 5x。

2+2t ,则 t = 4 秒时,该物体所经过的路2、在一定条件下,若物体运动的路程s(米)与时间t (秒)的关系式为s=5t程为。

3、若函数 y=(m2+2m- 7)x 2+4x+5 是关于 x 的二次函数,则m的取值范围为。

4、若函数 y=(m- 2)x m-2 +5x+1 是关于x的二次函数,则m的值为。

5、已知函数 y=(m- 1) x m2 1 +5x- 3 是二次函数,求m的值。

题型 2、二次函数的对称轴、顶点、最值4ac-b 2(技法:如果解析式为顶点式y=a(x - h) 2+k,则最值为 k;如果解析式为一般式y=ax2+bx+c 则最值为4a1.抛物线 y=2x 2 +4x+m 2- m 经过坐标原点,则m的值为。

2.抛物 y=x 2+bx+c 线的顶点坐标为( 1,3),则 b=, c= .3.抛物线 y= x2+3x 的顶点在 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.若抛物线 y= ax2- 6x 经过点 (2 ,0) ,则抛物线顶点到坐标原点的距离为( )A. 13B. 10C. 15D. 142+ bx +c( )5.若直线 y= ax+ b 不经过二、四象限,则抛物线y= axA. 开口向上,对称轴是y 轴B. 开口向下,对称轴是y 轴C. 开口向下,对称轴平行于y 轴D. 开口向上,对称轴平行于y 轴2 16.已知抛物线 y= x + (m-1)x -4 的顶点的横坐标是2,则 m的值是 _.7.抛物线 y=x 2+2x- 3 的对称轴是。

二次函数各种题型汇总

二次函数各种题型汇总

二次函数各种题型汇总一、利用函数的对称性解题(一)用对称比较大小例1、已知二次函数y=x2-3x-4,若x2-3/2>3/2-x1>0,比较y1与y2的大小解:抛物线的对称轴为x=3/2,且3/2-x1>0,x2-3/2>0,所以x1在对称轴的左侧,x2在对称轴的右侧,由已知条件x2-3/2>3/2-x1>0,得:x2到对称轴的距离大于x1到对称轴的距离,所以y2>y1(二)用对称求解析式例1、已知抛物线y=ax2+bx+c的顶点坐标为(-1,4),与x轴两交点间的距离为6,求此抛物线的解析式。

解:因为顶点坐标为(-1,4),所以对称轴为x=-1,又因为抛物线与x轴两交点的距离为6,所以两交点的横坐标分别为:x 1=-1-3=-4,x2=-1+3=2 则两交点的坐标为(-4,0)、(2,0);设抛物线的解析式为顶点式:ya(x+1)+4,把(2,0)代入得a=-4/9。

所以抛物线的解析式为y=-4/9(x+1)2+4(三)用对称性解题例1:关于x的方程x2+px+1=0(p>0)的两根之差为1,则p等于()A. 2B. 4C. 3D. 5解:设方程x2+px+1=0(p>0)的两根为x1、x2,则抛物线y=x2+px+1与x轴两交点的坐标为(x1,0),(x2,0)。

因为抛物线的对称轴为x=-p/2,所以x1=-p/2-1/2,x2=-p/2+1/2,因为x1x2=1。

所以(-p/2-1/2)(-p/2+1/2=1,p2=5 因为p>0,所以p=5例2、如图,已知抛物线y=x2 +bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为()A.(2,3) B.(3,2) C.(3,3) D.(4,3)解:由点A,B均在抛物线上,且AB与x轴平行可知,点A,B关于x=2对称。

设点B的横坐标为xB,∵点A的坐标为(0,3),所以,(0+xB)/2=2,xB=4∴B点坐标为(4,3)例2 (2010,山东日照)如图2是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是多少解析:由抛物线的对称性可知,抛物线与x轴的另一交点为(-1,0),ax2+bx+c<0的解集就是抛物线落在x轴下方的部分所对应的x的取值,不等式ax2+bx+c<0的解集是-1<x<3.例3、(2010,浙江金华)若二次函数y=-x2+2x+k的部分图象如图3所示,则关于x的一元二次方程-x2+2x+k=0的一个解x1=3,另一个解x2是多少;解:依题意得二次函数y=-x2+2x+k的对称轴为x=1,与x轴的一个交点为(3,0),∴抛物线与x轴的另一个交点横坐标为1-(3-1)=-1,∴交点坐标为(-1,0)∴关于x的一元二次方程-x2+2x+k=0的解为x1=3或x2=-1.故填空答案:x1=-1例4:如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为() A. 0 B. -1 C. 1 D. 2解法1:将P代入得:9a+3b+c=0由对称轴得:-b/2a=1, 得b=-2a 9a+3b+c=3a+c=0即a+2a+c=0 则 a-b+c=0解法2:由抛物线的对称轴:x=1,及点P(3,0),可求出抛物线上点P关于对称轴x=1的对称点的坐标为Q(-1,0),由于Q在抛物线上,有(-1,0)满足关系式,因为点p,Q在x轴上所以a-b+c=0,故选A.例5、抛物线y=ax2+bx+c经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是_______________解析:由点A(-2,7),B(6,7)的纵坐标相同,可知A、B关于抛物线的对称轴对称,且对称轴方程为x=(-2+6)/2=2,于是设该抛物线上纵坐标为–8的另一点的坐标为(x2,-8),则有2=(3+x2)/2,从而得x2=1,故答案为(1,-8).例6、已知抛物线上有不同的两点E(k+3,-k2+1)和F(-k-1,-k2+1).求抛物线的解析式.分析:关键是确定一次项系数b.观察抛物线上不同的两点E(k+3,-k2+1)和F(-k-1,-k2+1).纵坐标相同,因此判断得点E和点F关于抛物线对称轴对称.解:的对称轴为x=-b÷(-1/2×2)=b因为抛物线上不同的两点E(k+3,-k2+1)和F(-k-1,-k2+1).纵坐标相同,∴点E和点F关于抛物线对称轴对称,则b=[(k+3)+(-k-1)]÷2=1,∴抛物线的解析式为y=1/2x2+x+4例7(2010,山东聊城)如图5,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求此时点M的坐标;.分析:(1)由点C (0,-3)知c =-3,只需求得a 、b 两个未知的系数,根据点A (-1,0)和对称轴x=1,利用待定系数法可求解;(2)由抛物线的对称性知,直线x=1是AB 的垂直平分线,因此MA =MB ,要使得MA+MC 最小,只要MC+MB 最小,所以点M 就是直线BC 与抛物线对称轴的交点.解:(1)∵抛物线经过点C (0,-3)∴c =-3,∴y =ax2+bx-3。

二次函数九大题型

二次函数九大题型

二次函数九大题型1. 函数的定义二次函数是指形如y=ax2+bx+c的函数,其中a,b,c是常数且a≠0。

它是一个二次多项式,其自变量x的最高次数为2。

二次函数通常用来描述曲线和抛物线的形状。

2. 九大题型2.1 基本形式基本形式的二次函数是y=ax2,其中a是常数。

这种形式的二次函数图像是一个开口朝上或朝下的抛物线,关于 y 轴对称。

2.2 平移变换平移变换是通过改变二次函数的参数来改变其图像在坐标平面上的位置。

具体地说,对于二次函数y=ax2+bx+c,平移变换可以通过调整参数 b 和 c 来实现。

•当 b > 0 时,图像向左平移;•当 b < 0 时,图像向右平移;•当 c > 0 时,图像向上平移;•当 c < 0 时,图像向下平移。

2.3 翻转变换翻转变换是通过改变二次函数的参数来改变其图像在坐标平面上的方向。

具体地说,对于二次函数y=ax2+bx+c,翻转变换可以通过调整参数 a 来实现。

•当 a > 0 时,图像开口朝上;•当 a < 0 时,图像开口朝下。

2.4 缩放变换缩放变换是通过改变二次函数的参数来改变其图像在坐标平面上的大小。

具体地说,对于二次函数y=ax2+bx+c,缩放变换可以通过调整参数 a 的绝对值来实现。

•当 |a| > 1 时,图像纵向压缩;•当 |a| < 1 时,图像纵向拉伸。

2.5 对称轴和顶点对称轴是指二次函数图像的中心轴线,它与抛物线的开口方向垂直。

对称轴的方程。

顶点是抛物线的最低点可以通过求解二次函数的一阶导数为零得到:x=−b2a(当 a > 0)或最高点(当 a < 0),它位于对称轴上。

2.6 零点和交点零点是指二次函数图像与 x 轴相交的点。

求解零点可以将二次函数设置为零并解方程得到:ax2+bx+c=0。

交点是指二次函数图像与其他直线或曲线相交的点。

2.7 极值和最值极值是指二次函数图像的最高点(当 a > 0)或最低点(当 a < 0)。

二次函数中常见的几种综合题型

二次函数中常见的几种综合题型

二次函数中常见的几种综合题型二次函数常见的几类综合题型一、求线段最大值及根据面积求点坐标问题1.已知抛物线 $y=x^2+bx+c$ 的图象与 $x$ 轴的一个交点为 $B(5,0)$,另一个交点为 $A$,且与 $y$ 轴交于点 $C(0,5)$。

1) 求直线 $BC$ 与抛物线的解析式;2) 若点 $M$ 是抛物线在 $x$ 轴下方图象上的一个动点,过点 $M$ 作 $MN\parallel y$ 轴交直线 $BC$ 于点 $N$,求$MN$ 的最大值;3) 在 (2) 的条件下,$MN$ 取得最大值时,若点 $P$ 是抛物线在 $x$ 轴下方图象上任意一点,以 $BC$ 为边作平行四边形 $CBPQ$,设平行四边形 $CBPQ$ 的面积为 $S_1$,$\triangle ABN$ 的面积为 $S_2$,且 $S_1=6S_2$,求点$P$ 的坐标。

2.对称轴为直线 $x=-1$ 的抛物线$y=ax^2+bx+c(a\neq0)$ 与 $x$ 轴相交于 $A$、$B$ 两点,其中点 $A$ 的坐标为 $(-3,0)$。

1) 求点 $B$ 的坐标;2) 已知 $a=1$,$C$ 为抛物线与 $y$ 轴的交点。

①若点 $P$ 在抛物线上,且 $S_{\trianglePOC}=4S_{\triangle BOC}$,求点 $P$ 的坐标;②设点 $Q$ 是线段 $AC$ 上的动点,作 $QD\perp x$ 轴交抛物线于点 $D$,求线段 $QD$ 长度的最大值。

二、求三角形周长及面积的最值问题3.已知抛物线 $y=ax^2+bx+c$ 经过 $A(-3,a-b+c)$,$B(1,a+b+c)$,$C(c,a+3c-b)$ 三点,其顶点为 $D$,对称轴是直线 $l$,$l$ 与 $x$ 轴交于点 $H$。

1) 求该抛物线的解析式;2) 若点 $P$ 是该抛物线对称轴 $l$ 上的一个动点,求$\triangle PBC$ 周长的最小值;3) 如图 (2),若 $E$ 是线段 $AD$ 上的一个动点($E$ 与$A$、$D$ 不重合),过点 $E$ 作平行于 $y$ 轴的直线交抛物线于点 $F$,交 $x$ 轴于点 $G$,设点 $E$ 的横坐标为 $m$,$\triangle ADF$ 的面积为 $S$。

专题01 二次函数的相关概念(五大题型)(题型专练)(解析版)

专题01  二次函数的相关概念(五大题型)(题型专练)(解析版)

专题01 二次函数的相关概念(五大题型)【题型1 二次函数的判段】【题型2 利用二次函数的概念含参数取值范围】【题型3 二次函数的一般形式】【题型4 二次函数的函数值】【题型5 根据实际问题列出二次函数】【题型1 二次函数的判段】1.(2023•大埔县开学)下列函数中,属于二次函数的是( )A.y=3x﹣1B.y=C.y=(x+1)2﹣x2D.y=2x2﹣3【答案】D【解答】解:A、不含有x的二次项,不是二次函数,不符合题意;B、是复合函数,不是二次函数,不符合题意;C、化简后y=2x+1,不含有x的二次项,不符合题意;D.y=﹣2x2﹣3,符合二次函数的定义,符合题意.故选:D.2.(2022秋•道外区期末)下列函数中,表示y是x的二次函数的是( )A.B.C.D.【答案】B【解答】解:A、y=﹣+x,不是二次函数,故A不符合题意;B、y=x2+x,是二次函数,故B符合题意;C、y=,不是二次函数,故C不符合题意;D、y=,不是二次函数,故D不符合题意;故选:B3.(2022九上·顺义期末)下面两个问题中都有两个变量:①矩形的周长为20,矩形的面积y与一边长x;②矩形的面积为20,矩形的宽y与矩形的长x.其中变量y与变量x之间的函数关系表述正确的是( )A.①是反比例函数,②是二次函数B.①是二次函数,②是反比例函数C.①②都是二次函数D.①②都是反比例函数【答案】B【解析】解:①∵矩形的周长为20,一边长x∴另一边长为10−x∴y=x(10−x)=−x2+10x为二次函数;②∵矩形的面积为20,矩形的长x∴y=20x是反比例函数.故答案为:B.4.(2022九上·陵城期中)下列各式中,y是x的二次函数的是( )A.y≥3x B.y=x2+(3−x)x C.y=(x−1)2D.y=a x2+bx+c【答案】C【解析】解:A.y≥3x,不是函数,故该选项不符合题意;B.y=x2+(3−x)x=x2+3x−x2=3x,是一次函数,故该选项不符合题意;C.y=(x−1)2,是二次函数,符合题意;D.y=a x2+bx+c,当a=0时,不是二次函数,故该选项不符合题意.故答案为:C.5.(2022九上·义乌月考)下列函数中(x,t是自变量),是二次函数的是( )A.y=−x3+25B.y=−12+5x2C.y=1xD.S=1+t【答案】B【解析】解:A、y=−x3+25不是二次函数,不符合题意;B、y=−1+5x2是二次函数,符合题意;2C、y=1不是二次函数,不符合题意;xD、S=1+t不是二次函数,不符合题意.故答案为:B.6.(2022九上·桐乡市期中)下列函数中,属于二次函数的是( ).C.y=x2(x+3)D.y=x(x+1) A.y=2x−1B.y=1x【答案】D【解析】解:A、y=2x−1是一次函数,不是二次函数,故A不符合题意;B、y=1函数关系式不是整式,不是二次函数,故B不符合题意;xC、y=x2(x+3)=x3+3x2,x的最高次数是3,不是二次函数,故C不符合题意;D、y=x(x+1)=x2+x是二次函数,故D符合题意.故答案为:D.7.(2022九上·萧山月考)下列y和x之间的函数表达式中,属于二次函数的是( )B.y=2x3+5A.y=x2+1xC.y=(x+4)(x−1)D.y=2x−7【答案】C,右边不是整式,不是二次函数,不符合题意;【解析】解:A、y=x2+1xB、y=2x3+5,最高次数是3,不是二次函数,不符合题意;C、y=(x+4)(x−1)=x2+3x−4,是二次函数,符合题意;D、y=2x−7,最高次数是1,不是二次函数,不符合题意;故答案为:C【题型2 利用二次函数的概念含参数取值范围】8.(2022九上·北仑期中)若关于x的函数y=(2−a)x2−x是二次函数,则a 的取值范围是( )A.a≠0B.a≠2C.a<2D.a>2【答案】B【解析】解:∵函数y=(2−a)x2−x是二次函数,∴2−a≠0,即a≠2,故答案为:B.9.(2022九上·中山期中)已知函数y=(m+3)x2+1是二次函数,则m的取值范围为( )A.m>−3B.m<−3C.m≠−3D.任意实数【答案】C【解析】【解答】解:由题意知,m+3≠0,解得:m≠−3;故答案为:C.可解答.10.(2022秋•诸暨市期末)已知y关于x的二次函数解析式为y=(m﹣2)x|m|,则m=( )A.±2B.1C.﹣2D.±1【答案】C【解答】解:由题意得:|m|=2且m﹣2≠0,∴m=±2且m≠2,∴m=﹣2,故选:C.11.(2022秋•桥西区校级期末)若函数y=(m﹣3)x|m|﹣1+5是关于x的二次函数,则m=( )A.﹣3B.3C.3或﹣3D.2【答案】A【解答】解:由题意,解得m=﹣3.故选:A12.(2021九上·砀山期末)如果y=(m−2)x2+(m−1)x是关于x的二次函数,则m的取值范围是( )A.m≠1B.m≠2 C.m≠2且m≠1D.全体实数【答案】B【解析】解:∵y=(m−2)x2+(m−1)x是关于x的二次函数,∴m−2≠0,∴m≠2,故答案为:B【题型3 二次函数的一般形式】13.(2022九上·济南期末)二次函数y=x2−6x−1的二次项系数、一次项系数和常数项分别是( )A.1,−6,-1B.1,6,1C.0,-6,1 D.0,6,-1【答案】A【解析】解:二次函数y=x2−6x−1,∴二次项系数、一次项系数、常数项分别是1,-6,-1.故答案为:A.14.(2023•桐乡市校级开学)下列函数中,常量3表示二次项系数的是( )A.y=3x B.y=3x2C.y=D.y=x2+3【答案】B【解答】解:y=3x不是二次函数;y=3x2是二次函数,且二次项系数是3;y=不是二次函数;y=x2+3是二次函数,但二次项系数是1.故选:B.15.(2020秋•房山区期中)二次函数y=x2﹣4x+3的二次项系数、一次项系数和常数项分别是( )A.1,4,3B.0,4,3C.1,﹣4,3D.0,﹣4,3【答案】C【解答】解:二次函数y=x2﹣4x+3的二次项系数是1,一次项系数是﹣4,常数项是3;故选:C.16.(2022九上·东阳月考)二次函数y=2x2﹣3x+4的一次项系数是( )A.2B.3C.﹣3D.4【答案】C【解析】【解答】解:∵二次函数y=2x2﹣3x+4,∴一次项系数是-3.故答案为:C.【题型4 二次函数的函数值】17.y=-3x2﹣x+9函数中自变量为2,则函数值等于.【答案】-5【解答】解:∵y=-3x2﹣x+9函数中的自变量为2,则函数值为y=-(3×22)-2+9=-5,故答案为:-518.二次函数y=x2+2x﹣7的函数值是8,那么对应的x的值是( )A.3 B.5 C.﹣3和5 D.3和﹣5【答案】D【解析】根据题意,得x2+2x﹣7=8,即x2+2x﹣15=0,解得x=3或﹣5,故选D.【题型5 根据实际问题列出二次函数】19.(2021九上·宜昌期末)在某种病毒的传播过程中,每轮传染平均1人会传染x个人,若最初2个人感染该病毒,经过两轮传染,共有y人感染.则y与x 的函数关系式为( )A.y=2(1+x)2B.y=(2+x)2C.y=2+2x2D.y=(1+2x)2【答案】A【解析】解:∵每轮传染平均1人会传染x个人,∴2人感染时,一轮可传染2x人,∴一轮感染的总人数为2x+2=2(1+x)人;∵每轮传染平均1人会传染x个人,∴2(1+x)人感染时,二轮可传染2(1+x)x人,∴二轮感染的总人数为[2(1+x)+ 2(1+x)x]= 2(1+x)2人;∴y=2(1+x)2,故答案为:A.20.(2020九上·沧州开学考)正方形的边长为3,边长增加x,面积增加y,则y关于x的函数解析式为( )A.y=(x+3)2B.y=x2+9C.y=x2+6x D.y=3x2+12x【答案】C【解析】解:原来正方形的边长是3,面积是9,增加后的边长是(x+3),面积是(x+3)2,增加的面积y=(x+3)2−9,整理得y=x2+6x.故答案为:C.21.(2020九上·合肥月考)据省统计局公布的数据,安徽省2019年第二季度GDP总值约为7.9千亿元人民币,若我省第四季度GDP总值为y千亿元人民币,平均每个季度GDP增长的百分率为x,则y关于x的函数表达式是( )A.y=7.9(1+2x)B.y=7.9(1-x)2C.y=7.9(1+x)2D.y=7.9+7.9(1+x)+7.9(1+x)2【答案】C【解析】设平均每个季度GDP增长的百分率为x,根据题意可得:y与x之间的函数关系为:y=7.9(1+x)2.故答案为:y=7.9(1+x)2.22.(2021九上·甘州期末)一个矩形的周长为16cm,设一边长为xcm,面积为y c m2,那么y与x的关系式是 【答案】y=-x2+8x【解析】解:∵长方形的周长为16cm,其中一边长为xcm,∴另一边长为(8-x)cm,∵长方形面积为ycm2,∴y与x的关系式为y=x(8−x)=-x2+8x.故答案为:y=-x2+8x.23.(2019九上·邯郸月考)矩形周长等于40,设矩形的一边长为x,那么矩形面积S与边长x之间的函数关系式为 .【答案】S=−x2+20x【解析】解:设矩形的一边长为x米,另一边长为(20-x)米,∴由矩形的面积公式,得S=x(20−x)=−x2+20x24.(2021九上·温州月考)半径是2的圆,如果半径增加x时,增加的面积s 与x之间的关系表达式为 .【答案】S=πx2+4πx【解析】解:由题意,得S=π(2+x)2-4π=πx2+4πx.故答案为:S=πx2+4πx.。

二次函数(十二大题型综合归纳 )(学生版)--新九年级数学

二次函数(十二大题型综合归纳 )(学生版)--新九年级数学

二次函数(十二大题型综合归纳)题型1:二次函数的概念1以下函数式二次函数的是()A.y=ax2+bx+cB.y=2x-12-4x2C.y=ax2+bx+c a≠0D.y=x-1x-22二次函数y=2x x−3的二次项系数与一次项系数的和为()A.2B.-2C.-1D.-4题型2:二次函数的值3已知二次函数y=x2+2x-5,当x=3时,y=.4已知二次函数y=ax2+2c,当x=2时,函数值等于8,则下列关于a,c的关系式中,正确的是()A.a+2c=8B.2a+c=4C.a-2c=8D.2a-c=45二次函数y=ax2+bx-3a≠0的图象经过点2,-2,则代数式2a+b的值为.题型3:二次函数的条件6已知y=mx m-2+2mx+1是y关于x的二次函数,则m的值为()A.0B.1C.4D.0或47关于x的函数y=a-bx2+1是二次函数的条件是()A.a≠bB.a=bC.b=0D.a=0题型4:列二次函数关系式8已知有n个球队参加比赛,每两队之间进行一场比赛,比赛的场次数为m,则m关于n的函数解析式为.题型5:特殊二次函数的图像和性质9关于二次函数y =-34x 2-1的图像,下列说法错误的是()A.抛物线开口向下B.对称轴为直线x =0C.顶点坐标为0,-1D.当x <0时,y 随x 的增大而减小,当x >0时,y 随x 的增大而增大10抛物线y =34x 2与抛物线y =-34x 2+3的相同点是()A.顶点相同B.对称轴不相同C.开口方向一样D.顶点都在y 轴上11如果二次函数y =ax 2+m 的值恒大于0,那么必有()A.a >0,m 取任意实数B.a >0,m >0C.a <0,m >0D.a ,m 均可取任意实数12对于二次函数y =-3(x -2)2的图象,下列说法正确的是()A.开口向上B.对称轴是直线x =-2C.当x >-2时,y 随x 的增大而减小D.顶点坐标为2,013二次函数:①y =-13x 2+1;②y =12(x +1)2-2;③y =-12(x +1)2+2;④y =12x 2;⑤y =-12(x -1)2;⑥y =12(x -1)2.(1)以上二次函数的图象的对称轴为直线x =-1的是(只填序号);(2)以上二次函数有最大值的是(只填序号)﹔(3)以上二次函数的图象中关于x 轴对称的是(只填序号).14设函数y 1=x -a 12,y 2=x -a 22,y 3=x -a 3 2.直线x =b 的图象与函数y 1,y 2,y 3的图象分别交于点A b ,c 1,B b ,c 2 ,C b ,c 3,()A.若b <a 1<a 2<a 3,则c 2<c 3<c1B.若a 1<b <a 2<a 3,则c 1<c 2<c 3C.若a 1<a 2<b <a 3,则c 3<c 2<c 1 D.若a 1<a 2<a 3<b ,则c 3<c 2<c 115已知二次函数y =(x -m )2,当x ≤1时,y 随x 的增大而减小,则m 的取值范围是.16已知关于x 的一元二次方程x 2-(2m +1)x +m 2-1=0有实数根a ,b ,则代数式a 2-ab +b 2的最小值为.题型6:与特殊二次函数有关的几何知识17在平面直角坐标系中,点A是抛物线y=a x-42+k与y轴的交点,点B是这条抛物线上的另一点,且AB⎳x轴,则以AB为边的等边三角形ABC的周长为.18在平面直角坐标系内有线段PQ,已知P(3,1)、Q(9,1),若抛物线y=(x-a)2与线段PQ有交点,则a的取值范围是.19二次函数y=-x+3的图象上任意二点连线不与x轴平行,则t的取值范围2+h t≤x≤t+2为.题型7:二次函数y=ax2+bx+c的图像和性质20下列抛物线中,与抛物线y=x2-2x+8具有相同对称轴的是()A.y=4x2+2x+4B.y=x2-4xC.y=2x2-x+4D.y=-2x2+4x21若抛物线y=x2+ax+1的顶点在y轴上,则a的值为()A.2B.1C.0D.-222抛物线y=x-1x+5图象的开口方向是(填“向上”或“向下”).23当二次函数y=ax2+bx+c有最大值时,a可能是()A.1B.2C.-2D.324已知抛物线y=x2-2bx+b2-2b+1(b为常数)的顶点不在抛物线y=x2+c(c为常数)上,则c应满足()A.c≤2B.c<2C.c≥2D.c>225已知二次函数y=x2-2mx+m的图象经过A1,y1,B5,y2两个点,下列选项正确的是()A.若m<1,则y1>y2B.若1<m<3,则y1<y2C.若1<m<5,则y1>y2D.若m>5,则y1<y2题型8:二次函数y=ax2+bx+c的最值与求参数范围问题26已知直线y=2x+t与抛物线y=ax2+bx+c a≠0,且点B、B m,n有两个不同的交点A3,5是抛物线的顶点,当-2≤a≤2时,m的取值范围是.27已知抛物线y=x2+bx+c经过点(1,-2),(-2,13).(1)求抛物线解析式及对称轴.(2)关于该函数在0≤x<m的取值范围内,有最小值-3,有最大值1,求m的取值范围.28已知二次函数y=mx2-4m2x-3(m为常数,m>0).(1)若点(-2,9)在该二次函数的图象上.①求m的值:②当0≤x≤a时,该二次函数值y取得的最大值为18,求a的值;(2)若点P(x,y)是该函数图象上一点,当0≤x p≤4时,y p≤-3,求m的取值范围.题型9:根据二次函数y=ax2+bx+c的图像判断有关信息29函数y=ax2+bx+c a≠0与y=kx的图象如图所示,现有以下结论:①c=3;②k=3;③3b+c+6=0;④当1<x<3时,x2+b-1x+c<0.其中正确的为.(填写序号即可)30如图,已知二次函数y=ax2+bx+c a≠0的图象与x轴交于点A-1,0,与y轴的交点在0,-2和0,-1之间(不包括这两点),对称轴为直线x=1,下列结论:①4a+2b+c>0;②4ac-b2<8a;③13<a<23;④b>c;⑤直线y=k i(k i>0,i=1,2,3,⋯,2023)与抛物线所有交点的横坐标之和为4046;其中正确结论的个数有()A.2个B.3个C.4个D.5个题型10:二次函数的应用31如图,有一个截面边缘为抛物线型的水泥门洞.门洞内的地面宽度为8m ,两侧距地面4m 高处各有一盏灯,两灯间的水平距离为6m ,则这个门洞内部顶端离地面的距离为()A.7.5B.8C.649D.64732某炮兵部队实弹演习发射一枚炮弹,经x 秒后的高度为y 米,且时间x 与高度y 的关系为y =ax 2+bx .若此炮弹在第5秒与第16秒时的高度相等,则在下列哪一个时间段炮弹的高度达到最高.()A.第8秒B.第10秒C.第12秒D.第15秒33在2023年中考体育考试前,小康对自己某次实心球的训练录像进行了分析,发现实心球飞行路线是一条抛物线,若不考虑空气阻力,实心球的飞行高度y (单位:米)与飞行的水平距离x (单位:米)之间具有函数关系y =-116x 2+58x +32,则小康这次实心球训练的成绩为()A.14米B.12米C.11米D.10米34某池塘的截面如图所示,池底呈抛物线形,在图中建立平面直角坐标系,并标出相关数据(单位:m ).有下列结论:①AB =30m ;②池底所在抛物线的解析式为y =145x 2-5;③池塘最深处到水面CD 的距离为3.2m ;④若池塘中水面的宽度减少为原来的一半,则最深处到水面的距离变为1.2m .其中结论错误的是()A.①B.②C.③D.④35某建筑工程队借助一段废弃的墙体CD,CD长为18米,用76米长的铁栅栏围成两个相连的长方形仓库,为了方便取物,在两个仓库之间留出了1米宽的缺口作通道,在平行于墙的一边留下一个1米宽的缺口作小门,现有如下两份图纸(图纸1点A在线段DC的延长线上,图纸2点A在线段DC上),设AB =x米,图纸1,图纸2的仓库总面积分别为y1平方米,y2平方米.(1)分别写出y1,y2与x的函数关系式;(2)小红说:“y1的最大值为384.y2的最大值为507.”你同意吗?请说明理由.题型11:二次函数的解答证明题36已知二次函数y=-x2+bx+c.(1)当b=4,c=3时,①求该函数图象的顶点坐标.②当-1≤x≤3时,求y的取值范围.(2)当x≤0时,y的最大值为2;当x>0时,y的最大值为3,求二次函数的表达式.37如图,已知二次函数y=-12x2+bx+c的图象与x轴交于A1,0,B,与y轴交于点C0,-52.CD∥x轴交抛物线于点D.(1)求b,c的值.(2)已知点E在抛物线上且位于x轴上方,过E作y轴的平行线分别交AB,CD于点F,G,且GE= 2GD,求点E的坐标.38在直角坐标系中,设函数y=ax2+bx+c(a,b,c是常数,a≠0).(1)已知a=1.①若函数的图象经过0,3和-1,0两点,求函数的表达式;②若将函数图象向下平移两个单位后与x轴恰好有一个交点,求b+c的最小值.(2)若函数图象经过-2,m,-3,n和x0,c,且c<n<m,求x0的取值范围.题型12:二次函数压轴题39在平面直角坐标系中,抛物线y=-x2-4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为-5,0.(1)求点C的坐标;(2)如图1,若点P是第二象限内抛物线上一动点,求三角形ACP面积的最大值;(3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.。

初中数学《二次函数》重难点题型汇编含解析

初中数学《二次函数》重难点题型汇编含解析

二次函数重难点题型汇编【题型01:二次函数的概念】【题型02:二次函数的条件】【题型03:列处二次函数关系式】【题型04:特殊二次函数的图像和性质】【题型05:与特殊二次函数有关的几何知识】【题型06:二次函数y=ax2+bx+c的图像和性质】【题型07:二次函数y=ax2+bx+c的最值与求参数范围问题】【题型08:根据二次函数y=ax2+bx+c的图像判断有关的信息】【题型09:二次函数的平移变换】【题型10:二次函数的交点个数问题】【题型01:二次函数的概念】1下列函数是关于x的二次函数的是()A.y=x2+1x2B.y=x1-xC.y=x+12-x2 D.y=ax2+bx+c【答案】B【分析】本题考查了二次函数的定义,根据形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数是二次函数,判断即可,熟练掌握二次函数的一般形式是解题的关键.【详解】解:A、y=x2+1x2的分母含有自变量,不是y关于x的二次函数,故A不符合题意;B、y=x1-x=-x2+x,是y关于x的二次函数,故B符合题意;C、y=x+12-x2=2x+1,不是y关于x的二次函数,故C不符合题意;D、y=ax2+bx+c,当a=0时不是二次函数,故D不符合题意;故选:B.2下列各式中,是二次函数的是()A.y=2x+1B.y=-2x+1C.y=x2+2D.y=2x2-1x【答案】C【分析】本题主要考查了二次函数的定义,解题的关键是掌握一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.【详解】解:A、y=2x+1,是一次函数,故本选项不合题意;B、y=-2x+1,是一次函数,故本选项不合题意;C、y=x2+2,是二次函数,故本选项符合题意;D、y=2x2-1x,右边中-1x不是整式,不是二次函数,故本选项不合题意.故选:C.3下列函数解析式中,y是x的二次函数的是()A.y=ax2+bx+cB.y=-5x+1C.y=-23x2+x-34D.y=2x2-1x【答案】C【分析】根据:形如y=ax2+bx+c a≠0,这样的函数叫做二次函数,进行判断即可.【详解】解:A、当a=0时,y=ax2+bx+c不是二次函数,不符合题意;B、y=-5x+1,是一次函数,不是二次函数,不符合题意;C、y=-23x2+x-34,是二次函数,符合题意;D、y=2x2-1x,不是二次函数,不符合题意;故选C.4如图,分别在正方形ABCD边AB、AD上取E、F点,并以AE、AF的长分别作正方形.已知DF= 3,BE=5.设正方形ABCD的边长为x,阴影部分的面积为y,则y与x满足的函数关系是()A.一次函数关系B.二次函数关系C.正比例函数关系D.反比例函数关系【答案】A【分析】本题考查函数关系的识别,完全平方公式,列函数关系式,根据题意表示出AE、AF的长度,再结合阴影部分的面积等于以AE、AF的长的正方形的面积之差可得y=4x-16,理解题意,列出函数关系式是解决问题的关键.【详解】解:由题意可得:AE=AB-BE=x-5,AF=AD-DF=x-3,则阴影部分的面积为y=x-32-x-52=x2-6x+9-x2+10x-25=4x-16,即:y=4x-16,为一次函数,故选:A.【题型02:二次函数的条件】5抛物线y=ax2+a-2x-a-1经过原点,那么a的值等于()A.0B.1C.-1D.35【答案】C【分析】本题考查了抛物线与点的关系,熟练掌握把(0,0)代入函数解析式,求解关于a的一元一次方程是解题的关键.【详解】解:∵抛物线y=ax2+a-2x-a-1经过原点,∴a≠0-a-1=0,解得:a=-1,故选C.6已知y=m-1x m2+1-2x+5是二次函数,则m的值为()A.1或-1B.1C.-1D.0【答案】C【分析】本题考查了二次函数的定义,根据二次函数y=ax2+bx+c的定义条件是:a、b、c为常数,a≠0,自变量最高次数为2即可求解.【详解】解:根据二次函数的定义:m2+1=2,且m-1≠0,解得:m=1或m=-1,又∵m≠1,∴m=-1,故选:C.7已知二次函数y=m-2x m2-2+3x+1,则m=.【答案】-2【分析】此题考查了二次函数的定义,根据二次函数的定义:形如y=ax2+bx+c a≠0,这样的函数叫做二次函数,得到m-2≠0,m2-2=2,进行求解即可.解题的关键是熟练掌握二次函数的定义.【详解】解:∵函数y=m-2x m2-2+3x+1是二次函数,∴m-2≠0,m2-2=2,∴m=-2.故答案为:-2.【题型03:列处二次函数关系式】8某厂今年一月份新产品的研发资金为9万元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年一季度新产品的研发资金y(元)关于x的函数关系式为()A.y=91+x2 B.y=9+9x+x2C.y=9+91+x+91+x2 D.y=91+x2【答案】C【分析】此题主要考查了根据实际问题抽象出二次函数解析式.根据题意得到二月的研发资金为:91+x,三月份新产品的研发资金为:91+x2,再求和即可,正确表示出三月份的研发资金.【详解】解:根据题意可得二月的研发资金为:91+x,三月份新产品的研发资金为:91+x2,今年一季度新产品的研发资金y=9+91+x+91+x2,故选:C.9已知一正方体的棱长是3cm,设棱长增加xcm时,正方体的表面积增加ycm2,则y与x之间的函数关系式是()A.y=6x2-36xB.y=-6x2+36xC.y=x2+36xD.y=6x2+36x【答案】D【分析】本题考查了二次函数的应用,根据题意直接列式即可作答.【详解】根据题意有:y=6x+32-6×32=6x2+36x,故选:D.10某商店购进某种商品的价格是7.5元/件,在一段时间里,单价是13.5元,销售量是500件,而单价每降低1元就可多售出200件,当销售价为x元/件(7.5<x<13.5)时,获取利润y元,则y与x的函数关系为()A.y=x-7.5500+xB.y=13.5-x500+200xC.y=x-7.5500+200xD.以上答案都不对【答案】D【分析】当销售价为x元/件时,每件利润为(x-7.5)元,销售量为[500+200×(13.5-x)],根据利润=每件利润×销售量列出函数关系式即可.【详解】解:由题意得w=(x-7.5)×[500+200×(13.5-x)],故选:D.【点睛】题考查了根据实际问题列二次函数关系式,用含x的代数式分别表示出每件利润及销售量是解题的关键.11正方形边长3,若边长增加x,增加后正方形的面积为y,y与x的函数关系式为.【答案】y=x+32/y=3+x2【分析】本题考查了列二次函数关系式,根据正方形面积等于边长的平方,即可求解.【详解】解:依题意,y=x+32,故答案为:y=x+32.【题型04:特殊二次函数的图像和性质】12已知函数y=-(x-2)2的图象上有A-32,y1,B3,y2,C4,y3三点,则y1,y2,y3的大小关系是()A.y 1<y 2<y 3B.y 2<y 1<y 3C.y 1<y 3<y 2D.y 2<y 3<y 1【答案】C【分析】本题考查二次函数的性质,当开口向上时,距离对称轴越近,函数值越小;当开口向下时,距离对称轴越近,函数值越大,解题的关键是熟练掌握二次函数的图象与性质.先找到对称轴和开口方向,根据点到对称轴的距离比较函数值的大小即可.【详解】解:∵函数y =-(x -2)2,∴图象开口向下,对称轴为直线x =2,∴图象上的点距离对称轴越近,函数值越大,2--32=72,3-2 =1,4-2 =2,∵1<2<72,∴y 1<y 3<y 2,故选:C .13对于二次函数y =2x -1 2+3,下列说法正确的是()A.开口方向向下B.顶点坐标(1,-3)C.对称轴是y 轴D.当x =1时,y 有最小值【答案】D【分析】本题考查了二次函数的性质:根据抛物线的性质,由a =2得到图象开口向上,根据顶点式得到顶点坐标为(1,3),对称轴为直线x =1,当x =1时,y 有最小值3,再进行判断即可.【详解】解:二次函数y =2(x -1)2+3的图象开口向上,顶点坐标为(1,3),对称轴为直线x =1,当x =1时,y 有最小值3.故选项D 正确,故选:D14下列抛物线中,对称轴为直线x =12的是()A.y =x -122B.y =12x 2C.y =x 2+12D.y =x +122-3【答案】A【分析】本题考查了抛物线求对称轴方程的公式:x =-b2a.利用抛物线对称轴的公式即可确定每一个函数的对称轴,然后即可确定选项.【详解】解:A 、y =x -122的对称轴为直线x =12,故选项符合题意.B 、y =12x 2的对称轴为直线x =0,故选项不符合题意.C 、y =x 2+12的对称轴为直线x =0,故选项不符合题意.D、y=x+122-3的对称轴为直线x=-12,故选项不符合题意.故选:A.15在二次函数y=-x-12+3的图象中,若y随x的增大而减小,则x的取值范围是()A.x>-1B.x<-1C.x>1D.x<1【答案】C【分析】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键;由题可知,函数图象开口向下,对称轴为x=1,在对称轴右侧,y随x的增大而减小;在对称轴左侧,y随x 的增大而增大,据此即可得到答案.【详解】解:由二次函数的解析式得,抛物线开口向下,对称轴为x=1,当x>1时,y 随 x 的增大而减小.故选:C .16抛物线y=-2x+12+2的顶点的坐标是.【答案】(-1,2)【分析】本题考查了二次函数的性质,根据顶点式y=a(x-h)2+k的顶点坐标为h,k,即可求解.【详解】解:抛物线y=-2x+12+2的顶点坐标是(-1,2),故答案为:(-1,2).17点A-3,y1,B2,y2均在二次函数y=-x2+2的图象上,则y1y2.(填“>”或“<”)【答案】<【分析】本题主要考查了二次函数的图象和性质.根据开口向下的二次函数,离对称轴越远函数值越小进行求解即可.【详解】解:∵二次函数解析式为y=-x2+2,∴二次函数开口向下,对称轴为y轴,∴离对称轴越远函数值越小,∵0--3=3>2-0=2,∴y1<y2,故答案为:<.【题型05:与特殊二次函数有关的几何知识】18如图,⊙O的半径为2,C1是函数y=12x2的图象,C2是函数y=-12x2的图象,则阴影部分的面积是()A.4πB.2πC.πD.无法确定【答案】B【分析】据函数y =12x 2与函数y =-12x 2的图象关于x 轴对称,得出阴影部分面积即是半圆面积求出即可.【详解】解:∵C 1是函数y =-12x 2的图象,C 2是函数y =-12x 2的图象,且当x 相等时,两个函数的函数值互为相反数,∴函数y =12x 2的图象与函数y =-12x 2的图象关于x 轴对称,∴阴影部分面积即是半圆面积,∴面积为:12π×22=2π.故选:B .【点睛】此题主要考查了二次函数的图象,根据已知得出阴影部分面积即是半圆面积是解题关键.19如图,已知点A 1,A 2,...,A 2024在函数y =2x 2位于第二象限的图像上,点B 1,B 2,...,B 2024在函数y =2x 2位于第一象限的图像上,点C 1,C 2,...,C 2024在y 轴的正半轴上,若四边形O 1A 1C 1B 1,C 1A 2C 2B 2,...,C 2023A 2024C 2024B 2024都是正方形,则正方形C 2023A 2024C 2024B 2024的边长为()A.1012B.10122C.20232D.202322【答案】B【分析】根据正方形对角线平分一组对角可得OB 1与y 轴的夹角为45°,然后表示出OB 1的解析式,再与抛物线解析式联立求出点B 1的坐标,然后求出OB 1的长,再根据正方形的性质求出OC 1,表示出C 1B 2的解析式,与抛物线联立求出B 2的坐标,然后求出C 1B 2的长,再求出C 1C 2的长,然后表示出C 2B 3的解析式,与抛物线联立求出B 3的坐标,然后求出C 2B 3的长,从而根据边长的变化规律解答即可.【详解】解:∵OA 1C 1B 1是正方形,∴OB 1与y 轴的夹角为45°,∴OB 1的解析式为y =x ,联立方程组得:y =xy =2x 2 ,解得x 1=0y 1=0 ,x 2=12y 2=12.∴B 点的坐标是:12,12,∴OB 1=122+122=22=1×22;同理可得:正方形C 1A 2C 2B 2的边长C 1B 2=2×22;⋯依此类推,正方形C 2023A 2024C 2024B 2024的边长是为2024×22=10122.故选B .【点睛】本题考查了二次函数的对称性,正方形的性质,表示出正方形的边长所在直线的解析式,与抛物线解析式联立求出正方形的顶点的坐标,从而求出边长是解题的关键.20如图,正方形OABC 有三个顶点在抛物线y =14x 2上,点O 是原点,顶点B 在y 轴上则顶点A 的坐标是()A.2,2B.2,2C.4,4D.22,22【答案】C【分析】连接AC 交y 轴于点D ,设点B 坐标为0,m ,根据正方形的性质可得OD =12m ,AD =12m ,从而得到A 12m ,12m,再代入y =14x 2,即可求解.【详解】解:如图,连接AC 交y 轴于点D ,设点B 坐标为0,m ,∵四边形OABC 是正方形,∴OD =12OB ,CD =AD ,AC ⊥y 轴,∴OD =12m ,AD =12m ,∴A 12m ,12m,∵A 在抛物线y =14x 2上,∴12m =14×12m 2,解得m =0(舍去)或8,∴点A 的坐标为4,4 .故选:C .【点睛】本题主要考查了二次函数的性质,正方形的性质,利用数形结合思想解答是解题的关键.21如图,在平面直角坐标系中,正方形ABCD 的顶点A 、B 、C 的坐标分别为1,1 、1,4 、4,4 .若抛物线y =ax 2的图象与正方形ABCD 有公共点,则a 的取值范围是.【答案】116≤α≤4【分析】本题考查二次函数图象与系数的关系,二次函数图象上的点的坐标特征等知识,求出抛物线经过两个特殊点时的a 的值即可解决问题.【详解】解:∵正方形ABCD 的顶点A 、B 、C 的坐标分别为1,1 、1,4 、4,4 .∴D 4,1 ,当抛物线经过点B 1,4 时,则a =4,当抛物线经过D4,1时,a=1 16,观察图象可知,抛物线y=ax2的图象与正方形ABCD有公共点,则a的取值范围是116≤α≤4,故答案为:116≤α≤4.【题型06:二次函数y=ax2+bx+c的图像和性质】22将抛物线y=x2-4x+3绕原点O顺时针旋转180°,则旋转后的函数表达式为()A.y=x2+4x-3B.y=-x2+4x+3C.y=-x2-4x-3D.y=-x2+4x-3【答案】C【分析】本题考查了二次函数的旋转变换,熟练掌握二次函数的性质和旋转的性质是解题的关键.设P x,y为旋转之后所得抛物线上的一点,P绕原点O顺时针旋转180°点P -x,-y,则P 是在旋转后的抛物线上,然后代入化简即可解答.【详解】解:设P x,y为旋转之后所得抛物线上的一点,P绕原点O顺时针旋转180°点P -x,-y,由题意可知:P -x,-y是在抛物线y=x2-4x+3上,即:-y=x2+4x+3,化简得:y=-x2-4x-3.故选C.23直线y=ax+b与抛物线y=ax2+bx+b在同一坐标系里的大致图象正确的是()A. B. C. D.【答案】D【分析】本题考查二次函数的图象、一次函数的图象,根据题意和各个选项中的函数图象,可以得到一次函数中a和b的正负情况和二次函数图象中a、b的正负情况,然后即可判断哪个选项中的图象符合题意,解题的关键是明确题意,利用数形结合的思想解答.【详解】解:A、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b<0,故选项不符合题意;B、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b<0,故选项不符合题意;C、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b>0,ab>0,而抛物线对称轴位于y轴右侧,则ab<0,故选项不符合题意;D、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b>0,对称轴位于y轴左侧,则ab>0,故选项符合题意;故选:D.24已知一个二次函数y=ax2+bx+c的自变量x与函数y的几组对应值如下表,x⋯-4-2035⋯y ⋯-24-80-3-15⋯则下列关于这个二次函数的结论正确的是()A.图象的开口向上B.当x >0时,y 的值随x 的值增大而增大C.图象经过第二、三、四象限D.图象的对称轴是直线x =1【答案】D【分析】本题考查了待定系数法求二次函数解析式,二次函数的性质.先利用待定系数法求得二次函数解析式,再根据二次函数的性质逐一判断即可.【详解】解:由题意得4a -2b +c =-8c =09a +3b +c =-3 ,解得a =-1c =0b =2,∴二次函数的解析式为y =-x 2+2x =-x -1 2+1,∵a =-1<0,∴图象的开口向下,故选项A 不符合题意;图象的对称轴是直线x =1,故选项D 符合题意;当0<x <1时,y 的值随x 的值增大而增大,当x >1时,y 的值随x 的值增大而减小,故选项B 不符合题意;∵顶点坐标为1,1 且经过原点,图象的开口向下,∴图象经过第一、三、四象限,故选项C 不符合题意;故选:D .25如图,平面直角坐标系中有两条抛物线,它们的顶点P ,Q 都在x 轴上,平行于x 轴的直线与两条抛物线相交于A ,B ,C ,D 四点,若AB =10,BC =5,CD =6,则PQ 的长度为()A.7B.8C.9D.10【答案】B【分析】分别作出两条抛物线的对称轴PM ,QN ,交AD 于点M ,N ,得四边形PMNQ 是矩形,利用抛物线的对称性计算即可.本题考查了抛物线的性质,矩形的性质,熟练掌握抛物线的性质是解题的关键.【详解】分别作出两条抛物线的对称轴PM ,QN ,交AD 于点M ,N ,∴四边形PMNQ 是矩形,∴MN =PQ ,∵AB=10,BC=5,CD=6,∴MA=MC=12AC=12AB+BC=152,BN=ND=12BD=12CD+BC=112,∴MN=AD-AM-ND=AB+BC+CD-AM-ND,=21-112-152=8,∴PQ=8,故选B.26二次函数y=ax2+bx+c的图象如图所示,则关于x的一元二次方程x2-bx+a=0的根的情况是()A.只有一个实数根B.没有实数根C.有两个不相等的实数根D.有两个相等的实数根【答案】C【分析】此题考查了二次函数的图象和性质,一元二次方程的判别式,首先根据二次函数的图象得到a<0,b>0,然后判断一元二次方程的判别式求解即可.【详解】∵二次函数图象开口向下,对称轴大于零,∴a<0,-b2a>0∴b>0∴方程x2-bx+a=0的判别式Δ=b2-4ac=-b2-4×1×a=b2-4a>0∴关于x的一元二次方程x2-bx+a=0的根的情况是有两个不相等的实数根.故选:C.27抛物线y=x2+14x+54的顶点坐标是()A.7,5B.7,-5C.-7,5D.-7,-5【答案】C【分析】依据题意,由抛物线为y=x2+14x+54=(x+7)2+5,从而可以判断得解.本题主要考查了二次函数图象与性质,解题时要熟练掌握并能利用顶点式进行判断是关键.【详解】解:由题意,∵抛物线为y=x2+14x+54=(x+7)2+5,∴顶点为-7,5.故选:C.28用配方法将二次函数y=-x2-2x-3化为y=a x-h2+k的形式为()A.y=-x-12-2 D.y=x-12+22-4 C.y=-x+12+3 B.y=x+1【答案】C【分析】本题考查了二次函数的三种表达形式,正确运用配方法把二次函数的一般式化为顶点式是解题的关键.运用配方法即可将其化为顶点式.【详解】解:y=-x2-2x-3=-x2+2x+1-2=-x+12-2故选:C.29如图,抛物线y=ax2+bx+c的对称轴为x=1,点P、点Q是抛物线与x轴的两个交点,若点P的坐标为-1,0,则点Q的坐标为()A.0,-1D.3,0C.4,0B.2,0【答案】D【分析】本题考查二次函数的图象和性质,由题意可得点P、点Q关于对称轴对称即可求解.【详解】解:由题意得:点P、点Q关于对称轴对称,∴点Q的坐标为3,0,故选:D.【题型07:二次函数y=ax2+bx+c的最值与求参数范围问题】30已知抛物线y=-x2+2x+1在自变量x的值满足t≤x≤t+2时,与其对应的函数值y的最小值为-7,求此时t的值为()A.1或-2B.2或-2C.3或-1D.-1或-2【答案】B【分析】本题考查二次函数的图象和性质,根据二次函数的性质,分2种情况进行讨论求解即可.【详解】解:∵y=-x2+2x+1=-x-12+2,∴抛物线的开口向下,对称轴为直线x=1,∴抛物线的上的点离对称轴越远,函数值越小,∵t≤x≤t+2时,与其对应的函数值y的最小值为-7,分两种情况:①当t-1≤t+2-1时,即:t≥0时,当x=t+2时,y=-t+22+2t+2+1=-7,解得:t=-4(舍去)或t=2;②当t-1>t+2-1时,即:t<0时,当x=t时,y=-t2+2t+1=-7,解得:t=4(舍去)或t=-2;综上:t的值为2或-2;故选B.31已知二次函数y=x2-2x-1≤x≤t-1,当x=-1时,函数取得最大值;当x=1时,函数取得最小值,则t的取值范围是()A.0<t≤2B.0<t≤4C.2≤t≤4D.t≥2【答案】C【分析】本题考查了二次函数的图象与性质,二次函数的最值等知识.熟练掌握二次函数的图象与性质是解题的关键.由y=x2-2x=x-12-1,可知图象开口向上,对称轴为直线x=1,顶点坐标为1,-1,当x=-1时,y =3,即-1,3关于对称轴对称的点坐标为3,3,由当x=-1时,函数取得最大值;当x=1时,函数取得最小值,可得1≤t-1≤3,计算求解,然后作答即可.【详解】解:∵y=x2-2x=x-12-1,∴图象开口向上,对称轴为直线x=1,顶点坐标为1,-1,当x=-1时,y=3,∴-1,3关于对称轴对称的点坐标为3,3,∵当x=-1时,函数取得最大值;当x=1时,函数取得最小值,∴1≤t-1≤3,解得,2≤t≤4,故选:C.32已知抛物线y=x2+(2a-1)x-3,当-1≤x≤3时,函数最大值为1,则a值为()A.-12B.-13C.-12或-13D.-1或-13【答案】D【分析】根据顶点的位置分两种情况讨论即可.【详解】解:∵y=x2+(2a-1)x-3,∴图象开口向上,对称轴为直线x=-2a-12,∵-1≤x≤3,∴当-2a-12≤1时,即a≥-12,x=3时有最大值1,∴9+(2a-1)×3-3=1,∴a=-13,当-2a-12≥1时,即a≤-12,x=-1时有最大值1,∴1+(2a-1)×(-1)-3=1,∴a=-1,∴a=-1或-13,故选:D.【点睛】本题考查了二次函数性质以及二次函数的最值,分类讨论是解题的关键.33已知二次函数y=x-m2-1(m为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y 的最小值为3,则m的值为()A.0或3B.0或7C.3或4D.4或7【答案】B【分析】利用二次函数的性质,分三种情况求解即可.【详解】解:∵y=x-m2-1,∴当x=m时,y的最小值为-1.当m<2时,在2≤x≤5中,y随x的增大而增大,∴2-m2-1=3,解得:m1=0,m2=4(舍去);当2≤m≤5时,y的最小值为-1,舍去;当m>5时,在2≤x≤5中,y随x的增大而减小,∴5-m2-1=3,解得:m1=3(舍去),m2=7.∴m的值为0或7.故选:B.【点睛】本题考查了二次函数的性质,以及二次函数图象上点的坐标特征,分三种情况求解是解题的关键.34已知二次函数y=mx2-2mx+2(m≠0)在-2≤x≤2时有最小值-2,则m=()A.-4或-12B.4或-12C.-4或12D.4或12【答案】B【分析】本题考查了二次函数的性质,根据解析式可得对称轴为直线x=1,进而分m>0和m<0两种情况讨论,根据二次函数的性质,即可求解.【详解】解:∵二次函数解析式为y=mx2-2mx+2(m≠0),∴二次函数对称轴为直线x=-2m-2m=1,当m>0时,∵在-2≤x≤2时有最小值-2,∴当x=1时,y=m-2m+2=-2,∴m=4;当m<0时,∵在-2≤x≤2时有最小值-2,∴当x=-2时,y=4m+4m+2=-2,∴m=-12;综上所述,m=4或m=-1 2,故选:B.35已知二次函数y=-x2-2x+2,当m≤x≤m+2时,函数y的最大值是3,则m的取值范围是()A.m≥-1B.m≤2C.-3≤m≤-1D.0≤m≤2【答案】C【分析】本题主要考查二次函数的性质,依据题意,由y=-x2-2x+2=-x+12+3,可得当x=-1时,y取最大值是3,又当m≤x≤m+2时,函数y的最大值是3,故m≤-1≤m+2,进而计算可以得解.【详解】解:由题意,∵y=-x2-2x+2=-x+12+3,∴当x=-1时,y取最大值是3.又当m≤x≤m+2时,函数y的最大值是3,∴m≤-1≤m+2.∴-3≤m≤-1.故选:C.【题型08:根据二次函数y=ax2+bx+c的图像判断有关的信息】36已知二次函数y=ax2+bx+c a≠0的图象如图所示,对称轴为x=32,且经过点-1,0,下列结论:①ab<0;②8b-3c=0;③若y≤c,则0≤x≤3.其中正确的有()A.0个B.1个C.2个D.3个【答案】C【分析】本题考查了二次函数的性质及二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.由对称轴为x =32即可判断①,由抛物线经过点-1,0 ,得出a -b +c =0,对称轴x =-b 2a =32,得出a =-13b ,代入即可判断②;根据二次函数的性质以及抛物线的对称性即可判断③.【详解】解:∵对称轴x =-b 2a =32,∴b =-3a ,∴ab =-3a 2<0,①正确;∵经过点-1,0 ,∴a -b +c =0,∵对称轴x =-b 2a =32,∴a =-13b ,∴-13b -b +c =0,∴3c =4b ,∴4b -3c =0,故②错误;∵对称轴x =32,∴点0,c 的对称点为3,c ,∵开口向上,∴y ≤c 时,0≤x ≤3.故③正确;综上所述,正确的有2个.故选:C .37二次函数y =ax 2+bx +c 的图像如图所示,下列结论错误的是()A.y有最小值B.当-1<x<2时,y<0C.a+b+c>0D.当x<-1时,y随x的增大而减小【答案】C【分析】本题考查了抛物线的图像及其性质,根据性质,结合图像判断解答即可.【详解】解:A、由图像可知函数有最小值,故正确;B、由抛物线可知当-1<x<2时,y<0,故正确;C、当x=1时,y<0,即a+b+c<0,故错误;D、由图像可知在对称轴的左侧y随x的增大而减小,故正确.故选:C.38二次函数y=ax2+bx+c的图象如图所示,与x轴左侧交点为-1,0,对称轴是直线x=1.下列结论:①abc>0;②3a+c>0;③a+c2-b2<0;④a+b≤m am+b(m为实数).其中结论正确的为()A.①④B.②③④C.①②④D.①②③④【答案】A【分析】本题考查了二次函数图象与系数的关系,掌握二次函数的性质是解题关键.根据抛物线开口方向,对称轴位置,以及与y轴交点位置,可判断①结论;由抛物线对称轴得到b=-2a,再结合当x=-1时,y= 0,可判断②结论;根据平方差公式展开,可判断③结论;根据抛物线的最小值,可判断④结论.【详解】解:由图象可知,抛物线开口向上,对称轴在y轴右侧,与y轴交点在负半轴,∴a>0,a、b异号,c<0,∴b<0,∴abc>0,①结论正确;∵抛物线对称轴是直线x=1,=1,∴-b2a∴b=-2a,由图象可知,当x=-1时,y=0,∴a-b+c=a--2a+c=3a+c=0,②结论错误;由图象可知,当x=1时,y<0,∴a+b+c<0,又∵a-b+c=0,∴a+ca+c-b=0,③结论错误;2-b2=a+c+b∵当x=1时,y=a+b+c为最小值,∴a+b+c≤am2+bm+c,∴a+b≤m am+b,④结论正确,故选:A.39已知二次函数y=ax2+bx+c的部分图象如图所示,则下列结论正确的是()A.abc>0B.关于x的一元二次方程ax2+bx+c=0的根是x1=-2,x2=3C.a+b=c-bD.a+4b=3c【答案】C【分析】本题考查了二次函数的图象和性质;熟练掌握二次函数的图象和性质是解题的关键.根据二次函数的图象先判定a,b,c的符号,再结合对称轴求解抛物线与x轴的交点坐标,再进一步逐一分析即可.【详解】解:由函数图像可知开口向下,与y轴交于正半轴,∴a<0,c>0,∵对称轴为x=-b=1,2a∴b>0,∴abc <0,故A 不符合题意;∵抛物线与x 轴交于3,0 ,对称轴为直线x =1,∴抛物线与x 轴的另一个交点为-1,0 ,∴关于x 的一元二次方程ax 2+bx +c =0的根是x 1=-1,x 2=3;故B 不符合题意;∵抛物线与x 轴交于3,0 ,-1,0 ,对称轴为直线x =1,∴b =-2aa -b +c =09a +3b +c =0,解得:b =-2ac =-3a ,∴∵a +b =a -2a =-a ,c -b =-3a --2a =-a ∴a +b =c -b ,故C 符合题意;∴a +4b =a +-8a =-7a ≠-9a ;∴a +4b =3c 错误,故D 不符合题意;故选:C .40如图,二次函数y =ax 2+bx +c a ≠0 的图象与x 轴交于点A 3,0 ,与y 轴交于点B ,对称轴为直线x =1,下列四个结论:①bc <0;②3a +2c <0;③ax 2+bx ≥a +b ;④若-2<c <-1,则-83<a +b +c <-43,其中正确结论的个数为()A.1个B.2个C.3个D.4【答案】C【分析】此题考查了二次函数的图象和性质,数形结合是解题的关键,利用开口方向和对称轴的位置即可判断①,利用对称轴和特殊点的函数值即可判断②,利用二次函数的最值即可判断③,求出c =-3a ,进一步得到13<a <23,又根据b =-2a 得到a +b +c =a -2a -3a =-4a ,即可判断④.【详解】解:①∵函数图象开口方向向上,∴a >0;∵对称轴在y 轴右侧,∴a 、b 异号,∴b <0,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴bc>0,故①错误;②∵二次函数y=ax2+bx+c的图象与x轴交于点A3,0,与y轴交于点B,对称轴为直线x=1,∴-b2a=1,∵b=-2a,∴x=-1时,y=0,∴a-b+c=0,∴3a+c=0,∴3a+2c<0,故②正确;③∵对称轴为直线x=1,a>0,∴y=a+b+c最小值,ax2+bx+c≥a+b+c,∴ax2+bx≥a+b,故③正确;④∵-2<c<-1,∴根据抛物线与相应方程的根与系数的关系可得x1x2=-1×3=-3=c a,∴c=-3a,∴-2<-3a<-1,∴1 3<a<23,∵b=-2a,∴a+b+c=a-2a-3a=-4a,∴-83<a+b+c<-43,故④正确;综上所述,正确的有②③④,故选:C【题型09:二次函数的平移变换】41将抛物线y=2(x+1)2-3向右平移2个单位,再向上平移1个单位得到的抛物线解析式为()A.y=2(x+3)2-4B.y=2(x+3)2-2C.y=2(x-1)2-2D.y=2x-1【答案】C【分析】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的规律是解答此题的关键.根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=2(x+1)2-3向右平移2个单位,向上平移1个单位得到的抛物线解析式是:y=2 (x+1-2)2-3+1,即y=2(x-1)2-2.故选:C.42将抛物线y=-3x2+2向左平移1个单位,再向下平移3个单位后所得到的抛物线为()A.y=-3(x-1)2-3B.y=-3(x-1)2-1C.y=-3(x+1)2-3D.y=-3(x+1)2-1【答案】D【分析】此题主要考查了二次函数图象的平移,根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=-3x2+2向左平移1个单位所得直线解析式为:y=-3(x+1)2+2;再向下平移3个单位为:y=-3(x+1)2+2-3,即y=-3(x+1)2-1.故选:D.【题型10:二次函数交点的个数问题】43如图所示,已知函数y1=x2x≤28xx>2的图象与一次函数y2=x+b的图象有三个交点,则b的取值范围是()A.-14≤b≤2 B.b>-14C.-14≤b<2 D.-14<b<2【答案】D【分析】此题考查了一次函数和二次函数图象交点问题,一元二次方程的判别式,首先根据题意画出图象,然后求出A2,4,代入y2=x+b求出b=2;然后得到当一次函数y2=x+b的图象与y=x2相切时,得到x2-x-b=0的Δ=b2-4ac=0,进而求出b=-14,然后根据图象求解即可.【详解】解:如图所示,当x=2时,函数y=x2=22=4,∴A2,4,当一次函数y2=x+b的图象经过点A时,∴4=2+b,解得b=2;当一次函数y2=x+b的图象与y=x2相切时,∴x2=x+b,即x2-x-b=0,∴Δ=b2-4ac=0,∴-12-4×1×-b=0,解得b=-1 4,∴由图象可得,当-14<b<2时,函数y1=x2x≤28xx>2的图象与一次函数y2=x+b的图象有三个交点.故选:D.44如图,二次函数y=-x2+x+2及一次函数y=x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数,当直线y=x+m与新图象有4个交点时,m的取值范围是()A.14<m<-3 B.254<m≤1 C.-2<m<1 D.-3<m<-2【答案】D【分析】如图所示,过点B作直线y=x+m,将直线向下平移到恰在点C处相切,则一次函数y=x+m在两条直线之间时,两个图象有4个交点,即可求解【详解】解:在y=-x2+x+2中,当y=0,0=-x2+x+2,解得x1=-1,x2=2,A-1,0,B2,0,当x=0时,y=2,∴原抛物线与y轴交点坐标为0,2,∴翻折后与y轴的交点坐标为0,-2,如图,当直线y=x+m经过点B时,直线y=x+m与新图有3个交点,把B2,0代入y=x+m中,得m=-2,∵抛物线y=-x2+x+2翻折到x轴下方的部分的解析式为:-y=-x2+x+2,∴翻折后的部分解析式为:y=x2-x-2-1<x<2,当直线y=x+m与抛物线y=x2-x-2-1<x<2只有一个交点C时,直线y=x+m与图象有3个交点,把y=x+m代入y=x2-x-2-1<x<2中,得到方程x+m=x2-x-2有两个相等的实数根,整理得x2-2x-2-m=0,∴Δ=-22-4×1×-2-m=0,解得m=-3,∴当直线y=x+m与新图象有4个交点时,m的取值范围是-3<m<-2.故选:D.【点睛】本题主要考查了二次函数与一次函数综合应用,理解题意,找准临界点是解题关键.45抛物线y=-x2+kx+k-54与x轴的一个交点为A(m,0),若-2≤m≤1,则实数k的取值范围是()A.-214≤k≤1 B.k≤-214或k≥1 C.-5≤k≤98D.k≤-5或k≥98【答案】B【分析】根据抛物线有交点,则-x2+kx+k-54=0有实数根,得出k≤-5或k≥1,分类讨论,分别求得当x=-2和x=1时k的范围,即可求解.。

二次函数常见题型

二次函数常见题型
下列说法:
①abc<0;②2a﹣b=0;③4a+2b+c<0;
④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.
其中说法正确的是
5、如图所示,二次函数 的图象中,王刚同学观察得
出了下面四条结论:① ;② ;③ ;④ .
其中错误的有
6、已知二次函数 的图象如图所示,有下列结论:① ;
②2a+b=0;③ ;④ .其中正确的有
题型四:抛物线的图形变换问题(平移、旋转、轴对称)
1、抛物线 向右平移3个单位,再向上平移2个单位,则所得抛物线的解析式。
2、抛物线 可以由抛物线 先向平移个单位,再向平移个单位得到的。
3、将抛物线y=x2-2x向上平移3个单位,再向右平移4个单位得到的抛物线是
4、将抛物线C:y=x²+3x-10,将抛物线C平移到C/。若两条抛物线C,C/关于直线x=1对称,则下列平移方法中正确的是()
7
16

根据表格你能找出抛物线图象上的对称点吗?
你能写出抛物线的对称轴吗?
抛物线与x轴的交点坐标为,
当x=2时,函数值y=
(1)若M是函数 图象上对称轴右侧 轴上方的一个动点,其横坐标为 ,四边形MNPQ为矩形,P、N在 轴上,Q、M在抛物线上,求四边形的周长C与 之间的函数关系式.
(2)如果图象向右平移3个单位,设M点横坐标为 ,其它条件不变,
10、如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)在(1)中的抛物线上的第二象限内是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值;若不存在,请说明理由.

专题5.4 求二次函数解析式常考类型(六大题型)(原卷版)

专题5.4  求二次函数解析式常考类型(六大题型)(原卷版)

专题5.4 求二次函数解析式常考类型(六大题型)【题型1 开放型】【题型2 一般式】【题型3 顶点式】【题型4两根式】【题型5平移变换型】【题型6 对称变换型】【题型1 开放型】【典例1】(2023秋•海淀区期中)写出一个顶点在坐标原点,开口向下的抛物线的表达式.【变式1-1】(2023秋•昌平区期中)请写出一个开口向下,对称轴为直线x=3的抛物线的解析式.【变式1-2】(2022秋•伊川县期末)请写出一个开口向上,并且与y轴交于点(0,2)的抛物线的表达式:.【变式1-3】(2023•苏州二模)已知抛物线顶点坐标为(2,3),则抛物线的解析式可能为()A.y=﹣(x+2)2﹣3B.y=﹣(x﹣2)2﹣3C.y=﹣(x+2)2+3D.y=﹣(x﹣2)2+3【题型2 一般式】【方法点拨】当题目给出函数图像上的三个点时,设为一般式2=++(a,y ax bx ca≠),转化成一个三元一次方程组,以求得a,b,c的值;b,c为常数,0【典例2】(2023•宁波)如图,已知二次函数y=x2+bx+c图象经过点A(1,﹣2)和B(0,﹣5).(1)求该二次函数的表达式及图象的顶点坐标.(2)当y≤﹣2时,请根据图象直接写出x的取值范围.【变式2-1】(2022秋•新罗区校级月考)求经过A(﹣1,﹣5)、B(0,﹣4)、C(1,1)三点的抛物线的表达式?【变式2-2】(2023春•海淀区校级期末)已知抛物线y=2x2+bx+c过点(1,3)和(﹣1,5),求该抛物线的解析式.【变式2-3】(2023秋•崆峒区校级月考)已知二次函数过点A(﹣1,2),B(1,﹣4),C(0,3)三点,求这个二次函数的解析式.【变式2-4】(2023秋•博乐市月考)已知抛物线y=﹣x2+bx+c经过A(﹣1,0),B(5,0)两点,顶点为P.(1)求抛物线的解析式;(2)求△ABP的面积.【方法点拨】若已知抛物线的顶点或对称轴、最值,则设为顶点式()k-=2.这顶点坐标为(h,k),对称轴直线x = h,最值为当x = h y+axh时,y最值=k来求出相应的系数.【典例3】(2023秋•龙马潭区月考)若抛物线的顶点坐标是A(﹣1,﹣3),并且抛物线经过点B坐标为(1,﹣1).(1)求出该抛物线的关系式;(2)当x满足什么条件时,y随x的增大而增大.【变式3-1】(2023秋•临潼区月考)已知二次函数的图象顶点为P(﹣2,2),且过点A(0,﹣2).(1)求该抛物线的解析式;(2)试判断点B(1,﹣6)是否在此函数图象上.【变式3-2】(2023秋•越秀区校级月考)已知二次函数图象的顶点坐标为A(2,﹣3),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(3,﹣4)、D(1,0)是否在该函数图象上,并说明理由.【方法点拨】已知图像与 x 轴交于不同的两点()()1200x x ,,,,设二次函数的解析式为()()21x x x x a y --=,根据题目条件求出a 的值.【典例4】(2023•荔湾区校级一模)如图,二次函数y =ax 2+bx +c 经过点A (﹣1,0),B (5,0),C (0,﹣5),点D 是抛物线的顶点,过D 作x 轴垂线交直线BC 于E .(1)求此二次函数解析式及点D 坐标.(2)连接CD ,求三角形CDE 的面积.(3)ax 2+bx +c >0时,x 的取值范围是 .【变式4-1】(2023秋•广西月考)若二次函数的图象经过(﹣1,0),(3,0),(0,3)三点,求这个二次函数的解析式.【变式4-2】(2023秋•长沙月考)已知二次函数y =ax 2+bx +c 的图象经过点A (0,﹣3)、(1,0)和C (﹣3,0).求此二次函数的解析式.【变式4-3】(2023•南山区三模)如图,抛物线y=ax2+bx+c经过点A(﹣1,0),点B(3,0),且OB=OC.(1)求抛物线的表达式;(2)如图,点D是抛物线的顶点,求△BCD的面积.【题型5平移变换型】【方法点拨】将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a( x – h)2 + k,当图像向左(右)平移n个单位时,就在x – h上加上(减去)n;当图像向上(下)平移m个单位时,就在k上加上(减去)m.其平移的规律是:h值正、负,右、左移;k值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以a得值不变.【典例5】将抛物线y=x2﹣6x+5向上平移两个单位长度,再向右平移一个单位长度后,求平移后的抛物线解析式.【变式5-1】(2022秋•洪山区期中)将二次函数y=(x﹣1)2﹣4的图象沿直线y=1翻折,所得图象的函数表达式为()A.y=﹣(x﹣1)2+4B.y=(x+1)2﹣4C.y=﹣(x+1)2﹣6D.y=﹣(x﹣1)2+6【变式5-2】(秋•普陀区校级期中)将抛物线y=2x2先向下平移3个单位,再向右平移m(m>0)个单位,所得新抛物线经过点(1,5),求新抛物线的表达式及新抛物线与y轴交点的坐标.【变式5-3】已知a+b+c=0且a≠0,把抛物线y=ax2+bx+c向下平移一个单位长度,再向左平移5个单位长度所得到的新抛物线的顶点是(﹣2,0),求原抛物线的表达式.【变式5-4】抛物线y=x2+2x﹣3与x轴正半轴交于A点,M(﹣2,m)在抛物线上,AM交y轴于D点,抛物线沿射线AD方向平移√2个单位,求平移后的解析式.【题型6 对称变换型】【方法点拨】根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.【典例6-1】(2022秋•上城区月考)已知y=﹣3(x﹣2)2﹣7将它的图象沿着x轴对折后的函数表达式是.【典例6-2】(2022秋•汉阳区校级月考)抛物线y=x2﹣6x+7绕其顶点旋转180°后得到抛物线y=ax2+bx+c,则a=,b=,c=.【变式6-1】(2022秋•萧山区月考)抛物线y=(x+3)2﹣4关于y轴对称的抛物线解析式为.【变式6-2】(2022秋•汉川市月考)若抛物线y=ax2+c与y=﹣4x2+3关于x轴对称,则a+c=.【变式6-3】(2021秋•镇海区期末)把二次函数y=(x﹣1)2+2的图象关于y 轴对称后得到的图象的函数关系式为.【变式6-4】(2021秋•闽侯县期中)二次函数y=2(x﹣3)2+1图象绕原点旋转180°得新图象的解析式为.【变式6-5】(2023•雁塔区校级三模)已知抛物线L:y=x2+bx+c经过点A(﹣2,0),点B(4,﹣6).抛物线L′与L关于x轴对称,点B在L'上的对应点为B′.(1)求抛物线L的表达式;(2)抛物线L'的对称轴上是否存在点P,使得△AB′P是以AB′为直角边的直角三角形?若存在,求点P的坐标;若不存在,请说明理由.【变式6-6】(2022•岳阳)如图1,在平面直角坐标系xOy中,抛物线F1:y=x2+bx+c经过点A(﹣3,0)和点B(1,0).(1)求抛物线F1的解析式;(2)如图2,作抛物线F2,使它与抛物线F1关于原点O成中心对称,请直接写出抛物线F2的解析式;(3)如图3,将(2)中抛物线F2向上平移2个单位,得到抛物线F3,抛物线F1与抛物线F3相交于C,D两点(点C在点D的左侧).①求点C和点D的坐标;②若点M,N分别为抛物线F1和抛物线F3上C,D之间的动点(点M,N与点C,D不重合),试求四边形CMDN面积的最大值.。

初中数学《二次函数》十大题型汇编含解析

初中数学《二次函数》十大题型汇编含解析

二次函数【十大题型】【题型1 辨别二次函数】 (1)【题型2 由二次函数的定义求字母的值】 (3)【题型3 由二次函数的定义求字母的取值范围】 (4)【题型4 二次函数的一般形式】 (6)【题型5 求二次函数的值】 (7)【题型6 判断函数关系】 (9)【题型7 列二次函数关系式(几何图形)】 (11)【题型8 列二次函数关系式(增长率)】 (14)【题型9 列二次函数关系式(循环)】 (15)【题型10 列二次函数关系式(销售)】 (16)知识点1:二次函数的定义一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y=ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.【题型1 辨别二次函数】【例1】(23-24九年级上·江西南昌·阶段练习)下列函数解析式中,yy一定是xx的二次函数的是()A.yy=2aaxx2B.yy=2xx+aa2C.yy=2xx2−1D.yy=xx2+1xx【答案】C【分析】本题考查二次函数的识别,形如yy=aaxx2+bbxx+cc(aa≠0)的函数是二次函数,根据定义逐一判断即可得到答案.【详解】解:A,当aa=0时,yy=2aaxx2=0,不是二次函数,不合题意;B,yy=2xx+aa2,yy是xx的一次函数,不合题意;C,yy=2xx2−1,yy一定是xx的二次函数,符合题意;D,yy=xx2+1xx中含有分式,不是二次函数,不合题意;故选C.【变式1-1】(23-24九年级上·安徽安庆·阶段练习)下列函数是二次函数的是()A.yy=2xx−1B.yy=√xx2−1C.yy=xx2−1D.yy=12xx【答案】C【分析】本题考查了二次函数的定义,能熟记二次函数的定义是解此题的关键,注意:形如yy=aaxx2+bbxx+cc (aa、b、c为常数,aa≠0)的函数叫二次函数.根据二次函数的定义逐个判断即可.【详解】解:A、函数yy=2xx−1是一次函数,不是二次函数,故本选项不符合题意;B、函数yy=√xx2−1根号内含有x,不是二次函数,故本选项不符合题意;C、函数yy=xx2−1是二次函数,故本选项符合题意;D、函数yy=12xx分母中含有x,不是二次函数,故本选项不符合题意.故选:C.【变式1-2】(23-24九年级下·江苏·专题练习)下列函数关系式中,二次函数的个数有()(1)yy=3(xx−1)2+1;(2)yy=1xx2−xx;(3)SS=3−2tt2;(4)yy=xx4+2xx2−1;(5)yy=3xx(2−xx)+3xx2;(6)yy=mmxx2+8.A.1个B.2个C.3个D.4个【答案】B【分析】本题考查了二次函数的定义,一般地,形如yy=aaxx2+bbxx+cc(aa,bb,cc为常数,aa≠0)的函数叫做二次函数.判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成yy=aaxx2+bbxx+cc(aa,bb,cc为常数,aa≠0)的形式,那么这个函数就是二次函数,否则就不是.【详解】解:(1)yy=3(xx−1)2+1是二次函数,故符合题意;(2)yy=1xx2−xx,不是二次函数,故不符合题意;(3)SS=3−2tt2是二次函数,故符合题意;(4)yy=xx4+2xx2−1不是二次函数,故不符合题意;(5)yy=3xx(2−xx)+3xx2=6xx不是二次函数,故不符合题意;(6)yy=mmxx2+8,不确定m是否为0,不一定是二次函数,故不符合题意;综上所述,二次函数有2个.故选:B.【变式1-3】(23-24九年级上·湖南长沙·期末)下列函数①yy=5xx−5;②yy=3xx2−1;③yy=4xx3−3xx2;④yy=2xx2−2xx+1;⑤yy=1xx2.其中是二次函数的是.【答案】②④/④②【分析】根据二次函数的定义,函数式为整式且自变量的最高次数为2,二次项系数不为0,逐一判断.【详解】解:①yy=5xx−5为一次函数;②yy=3xx2−1为二次函数;③yy=4xx3−3xx3自变量次数为3,不是二次函数;④yy=2xx2−2xx+1为二次函数;⑤yy=1xx2函数式为分式,不是二次函数.故答案为②④.【点睛】本题考查二次函数的定义,能够根据二次函数的定义判断函数是否属于二次函数是解决本题的关键.【题型2 由二次函数的定义求字母的值】【例2】(23-24九年级下·广东东莞·期中)已知函数yy=(mm−1)xx mm2+1是二次函数,则mm=.【答案】−1【分析】根据定义得:形如yy=aaxx2+bbxx+cc(aa、bb、cc是常数,且aa≠0)的函数是二次函数,列方程可求得答案.【详解】解:依题意得:mm2+1=2且mm−1≠0,解得mm=−1.故答案为:−1.【点睛】本题考查了二次函数的定义.注意:二次函数yy=aaxx2+bbxx+cc中,aa是常数,本题关键点为aa≠0.【变式2-1】(23-24九年级上·江苏扬州·阶段练习)如果yy=2xx|mm|+3xx−1是关于xx的二次函数,则mm=.【答案】±2【分析】本题主要考查了二次函数的定义,直接利用二次函数的定义得出答案.【详解】解:∵yy=2xx|mm|+3xx−1是关于x的二次函数,∴|mm|=2,解得:mm=±2.故答案为:±2.【变式2-2】(23-24九年级上·湖北·周测)如果函数yy=(kk−1)xx kk2−kk+2+kkxx−1是关于x的二次函数,则kk=.【答案】0【分析】本题考查了二次函数的定义.根据二次函数的定义得到kk−1≠0且kk2−kk+2=2,然后解不等式和方程即可得到k的值.【详解】解:根据题意,得kk−1≠0且kk2−kk+2=2,解得kk=0.故答案为:0.【变式2-3】(23-24九年级下·广东广州·期末)如果yy=(kk−3)xx�kk-1�+xx−3是二次函数,佳佳求出k的值为3,敏敏求出k的值为-1,她们俩中求得结果正确的是.【答案】敏敏【分析】本题考查了二次函数的定义,由定义得|kk−1|=2,kk−3≠0,即可求解;理解定义:“一般地,形如yy=aaxx2+bbxx+cc(a、b、c是常数,aa≠0)的函数叫做二次函数.” 是解题的关键.【详解】解:∵yy=(kk−3)xx�kk-1�+xx−3是二次函数,∴|kk−1|=2,解得kk1=3,kk2=−1,又∵kk−3≠0,即kk≠3,∴kk=−1,故敏敏正确.【题型3 由二次函数的定义求字母的取值范围】【例3】(23-24九年级上·上海嘉定·期末)如果函数yy=(kk−1)xx2+kkxx−1(kk是常数)是二次函数,那么kk的取值范围是.【答案】kk≠1【分析】根据:“形如yy=aaxx2+bbxx+cc(aa≠0),这样的函数叫做二次函数”,得到kk−1≠0,即可.【详解】解:由题意,得:kk−1≠0,∴kk≠1;故答案为:kk≠1.【变式3-1】(23-24九年级上·浙江嘉兴·开学考试)已知函数yy=(mm2−mm)xx2+(mm−1)xx−2(m为常数).(1)若这个函数是关于x的一次函数,求m的值.(2)若这个函数是关于x的二次函数,求m的取值范围.【答案】(1)mm=0;(2)mm≠1且mm≠0.【分析】(1)根据一次函数的定义即可解决问题;(2)根据二次函数的定义即可解决问题.【详解】(1)解:依题意mm2−mm=0且mm−1≠0,所以mm=0;(2)解:依题意mm2−mm≠0,所以mm≠1且mm≠0.【点睛】本题考查一次函数的定义、二次函数的定义,解题的关键是熟练掌握基本概念,属于中考常考题型.【变式3-2】(23-24九年级上·广东江门·阶段练习)已知关于xx的二次函数yy=(aa2−1)xx2+xx−2,则aa的取值范围是()A.aa≠1B.aa≠−1C.aa≠±1D.为任意实数【答案】C【分析】根据二次函数定义可得aa2−1≠0,解出答案即可.【详解】因为关于xx的二次函数yy=(aa2−1)xx2+xx−2,∴aa2−1≠0,解得:aa≠±1.故选:C.【点睛】本题考查的是二次函数yy=aaxx2+bbxx+cc(aa≠0)概念,熟练掌握二次函数定义是解题关键.【变式3-3】(23-24九年级下·四川遂宁·期中)已知函数yy=(mm2-2)xx2+(mm+√2)xx+8.若这个函数是二次函数,求mm的取值范围【答案】mm≠√2且mm≠-√2【分析】根据二次函数的定义,即可得不等式mm2-2≠0,解不等式即可求得.【详解】解:∵函数yy=(mm2-2)xx2+(mm+√2)xx+8是二次函数,∴mm2-2≠0,解得mm≠±√2,故答案为:mm≠√2且mm≠-√2.【点睛】本题考查了二次函数的定义,熟练掌握和运用二次函数的定义是解决本题的关键.【题型4 二次函数的一般形式】【例4】(23-24九年级上·四川南充·阶段练习)二次函数yy=xx2−3xx+5的二次项是,一次项系数是,常数项是.【答案】xx2−3 5【分析】根据二次函数的定义判断即可。

二次函数实际问题易考题型总结(全)

二次函数实际问题易考题型总结(全)

二次函数实际问题易考题型总结技巧1.二次函数的应用:(1)二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.注意:二次函数实际问题主要分为两个方面的问题,几何图形面积问题和经济问题。

解几何图形面积问题时要把面积公式中的各个部分分别用同一个未知数表示1,我们要用x分别把h,l表示出来。

经济问题:总利润=出来,如三角形S=hl2总销售额-总成本;总利润=单件利润×销售数量。

解最值问题时,一定要注意自变量的取值范围。

分为三类:①对称轴在取值范围内;②取值范围在对称轴左边;③取值范围在对称轴右边。

2.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.题型:一、利润最值问题1、某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.2.某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y(元)与销售月份x (月)满足关系式1336 8y x=-+,而其每千克成本2y(元)与销售月份x(月)满足的函数关系如图所示.(1)试确定b,c的值;(2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式;(3)“五一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?3、某食品零售店为食品厂供销一种面包,未售出的面包可退回厂家.经统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价为x(角),零售店每天销售这种面包所获得的利润为y(角).⑴用含x的代数式分别表示出每个面包的利润与卖出的面包个数;⑵求y与x之间的函数关系式;⑶当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?二、面积最值问题1.蒋老师的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,蒋老师准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?2、小王家在农村,他家想利用房屋侧面的一面墙,围成一个矩形猪圈(以墙为长人现在已备足可以砌10米长的墙的材料.他想使猪圈的面积最大,你能帮他计算一下矩形的长和宽应当分别是多少米吗?此时猪圈的面积有多大?3.如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.三、图形问题1、学校要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA .O 恰好在水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.且在过OA 的任意平面上的抛物线如图l -2-36所示,建立平面直角坐标系(如图l -2-37),水流喷出的高度y (m)与水面距离x (m)之间的函数关系式是25322y x x =-++,请回答下列问题: (1)花形柱子OA 的高度;(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?O 2.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中完成规定的翻腾动作并调整好入水姿势时,距池边的水平距离为米,问此次跳水会不会失误?并通过计算说明理由.2103335四、图像问题(一)长度最值、平行四边形问题8.如图,抛物线1417452++-=x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C(3,0).(1)求直线AB 的函数关系式;(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N. 设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 是否菱形?请说明理由.O xAMNBPC 题22图(二)周长与面积最值问题9.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E 点的坐标.(三)等腰三角形问题10.如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.(四)直角三角形 如图,在平面直角坐标系中放置一直角三角板,其顶点为A (0,1),B (2,0),O (0,0),将此三角板绕原点O 逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B ,求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB′A′B 的面积是△A′B′O 面积4倍?若存在,请求出P 的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B 是哪种形状的四边形?并写出四边形PB′A′B 的两条性质.A CB y x0 1 1(五)圆如图,半径为2的⊙C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,点C 的坐标为(1,0).若抛物线23y x bx c =-++过A 、B 两点. (1)求抛物线的解析式;(2)在抛物线上是否存在点P ,使得∠PBO=∠POB?若存在,求出点P 的坐标;若不存在说明理由;(3)若点M 是抛物线(在第一象限内的部分)上一点,△MAB 的面积为S ,求S 的最大(小)值.(六)分段函数、累计二次函数问题11.启优学堂积极应对2018年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线,由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次),公司累积获得的利润y(万元)与销售时间第x月之间的函数关系(即前x个月的利润总和y 与x之间的关系)对应的点都在如图所示的图象上,该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线y=-5x2+205x-1230的一部分,且点A、B、C的横坐标分别为4、10、12。

二次函数九大题型

二次函数九大题型

二次函数九大题型二次函数是高中数学中的重要内容,它是一种形式为f(x)=ax2+bx+c的函数,其中a、b和c是实数且a≠0。

在学习二次函数的过程中,我们会遇到许多不同类型的题目。

本文将详细介绍二次函数九大题型,包括函数的定义、用途和工作方式等。

1. 函数图像的平移定义:平移是指将原来的函数图像沿着坐标轴进行水平或垂直方向上的移动。

对于二次函数f(x)=ax2+bx+c,平移后的函数可以表示为g(x)=a(x−ℎ)2+k,其中(ℎ,k)是平移后图像上任意一点的坐标。

用途:平移可以帮助我们研究二次函数图像在坐标系中的位置和性质。

通过改变平移量(ℎ,k)的值,我们可以观察到图像在坐标系中的左右、上下移动。

工作方式:1.水平平移:改变参数ℎ的值来实现水平方向上的平移。

当ℎ>0时,图像向左移动;当ℎ<0时,图像向右移动。

2.垂直平移:改变参数k的值来实现垂直方向上的平移。

当k>0时,图像向上移动;当k<0时,图像向下移动。

2. 函数图像的翻折定义:翻折是指将原来的函数图像沿着坐标轴进行对称操作。

对于二次函数f(x)=ax2+bx+c,翻折后的函数可以表示为g(x)=−ax2−bx−c。

用途:翻折可以帮助我们研究二次函数图像在坐标系中的对称性和性质。

通过改变参数a、b和c的值,我们可以观察到图像在坐标系中的左右、上下对称。

工作方式:1.关于 x 轴翻折:将二次函数中的每个 y 值取相反数,即可实现关于 x 轴的翻折。

2.关于 y 轴翻折:将二次函数中的每个 x 值取相反数,即可实现关于 y 轴的翻折。

3.关于原点翻折:先关于 x 轴翻折,再关于 y 轴翻折,即可实现关于原点的翻折。

3. 函数图像的缩放定义:缩放是指将原来的函数图像沿着坐标轴进行拉伸或压缩。

对于二次函数f(x)= ax2+bx+c,缩放后的函数可以表示为g(x)=a(mx)2+b(mx)+c,其中m是缩放因子。

用途:缩放可以帮助我们研究二次函数图像在坐标系中的大小和形状。

二次函数的应用题的考试常见题型

二次函数的应用题的考试常见题型

二次函数的应用题的考试常见题型1. 求解二次方程根问题描述:给定一个二次方程 $ax^2 + bx + c = 0$,其中 $a, b, c$ 为已知常数,求解该二次方程的根。

解答思路:使用一元二次方程的求根公式,即 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$,其中 $\pm$ 表示两个根,根的个数和值的情况有以下三种:- 若 $b^2 - 4ac > 0$,则有两个不相等的实根;- 若 $b^2 - 4ac = 0$,则有两个相等的实根;- 若 $b^2 - 4ac < 0$,则无实根。

示例题目:已知二次方程 $2x^2 + x - 3 = 0$,求解该二次方程的根。

解答过程:根据一元二次方程的求根公式,将$a=2, b=1, c=-3$ 代入可得:$$x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 2 \cdot (-3)}}{2 \cdot 2}$$计算可得:$$x_1 = 1, x_2 = -\frac{3}{2}$$所以该二次方程的根为 $x_1 = 1$ 和 $x_2 = -\frac{3}{2}$。

2. 求解最值问题问题描述:给定一个二次函数 $y = ax^2 + bx + c$,其中 $a, b, c$ 为已知常数,求解该二次函数的最值。

解答思路:对于二次函数 $y = ax^2 + bx + c$,其最值出现在顶点处。

二次函数的顶点坐标为 $x = -\frac{b}{2a}$,将 $x$ 的值代入二次函数可得到最值。

- 如果 $a$ 为正,则二次函数的开口向上,最小值为顶点;- 如果 $a$ 为负,则二次函数的开口向下,最大值为顶点。

示例题目:已知二次函数 $y = 2x^2 + x - 3$,求解该二次函数的最值。

解答过程:将 $a=2, b=1, c=-3$ 代入可得顶点坐标 $x = -\frac{1}{2 \cdot 2} = -\frac{1}{4}$。

二次函数几种题基本题型及答案

二次函数几种题基本题型及答案

二次函数二次函数求解析式【类型一:万能型】【1】已知二次函数的图像如图所示,求其函数解析式. 解:利用两点式,设y=a (x+1)(x-3) 再把(0,3)带入,解得a=-1 所以y=-x 2+2x+3【2】(2011武汉)抛物线23y ax bx =++经过点(3,0)A -,(1,0)B -两点.求抛物线的解析式; 解:把A,B 两点带入,解二元一次方程组得,a=1,b=4, 所以y=x 2+4x+3【3】(2008年 黄石)如图,已知抛物线与x 轴交于点(20)A -,,(40)B ,,与y 轴交于点(08)C ,.求抛物线的解析式及其顶点D 的坐标;解:利用两点式,设y=a (x+2)(x-4) 再把(0,8)带入,解得a=-1所以y=-x 2+2x+8【类型二:顶点式】【4】已知二次函数在3-=x 处有最大值1,且其图像经过)8,2(-,求此二次函数的解析式. 解:利用顶点式,设y=a (x+3)2+1, 在把(2,-8)代入,解得a=-925,所以y=-925(x+3)2+1(一般式:y=-925x 2-5425x-56255】已知二次函数的图像交x 轴于点(2,0),(3,0)A B -,且函数有最大值2,求此函数的解析式.解:利用顶点式,先通过A,B 两点求出对称轴x=1/2,设y=a (x-1/2)2+2,在把(3,0)代入,解得a=-825,所以y=-825(x-1/2)2+2(一般式:y=-825x 2+825x+4825,本题也可以用两点式) 【6】已知抛物线的对称轴为1=x ,经过点)0,2(A 、)11,5(B ,求函数解析式. 解:利用顶点式,设y=a (x-1)2+k ,代入A,B 两点,解二元一次方程组得,a=1115,k=-1115, 所以y=1115(x-1)2-1115【7】已知二次函数的顶点坐标为(1,4),二次函数与x 轴的两交点为,A B ,且4AB =,求二次函数的解析式.解:利用顶点式,设y=a (x-1)2+4,然后利用对称轴x=1及4AB =求出两交点为(-1,0),(3,0),选择一点代入解得a=-1, 所以y=-(x-1)2+4.(本题也可以用两点式)【8】已知二次函数2(0)y ax bx c a =++≠图像的顶点P 的横坐标是4,图像交x 轴于点(,0)A m 和点B ,且4m >,那么AB 的长是( C )(另一点横坐标为8-m ,AB=m-(8-m )=2m-8.) A. 4m + B. m C. 28m - D.82m - 【9】(2011广东中山)已知抛物线212y x x c =++与x 轴有两个不同的交点. 抛物线212y x x c =++与x 轴两交点的距离为2,求c 的值. 解:本题运用韦达定理,设两根为x 1,x 2,x 1+x 2=-2, x 1x 2=2c,|x 1-x 2|=2, 列方程整理后得4-8c=4,c=0.(本题也可以直接用交点距离公式|x 1-x 2【类型三:综合求解析式】【10】( 2011重庆江津)已知双曲线xk y =与抛物线2y ax bx c =++交于 (2,3)A ,(,2)B m ,(3,)C n -三点,求双曲线与抛物线的解析式;解:先利用双曲线解析式求出k=6,m=3,n=-2,在把三点分别代入抛物线解析式,成立一个三元一次方程组,解方程得 a=13-,b=23,c=3,所以y=13-x 2+23x+3 【11】(2011湖南湘潭市)直线33+=x y 交x 轴于A 点,交y 轴于B 点, 过,A B 两点的抛物线交x 轴于另一点(3,0)C ,求抛物线的解析式;解:先利用直线解析式求出A (-1,0),B (0,3),设抛物线为y=a (x+1)(x-3),代入C 点,解得a=-1, 所以y=-x 2+2x+3【12】(2011四川凉山州)抛物线与x 轴交于A (1x ,0)、B (2x ,0)两点,且12x x <,与y 轴交于点()0,4C -,其中12x x ,是方程24120x x --=的两个根,求抛物线的解析式; 解:解方程得x 1=-2,x 2=6,设抛物线为y=a (x+2)(x-6) 代入C 点,解得a=1/3,所以y=13x 2-43x-4 【13】(2009年 天水)如下图,在平面直角坐标系中,二次函数2(0)y ax bx c a =++>的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于,A B 两点,A 点在原点的左侧,B 点的坐标为(3,0),OB OC =,3OC OA =,求这个二次函数的表达式.解:由B 点坐标和OB,OC,OA 三条线段的关系得出A (-1,0),C (0,-3)设抛物线为y=a (x+1)(x-3),在代入C 点, 解得a=1,所以y=x 2-2x-3【14】(2007武汉)如图①,在平面直角坐标系中,Rt △AOB ≅Rt △CDA ,且(1,0)A -、(0,2)B ,抛物线22y ax ax =+-经过点C ,求抛物线的解析式; 解:由两三角形全等得出C (-3,1), 再把C 点代入,解得a=1/2, 所以y=12 x 2+12x-2【15】(2008年 大连)如图,直线y x m =+和抛物线2y x bx c =++都经过(1,0),(3,2)A B . (1)求m 的值和抛物线的解析式; (2)求不等式2x bx c x m ++>+的解集.解:(1)在A,B 中选择一点代入直线解析式,解得m=-1 把A,B 两点代入抛物线,解二元一次方程组得 b=-3,c=2,所以y=x 2-3x+2(2)利用图像的性质可以解得x<1或x>3.【16】(2011广东肇庆)已知抛物线2243m mx x y -+=(m >0)与x 轴交于A 、B 两点. (1)求证:抛物线的对称轴在y 轴的左侧; (2)若3211=-OA OB (O 是坐标原点),求抛物线的解析式; 解:(1)对称轴x=-1/2m<0,所以…(2)设x 1,x 2为两点的横坐标,一直x 1x 2=234m -<0, 令x 1<0,x 2>0,由3211=-OA OB >0,得OA>OB,又有(1)中的结论,可知OA=- x 1,OB= x 2,代入3211=-OA OB通分,化简,然后利用韦达定理代入解得m=2 所以y=x 2+2x-3【17】已知一次函数2y x =的图象与反比例函数ky x =的图象交于M 、N 两点,且MN =(1)求反比例函数的解析式;(2)若抛物线2y ax bx c =++经过M 、N 两点,证明此抛物线与x 轴必有两个交点;(3)设⑵中的抛物线与x 轴的两个交点分别为A 、B (点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,若tan tan 3CAB CBA ∠+∠=,求此抛物线的解析式.(定义:在直角三角形中,θ的对边为a ,邻边为b ,则tan abθ=) 解:(1)先由两图像关于原点对称易知,设M 为(x ,2x ),那么k=2x 2,又由两点距离公式得x 2+4x 2=5,所以k=2.即2y x=(2)由(1)可求得两点为(1,2)(-1,-2),代入抛物线解析式得:22a b ca b c=++⎧⎨-=-+⎩ 两式相减得b=2,代入上式,得c=-a 所以y=ax 2+2x-a ,∆=4+4a 2>0,所以必有两交点. (3)由(2)知y=ax 2+2x-a ,且C (0,-a )设A (x 1,0),B (x 2,0),又x 1x 2=-1,则x 1<0,x 2>0211212tan tan 3a a x x CAB CBA a a x x x x -∠+∠=+=⋅==--即4+4a 2=9,所以a =±,所以22y x x =+-或者22y x x =++【目标二:二次函数的平移】【18】将抛物线221x y =向上平移4个单位会得到哪条抛物线?向下平移2.5个单位呢? 解:1、2142y x =+ 2、21 2.52y x =-【19】(2008年 烟台)如图,抛物线1L :223y x x =--+交x 轴于A ,B 两点,交y 轴于M 点.将抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C ,D 两点,求抛物线2L 对应的函数表达式。

二次函数17个必背题型

二次函数17个必背题型

二次函数17个必背题型二次函数是高中数学中的重要知识点,也是考试中经常出现的题型之一。

掌握二次函数的相关题型对于提高数学成绩非常重要。

下面将介绍17个必背题型,希望对大家的学习有所帮助。

1. 求二次函数的解析式。

解析式一般为y = ax² + bx + c,其中a、b、c为常数,且a ≠ 0。

2. 求二次函数的顶点坐标。

二次函数的顶点坐标为(-b/2a , f(-b/2a)),其中f(x)为二次函数的解析式。

3. 求二次函数的对称轴方程。

对称轴方程一般为x = -b/2a,即二次函数关于x = -b/2a对称。

4. 求二次函数的平移变换。

平移变换会改变二次函数的顶点坐标和对称轴方程,根据平移的方向和距离来确定变换后的函数。

5. 求二次函数的图像开口方向。

判断二次函数开口方向的关键是二次函数的系数a的正负情况,如果a > 0,则开口向上;如果a < 0,则开口向下。

6. 求二次函数的零点。

零点即为二次函数与x轴相交的点,可以通过解一元二次方程来求得。

7. 求二次函数的值域。

值域是指二次函数取得的所有y值的集合,根据开口方向和顶点坐标来确定值域。

8. 求二次函数与坐标轴的交点。

交点是指二次函数与x、y轴相交的点,可以通过求解方程组来求得交点坐标。

9. 求二次函数的最大值或最小值。

最大值或最小值即为二次函数的顶点的纵坐标,可以利用顶点坐标来求得。

10. 求二次函数的增减性和极值点。

利用导数的概念可以判断二次函数的增减性,极值点即为函数的最大值或最小值点。

11. 求二次函数的对称性。

二次函数关于对称轴具有对称性,可利用这一特点来求得函数的其他性质。

12. 求二次函数与直线的交点。

二次函数与直线相交的点可以通过求解方程组来求得交点坐标。

13. 求二次函数的导数。

计算二次函数的导数可以应用导数的基本公式和求导法则,导数表达式为f'(x) = 2ax + b。

14. 求二次函数的弦长。

二次函数经典题型

二次函数经典题型

1 二次函数经典题型一、填空题:1、函数21(1)21my m x mx +=--+是抛物线,则m = . 2、抛物线223y x x =--+与x 轴交点为 ,与y 轴交点为 .3、二次函数2y ax =的图象过点(-1,2),则它的解析式是 ,当x 时,y 随x 的增大而增大.4.抛物线2)1(62-+=x y 可由抛物线262-=x y 向 平移 个单位得到. 5.抛物线342++=x x y 在x 轴上截得的线段长度是 .6.抛物线()4222-++=m x x y 的图象经过原点,则=m .7.抛物线m x x y +-=2,若其顶点在x 轴上,则=m . 8. 如果抛物线c bx ax y ++=2 的对称轴是x =-2,且开口方向与形状与抛物线相同,又过原点,那么a = ,b = ,c = . 9、二次函数2y x bx c =++的图象如下左图所示,则对称轴是 ,当函数值0y <时,对应x 的取值范围是 . 10、已知二次函数21(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点A (-2,4)和B (8,2),如上右图所示,则能使1y 2y >成立的x 的取值范围 .二、选择题:11.下列各式中,y 是x 的二次函数的是 ( )A .21xy x +=B . 220x y +-=C . 22y ax -=-D .2210x y -+= 12.在同一坐标系中,作22y x =、22y x =-、212y x =的图象,它们共同特点是 ( ) A . 都是关于x 轴对称,抛物线开口向上 B .都是关于y 轴对称,抛物线开口向下B . 都是关于原点对称,顶点都是原点 D .都是关于y 轴对称,顶点都是原点13.抛物线122+--=m mx x y 的图象过原点,则m 为( ) A .0B .1C .-1D .±1 14.把二次函数122--=x x y 配方成为( )A .2)1(-=x yB . 2)1(2--=x yC .1)1(2++=x yD .2)1(2-+=x y 15.已知原点是抛物线2(1)y m x =+的最高点,则m 的范围是( )A . 1-<mB . 1<mC . 1->mD . 2->m16、函数221y x x =--的图象经过点( )A 、(-1,1)B 、(1 ,1)C 、(0 , 1)D 、(1 , 0 )17、抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A 、23(1)2y x =--B 、23(1)2y x =+-C 、23(1)2y x =++D 、23(1)2y x =-+223x y -=2 18、已知h 关于t 的函数关系式212h gt =( g 为正常数,t 为时间)如图,则函数图象为 ( ) h h h hoo t t o t o tA B C D19、下列四个函数中, 图象的顶点在y 轴上的函数是( )A 、232y x x =-+B 、25y x =-C 、22y x x =-+D 、244y x x =-+ 20、已知二次函数2y ax bx c =++,若0a <,0c >,那么它的图象大致是( )三、解答题:21、根据所给条件求抛物线的解析式:(1)、抛物线过点(0,2)、(1,1)、(3,5)(2)、抛物线关于y 轴对称,且过点(1,-2)和(-2,0)22.已知二次函数c bx x y ++=2的图像经过A (0,1),B (2,-1)两点.(1)求b 和c 的值; (2)试判断点P (-1,2)是否在此函数图像上?23、某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x 米,面积为S 平方米.(1) 求出S 与x 之间的函数关系式,并确定自变量x 的取值范围;(2) 请你设计一个方案,使获得的设计费最多,并求出这个费用.24、某工厂现有80台机器,每台机器平均每天生产384•件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,•由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x 台机器,每天的生产总量为y 件,请你写出y 与x 之间的关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?25、如图,有一个抛物线的拱形立交桥,•这个桥拱的最大高度为16m ,跨度为40m ,现把它放在如图所示的直角坐标系里,•若要在离跨度中心点M5m 处垂直竖一根铁柱支撑这个拱顶,铁柱应取多长?24、如图,抛物线经过点A(1,0),与y 轴交于点B.⑴求抛物线的解析式;⑵P 是y 轴正半轴上一点,且△PAB 是以AB 为腰的等腰三角形,试求P 点坐标.n x x y ++-=52(C) (A) o y x o y x o x y o x y (B) (D) 1-1O A B xy3。

二次函数的图像与性质【十大题型】(原卷版)—2024年中考数学一轮复习【举一反三】系列(全国通用)

二次函数的图像与性质【十大题型】(原卷版)—2024年中考数学一轮复习【举一反三】系列(全国通用)

二次函数的图像与性质【十大题型】【题型1 根据二次函数解析式判断其性质】 (3)【题型2 二次函数y=ax 2+bx+c 的图象和性质】 (4)【题型3 二次函数平移变换问题】 (5)【题型4 根据二次函数的对称性求字母的取值范围】 (6)【题型5 根据二次函数的性质求最值】 (6)【题型6 根据二次函数的最值求字母的取值范围】 (7)【题型7 根据二次函数自变量的情况求函数值的取值范围】 (7)【题型8 根据二次函数的增减性求字母的取值范围】 (8)【题型9 二次函数图象与各项系数符号】 (8)【题型10 二次函数与三角形相结合的应用方法】 (11)【知识点 二次函数的图像与性质】1.定义:一般的,形如y =ax 2+bx +c (a .b .c 是常数,a ≠0)的函数叫做二次函数。

其中x 是自变量,a .b .c 分别是函数解析式的二次项系数.一次项系数.常数项。

二次函数解析式的表示方法(1)一般式:y =ax 2+bx +c (其中a ,b ,c 是常数,a ≠0);(2)顶点式:y =a (x -h )2+k (a ≠0),它直接显示二次函数的顶点坐标是(h ,k );(3)交点式:y =a (x -x 1)(x -x 2)(a ≠0),其中x 1,x 2是图象与x 轴交点的横坐标 .注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -³时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.2.二次函数的图象是一条抛物线。

当a >0时,抛物线开口向上;当a <0时,抛物线开口向下。

|a |越大,抛物线的开口越小;|a |越小,抛物线的开口越大。

y =ax 2y =ax 2+k y =a (x -h )2y =a (x -h )2+k y =ax 2+bx +c 对称轴y 轴y 轴x =h x =h abx 2-=(0,0)(0,k )(h ,0)(h ,k )⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22顶点a >0时,顶点是最低点,此时y 有最小值;a <0时,顶点是最高点,此时y 有最大值。

二次函数九大题型

二次函数九大题型

二次函数九大题型
二次函数是高中数学中的重要内容,它在各种应用问题中都有广泛的应用。

下面是九大常见的二次函数题型及解题思路:1. 求二次函数的图像:首先确定二次函数的开口方向,然后找到顶点坐标,再根据对称性画出图像。

2. 求二次函数的零点:将二次函数转化为一元二次方程,然后利用求根公式或配方法求解。

3. 求二次函数的最值:通过求导或利用顶点公式求得最值。

4. 求二次函数与坐标轴交点:将二次函数转化为一元二次方程,然后解方程得到交点坐标。

5. 求解满足条件的参数:根据给定条件列方程,然后解方程得到参数值。

6. 求解满足条件的范围:根据给定条件列不等式,然后解不等式得到范围。

7. 判断两个二次函数图像位置关系:比较两个二次函数的开口方向、顶点位置和系数大小来判断位置关系。

8. 判断一个点是否在给定的二次函数图像上:将该点代入二次函数方程中,判断是否成立。

9. 利用已知信息确定未知参数:根据已知条件列方程,然后解方程得到未知参数的值。

以上是常见的二次函数题型,通过掌握这些题型的解题思路和方法,可以更好地应对二次函数相关的问题。

专题2.1二次函数的图像与性质(一)(六大题型)(原卷版)

专题2.1二次函数的图像与性质(一)(六大题型)(原卷版)

专题2.1 二次函数的图像与性质(一)(六大题型)【题型1 判断二次函数的个数】【题型2 利用二次函数的概念求字母的值】【题型3 二次函数的一般式】【题型4根据实际问题列二次函数销售问题】【题型5 根据实际问题列二次函数面积类】【题型6 根据实际问题列二次函数几何类】【题型1 判断二次函数的个数】【典例1】已知函数:①y=2x﹣1;②y=﹣2x2﹣1;③y=3x3﹣2x2;④y=2(x+3)2﹣2x2;⑤y=ax2+bx+c,⑥y=x2++5其中二次函数的个数为()A.1B.2C.3D.4【变式11】已知函数:①y=2x﹣1;②y=﹣2x2﹣1;③y=3x3﹣2x2;④y=2(x+3)2﹣2x2;⑤y=ax2+bx+c,其中二次函数的个数为()A.1B.2C.3D.4【变式12】已知函数:①y=2x﹣1;②y=﹣2x2﹣1;③y=3x3﹣2x2;④y=2x2﹣x﹣1;⑤y=ax2+bx+c,其中二次函数的个数为()A.1B.2C.3D.4【变式13】已知函数:①y=ax2;②y=3(x﹣1)2+2;③y=(x+3)2﹣2x2;④y=+x.其中,二次函数的个数为()A.1个B.2个C.3个D.4个【变式14】(2022秋•扬州期末)下列函数是关于x的二次函数的有()①y=x(2x﹣1);②y=1x2;③y=√32x2−1;④y=ax2+2x(a为任意实数);⑤y=(x﹣1)2﹣x2;⑥y=√x2+x+1.A.2个B.3个C.4个D.5个【变式15】(2022秋•广汉市期中)观察:①y=6x2;②y=﹣3x2+5;③y=200x2+400x+200;④y=x3﹣2x;⑤y=x2−1x +312;⑥y=(x+1)2﹣x2.这六个式子中,二次函数有.(只填序号)【题型2 利用二次函数的概念求字母的值】【典例2】已知y关于x的二次函数解析式为y=(m﹣2)x|m|,则m=()A.±2B.1C.﹣2D.±1【变式21】有二次函数y=x m﹣2﹣2x+1,则m的值是()A.4B.2C.0D.4或2【变式22】已知y=mx|m﹣2|+2mx+1是y关于x的二次函数,则m的值为()A.0B.1C.4D.0或4【变式23】(2022秋•江油市校级月考)函数y=(m2﹣3m+2)x2+mx+1﹣m,则当m=时,它为正比例函数;当m=时,它为一次函数;当m 时,它为二次函数.【变式24】(2022秋•新昌县校级月考)已知函数y=(m2+m)x m2−2m+2.(1)当函数是二次函数时,求m的值;;(2)当函数是一次函数时,求m的值..【变式25】若关于x的函数y=(2﹣a)x2﹣3x+4是二次函数,则a的取值范围是.【题型3 二次函数的一般式】【典例3】二次函数y=x2﹣2x+3的一次项系数是()A.1B.2C.﹣2D.3【变式31】将二次函数y=x(x﹣1)+3x化为一般形式后,正确的是()A.y=x2﹣x+3B.y=x2﹣2x+3C.y=x2﹣2x D.y=x2+2x【变式32】把二次函数y=﹣(x+3)2+11变成一般式是()A.y=﹣x2+20B.y=﹣x2+2C.y=﹣x2+6x+20D.y=﹣x2﹣6x+2【变式33】把二次函数y=﹣(x+3)(x+4)+11变成一般形式后,其二次项系数和一次项系数分别为()A.﹣1,﹣1B.﹣1,1C.﹣1,7D.﹣1,﹣7【变式34】二次函数的一般形式为()A.y=ax2+bx+c B.y=ax2+bx+c(a≠0)C.y=ax2+bx+c(b2﹣4ac≥0)D.y=ax2+bx+c(b2﹣4ac=0)【变式35】把抛物线y=(x﹣1)2+1化成一般式是.【变式36】把y=(3x﹣2)(x+3)化成一般形式后,一次项系数与常数项的和为.【变式37】(2022春•肇东市期末)已知二次函数y=1﹣5x+3x2,则二次项系数a=,一次项系数b=,常数项c=.【变式38】(2022秋•新昌县期末)若二次函数y=(2x﹣1)2+1的二次项系数为a,一次项系数为b,常数项为c,则b2﹣4ac0(填写“>”或“<”或“=”)【题型4根据实际问题列二次函数销售问题】【典例4】某特许零售店“冰墩墩”的销售日益火爆,每个纪念品进价40元,销售期间发现,当销售单价定为44元时,每天可售出300个;销售单价每上涨1元,每天销量减少10个.现商家决定提价销售,设每天销售量为y个,销售单价为x元(x>44),商家每天销售纪念品获得的利润w元,则下列等式正确的是()A.y=10x+740B.y=10x﹣140C.w=(﹣10x+700)(x﹣40)D.w=(﹣10x+740)(x﹣40)【变式41】某商品现在的售价为每件60元,每星期可销售300件.商场为了清库存,决定让利销售,已知每降价1元,每星期可多销售20件,那么每星期的销售额W(元)与降价x(元)的函数关系为()A.W=(60+x)(300+20x)B.W=(60﹣x)(300+20x)C.W=(60+x)(300﹣20x)D.W=(60﹣x)(300﹣20x)【变式42】“抖音直播带货”已经成为一种热门的销售方式,某抖音主播代销某一品牌的电子产品(这里代销指厂家先免费提供货源,待货物销售后再进行结算,未售出的由厂家负责处理).销售中发现每件售价99元时,日销售量为200件,当每件电子产品每下降5元时,日销售量会增加10件.已知每售出1件电子产品,该主播需支付厂家和其他费用共50元,设每件电子产品售价为x(元),主播每天的利润为w(元),则w与x之间的函数解析式为()A.w=(99﹣x)[200+10(x﹣50)]B.w=(x﹣50)[200+10(99﹣x)]C.w=(x﹣50)(200+×10)D.w=(x﹣50)(200+×10)【变式43】2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品.某商家以每套34元的价格购进一批冰墩墩和雪容融套件.若该产品每套的售价是48元时,每天可售出200套;若每套售价每提高2元,则每天少卖4套.设冰墩墩和雪容融套件每套售价定为x元时,则该商品每天销售套件所获利润w与x之间的函数关系式为()A.w=(200+×4)(x﹣48)B.w=(200﹣×4)(x﹣48)C.w=(200﹣×4)(x﹣34)D.w=(200+×4)(x﹣48)【变式44】某商品的进价为每件50元,售价为每件60元,每个月可卖出200件.如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x元(x为整数),每个月的销售利润为y 元,那么y与x的函数关系式是.【变式45】某产品每件成本10元,试销阶段每件产品的销售单价x(元/件)与日销售量y(件)之间的关系如下表.x(元∕件)15182022…y(件)250220200180…按照这样的规律可得,日销售利润w(元)与销售单价x(元/件)之间的函数关系式是.【变式46】(2022春•西湖区校级月考)某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.【题型5 根据实际问题列二次函数面积类】【典例5】将一根长为50cm的铁丝弯成一个长方形(铁丝全部用完且无损耗)如图所示,设这个长方形的一边长为x(cm),它的面积为y(cm2),则y 与x之间的函数关系式为()A.y=﹣x2+50x B.y=x2﹣50xC.y=﹣x2+25x D.y=﹣2x2+25【变式51】长方形的周长为24cm,其中一边长为xcm(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A.y=x2 B.y=12﹣x2 C.y=(12﹣x)•x D.y=2(12﹣x)【变式52】长方形的长为10cm、宽为6cm,它的各边都减少xcm,得到的新长方形的周长为ycm,则y与x之间的关系式是()A.y=32﹣4x(0<x<6)B.y=32﹣4x(0≤x≤6)C.y=(10﹣x)(6﹣x)(0<x<6)D.y=(10﹣x)(6﹣x)(0≤x≤6)【变式53】如图,某农场要盖一排三间长方形的羊圈,打算一面利用旧墙,其余各面用木材围成栅栏,该农场计划用木材围成总长24m的栅栏,设面积为s(m2),垂直于墙的一边长为x(m).则s关于x的函数关系式:(并写出自变量的取值范围)【变式54】如图所示,用长为21米的篱笆,一面利用墙(墙的最大可用长度a 为10米),围成中间隔有一道篱笆的长方形花圃,为便于进出,开了3道宽为1米的门.设花圃的宽AB为x米,面积为S平方米,则S与x的之间的函数表达式为;自变量x的取值范围为.【变式55】如图,某农场要盖一排三间同样大小的长方形的羊圈,打算一面利用旧墙,其余各面用木材围成栅栏,栅栏的总长为24m,设羊圈的总面积为S(不(m2),垂直于墙的一边长为x(m),则S关于x的函数关系式为.必写出自变量的取值范围)【变式56】有一长方形纸片,长、宽分别为8 cm和6 cm,现在长宽上分别剪去宽为x cm(x<6)的纸条(如图),则剩余部分(图中阴影部分)的面积y =,其中是自变量,是因变量.【题型6 根据实际问题列二次函数几何类】【典例6】如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A 开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.【变式61】如图,已知等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为20cm,AC与MN在同一条直线上,开始时点A与点N重合,让△ABC 以2cm/s的速度向左运动,最终点A与点M重合,求重叠部分的面积ycm2与时间ts之间的函数关系式.【变式62】如图所示,在矩形ABCD中,AB=6厘米,BC=12厘米,点P在线段AB上,P从点A开始沿AB边以1厘米/秒的速度向点B移动.点E为线段BC的中点,点Q从E点开始,沿EC以1厘米/秒的速度向点C移动.如果P、Q同时分别从A、E出发,写出出发时间t与△BPQ的面积S的函数关系式,求出t的取值范围.【变式63】如图,在Rt△ABC中,∠C=90°,AC=12mm,BC=24mm,动点P从点A开始沿边AC向C以2mm/s的速度移动,动点Q从点C开始沿边CB向B以4mm/s的速度移动.如果P、Q两点同时出发,那么△PCQ的面积S随出发时间t如何变化?写出函数关系式及t的取值范围.【变式64】如图,正方形ABCD的边长为4cm,E,F分别是BC、DC边上的动点,点E,F同时从点C均以每秒1cm的速度分别向点B,点D运动,当点E与点B重合时,运动停止.设运动时间为x(s),运动过程中△AEF的面积为y(cm2),请写出用x表示y的函数表达式,并写出自变量x的取值范围.【变式65】如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E 出发,沿E→A→D→C移动至终点C.设P点经过的路径长为x,△CPE的面积为y,求y与x之间的函数关系式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数各种题型汇总一、利用函数的对称性解题(一)用对称比较大小例1、已知二次函数y=x2-3x-4,若x2-3/2>3/2-x1>0,比较y1与y2的大小解:抛物线的对称轴为x=3/2,且3/2-x1>0,x2-3/2>0,所以x1在对称轴的左侧,x2在对称轴的右侧,由已知条件x2-3/2>3/2-x1>0,得:x2到对称轴的距离大于x1到对称轴的距离,所以y2>y1(二)用对称求解析式例1、已知抛物线y=ax2+bx+c的顶点坐标为(-1,4),与x轴两交点间的距离为6,求此抛物线的解析式。

解:因为顶点坐标为(-1,4),所以对称轴为x=-1,又因为抛物线与x轴两交点的距离为6,所以两交点的横坐标分别为:x1=-1-3=-4,x2=-1+3=2 则两交点的坐标为(-4,0)、(2,0);设抛物线的解析式为顶点式:ya(x+1)+4,把(2,0)代入得a=-4/9。

所以抛物线的解析式为y=-4/9(x+1)2+4(三)用对称性解题例1:关于x的方程x2+px+1=0(p>0)的两根之差为1,则p等于()A. 2B. 4C. 3D. 5解:设方程x2+px+1=0(p>0)的两根为x1、x2,则抛物线y=x2+px+1与x轴两交点的坐标为(x1,0),(x2,0)。

因为抛物线的对称轴为x=-p/2,所以x1=-p/2-1/2,x2=-p/2+1/2,因为x1x2=1。

所以(-p/2-1/2)(-p/2+1/2=1,p2=5 因为p>0,所以p=5例2、如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为()A.(2,3)B.(3,2)C.(3,3)D.(4,3)解:由点A,B均在抛物线上,且AB与x轴平行可知,点A,B关于x=2对称。

设点B的横坐标为x B,∵点A的坐标为(0,3),所以,(0+x B)/2=2,x B=4 ∴B点坐标为(4,3)例2 (2010,山东日照)如图2是二次函数 y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是多少解析:由抛物线的对称性可知,抛物线与x轴的另一交点为(-1,0),ax2+bx+c<0的解集就是抛物线落在x轴下方的部分所对应的x的取值,不等式ax2+bx+c<0的解集是-1<x<3.例3、(2010,浙江金华)若二次函数y=-x2+2x+k的部分图象如图3所示,则关于x的一元二次方程-x2+2x+k=0的一个解x1=3,另一个解x2是多少;解:依题意得二次函数y=-x2+2x+k的对称轴为x=1,与x轴的一个交点为(3,0),∴抛物线与x轴的另一个交点横坐标为1-(3-1)=-1,∴交点坐标为(-1,0)∴关于x的一元二次方程-x2+2x+k=0的解为x1=3或x2=-1.故填空答案:x1=-1例4:如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为() A. 0 B. -1 C. 1 D. 2解法1:将P代入得:9a+3b+c=0由对称轴得:-b/2a=1, 得b=-2a 9a+3b+c=3a+c=0即a+2a+c=0 则 a-b+c=0解法2:由抛物线的对称轴:x=1,及点P(3,0),可求出抛物线上点P关于对称轴x=1的对称点的坐标为Q(-1,0),由于Q在抛物线上,有(-1,0)满足关系式,因为点p,Q在x轴上所以a-b+c=0,故选A.例5、抛物线y=ax2+bx+c经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是_______________解析:由点A(-2,7),B(6,7)的纵坐标相同,可知A、B关于抛物线的对称轴对称,且对称轴方程为x=(-2+6)/2=2,于是设该抛物线上纵坐标为–8的另一点的坐标为(x2,-8),则有2=(3+x2)/2,从而得x2=1,故答案为(1,-8).例6、已知抛物线上有不同的两点E(k+3,-k2+1)和F(-k-1,-k2+1).求抛物线的解析式.分析:关键是确定一次项系数b.观察抛物线上不同的两点E(k+3,-k2+1)和F(-k-1,-k2+1).纵坐标相同,因此判断得点E和点F关于抛物线对称轴对称.解:的对称轴为x=-b÷(-1/2×2)=b因为抛物线上不同的两点E(k+3,-k 2+1)和F(-k-1,-k 2+1).纵坐标相同,∴点E 和点F 关于抛物线对称轴对称,则b=[(k+3)+(-k-1)]÷2=1,∴ 抛物线的解析式为y=1/2x 2+x+4例7(2010,山东聊城)如图5,已知抛物线y =ax2+bx+c (a ≠0)的对称轴为x =1,且抛物线经过A (-1,0)、C (0,-3)两点,与x 轴交于另一点B .(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x =1上求一点M ,使点M 到点A 的距离与到点C 的距离之和最小,并求此时点M 的坐标;.分析:(1)由点C (0,-3)知c =-3,只需求得a 、b 两个未知的系数,根据点A (-1,0)和对称轴x=1,利用待定系数法可求解;(2)由抛物线的对称性知,直线x=1是AB 的垂直平分线,因此MA =MB ,要使得MA+MC 最小,只要MC+MB 最小,所以点M 就是直线BC 与抛物线对称轴的交点.解:(1)∵抛物线经过点C (0,-3)∴c =-3,∴y =ax2+bx-3。

又抛物线经过点A (-1,0),对称轴为x=1,所以a-b-3=0 -b/2a=1 解得 a=1 b=-2∴抛物线的函数关系式为y =x2-2x-3由B (3,0),C (0,-3),解得y=x-3, 由x=1, 解得y=-2.当点M (1,-2)时,M 到点A 的距离与到点C 的距离之和最小(2)∵点A (-1,0),对称轴为x=1,∴点B (3,0).连接BC,交对称轴x=1于点M. ∵点M 在对称轴上,MA=MB ,∴直线BC 与对称轴x=1的交点即为所求的M 点. 设直线BC 的函数关系式为y=kx+b , 由B (3,0),C (0,-3),解得y=x-3, 由x=1, 解得y=-2.当点M (1,-2)时,M 到点A 的距离与到点C 的距离之和最小例8、二次函数图像经过A (-3,1)、B (1,1)、C (-1,3)三点,求二次函数的解析式。

分析:由观察可知点A (-3,1)、B (1,1)是抛物线上对称的两点。

根据结论2,可知直线x =-1是此抛物线的对称轴,所以点C (-1,3)恰为抛物线的顶点。

设二次函数的解析式为y a x =++()132(顶点式),所以1113122=++=-a a (),。

从而可确定二次函数的解析式为y x =-++12132()。

例9. 已知抛物线y ax bx c a =++≠20()经过点A (-3,-5),且b a =2。

试求抛物线经过除A 点以外的另一定点的坐标。

分析:按照常规思维写出解析式y ax bx c =++2,再确定某一常数点,思维受阻。

考虑到b a =2,从而可知对称轴为x =-1。

根据结论3,A (-3,-5)关于对称轴x =-1的对称点A ’一定在抛物线上,A ’点的坐标为(1,-5)。

因而另一定点的坐标为(1,-5)。

例10、已知,抛物线22)1(t t x a y +--=(a 、t 是常数且不等于零)的顶点是A ,如图所示,抛物线122+-=x x y 的顶点是B 。

(1)判断点A 是否在抛物线122+-=x x y 上,为什么?(2)如果抛物线22)1(t t x a y +--=经过点B ,①求a 的值;②这条抛物线与x 轴的两个交点和它的顶点A 能否构成直角三角形?若能,求出它的值;若不能,请说明理由。

解析:(1)抛物线22)1(t t x a y +--=的顶点A (1+t ,2t ),而1+=t x 当时,222)11()1(12-+=-=+-=x x x x y =2t ,所以点A 在抛物线122+-=x x y 上。

(2)①顶点B (1,0),0)11(22=+--t t a ,∵0≠t ,∴1-=a ;②设抛物线22)1(t t x a y +--=与x 轴的另一交点为C ,∴B (1,0),C (12+t ,0),由抛物线的对称性可知,△ABC 为等腰直角三角形,过A 作AD ⊥x 轴于D ,则AD =BD 。

当点C 在点B 的左边时,)1(12+-=t t ,解得1-=t 或0=t (舍);当点C 在点B 的右边时,1)1(2-+=t t ,解得1=t 或0=t (舍)。

故1±=t 。

例11. 如图2所示,圆O 的直径为2,AB 、EF 为互相垂直的两条直径,以AB 所在直线为y 轴,过点A 作x 轴,建立直角坐标系。

(1)写出E 、F 的坐标;(2)经过E 、F 两点的抛物线从左至右交x 轴于C 、D 两点,若||CD =3,试判定抛物线的顶点是否在圆内。

(3)若经过E 、F 两点的抛物线的顶点恰好在圆O 上,试求抛物线的解析式。

分析:(1)E 点的坐标为(-1,1),F 点的坐标为(1,1);(2)根据结论2可知,E 、F 关于对称轴对称,从而可知对称轴为x =0。

C 、D 是抛物线与x 轴的两个交问题图点,根据结论1,易知C 点坐标为()-320,。

设解析式为y ax bx c =++2,建立方程组103232202=++=--+-=⎧⎨⎪⎪⎪⎩⎪⎪⎪a b c a b c b a() 可得解析式为y x =-+45952。

易知顶点在线段AB 上。

因为952<,故知抛物线顶点在圆内。

(3)根据抛物线的对称性和圆的对称性可知,抛物线的顶点只能为B 点或A 点,现分两种情况讨论。

(1)当B 点为顶点时,设解析式为y ax =+22(顶点式),所以1122=-+a ()。

解得a =-1,所以解析式为y x =-+22。

(2)当A 点为顶点时,设解析式为y ax =2,所以112=-a ()。

解得a =1,所以解析式为y x =2。

注意:求抛物线的解析式的过程中,为避免方程组中出现相同的方程,对称的两点中,只用其中一个点的坐标来列方程。

二、二次函数a 、b 、c 之间的关系题型及字母求值的题型1、二次函数y=ax2+bx+c(a ≠0)的图象如图所示,给出下列结论:① b2-4ac>0;② 2a+b<0;③ 4a -2b+c=0;④ a ︰b ︰c= -1︰2︰3.其中正确的是( )A. ①②B.②③C. ③④D.①④解析:由图可知,对称轴为x=1,图象与x 轴有两个交点(-1,0)和(3,0),故b 2-4ac >0;a-b+c=0,2a+b=0, 所以b=-2a,c=-3a,所以a ︰b ︰c = -1︰2︰3.解答:选D .2、如图为二次函数y=ax 2+bx+c (a ≠0)的图象,则下列说法中正确的个数为( ) ①a >0 ②2a+b=0 ③a+b+c >0 ④当﹣1<x <3时,y >0 A .1 B .2 C .3 D .解:①图象开口向下,能得到a <0;②对称轴在y 轴右侧,x==1,则有﹣=1,即2a+b=0;③当x=1时,y >0,则a+b+c >0; ④由图可知,当﹣1<x <3时,y >0. 故选C .3、已知:M 、N 两点关于y 轴对称,且点M 在双曲线12y x=上,点N 在直线y=x+3上,设点M 的坐标为(a,b ),则二次函数y = –abx 2+(a+b)xA . 有最大值,最大值为 –92B . 有最大值,最大值为92C . 有最小值,最小值为92D . 有最小值,最小值为 –92【解析】M (a ,b ),则N (–a ,b ),∵M 在双曲线上,∴ab =12;∵N 在直线上,∴b =–a +3,即a +b =3; ∴二次函数y = –abx 2+(a+b)x= –12x 2+3x = –12(x –3)2+92,∴有最大值,最大值为92,【答案】B 4、在平面直角坐标系中,将抛物线62--=x x y 向上(下)或向左(右)平移了m 个单位,使平移后的抛物线恰好经过原点,则m 的最小值为( B )A .1B .2C .3D .6【解析】因为是左或右平移,所以由)2)(3(62+-=--=x x x x y 求出抛物线与x 轴有两个交点 (3,0),(-2,0)将抛物线向右平移2个单位,恰好使得抛物线经过原点,且移动距离最小.5、二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的对称轴是直线x=1,其图像的一部分如图所示,对于下列说法:①abc<0;②a-b+c<0; ③3a+c<0; ④当-1<x<3时,y>0.其中正确的是__________(把正确说法的序号都填上).【解析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.∵抛物线的开口向下,∴a <0,∵与y 轴的交点为在y 轴的正半轴上,∴c >0,∵对称轴为x =2b a-=1,得2a =-b ,∴a 、b 异号,即b >0, 又∵c >0,∴abc <0,故①正确;∵抛物线与x 轴的交点可以看出,当x =-1时,y <0,∴a -b +c <0,故②正确;当x =-1时,y <0,而此时a -b +c =3a +c ,即3a +c <0;故③正确;观察图形,显然④不正确.【答案】①②③6、对于二次函数322--=mx x y ,有下列说法:其中正确的说法是 .①它的图象与x 轴有两个公共点;②如果当x ≤1时y 随x 的增大而减小,则1=m ;③如果将它的图象向左平移3个单位后过原点,则1-=m ;④如果当4=x 时的函数值与2008=x 时的函数值相等, 则当2012=x 时的函数值为3-.【解析】①根据函数与方程的关系解答;∵△=4m 2-4×(-3)=4m 2+12>0,∴它的图象与x 轴有两个公共点,故本选项正确;②找到二次函数的对称轴,再判断函数的增减性;∵当x≤1时y 随x 的增大而减小(注意x 的取值包含1,一般情况下,二次函数的增减性是以对称轴为界限,但不包含对称轴,即x 的取值不能包含对称轴的值,)∴函数的对称轴x=-2m2-=m,在直线x=1的右侧,故本选项错误;③将m=-1代入解析式,求出和x轴的交点坐标;将m=-1代入解析式,得y=x2+2x-3,当y=0时,得x2+2x-3=0,即(x-1)(x+3)=0,解得,x1=1,x2=-3,将图象向左平移3个单位后不过原点,故本选项错误;④根据坐标的对称性,求出m的值,得到函数解析式,将m=2013代入解析式;④∵当x=4时的函数值与x=2008时的函数值相等,∴对称轴为x=4+20082=1006,则-2m2-=1006,即m=1006,原函数可化为y=x2-2013x-3,当x=2013时,y=20132-2013×2013-3=-3,故本选项正确.【答案】①④(多填、少填或错填均不给分)7、(2013年广西玉林市,11,3)二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,有如下结论:①c<1;②2a+b=0;③b2<4ac;④若方程ax2+bx+c=0的两根为x1,x2,则x 1+x2=2,则正确的结论是()A.①② B.①③ C.②④ D.③④解:由抛物线与y轴的交点位置得到:c>1,选项①错误;∵抛物线的对称轴为x=-ab2=1,∴2a+b=0,选项②正确;由抛物线与x轴有两个交点,得到b2-4ac>0,即b2>4ac,选项③错误;令抛物线解析式中y=0,得到ax2+bx+c=0,∵方程的两根为x1,x2,且-ab2=1,及-ab=2,∴x1+x2=-ab=2,选项④正确,综上,正确的结论有②④.故选C8、已知二次函数y=ax2+bx+c,且a<0,a-b+c>0,则一定有(A )A.有两个不相等的实根B.有两个相等的实根C.没有实根D.无法确定因为a<0所以抛物线开口向下因为a-b+c>0,可知x=-1时,函数值y>0,所以方程两个根分别位于-1两侧,显然这两个根不相等。

相关文档
最新文档