第2章液压传动系统的设计

合集下载

东北大学《液压与气压传动》第二章

东北大学《液压与气压传动》第二章

重点难点:
容积式泵工作原理、必要条件 齿轮泵工作原理、排流量计算 容积式泵的共同弊病、 困油现象的实质 空压机工作原理
第二章 能源装置及辅件
第一节 概 述 一、能源装置的组成
液压能源装置和气源装置
液压能源装置用来向液压系统输送具有一定压力和流量的 清洁的工作介质;
气源装置则向气动系统输送一定压力和流量的洁净的压缩空气。 液压泵站一般由泵、油箱和一些液压辅件(过滤器、温控元 件、热交换器、蓄能器、压力表及管件等)组成,这些辅件是相 对独立的,可根据系统的不同要求而取舍,一些液压控制元件 (各种控制阀)有时也以集成的形式安装在液压泵站上。 气源装置则由空压机、压缩空气的净化储存设备(后冷却器 、油水分离器、储气罐、于燥器及输送管道)、气动三联件(分 水过滤器、油雾器及减压阀)组成,还有一些必要的辅件,如自 动排水器、消声器、缓冲器等.
V = 2(V1 V2 ) z = 2b[π ( R
2
R r r ) sz ] cosθ
2
式中 R,r—叶片泵定子内表面圆弧 部分长、短半径; θ—叶片倾角。 泵的实际输出流量为
q = Vn η v = 2b[π ( R
2
R r r ) sz ]nη v cos θ
2
对高压叶片泵常采用以下措施来改善叶片受力状况: 1)减小通往吸油区叶片根部的油液压力,即在吸油区叶片根部与压油腔之间串 联一减压阀或阻尼槽,使压油腔的压力油经减压后再与叶片根部相通。这样叶片 经过吸油腔时,叶片压向定子内表面的作用力不会太大。 2)减小叶片底部承受压力油作用的面积。 图 2-16a所示为子母叶片的结构,母叶片3和子叶片4之间的油室 f始终 经槽 e、d、a和压力油相通,而母叶片的底腔 g则经转子1上的孔 b和所在油 腔相通。这样,叶片处在吸油腔时,母叶片只在压油室 f的高压油作用下压 向定子内表面,使作用力不致太高。

液压机液压传动与控制系统设计手册

液压机液压传动与控制系统设计手册

液压机液压传动与控制系统设计手册【实用版】目录一、液压机的概述二、液压传动系统的设计1.液压元件的选择2.液压传动系统的原理图设计3.液压传动系统的性能分析三、控制系统的设计1.控制系统的组成2.控制策略的选择3.控制系统的实现四、液压机液压传动与控制系统的实际应用正文一、液压机的概述液压机是一种利用液体压力来传递动力的机械设备,其主要由液压元件、液压传动系统以及控制系统组成。

液压机的工作原理是利用液压油的压力来驱动液压缸,从而实现机械的运动。

液压机的应用广泛,主要用于锻造、冲压、拉伸等工艺过程。

二、液压传动系统的设计1.液压元件的选择液压元件是液压传动系统的核心部分,主要包括液压泵、液压阀、液压缸等。

液压元件的选择主要根据液压机的工作要求、工作环境和液压油的性质来确定。

2.液压传动系统的原理图设计液压传动系统的原理图设计是液压传动系统设计的重要环节。

原理图设计主要包括液压泵、液压阀、液压缸的连接方式和顺序,以及液压油的流动方向和压力分布。

3.液压传动系统的性能分析液压传动系统的性能分析主要包括液压传动系统的工作压力、流量、效率和稳定性等。

通过对液压传动系统的性能分析,可以确保液压传动系统的正常工作和长期稳定性。

三、控制系统的设计1.控制系统的组成控制系统主要由控制器、传感器和执行器组成。

控制器是控制系统的核心部分,主要负责控制液压传动系统的工作。

传感器是控制系统的输入部分,主要用于检测液压传动系统的工作状态。

执行器是控制系统的输出部分,主要用于控制液压传动系统的工作。

2.控制策略的选择控制策略的选择是控制系统设计的重要环节。

控制策略的选择主要根据液压机的工作要求、工作环境和液压油的性质来确定。

常用的控制策略包括比例 - 积分 - 微分控制(PID 控制)、模糊控制和神经网络控制等。

3.控制系统的实现控制系统的实现主要包括控制器程序的设计和执行器的控制。

控制器程序的设计主要采用 MATLAB 仿真软件进行,通过仿真可以验证控制器程序的正确性和有效性。

第二章 液压传动流体力学基础

第二章  液压传动流体力学基础

第12张/共91张
11:55
2.2 液体动力学
实验
第13张/共91张
11:55
2.2 液体动力学
一维流动
当液体整个作线形流动时,称为一维流动;当作平面或 空间流动时,称为二维或三维流动。一维流动最简单,但是 严格意义上的一维流动要求液流截面上各点处的速度矢量完 全相同,这种情况在现实中极为少见。通常把封闭容器内液 体的流动按一维流动处理,再用实验数据来修正其结果,液 压传动中对工作介质流动的分析讨论就是这样进行的。
静止液体中的压力分布
例:如图所示,有一直径为d, 解:对活塞进行受力分析, 活塞受到向下的力: 重量为G的活塞侵在液体中, 并在力F的作用下处于静止状 F下 =F+G 态,若液体的密度为ρ,活 活塞受到向上的力: 塞侵入深度为h,试确定液体 d 2 在测量管内的上升高度x。 F上=g h x 4 F 由于活塞在F作用下受力平衡, d 则:F下=F上,所以:
第16张/共91张 11:55
2.2 液体动力学
通流截面、流量和平均流速
流束中与所有流线正交的截面称为通流截面,如图c中的A面 和B面,通流截面上每点处的流动速度都垂直于这个面。 单位时间内流过某通流截面的液体体积称 为流量,常用q表示 ,即:
q V t
式中
q —流量,在液压传动中流量
常用单位L/min; V —液体的体积; t —流过液体体积V 所需的时间。
1mmHg(毫米汞柱)=1.33×102N/m2
1at(工程大气压,即Kgf/cm2)=1.01972×105帕 1atm(标准大气压)=0.986923×105帕。
第9张/共91张 11:55
2.1 液体静力学
帕斯卡原理

第二章 液压传动基础知识

第二章 液压传动基础知识

F p A
式中 F——法向作用力(N); A——承压面积(m2)。 在这里压力与压强的概念相同,物理学中称为压强,工程实际中称为 压力。
。 静止液体压力具备两个重要特性:
1)压力的方向总是垂直指向承压表面; 2)流体内任一点的液体静压力在各个方向上都相等。
第2章
2.液体静压力 液体处于静止状态下的压力称为液体静压力。
与大气相通的水槽中,液体在管中上升的高度h = 1m,设液 体的密度为ρ= 1000㎏/m3,试求容器内的真空度。
解:以液面为等压面,由液体静压力基本方程得
p +ρgh = pa 所以真空度为
pa-p = ρgh =1000×9.8×1 =9800(Pa)
如图所示,密闭容器中充满了密度为ρ的液体,柱塞直径为d, 重量为FG,在力F作用下处于平衡状态,柱塞浸入液体深度为h。
§2.1 液压油
一、 液压油的主要性质
1.密度
单位体积液体的质量称为液体的密度。液体的密度为
m ρ V
式中
m:液体的质量(kg); V:液体的体积(m3); 液压油的密度ρ=900 kg/ m3
液压油的密度随压力的升高而增大,随着温度的升高而减小。但 在通常的使用压力和温度范围内对密度的影响都极小,一般情况下可视 液压油的密度为常数,其密度值为900 kg/m3。
• 作用在大活塞上的负载F1形成
液体压力 p= F1/A1
• 为防止大活塞下降,在小活 塞上应施加的力

F2= pA2= F1A2/A1
由此可得
• 液压传动可使力放大,可使力
缩小,也可以改变力的方向。
• 液体内的压力是由负载决定 的。
如图:已知活塞1的面积A1=1.13X10-4m2,液压缸活塞2的面积

基于PLC的四柱万能液压机液压系统设计

基于PLC的四柱万能液压机液压系统设计

基于PLC的四柱万能液压机液压系统设计第1章绪论液压机简介液压机是利用液压油来传递压力的设备。

液压油在密闭的容器中传递压力时是遵循帕斯卡定律液压机的液压传动系统由动力机构、控制机构、执行机构、辅助机构和工作介质组成。

动力机构通常采用油泵作为动力机构,一般为容积式油泵。

为了满足执行机构运动速度的要求,选用一个油泵或多个油泵。

低压〔油压小于2.5MP〕用齿轮泵;中压〔油压小于6.3MP〕用叶片泵高压〔油压小于32.0MP〕用柱塞泵。

液压机通常指液压泵和液压马达,液压机和液压马达都是液压系统中的能量转换装置,不同的是液压泵把驱动电动机的机械能转换成油液的压力能,是液压系统中的动力装置,而液压马达是把油液的压力能转换成机械能,是液压系统中的执行装置。

液压系统中常用的液压泵和马达液压机都是容积式的,其工作原理都是利用密封容积的变化进行吸油和压油的。

从工作原理上来说,大部分液压泵和液压马达是互逆的,即输入压力油,液压泵就变成液压马达,就可输出转速和转矩,但在结构上,液压泵和液压马达还是有些差异的.液压机的维修:过盈配合的零件拆装采用锤敲、棍橇劳动强度大效率低且不安全,还容易打坏零件,以及用加热法操作困难、增加维修成本的缺点提供的,是在支架的顶部,安装有活塞杆竖直向下的液压油缸,活塞杆的下端安装有压头;支架上在活塞杆的下部,水平固定有工作台;与油泵连接的输油管通过换向阀与液压油缸连接。

用液压油缸的压力装卸零件,没有猛烈的锤击棍橇,不损坏零件,也不用加热耗能,安全可靠节能,安装精度高.液压机液压机简介:液压机由主机及控制机构两大部分组成。

液压机主机部分包括机身、主缸、顶出缸及充液装置等。

动力机构由油箱、高压泵、低压控制系统、电动机及各种压力阀和方向阀等组成。

动力机构在电气装置的控制下,通过泵和油缸及各种液压阀实现能量的转换,调节和输送,完成各种工艺动作的循环。

液压机的分类:利用帕斯卡定律制成的利用液体压强传动的机械,种类很多。

液压与气压传动课程设计指导书

液压与气压传动课程设计指导书

液压与气压传动课程设计指导书胡竞湘钟定清湖南工程学院机械工程系2007.6目录第1章概述 (1)1.1 课程设计的目的 (1)1.2 课程设计内容 (1)1.3 课程设计的一般步骤 (1)1.4 课程设计要求及完成工作量 (2)1.5课程设计的注意事项 (2)第2章液压与气压传动设计 (4)2.1 明确设计要求 (4)2.2 进行工况分析、确定液压系统的主要参数 (4)2.2.1 载荷的组成和计算 (4)2.2.2 初选系统工作压力 (6)2.2.3 确定执行元件的主要结构参数 (7)2. 2.4 计算液压缸或液压马达所需流量 (7)2.2.5 绘制液压系统工况图 (8)2.3 制定基本方案和绘制液压系统图 (8)2.3.1 制定基本方案 (8)2.3.2 绘制液压系统图 (9)2.4 液压元件的选择与专用件设计 (9)2.4.1液压泵的选择 (9)2.4.2液压阀的选择 (11)2.4.3 辅助元件的选择 (11)2.4.4 液压装置总体布局 (13)2.4.5 液压阀的配置形式 (13)2.4.6 集成块设计 (13)2.5 液压系统性能验算 (14)2.5.1 液压系统压力损失 (14)2.5.2 计算液压系统的发热功率 (15)2.5.3 计篡液压系统冲击压力 (16)2.6 绘制正式工作图,编写技术文件 (16)2.7 液压与气压传动系统设计题例—半自动液压专用铣床液压系统的设计 (16)2.7.1 设计内容及要求 (16)2.7.2 设计方法与步骤 (17)第3章课程设计参考资料 (28)3.1 液压缸 (28)3.1.1 液压缸安装形式 (28)3.1.2 液压缸主要参数及尺寸的确定 (29)3.1.3 液压缸结构设计 (35)3.1.3 总体尺寸确定 (41)3.2 油箱 (42)3.2.1 油箱容积 (42)3.2.2 油箱的结构设计 (44)3.2. 3 油箱的防噪音问题 (45)3.2. 4 其它应注意事项 (45)3.3 液压泵装置 (46)3.3.1 液压泵的安装方式 (46)3.3.2 液压泵与电机的联接 (47)3.3.3 绘制液压泵组工作图 (47)3.4 辅助元件 (48)3.4.1 滤油器 (48)3.4.2 油位指示器 (49)3.4.3 空气滤清器 (49)3.4.4 温度计 (49)3.4.5 压力表与压力传感器 (50)参考文献 (51)第1章概述1.1 课程设计的目的液压与气压传动与机械传动、电气传动并列为当代三大传动形式,是现代发展起来的一门新技术。

液压传动系统的设计与计算

液压传动系统的设计与计算

液压传动系统的设计与计算[原创2006-04-09 12:49:44 ] 发表者: yzc741229液压传动系统设计与计算液压系统设计的步骤大致如下:1.明确设计要求,进行工况分析。

2.初定液压系统的主要参数。

3.拟定液压系统原理图。

4.计算和选择液压元件。

5.估算液压系统性能。

6.绘制工作图和编写技术文件。

根据液压系统的具体内容,上述设计步骤可能会有所不同,下面对各步骤的具体内容进行介绍。

第一节明确设计要求进行工况分析在设计液压系统时,首先应明确以下问题,并将其作为设计依据。

1.主机的用途、工艺过程、总体布局以及对液压传动装置的位置和空间尺寸的要求。

2.主机对液压系统的性能要求,如自动化程度、调速范围、运动平稳性、换向定位精度以及对系统的效率、温升等的要求。

3.液压系统的工作环境,如温度、湿度、振动冲击以及是否有腐蚀性和易燃物质存在等情况。

图9-1位移循环图在上述工作的基础上,应对主机进行工况分析,工况分析包括运动分析和动力分析,对复杂的系统还需编制负载和动作循环图,由此了解液压缸或液压马达的负载和速度随时间变化的规律,以下对工况分析的内容作具体介绍。

一、运动分析主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t),速度循环图(v—t),或速度与位移循环图表示,由此对运动规律进行分析。

1.位移循环图L—t图9-1为液压机的液压缸位移循环图,纵坐标L表示活塞位移,横坐标t表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。

该图清楚地表明液压机的工作循环分别由快速下行、减速下行、压制、保压、泄压慢回和快速回程六个阶段组成。

2.速度循环图v—t(或v—L)工程中液压缸的运动特点可归纳为三种类型。

图9-2为三种类型液压缸的v—t图,第一种如图9-2中实线所示,液压缸开始作匀加速运动,然后匀速运动,图9-2 速度循环图最后匀减速运动到终点;第二种,液压缸在总行程的前一半作匀加速运动,在另一半作匀减速运动,且加速度的数值相等;第三种,液压缸在总行程的一大半以上以较小的加速度作匀加速运动,然后匀减速至行程终点。

液压系统设计篇

液压系统设计篇

液压系统设计篇----4ffaa03a-7161-11ec-876d-7cb59b590d7d液压传动系统设计,除了应符合其主机在动作循环和静、动态性能等方面所提出的要求外,还必须满足结构简单、使用维护方便、工作安全可靠、性能好、成本低、效率高、寿命长等条件。

液压传动系统的设计一般依据流程图见图4-1的步骤进行设计。

图4-1液压传动系统设计流程图第一节明确设计要求要设计一个新的液压系统,首先必须明确机器对液压系统的动作和性能要求,并将这些技术要求作为设计的出发点和基础。

需要掌握的技术要求可能包括:1.机器的特性(1)充分了解主机的结构和总体布置,机构与从动件之间的连接条件和安装限制,以及其用途和工作目的。

(2)负载种类(恒定负载、变化负载及冲击负载)及大小和变化范围;运动方式(直线运动、回转运动、摆动)及运动量(位移、速度、加速度)的大小和要求的调节范围;惯性力、摩擦力、动作特性、动作时间和精度要求(定位精度、跟踪精度、同步精度)。

(3)原动机类型(电机、内燃机等)、容量(功率、速度、扭矩)和稳定性。

(4)操作方式(手动、自动)、信号处理方式(继电器控制、逻辑电路、可编程控制器、微机程序控制)。

(5)系统中每个执行器的动作顺序和动作时间之间的关系。

2.使用条件(1)设置地点。

(2)环境温度、湿度(高温、寒带、热带),粉尘种类和浓度(防护、净化等),腐蚀性气体(所有元件的结构、材质、表面处理、涂覆等),易爆气体(防爆措施),机械振动(机械强度、耐振结构),噪声限制(降低噪声措施)。

(3)维护程度和周期;维修人员的技术水平;保持空间、可操作性和互换性。

3.适用的标准和规则根据用户要求采用相关标准、法则。

4.安全性、可靠性(1)用户在安全方面是否有特殊要求。

(2)指定保修期和条件。

5.经济不能只考虑投资费用,还要考虑能源消耗、维护保养等运行费用。

6.工况分析液压系统的工况分析是为了找出各执行机构在各自工作过程中的速度和负载变化规律。

液压与气压传动 第二版 教学课件 袁承训 主编 液压与气压传动第2章

液压与气压传动 第二版 教学课件 袁承训 主编 液压与气压传动第2章
10 2 ( 5 ~ 7 ) 10 m /N 常用液压油的体积压缩系数
2
液体的体积压缩系数κ 的倒数称为液体的体积弹性模量, 用K表示。
Vp K V 1
( N / m2 )
实际应用中,常用K值说明液体抵抗压缩能力的大小,它 表示产生单位体积相对变化量所需的压力增量。 *对于一般液压系统,可认为油液是不可压缩的。只有研究 液压系统的动态特性和高压情况下,才考虑油液的可压缩性。
2
二、对液压油的要求和选用 ㈠要求 ⑴粘温性好; ⑵润滑性能好; ⑶化学稳定性好; ⑷质地纯净,抗泡沫性好; ⑸闪点要高,凝固点要低。 ㈡种类和选用 矿物油型; 合成型; 乳化型。
2
2
2
第二节 液体静力学基础
一、液体的压力 ㈠液体的静压力及其特性 静止液体在单位面积上所受的法向力称为静压力,用p表示
教材其余课件及动画素材请查阅在线教务辅导网 在线教务辅导网:
QQ:349134187 或者直接输入下面地址:

液压传动
第二章 液压传动的基本知识
第一节 液压油 第二节 液体静力学基础 第三节 液体动力学方程 第四节 液体流动时的压力损失 第五节 液体流经小孔和缝隙的流量计算 第六节 液压冲击和空穴现象
2
㈡静压力基本方程
由于液体处于平衡状态,在垂直方向上的力存在如下关 系
pA p0A ghA
p p0 gh
(2 15)
2
上式即为液体静压力基本方程,由上式可知: ⑴静止液体内任一点处的压力由液面上压力和该点以上液体 的 自重所产生的压力。p p gh
a
⑵静止液体内的压力沿液深呈线性规律分布,如下图。 ⑶离液面深度相同处各点的压力相等 ⑷对静止液体,液体内任一点的压力 为p,与基准水平的距离为h,则由 静压力基本方程式可得 p p

液压传动第二章

液压传动第二章

液体动力学
• 理想液体 假设的既无粘性又不可压缩的流体称为理想流体。 • 恒定流动 液体流动时,液体中任一点处的压力、速度和密度都不 随时间而变化的流动,亦称为定常流动或非时变流动。 • 通流截面 垂直于流动方向的截面,也称为过流截面。

流量 单位时间内流过某一通流截面的液体体积,流量以q表示, 单位为 m3 / s 或 L/min。
水力直径DH
圆形截面管: DH = d (管道内径)
非圆形截面管: D H =
4A

一般以液体由层流转变为紊流的雷诺数作为判断 液体流态的依据,称为临界雷诺数,记为Rer。 当Re<Rer,为层流;当Re>Rer,为紊流。
沿程压力损失
液体在等断面直管内,沿流动方向各流层之 间的内摩擦而产生的压力损失,称为沿程压力 损失。
二、缝隙流动
液压元件中的缝隙流动
a、齿轮泵(马达)的齿侧和齿顶 间隙; b、滑阀的阀芯与阀套,柱塞泵的 柱塞与缸孔; c、柱塞泵的滑靴与斜盘,缸体端 面与配流盘;
二、缝隙流动
(1)平行平板缝隙流
a、压差流(Poiseuille流)
p 流速u1 ( -z) z 2l b p 流量q1 12l
压力的度量
压力的单位换算
1atm 1.013 10 Pa 1.013bar 760mmHg
5
1MPa 10 Pa 10bar
6
1Pa 1N / m
2 2
1MPa 1N / mm
液体动力学
主要是研究液体流动时流速和压力的变化规律。流动液体的 连续性方程、伯努利方程、动量方程是描述流动液体力学规 律的三个基本方程式。前两个方程反映了液体的压力、流速 与流量之间的关系,动量方程用来解决流动液体与固体壁面 间的作用力问题。 • 基本概念 • 流量连续性方程 • 伯努利方程 • 动量方程

液压系统设计与计算

液压系统设计与计算
13
(2)确定执行元件的主要结构参数
以缸为例,主要结构尺寸指缸的内径D和活塞杆的直 径d,计算后按系列标准值确定D和d。
对有低速运动要求的系统,尚需对液压缸有效工作面 积进行验算,即应保证:
式中
A q min v min
(10.8)
:A—液压缸工作腔的有效工作面积;
v m in—控制执行元件速度的流量阀最小稳定流量;
17
1.3.2 选择液压泵
先根据设计要求和系统工况确定泵的类型, 然后根据液压泵的最大供油量和系统工作压力来 选择液压泵的规格。
(1) 液压泵的最高供油压力
ppp pl (10.11)
式中: p—执行元件的最高工作压力;
pl —进油路上总的压力损失。
18
(2)确定液压泵的最大供油量 液压泵的最大供油量为:
khAt (10.15)
式中: A—油箱的散热面积;
t —液压系统的温升;
k h —油箱的散热系数,其值可查阅液压设计手册。
系统的温升为 t kh A
(10.16)
计算温升值如果超过允许值,应采取适当的冷却措施。
27
1.5 绘制正式工作图和编制技术文件
10.1.5.1 绘制正式工作图 正式工作图包括液压系统原理图、液压系统装配图、
30
机床的外形示意图。
1-左主轴头;2-夹具;3-右主轴头;4-床身;5-工件
31
2.1 确定对液压系统的工作要求
根据加工要求,刀具旋转由机械传动来实现;主轴头 沿导轨中心线方向的“快进一工进—快退—停止”工作循环 拟采用液压传动方式来实现。故拟选定液压缸作执行机构。
考虑到车削进给系统传动功率不大,且要求低速稳定 性好,粗加工时负载有较大变化,故拟选用调速阀、变量 泵组成的容积节流调速方式。

液压传动课件第1-2章

液压传动课件第1-2章

液压系统若 能正常工作必须 由五部分组成。
(1) 动力装置 (2) 执行元件
(3) 控制调节元件 (4) 辅助元件 (5) 工作介质
二、液压传动系统的图形符号
简单机床的液压传动系统 1一油箱2一滤油器3一液压泵4一节流阀5一溢流阀6一换向阀 7一换向阀手柄 8一液压缸9~活塞10一工作台
第二节 液压传动的优缺点
第三节 液压传动的应用和发展
一、液压传动在各类机械中的应用
二、液压传动技术的发展概况
近年来,液压行业对于计算机技术的应用给予极大的关注,其中计
算机辅助设计
的推广使用和数字控制液
压元件的研制开发尤其突出。
另外,减小元件的体积和重量,提高元件的寿命,研制新介质以及 污染控制的研究,也是当前液压传动及液压控制技术发展和研究的重要 课题。
一、液体流经小孔的流量
小孔一般可以分为三种:当小孔的长径比
壁孔;当
时,称为细长孔;当
时,称为薄 时,称为短孔。
(一) 液体流经薄壁小孔和短孔的流量
流经薄壁小孔的流量 与小孔的过流断面面积 及小
孔两端压力差的平方根
成正比。
式中
与小孔的结构及液体的密度等有关的系数。
流经薄壁小孔时液流变化示意图
(二)液体流经细长小孔的流量 计算公式。即
三、阀的压力损失 式中
四、管路系统的总压力损失
1) 当液压缸无杆腔进压力油,有杆腔回油,活塞向右移动时
当量压力损失的计算
2) 当液压缸有杆腔进压力油,无杆腔回油,活塞向左移动时
式中A1——液压缸无杆腔有效作用面积; A2——液压缸有杆腔有效作用面积; ——回油路当量压力损失。
第五节 液体流经小孔和间隙的流量
虑到实际圆管截面可能有变形,以及靠近管壁处的液层可能冷却,

液压传动系统设计计算

液压传动系统设计计算

液压系统的设计步骤与设计要求液压传动系统是液压机械的一个组成部分,液压传动系统的设计要同主机的总体设计同时进行。

着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。

一、设计步骤液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。

一般来说,在明确设计要求之后,大致按如下步骤进行。

1〕确定液压执行元件的形式;2〕进行工况分析,确定系统的主要参数;3〕制定基本方案,拟定液压系统原理图;4〕选择液压元件;5〕液压系统的性能验算;6〕绘制工作图,编制技术文件。

1.1 明确设计要求设计要求是进行每项工程设计的依据。

在制定基本方案并进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其他方面了解清楚。

1〕主机的概况:用途、性能、工艺流程、作业环境、总体布局等;2〕液压系统要完成哪些动作,动作顺序及彼此联锁关系如何;3〕液压驱动机构的运动形式,运动速度;4〕各动作机构的载荷大小及其性质;5〕对调速范围、运动平稳性、转换精度等性能方面的要求;6〕自动化程序、操作控制方式的要求;7〕对防尘、防爆、防寒、噪声、安全可靠性的要求;8〕对效率、成本等方面的要求。

进行工况分析、确定液压系统的主要参数通过工况分析,可以看出液压执行元件在工作过程中速度和载荷变化情况,为确定系统及各执行元件的参数提供依据。

液压系统的主要参数是压力和流量,它们是设计液压系统,选择液压元件的主要依据。

压力决定于外载荷。

流量取决于液压执行元件的运动速度和结构尺寸。

制定基本方案和绘制液压系统图〔1〕制定调速方案液压执行元件确定之后,其运动方向和运动速度的控制是拟定液压回路的核心问题。

方向控制用换向阀或逻辑控制单元来实现。

对于一般中小流量的液压系统,大多通过换向阀的有机组合实现所要求的动作。

对高压大流量的液压系统,现多采用插装阀与先导控制阀的逻辑组合来实现。

液压系统课程设计

液压系统课程设计

液压传动系统课程设计指导老师:设计者:班级:机电08级学号:同组人:目录一.设计目标及参数1.设计目标2.设计要求及参数二.液压系统方案设计1、确定液压泵类型及调速方式2、选用执行元件3、快速运动回路和速度换接回路4、换向回路的设计5、组成液压系统绘原理图三.主要参数的选择设定1. 定位液压缸主要参数的确定2. 夹紧缸的主要参数设计3.主控缸主要参数确定4.液压泵的参数计算5.电动机的选择四.液压元件和装置的选择1.液压阀及过滤器的选择2.油管的选择3.油箱容积的确定五.验算液压系统的性能。

1.沿程压力损失计算∑2.局部压力损失r p∆六液压系统发热和温升验算七电气控制系统设计1.PLC控制编程图八实验报告1 实验目的2 试验设备3 试验原理4 实验步骤5 实验数据及处理九分析思考题十设计总结十一参考文献一设计目标及参数设计一专用双行程铣床。

工件安装在工作台上,工作台往复运动由液压系统实现。

双向铣削。

工件的定位和夹紧由液压实现,铣刀的进给由机械步进装置完成,每一个行程进刀一次。

机床的工作循环为:手工上料——按电钮——工件自动定位,夹紧——工作台往复运动铣削工件若干次——拧紧铣削——夹具松开——手工卸料(泵卸载)定位缸的负载200N ,行程100mm ,动作时间1s ; 夹紧缸的负载2000N ,行程15mm ,动作时间1s ; 工作台往复运动行程(100-270)mm 。

方案:单定量泵进油路节流高速,回油有背压,工作台双向运动速度相等,但要求前四次速度为01υ,然后自动切换为速度02υ,再往复运动四次。

设计参数:前四次速度为01υ,切削负载(N )为15000N ,工作台(液压缸)复复运动速度(m/min)为:0.8~8。

后四次速度为02υ,切削负载(N )为7500N,工作台(液压缸)往复运动速度(m/min)为0.4~4,结构设计为:往复运动液压缸设计二 液压系统方案设计1、确定液压泵类型及调速方式参考一般机床液压系统,选用双作用叶片泵单泵供油。

液压传动系统完整版

液压传动系统完整版

七.制动缓冲回路 为了减少液压冲击,除了在液压元件结构本 身采取措施,还可以在系统中采去缓冲回来 了。可以采用单向行程节流阀和溢流阀的缓 冲制动回路。
第节 速度控制回路
速度控制回路是关于系统的速度调节和 变换的问题。是使执行元件从一种速度到另 一种速度的回路,有增速回路、减速回路和 二次速度转换回路。
一.插装阀方向控制回路 图2-54是二通插装阀方向控制基本回路。 其中a与b为单向节流阀,c为液控单向阀。d 为二位二通的方向控制阀。 一个插装阀只能控制两个油口的通断。
图2-54 手绘
图2-55是插装阀三位四通换向回路。图示位 置先导阀失电时,插装阀1、2、3、4的控制 腔在压力油的作用下,阀芯均关闭,P、A、B、 T均不相同;1Y得电,插装阀2、4控制油腔失 压而开启,1、3关闭,P和A接通,B和T接通; 2Y得电时,P和B、A和T接通,构成相当于O型 机能的三维四通电液换向回路。
2 1 1 2
图2-6a
图2-6b中,增压回路可使液压缸1共作行程 加长,活塞向右运动时遇到负载时,单向阀4 由于系统压力升高而开启,压力油进入增压 器2 才起到增压作用。 系统实现快进,并低速工作要求。 液控单向阀6是为了增压时隔开高低压力 油。
图2-6b
四.卸荷回路 液压系统工作时,执行元件短时间的停止 工作,不需要输入油,此时可以让液压泵卸 荷。 液压泵卸荷:让液压泵以很小的出输出功 率运转,或以很低的压力运转,或让液压泵 输出很小流量的压力油。
图2-36
图2-37
第四节 顺序动作回路
顺序动作回路是实现多个执行元件按预定 的次序动作的液压回路。按顺序动作控制方 法可分为压力控制和行程控制两大类。
一.压力控制顺序回路 图2-37是顺序阀控制的顺序动作回路。 当手动换向阀4左位接入回路,液压缸1活塞 向右运动,完成动作1后,压力升高,3开启, 液压缸2的活塞向右运动,完成动作2。退回 时,换向阀右位接入回路,一次完成3、4。

液压机液压传动与控制系统设计手册

液压机液压传动与控制系统设计手册

液压机液压传动与控制系统设计手册液压机液压传动与控制系统设计手册导言:在现代工业中,液压传动与控制系统起到了至关重要的作用。

液压机是一种广泛应用于工程和制造领域的机械设备,它利用液体的力学性质传输和控制力,实现各种工作任务。

本文旨在为液压机液压传动与控制系统的设计提供一份全面而又深入的手册,帮助读者更好地理解和应用这一技术。

第一章:液压传动基础1.1 液压传动的基本原理液压传动是利用液体在封闭的系统中传递能量,实现力或运动控制的方法。

通过利用液压元件,如液压缸、液压马达和液压阀,液压传动系统能够转换机械能为液压能,并将其再次转换为机械能。

1.2 液压元件的基本工作原理主要介绍了液压元件的基本组成和工作原理,包括液压缸、液压马达、液压泵和液压阀。

液压传动系统中的这些元件起到了关键的作用,通过合理地设计和组合,可以实现各种工作任务。

1.3 液压流体的特性与选用探讨了液压系统中所使用的液压流体的特性和选用。

液压流体应具有一定的黏度、抗磨性和耐高温性能,同时还需要考虑系统的工作压力和环境因素。

第二章:液压控制系统2.1 液压控制系统的基本组成介绍了液压控制系统的基本组成,包括执行元件、执行元件、控制元件和电气元件。

这些组件相互配合,实现对液压传动系统的精确控制。

2.2 液压控制系统的工作原理详细阐述了液压控制系统的工作原理,包括液压马达的控制、液压缸的控制和液压阀的控制等方面。

通过对系统工作原理的理解,能更好地设计和操作液压传动系统。

2.3 液压控制系统的性能参数列举了液压控制系统的主要性能参数,包括系统的输出力、速度、位置精度以及系统的动态响应。

这些参数对于系统设计和优化非常关键。

第三章:液压传动系统的设计3.1 液压传动系统的设计要点讨论了液压传动系统的设计要点,包括选用合适的液压元件、合理布局和连接、确定工作压力和流量,并注意系统可靠性和安全性等方面。

3.2 液压传动系统的设计实例通过实例介绍了液压传动系统的设计过程和方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章液压传动系统的设计
液压系统的设计是整机设计
的一部分,它除了应符合主机动作
循环和静、动态性能等方面的要求
外,还应当满足结构简单、工作安
全可靠、效率高、寿命长、经济性
好、使用维护方便等条件。

液压系统的设计没有固定的
统一步骤,根据系统的繁简、借鉴
的多寡和设计人员经验的不同,
在做法上有所差异。

各部分的设
计有时还要交替进行,甚至要经过
多次反复才能完成。

图2.1所示为
液压系统设计的基本内容和一般
流程。

2.1 明确设计要求、
图2.1 液压系统设计的一般流程
进行工况分析
2.1.1 明确设计要求
1.明确液压系统的动作和性能要求
液压系统的动作和性能要求,主要包括有:运动方式、行程和速度范围、载荷情况、运动平稳性和精度、工作循环和动作周期、同步或联锁要求、工作可靠性等。

2.明确液压系统的工作环境
液压系统的工作环境,主要是指:环境温度、湿度、尘埃、是否易燃、外界冲击振动的情况以及安装空间的大小等。

2.1.2 执行元件的工况分析
对执行元件的工况进行分析,就是查明每个执行元件在各自工作过程中的速度和负载的大小、方向及其变化规律。

通常是用一个工作循环内各阶段的速度和负载值列表表示,必要时还应作出速度和负载随时间(或位移)变化的曲线图(称速度循环图和负载循环图)。

在一般情况下,液压缸承受的负载由六部分组成,即工作负载、导轨摩擦负载、惯性负载、重力负载、密封负载和背压负载,前五项构成了液压缸所要克服的机械总负载。

1. 工作负载F W
—— 液压缸回油路的背压(Pa ),在系统设计完成之前无法准确计算,可先按表
p b 2.5估计。

差动快进时,有杆腔压力大于无杆腔,其压差p =是油液从有杆腔流入无杆 p b 腔的压力损失。

2.2.4 执行元件的工况图
各执行元件的主要参数确定之后,不但可以复算液压执行元件在工作循环各阶段内的工作压力,还可求出需要输入的流量和功率。

这时就可作出系统中各执行元件在其工作过程中的工况图,即液压执行元件在一个工作循环中的压力、流量和功率随时间(或位移)的变化曲线图(图2.2为某一机床进给液压缸工况图)。

当液压执行元件不只有一个时,将系统中各执行元件的工况图进行叠加,便得到整个系统的工况图。

液压系统的工况图可以显示整个工作循环中的系统压力、流量和功率的最大值及其分布情况,为后续设计中选择元件、回路或修正设计提供依据。

对于单个执行元件的系统或某些简单系统,其工况图的绘制可以省略,而仅将计算出的各阶段压力、流量和功率值列表表示。

图2.2 机床进给液压缸工况图
—快进时间;—工进时间;—快退时间
1t 2t 3t 2.3 液压系统原理图的拟定
液压系统原理图是表示液压系统的组成和工作原理的图样。

拟定液压系统原理图是设计液压系统的关键一步,它对系统的性能及设计方案的合理性、经济性具有决定性的影响。

1. 确定油路类型
一般具有较大空间可以存放油箱且不另设散热装置的系统,都采用开式油路;凡允许采用辅助泵进行补油并借此进行冷却油交换来达到冷却目的的系统,都采用闭式油路。

通常节流调速系统采用开式油路,容积调速系统采用闭式回路。

2. 选择液压回路
在拟订液压系统原理图时,应根据各类主机的工作特点和性能要求,首先确定对主机主要性能起决定性影响的主要回路。

例如,对于机床液压系统,调速和速度换接回路是主要回路;对于压力机液压系统,压力回路是主要回路。

然后再考虑其它辅助回路,例如有垂直运
以满足低速稳定性要求;单活塞杆液压缸系统若无杆腔有效作用面积为有杆腔有效作用面积的n倍,当有杆腔进油时,则回油流量为进油流量的n倍,因此应以n倍的流量来选择通过该回油路的阀类元件。

2.4.3 选择液压辅助元件
油管的规格尺寸大多由所连接的液压元件接口处尺寸决定,只有对一些重要的管道才验算其内径和壁厚,验算公式见参考文献[1]中的第7章。

滤油器、液压蓄能器和油箱容量的选择亦见参考文献[1]中第7章。

2.4.4 阀类元件配置形式的选择
对于机床等固定式的液压设备,常将液压系统的动力源、阀类元件(包括某些辅助元件)集中安装在主机外的液压站上。

这样能使安装与维修方便,并消除了动力源振动与油温变化对主机工作精度的影响。

而阀类元件在液压站上的配置也有多种形式可供选择。

配置形式不同,液压系统元件的连接安装结构和压力损失也有所不同。

阀类元件的配置形式目前广泛采用集成化配置,具体有下列三种:
1. 油路板式
油路板又称阀板,它是一块较厚的液压元件安装板,板式连接阀类元件由螺钉安装在板的正面,管接头安装在板的侧面,各元件之间的油路全部由板内的加工孔道形成,见图2.3。

这种配置形式的优点是结构紧凑、油管少、调节方便、不易出故障;缺点是加工较困难、油路的压力损失较大。

2. 叠加阀式
叠加阀与一般管式、板式连接标准元件相比,其工作原理没有多大差别,但具体结构却不相同。

它是自成系列的元件(图2.4),每个叠加阀既起控制阀作用,又起通道体的作用。

因此,叠加阀式配置不需要另外的连接块,只需用长螺栓直接将各叠加阀叠装在底板上,即可组成所需的液压系统。

这种配置形式的优点是结构紧凑、油管少、体积小、质量轻、不需设计专用的连接块,油路的压力损失小。

图2.3 油路板式配置 2.4 叠加阀式配置
1-油路板;2-板式阀;3-管接头
3. 集成块式
集成块由通道体和其上安装的阀类元件及管接头组成。

通道体是一块通用化的六面体,四周除一面装通向执行元件的管接头之外,其余三面均可安装阀类元件。

块内由钻孔形成油路,一般一块就是一个常用的典型基本回路。

一个液压系统往往由几个集成块组成,块的上下两面作为块与块之间的结合面,各集成块与顶盖、底板一起用长螺栓叠装起来,即组成整个液压系统,见图2.5。

总进油口与回油口开在底板上,通过集成块的公共孔道直接通顶盖。

这种配置形式的优点是结构紧凑、油管少、可标准化、便于设计与制造、更改设计方便、油路压力损失小。

2.5 液压系统技术性能的验算
液压系统初步设计完成之后,需要对它的主要性能包括系统的压力损失和发热温升加以验算,以便评价其设计质量,并改进和完善
液压系统。

下面介绍系统压力损失及发热温升的验算方法。

2.5.1 系统压力损失的验算
画出管路装配草图后,即可计算管路的沿程压力损失、局部压力损失,它们
∆p λ∆p ζ的计算公式详见参考文献[1]中第3章。

管路总的压力损失为
(2.18)
l
p p p λζ∆=∆+∆∑∑∑ 应按系统工作循环的不同阶段,对进油路和回油路分别计算压力损失。

但是,在系统的具体管道布置情况没有明确之前,和仍无法计算。


∆p λ∑∆p ζ∑了尽早地评价系统的功率利用情况,避免后面的设计工作出现大的反复,在系统方案初步确定之后,通常用液流通过阀类元件的局部压力损失(见参考文献[1]中第3章式∆p V ∑(3.29))来对管路的压力损失进行概略地估算,因为这部分损失在系统的整个压力损失中占很大的比重。

在对进、回油路分别算出和后,将此验算值与前述设计过程中初步选
∆p V 1∑∆p V
2
∑取的进、回油路压力损失经验值相比较,若验算值较大,一般应对原设计进行必要的修改,重新调整有关阀类元件的规格和管道尺寸等,以降低系统的压力损失。

需要指出,实践证明,对于较简单的液压系统,压力损失验算可以省略。

图2.5 集成块式配置图 1-油管;2-集成块;3-液压阀; 4-电动机;5-液压泵 6-油箱。

相关文档
最新文档