2018年江苏省盐城市中考数学试卷含答案(Word版)
江苏省盐城市2018年中考数学真题试题(含扫描答案)
江苏省盐城市2018年中考数学真题试题一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.-2018的相反数是()A.2018 B.-2018 C. D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A. B. C. D.5.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A. B. C. D.6.一组数据2,4,6,4,8的中位数为()A.2 B.4 C.6 D.87.如图,为的直径,是的弦,,则的度数为()A. B. C. D.8.已知一元二次方程有一个根为1,则的值为()A.-2 B.2 C.-4 D.4二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.根据如图所示的车票信息,车票的价格为元.10.要使分式有意义,则的取值范围是.11.分解因式:.12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为.13.将一个含有角的直角三角板摆放在矩形上,如图所示,若,则.14.如图,点为矩形的边的中点,反比例函数的图象经过点,交边于点.若的面积为1,则。
15.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径,.则右图的周长为(结果保留).16.如图,在直角中,,,,、分别为边、上的两个动点,若要使是等腰三角形且是直角三角形,则.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)17.计算:.18.解不等式:,并把它的解集在数轴上表示出来.19.先化简,再求值:,其中.20.端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.21.在正方形中,对角线所在的直线上有两点、满足,连接、、、,如图所示.(1)求证:;(2)试判断四边形的形状,并说明理由.22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:. 仅学生自己参与;. 家长和学生一起参与;. 仅家长自己参与;. 家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了_______名学生;(2)补全条形统计图,并在扇形统计图中计算类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.23.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为_______件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?24.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离(米)与时间(分钟)之间的函数关系如图所示.(1)根据图象信息,当_______分钟时甲乙两人相遇,甲的速度为_______米/分钟;(2)求出线段所表示的函数表达式.25.如图,在以线段为直径的上取一点,连接、.将沿翻折后得到.(1)试说明点在上;(2)在线段的延长线上取一点,使.求证:为的切线;(3)在(2)的条件下,分别延长线段、相交于点,若,,求线段的长.26.【发现】如图①,已知等边,将直角三角形的角顶点任意放在边上(点不与点、重合),使两边分别交线段、于点、.(1)若,,,则_______;(2)求证:.【思考】若将图①中的三角板的顶点在边上移动,保持三角板与、的两个交点、都存在,连接,如图②所示.问点是否存在某一位置,使平分且平分?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰中,,点为边的中点,将三角形透明纸板的一个顶点放在点处(其中),使两条边分别交边、于点、(点、均不与的顶点重合),连接.设,则与的周长之比为________(用含的表达式表示).27.如图①,在平面直角坐标系中,抛物线经过点、两点,且与轴交于点.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于轴,并沿轴左右平移,直尺的左右两边所在的直线与抛物线相交于、两点(点在点的左侧),连接,在线段上方抛物线上有一动点,连接、.(Ⅰ)若点的横坐标为,求面积的最大值,并求此时点的坐标;(Ⅱ)直尺在平移过程中,面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.参考答案1-8、ADCAB BCB9、77.5 10、 11、 12、 13、 14、4 15、16、 17、18、19、20、21、22、23、24、25、26、27、祝福语祝你考试成功!。
【真题】盐城市2018年中考数学试卷含答案解析(Word版)
江苏省盐城市2018年中考数学试卷一、选择题1.-2018的相反数是()A. 2018B. -2018C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A. B. C. D.5.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A. B. C. D.6.一组数据2,4,6,4,8的中位数为()A. 2B. 4C. 6D. 87.如图,为的直径,是的弦,,则的度数为()A. B. C. D.8.已知一元二次方程有一个根为1,则的值为()A. -2B. 2C. -4D. 4二、填空题9.根据如图所示的车票信息,车票的价格为________元.10.要使分式有意义,则的取值范围是________.11.分解因式:________.12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为________.13.将一个含有角的直角三角板摆放在矩形上,如图所示,若,则________.14.如图,点为矩形的边的中点,反比例函数的图象经过点,交边于点.若的面积为1,则________。
15.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径,.则右图的周长为________ (结果保留).16.如图,在直角中,,,,、分别为边、上的两个动点,若要使是等腰三角形且是直角三角形,则________.三、解答题17.计算:.18.解不等式:,并把它的解集在数轴上表示出来.19.先化简,再求值:,其中.20.端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.21.在正方形中,对角线所在的直线上有两点、满足,连接、、、,如图所示.(1)求证:;(2)试判断四边形的形状,并说明理由.22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:.仅学生自己参与;.家长和学生一起参与;.仅家长自己参与;.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.23.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?24.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离(米)与时间(分钟)之间的函数关系如图所示.(1)根据图象信息,当________分钟时甲乙两人相遇,甲的速度为________米/分钟;(2)求出线段所表示的函数表达式.25.如图,在以线段为直径的上取一点,连接、.将沿翻折后得到.(1)试说明点在上;(2)在线段的延长线上取一点,使.求证:为的切线;(3)在(2)的条件下,分别延长线段、相交于点,若,,求线段的长.26. (1)【发现】如图①,已知等边,将直角三角形的角顶点任意放在边上(点不与点、重合),使两边分别交线段、于点、.①若,,,则________;②求证:.________(2)【思考】若将图①中的三角板的顶点在边上移动,保持三角板与、的两个交点、都存在,连接,如图②所示.问点是否存在某一位置,使平分且平分?若存在,求出的值;若不存在,请说明理由.(3)【探索】如图③,在等腰中,,点为边的中点,将三角形透明纸板的一个顶点放在点处(其中),使两条边分别交边、于点、(点、均不与的顶点重合),连接.设,则与的周长之比为________(用含的表达式表示).27.如图①,在平面直角坐标系中,抛物线经过点、两点,且与轴交于点.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于轴,并沿轴左右平移,直尺的左右两边所在的直线与抛物线相交于、两点(点在点的左侧),连接,在线段上方抛物线上有一动点,连接、.(Ⅰ)若点的横坐标为,求面积的最大值,并求此时点的坐标;(Ⅱ)直尺在平移过程中,面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.答案解析部分一、选择题1.【答案】A【考点】相反数及有理数的相反数【解析】【解答】解:-2018的相反数是2018。
[真卷]2018年江苏省盐城市中考数学试卷和答案(含解析)
江苏省盐城市2018年中考数学试卷一、选择题1.-2018的相反数是()A. 2018B. -2018C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C.D.3.下列运算正确的是()A. B. C. D.4.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A. B. C.D.5.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A. B. C. D.6.一组数据2,4,6,4,8的中位数为()A. 2B. 4C. 6D. 87.如图,为的直径,是的弦,,则的度数为()A. B. C. D.8.已知一元二次方程有一个根为1,则的值为()A. -2B. 2C. -4D. 4二、填空题9.根据如图所示的车票信息,车票的价格为________元.10.要使分式有意义,则的取值范围是________.11.分解因式:________.12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为________.13.将一个含有角的直角三角板摆放在矩形上,如图所示,若,则________.14.如图,点为矩形的边的中点,反比例函数的图象经过点,交边于点.若的面积为1,则________。
15.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径,.则右图的周长为________ (结果保留).16.如图,在直角中,,,,、分别为边、上的两个动点,若要使是等腰三角形且是直角三角形,则________.三、解答题17.计算:.18.解不等式:,并把它的解集在数轴上表示出来.19.先化简,再求值:,其中.20.端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.21.在正方形中,对角线所在的直线上有两点、满足,连接、、、,如图所示.(1)求证:;(2)试判断四边形的形状,并说明理由.22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:.仅学生自己参与;.家长和学生一起参与;.仅家长自己参与;.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.23.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?24.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离(米)与时间(分钟)之间的函数关系如图所示.(1)根据图象信息,当________分钟时甲乙两人相遇,甲的速度为________米/分钟;(2)求出线段所表示的函数表达式.25.如图,在以线段为直径的上取一点,连接、.将沿翻折后得到.(1)试说明点在上;(2)在线段的延长线上取一点,使.求证:为的切线;(3)在(2)的条件下,分别延长线段、相交于点,若,,求线段的长.26. (1)【发现】如图①,已知等边,将直角三角形的角顶点任意放在边上(点不与点、重合),使两边分别交线段、于点、.①若,,,则________;②求证:.________(2)【思考】若将图①中的三角板的顶点在边上移动,保持三角板与、的两个交点、都存在,连接,如图②所示.问点是否存在某一位置,使平分且平分?若存在,求出的值;若不存在,请说明理由. (3)【探索】如图③,在等腰中,,点为边的中点,将三角形透明纸板的一个顶点放在点处(其中),使两条边分别交边、于点、(点、均不与的顶点重合),连接.设,则与的周长之比为________(用含的表达式表示).27.如图①,在平面直角坐标系中,抛物线经过点、两点,且与轴交于点.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于轴,并沿轴左右平移,直尺的左右两边所在的直线与抛物线相交于、两点(点在点的左侧),连接,在线段上方抛物线上有一动点,连接、.(Ⅰ)若点的横坐标为,求面积的最大值,并求此时点的坐标;(Ⅱ)直尺在平移过程中,面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.答案解析部分一、选择题1.【答案】A【考点】相反数及有理数的相反数【解析】【解答】解:-2018的相反数是2018。
【精品】2018年江苏省盐城市中考数学试卷以及答案(word解析版)
2018年江苏省盐城市中考数学试卷答案与解析一、选择题(本大题共有8小题,每小题3分,共24分。
在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)﹣2018的相反数是()A.2018 B.﹣2018 C.D.﹣【分析】只有符号不同的两个数叫做互为相反数.【解答】解:﹣2018的相反数是2018.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B. C.D.【分析】根据轴对称图形与中心对称图形的概念判断.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,是中心对称图形.故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)下列运算正确的是()A.a2+a2=a4 B.a3÷a=a3C.a2•a3=a5 D.(a2)4=a6【分析】根据合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;对各选项分析判断后利用排除法求解.【解答】解:A、a2+a2=2a2,故A错误;B、a3÷a=a2,故B错误;C、a2•a3=a5,故C正确;D、(a2)3=a8,故D错误.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.(3分)盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A.1.46×105B.0.146×106C.1.46×106D.146×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将146000用科学记数法表示为:1.46×105.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从左面看易得第一层有1个正方形,第二层有2个正方形,如图所示:.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.(3分)一组数据2,4,6,4,8的中位数为()A.2 B.4 C.6 D.8【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:一共5个数据,从小到大排列此数据为:2,4,4,6,8,故这组数据的中位数是4.故选:B.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.(3分)如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°【分析】根据圆周角定理得到∠ABC=∠ADC=35°,∠ACB=90°,根据三角形内角和定理计算即可.【解答】解:由圆周角定理得,∠ABC=∠ADC=35°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠ABC=55°,故选:C.【点评】本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半和半圆(或直径)所对的圆周角是直角是解题的关键.8.(3分)已知一元二次方程x2+k﹣3=0有一个根为1,则k的值为()A.﹣2 B.2 C.﹣4 D.4【分析】根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程1﹣3+k=0,然后解一次方程即可.【解答】解:把x=1代入方程得1+k﹣3=0,解得k=2.故选:B.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.(3分)根据如图所示的车票信息,车票的价格为77.5元.【分析】根据图片得出价格即可.【解答】解:根据如图所示的车票信息,车票的价格为77.5元,故答案为:77.5.【点评】本题考查了数字表示事件,能正确读出信息是解此题的关键,培养了学生的观察图形的能力.10.(3分)要使分式有意义,则x的取值范围是x≠2.【分析】分式有意义,则分母x﹣2≠0,由此易求x的取值范围.【解答】解:当分母x﹣2≠0,即x≠2时,分式有意义.故答案为:x≠2.【点评】本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.11.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.12.(3分)一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为【分析】首先确定在阴影的面积在整个面积中占的比例,根据这个比例即可求出蚂蚁停在阴影部分的概率.【解答】解:∵正方形被等分成9份,其中阴影方格占4份,∴当蚂蚁停下时,停在地板中阴影部分的概率为,故答案为:.【点评】此题主要考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.13.(3分)将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2= 85°.【分析】直接利用三角形外角的性质结合平行线的性质得出答案.【解答】解:∵∠1=40°,∠4=45°,∴∠3=∠1+∠4=85°,∵矩形对边平行,∴∠2=∠3=85°.故答案为:85°.【点评】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.14.(3分)如图,点D为矩形OABC的AB边的中点,反比例函数y=(x>0)的图象经过点D,交BC边于点E.若△BDE的面积为1,则k=4.【分析】设D(a,),利用点D为矩形OABC的AB边的中点得到B(2a,),则C(2a,),然后利用三角形面积公式得到•a•(﹣)=1,最后解方程即可.【解答】解:设D(a,),∵点D为矩形OABC的AB边的中点,∴B(2a,),∴C(2a,),∵△BDE的面积为1,∴•a•(﹣)=1,解得k=4.故答案为4.【点评】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数图象上点的坐标特征.15.(3分)如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分,图2中,图形的相关数据:半径OA=2cm,∠AOB=120°.则图2的周长为cm(结果保留π).【分析】先根据图1确定:图2的周长=2个的长,根据弧长公式可得结论.【解答】解:由图1得:的长+的长=的长∵半径OA=2cm,∠AOB=120°则图2的周长为:=故答案为:.【点评】本题考查了弧长公式的计算,根据图形特点确定各弧之间的关系是本题的关键.16.(3分)如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ=或.【分析】分两种情形分别求解:①如图1中,当AQ=PQ,∠QPB=90°时,②当AQ=PQ,∠PQB=90°时;【解答】解:①如图1中,当AQ=PQ,∠QPB=90°时,设AQ=PQ=x,∵PQ∥AC,∴△BPQ∽△BCA,∴=,∴=,∴x=,∴AQ=.②当AQ=PQ,∠PQB=90°时,设AQ=PQ=y.∵△BQP∽△BCA,∴=,∴=,∴y=.综上所述,满足条件的AQ的值为或.【点评】本题考查勾股定理、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.三、解答题(本大题共有11小题,共102分。
江苏省盐城市2018年中考数学真题试题(含解析)
江苏省盐城市2018年中考数学试卷一、选择题1.-2018的相反数是()A. 2018B. -2018C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A. B. C. D.5.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A. B. C. D.6.一组数据2,4,6,4,8的中位数为()A. 2B. 4C. 6D. 87.如图,为的直径,是的弦,,则的度数为()A. B. C. D.8.已知一元二次方程有一个根为1,则的值为()A. -2B. 2C. -4D. 4二、填空题9.根据如图所示的车票信息,车票的价格为________元.10.要使分式有意义,则的取值范围是________.11.分解因式:________.12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为________.13.将一个含有角的直角三角板摆放在矩形上,如图所示,若,则________.14.如图,点为矩形的边的中点,反比例函数的图象经过点,交边于点.若的面积为1,则________。
15.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径,.则右图的周长为________ (结果保留).16.如图,在直角中,,,,、分别为边、上的两个动点,若要使是等腰三角形且是直角三角形,则________.三、解答题17.计算:.18.解不等式:,并把它的解集在数轴上表示出来.19.先化简,再求值:,其中.20.端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.21.在正方形中,对角线所在的直线上有两点、满足,连接、、、,如图所示.(1)求证:;(2)试判断四边形的形状,并说明理由.22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:.仅学生自己参与;.家长和学生一起参与;.仅家长自己参与;.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.23.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?24.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离(米)与时间(分钟)之间的函数关系如图所示.(1)根据图象信息,当________分钟时甲乙两人相遇,甲的速度为________米/分钟;(2)求出线段所表示的函数表达式.25.如图,在以线段为直径的上取一点,连接、.将沿翻折后得到.(1)试说明点在上;(2)在线段的延长线上取一点,使.求证:为的切线;(3)在(2)的条件下,分别延长线段、相交于点,若,,求线段的长.26. (1)【发现】如图①,已知等边,将直角三角形的角顶点任意放在边上(点不与点、重合),使两边分别交线段、于点、.①若,,,则________;②求证:.________(2)【思考】若将图①中的三角板的顶点在边上移动,保持三角板与、的两个交点、都存在,连接,如图②所示.问点是否存在某一位置,使平分且平分?若存在,求出的值;若不存在,请说明理由.(3)【探索】如图③,在等腰中,,点为边的中点,将三角形透明纸板的一个顶点放在点处(其中),使两条边分别交边、于点、(点、均不与的顶点重合),连接.设,则与的周长之比为________(用含的表达式表示).27.如图①,在平面直角坐标系中,抛物线经过点、两点,且与轴交于点.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于轴,并沿轴左右平移,直尺的左右两边所在的直线与抛物线相交于、两点(点在点的左侧),连接,在线段上方抛物线上有一动点,连接、.(Ⅰ)若点的横坐标为,求面积的最大值,并求此时点的坐标;(Ⅱ)直尺在平移过程中,面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.答案解析部分一、选择题1.【答案】A【考点】相反数及有理数的相反数【解析】【解答】解:-2018的相反数是2018。
2018年江苏省盐城市中考数学试卷含答案解析(Word版)
江苏省盐城市2018年中考数学试卷一、选择题1.-2018的相反数是()A. 2018B. -2018C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A. B. C. D.5.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A. B. C. D.6.一组数据2,4,6,4,8的中位数为()A. 2B. 4C. 6D. 87.如图,为的直径,是的弦,,则的度数为()A. B. C. D.8.已知一元二次方程有一个根为1,则的值为()A. -2B. 2C. -4D. 4二、填空题9.根据如图所示的车票信息,车票的价格为________元.10.要使分式有意义,则的取值范围是________.11.分解因式:________.12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为________.13.将一个含有角的直角三角板摆放在矩形上,如图所示,若,则________.14.如图,点为矩形的边的中点,反比例函数的图象经过点,交边于点.若的面积为1,则________。
15.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径,.则右图的周长为________ (结果保留).16.如图,在直角中,,,,、分别为边、上的两个动点,若要使是等腰三角形且是直角三角形,则________.三、解答题17.计算:.18.解不等式:,并把它的解集在数轴上表示出来.19.先化简,再求值:,其中.20.端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.21.在正方形中,对角线所在的直线上有两点、满足,连接、、、,如图所示.(1)求证:;(2)试判断四边形的形状,并说明理由.22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:.仅学生自己参与;.家长和学生一起参与;.仅家长自己参与;.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数. 23.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?24.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离(米)与时间(分钟)之间的函数关系如图所示.(1)根据图象信息,当________分钟时甲乙两人相遇,甲的速度为________米/分钟;(2)求出线段所表示的函数表达式.25.如图,在以线段为直径的上取一点,连接、.将沿翻折后得到.(1)试说明点在上;(2)在线段的延长线上取一点,使.求证:为的切线;(3)在(2)的条件下,分别延长线段、相交于点,若,,求线段的长.26.(1)【发现】如图①,已知等边,将直角三角形的角顶点任意放在边上(点不与点、重合),使两边分别交线段、于点、.①若,,,则________;②求证:.________(2)【思考】若将图①中的三角板的顶点在边上移动,保持三角板与、的两个交点、都存在,连接,如图②所示.问点是否存在某一位置,使平分且平分?若存在,求出的值;若不存在,请说明理由.(3)【探索】如图③,在等腰中,,点为边的中点,将三角形透明纸板的一个顶点放在点处(其中),使两条边分别交边、于点、(点、均不与的顶点重合),连接.设,则与的周长之比为________(用含的表达式表示).27.如图①,在平面直角坐标系中,抛物线经过点、两点,且与轴交于点.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于轴,并沿轴左右平移,直尺的左右两边所在的直线与抛物线相交于、两点(点在点的左侧),连接,在线段上方抛物线上有一动点,连接、.(Ⅰ)若点的横坐标为,求面积的最大值,并求此时点的坐标;(Ⅱ)直尺在平移过程中,面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.答案解析部分一、选择题1.【答案】A【考点】相反数及有理数的相反数【解析】【解答】解:-2018的相反数是2018。
盐城市2018中考数学试题含答案及解析[]
江苏省盐城市2018年中考数学试卷一、选择题1.-2018的相反数是()A. 2018B. -2018C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.3.下列运算正确的是()A. B.C. D.4.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A. B.C. D.5.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A. B.C. D.6.一组数据2,4,6,4,8的中位数为()A. 2B. 4C. 6D. 87.如图,为的直径,是的弦,,则的度数为()A.B.C. D.8.已知一元二次方程有一个根为1,则的值为()A. -2B. 2C. -4 D . 4二、填空题9.根据如图所示的车票信息,车票的价格为________元.10.要使分式有意义,则的取值范围是________.11.分解因式:________.12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为________.13.将一个含有角的直角三角板摆放在矩形上,如图所示,若,则________.14.如图,点为矩形的边的中点,反比例函数的图象经过点,交边于点.若的面积为1,则________。
15.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径,.则右图的周长为________ (结果保留).16.如图,在直角中,,,,、分别为边、上的两个动点,若要使是等腰三角形且是直角三角形,则________.三、解答题17.计算:.18.解不等式:,并把它的解集在数轴上表示出来.19.先化简,再求值:,其中.20.端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.21.在正方形中,对角线所在的直线上有两点、满足,连接、、、,如图所示.(1)求证:;(2)试判断四边形的形状,并说明理由.22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:.仅学生自己参与;.家长和学生一起参与;.仅家长自己参与;.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数. 23.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?24.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离(米)与时间(分钟)之间的函数关系如图所示.(1)根据图象信息,当________分钟时甲乙两人相遇,甲的速度为________米/分钟;(2)求出线段所表示的函数表达式.25.如图,在以线段为直径的上取一点,连接、.将沿翻折后得到.(1)试说明点在上;(2)在线段的延长线上取一点,使.求证:为的切线;(3)在(2)的条件下,分别延长线段、相交于点,若,,求线段的长.26. (1)【发现】如图①,已知等边,将直角三角形的角顶点任意放在边上(点不与点、重合),使两边分别交线段、于点、.①若,,,则________;②求证:.________(2)【思考】若将图①中的三角板的顶点在边上移动,保持三角板与、的两个交点、都存在,连接,如图②所示.问点是否存在某一位置,使平分且平分?若存在,求出的值;若不存在,请说明理由.(3)【探索】如图③,在等腰中,,点为边的中点,将三角形透明纸板的一个顶点放在点处(其中),使两条边分别交边、于点、(点、均不与的顶点重合),连接.设,则与的周长之比为________(用含的表达式表示).27.如图①,在平面直角坐标系中,抛物线经过点、两点,且与轴交于点.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于轴,并沿轴左右平移,直尺的左右两边所在的直线与抛物线相交于、两点(点在点的左侧),连接,在线段上方抛物线上有一动点,连接、.(Ⅰ)若点的横坐标为,求面积的最大值,并求此时点的坐标;(Ⅱ)直尺在平移过程中,面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.答案解析部分一、选择题1.【答案】A【考点】相反数及有理数的相反数【解析】【解答】解:-2018的相反数是2018。
教育课件-2018年江苏省盐城市中考数学试卷含答案(Word版)经典
16. 如图,在直角 ABC 中, C 90 , AC 6,BC 8,P 、
Q 分别为边 BC 、 AB 上的两个动点,若要使 APQ 是
等腰三角形且 BPQ 是直角三角形,则
AQ
.
三、解答题(本大题共有 11 小题,共 102 分 . 请在答题卡指定区域内作答,解
上,如图所示,若 1 40 ,则 2
.
14. 如图,点 D 为矩形 OABC 的 AB 边的中点,反比例
函数 y k (x 0) 的图象经过点 D ,交 BC 边于点 E . 若 x
BDE 的面积为 1,则 k
。
15. 如图,左图是由若干个相同的图形(右图) 组成的美丽图案的一部分 . 右图中,图形的相关 数据:半径 OA 2cm, AOB 120 . 则右图的周长为 cm (结果保留 ).
2018 年江苏省盐城市中考数学试卷含答案 (Word 版)
江苏省盐城市 2018 年中考数学试卷
一、选择题(本大题共 8 小题,每小题 3 分,共 24 分 . 在每小题给出的四个选项 中,只有一项是符合题目要求的, 请将正确选项的字母代号填涂在答题卡相应位 置上)
1.-2018 的相反数是( )
A.2
B
.4
C.6
D
.8
7. 如图, AB 为 O 的直径, CD 是 O 的弦, ADC 35 ,
则 CAB 的度数为( )
A. 35
B
. 45
C
. 55D. 658. 已知一元二次方程 x2 kx 3 0有一个根为 1,则 k
的值为( )
A.-2
B
.2
C
.-4
D.4
二、填空题(本大题共有 8 小题,每小题 3 分,共 24 分. 不需写出解答过程,请 将答案直接写在答题卡相应位置上)
2018年江苏省盐城市中考数学试卷含解析(完美打印版)
2018年江苏省盐城市中考数学试卷(含解析)一、选择题(本大题共有8小题,每小题3分,共24分。
在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)﹣2018的相反数是()A.2018B.﹣2018C.D.﹣2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)下列运算正确的是()A.a2+a2=a4B.a3÷a=a3C.a2•a3=a5D.(a2)4=a64.(3分)盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A.1.46×105B.0.146×106C.1.46×106D.146×1035.(3分)如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A.B.C.D.6.(3分)一组数据2,4,6,4,8的中位数为()A.2B.4C.6D.87.(3分)如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°8.(3分)已知一元二次方程x2+kx﹣3=0有一个根为1,则k的值为()A.﹣2B.2C.﹣4D.4二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.(3分)根据如图所示的车票信息,车票的价格为元.10.(3分)要使分式有意义,则x的取值范围是.11.(3分)分解因式:x2﹣2x+1=.12.(3分)一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为.13.(3分)将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=.14.(3分)如图,点D为矩形OABC的AB边的中点,反比例函数y=(x>0)的图象经过点D,交BC 边于点E.若△BDE的面积为1,则k=.15.(3分)如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分,图2中,图形的相关数据:半径OA=2cm,∠AOB=120°.则图2的周长为cm(结果保留π).16.(3分)如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ=.三、解答题(本大题共有11小题,共102分。
中考数学 2018年江苏省盐城市中考数学试卷含答案解析(Word版)
江苏省盐城市2018年中考数学试卷一、选择题1.-2018的相反数是()A. 2018B. -2018C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A. B. C. D.5.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A. B. C. D.6.一组数据2,4,6,4,8的中位数为()A. 2B. 4C. 6D. 87.如图,为的直径,是的弦,,则的度数为()A. B. C. D.8.已知一元二次方程有一个根为1,则的值为()A. -2B. 2C. -4D. 4二、填空题9.根据如图所示的车票信息,车票的价格为________元.10.要使分式有意义,则的取值范围是________.11.分解因式:________.12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为________.13.将一个含有角的直角三角板摆放在矩形上,如图所示,若,则________.14.如图,点为矩形的边的中点,反比例函数的图象经过点,交边于点.若的面积为1,则________。
15.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径,.则右图的周长为________ (结果保留).16.如图,在直角中,,,,、分别为边、上的两个动点,若要使是等腰三角形且是直角三角形,则________.三、解答题17.计算:.18.解不等式:,并把它的解集在数轴上表示出来.19.先化简,再求值:,其中.20.端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.21.在正方形中,对角线所在的直线上有两点、满足,连接、、、,如图所示.(1)求证:;(2)试判断四边形的形状,并说明理由.22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:.仅学生自己参与;.家长和学生一起参与;.仅家长自己参与;.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.23.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?24.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离(米)与时间(分钟)之间的函数关系如图所示.(1)根据图象信息,当________分钟时甲乙两人相遇,甲的速度为________米/分钟;(2)求出线段所表示的函数表达式.25.如图,在以线段为直径的上取一点,连接、.将沿翻折后得到.(1)试说明点在上;(2)在线段的延长线上取一点,使.求证:为的切线;(3)在(2)的条件下,分别延长线段、相交于点,若,,求线段的长.26. (1)【发现】如图①,已知等边,将直角三角形的角顶点任意放在边上(点不与点、重合),使两边分别交线段、于点、.①若,,,则________;②求证:.________(2)【思考】若将图①中的三角板的顶点在边上移动,保持三角板与、的两个交点、都存在,连接,如图②所示.问点是否存在某一位置,使平分且平分?若存在,求出的值;若不存在,请说明理由.(3)【探索】如图③,在等腰中,,点为边的中点,将三角形透明纸板的一个顶点放在点处(其中),使两条边分别交边、于点、(点、均不与的顶点重合),连接.设,则与的周长之比为________(用含的表达式表示).27.如图①,在平面直角坐标系中,抛物线经过点、两点,且与轴交于点.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于轴,并沿轴左右平移,直尺的左右两边所在的直线与抛物线相交于、两点(点在点的左侧),连接,在线段上方抛物线上有一动点,连接、.(Ⅰ)若点的横坐标为,求面积的最大值,并求此时点的坐标;(Ⅱ)直尺在平移过程中,面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.答案解析部分一、选择题1.【答案】A【考点】相反数及有理数的相反数【解析】【解答】解:-2018的相反数是2018。
2018年江苏省盐城市中考数学试卷含答案解析(Word版)
江苏省盐城市2018年中考数学试卷一、选择题1.-2018的相反数是()A. 2018B. -2018C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A. B. C. D.5.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A. B. C. D.6.一组数据2,4,6,4,8的中位数为()A. 2B. 4C. 6D. 87.如图,为的直径,是的弦,,则的度数为()A. B. C. D.8.已知一元二次方程有一个根为1,则的值为()A. -2B. 2C. -4D. 4二、填空题9.根据如图所示的车票信息,车票的价格为________元.10.要使分式有意义,则的取值范围是________.11.分解因式:________.12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为________.13.将一个含有角的直角三角板摆放在矩形上,如图所示,若,则________.14.如图,点为矩形的边的中点,反比例函数的图象经过点,交边于点.若的面积为1,则________。
15.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径,.则右图的周长为________ (结果保留).16.如图,在直角中,,,,、分别为边、上的两个动点,若要使是等腰三角形且是直角三角形,则________.三、解答题17.计算:.18.解不等式:,并把它的解集在数轴上表示出来.19.先化简,再求值:,其中.20.端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.21.在正方形中,对角线所在的直线上有两点、满足,连接、、、,如图所示.(1)求证:;(2)试判断四边形的形状,并说明理由.22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:.仅学生自己参与;.家长和学生一起参与;.仅家长自己参与;.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.23.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?24.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离(米)与时间(分钟)之间的函数关系如图所示.(1)根据图象信息,当________分钟时甲乙两人相遇,甲的速度为________米/分钟;(2)求出线段所表示的函数表达式.25.如图,在以线段为直径的上取一点,连接、.将沿翻折后得到.(1)试说明点在上;(2)在线段的延长线上取一点,使.求证:为的切线;(3)在(2)的条件下,分别延长线段、相交于点,若,,求线段的长.26. (1)【发现】如图①,已知等边,将直角三角形的角顶点任意放在边上(点不与点、重合),使两边分别交线段、于点、.①若,,,则________;②求证:.________(2)【思考】若将图①中的三角板的顶点在边上移动,保持三角板与、的两个交点、都存在,连接,如图②所示.问点是否存在某一位置,使平分且平分?若存在,求出的值;若不存在,请说明理由.(3)【探索】如图③,在等腰中,,点为边的中点,将三角形透明纸板的一个顶点放在点处(其中),使两条边分别交边、于点、(点、均不与的顶点重合),连接.设,则与的周长之比为________(用含的表达式表示).27.如图①,在平面直角坐标系中,抛物线经过点、两点,且与轴交于点.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于轴,并沿轴左右平移,直尺的左右两边所在的直线与抛物线相交于、两点(点在点的左侧),连接,在线段上方抛物线上有一动点,连接、.(Ⅰ)若点的横坐标为,求面积的最大值,并求此时点的坐标;(Ⅱ)直尺在平移过程中,面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.答案解析部分一、选择题1.【答案】A【考点】相反数及有理数的相反数【解析】【解答】解:-2018的相反数是2018。
【中考真题】2018年江苏省市中考数学试题及答案(word解析版)
2018年江苏省盐城市中考数学试题及参考答案一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2018的相反数是()A.2018 B.﹣2018 C.12018D.120182.下列图形中,既是轴对称图形又是中心对称图形的是()A.B. C.D.3.下列运算正确的是()A.a2+a2=a4B.a3÷a=a3C.a2•a3=a5D.(a2)4=a64.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A.1.46×105B.0.146×106C.1.46×106D.146×1035.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A.B.C.D.6.一组数据2,4,6,4,8的中位数为()A.2 B.4 C.6 D.87.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°8.已知一元二次方程x2+k﹣3=0有一个根为1,则k的值为()A.﹣2 B.2 C.﹣4 D.4二、填空题(本大题共8小题,每小题3分,共24分)9.根据如图所示的车票信息,车票的价格为元.10.要使分式12x-有意义,则x的取值范围是.11.分解因式:x2﹣2x+1=.12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为13.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=85°.14.如图,点D为矩形OABC的AB边的中点,反比例函数kyx=(x>0)的图象经过点D,交BC边于点E.若△BDE的面积为1,则k=.15.如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分,图2中,图形的相关数据:半径OA=2cm,∠AOB=120°.则图2的周长为cm(结果保留π).16.如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ=.三、解答题(本大题共11小题,共102分)17.(6分)计算:1012π-⎛⎫-+ ⎪⎝⎭ 18.(6分)解不等式:3x ﹣1≥2(x ﹣1),并把它的解集在数轴上表示出来.19.(8分)先化简,再求值:21111x x x ⎛⎫-÷ ⎪+-⎝⎭,其中1x =. 20.(8分)端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.21.(8分)在正方形ABCD 中,对角线BD 所在的直线上有两点E 、F 满足BE=DF ,连接AE 、AF 、CE 、CF ,如图所示.(1)求证:△ABE ≌△ADF ;(2)试判断四边形AECF 的形状,并说明理由.22.(10分)“安全教育平台”是中国教育学会为方便家长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.23.(10分)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?24.(10分)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=分钟时甲乙两人相遇,甲的速度为米/分钟;(2)求出线段AB所表示的函数表达式.25.(10分)如图,在以线段AB为直径的⊙O上取一点C,连接AC、BC.将△ABC沿AB翻折后得到△ABD.(1)试说明点D在⊙O上;(2)在线段AD的延长线上取一点E,使AB2=AC•AE.求证:BE为⊙O的切线;(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.26.(12分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出BDBC的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC 的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为(用含α的表达式表示).27.(14分)如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.(1)若点P的横坐标为12,求△DPQ面积的最大值,并求此时点D的坐标;(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2018的相反数是()A.2018 B.﹣2018 C.12018D.12018【知识考点】相反数.【思路分析】只有符号不同的两个数叫做互为相反数.【解答过程】解:﹣2018的相反数是2018.故选:A.【总结归纳】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B. C.D.【知识考点】中心对称图形;轴对称图形.【思路分析】根据轴对称图形与中心对称图形的概念判断.【解答过程】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,是中心对称图形.故选:D.【总结归纳】本题考查的是中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.。
盐城市2018年中考数学试卷含答案解析(Word版)
江苏省盐城市2021年中考数学试卷、选择题1.-2021的相反数是〔 〕8.一元二次方程金+内f-3 = 0有一个根为1,那么上的值为〔〕A. 2021B. -20212.以下图形中,既是轴对称图形又是中央对称图形的是3 .以下运算正确的选项是〔 〕A.二.4 .盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁将数据146000用科学记数法表示为〔〕A...匕 1B. 0-0,*C. D. = 〔fi6座,桥梁的总^长度约为 146000米,5 .如图是由5个大小相同的小正方体组成的几何体,那么它的左视图是〔A 1 二口B . +6.一组数据2, 4, 6, 4, 8的中位数为〔〕 A. 2B.4C. 6D. 87.如图,.45为..的直径,CD 是..的弦,乙= 那么的度数为〔〕C.D.、填空题10 .要使分式 占有意义,那么 工的取值范围是 11 .分解因式: X^-21-F 1=12 .一只蚂蚁在如下图的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停13 .将一个含有49角的直角三角板摆放在矩形上,如下图,假设 上1 = 40; 那么15 .如图,左图是由假设干个相同的图形〔右图〕组成的美丽图案的一局部 .右图中,图形的相关数据:半径 .4 = 2C 阳,/105= 120..那么右图的周长为 e 阳〔结果保存A. -2B. 2C. -4D. 49.根据如下图的车票信息,车票的价格为________ 元.fDOSTW船城A T7771下时,停在地板中阴影局部的概率为14.如图,点 普为矩形oaffc 的.西边的中点,反比例函数y=y 〔x>0〕的图象经过点管,交3c 边于点 E .假设的面积为1,那么# =YTTJJt M16.如图,在直角中, " = 90", AC = 6, BC = 8,尸、0分别为边BC.15上的两个动点,假设要使JAPQ是等腰三角形且JBPO是直角三角形,那么三、解做题17.计算:△一〔J〕1 + ,.18.解不等式:31一1之2〔1一1〕,并把它的解集在数轴上表示出来.-2 -1 0 1 219.先化简,再求值:.一击〕「告,其中K=e十1.20.端午节是我国传统佳节.小峰同学带了4个粽子〔除粽馅不同外,其它均相同〕,其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子, 准备从中任意拿出两个送给他的好朋友小悦.〔1〕用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;〔2〕请你计算小悦拿到的两个粽子都是肉馅的概率^21.在正方形AflCQ中,对角线RD所在的直线上有两点E、广满足BE = DF,连接CE、CF,如下图.〔1〕求证: 三J.ADF;〔2〕试判断四边形JECF的形状,并说明理由22.平安教育平台〞是中国教育学会为方便学长和学生参与平安知识活动、接受平安提醒的一种应用软件.某校为了了解家长和学生参与防溺水教育〞的情况,在本校学生中随机抽取局部学生作调查,把收集的数据分为以下4类情形:H.仅学生自己参与;£.家长和学生一起参与;U仅家长自己参与; Q.家长和学生都未参与多哭情况未册优计用备臭情涯扁身优芹S请根据图中提供的信息,解答以下问题:(1)在这次抽样调查中,共调查了名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中家长和学生都未参与〞的人数.23.一商店销售某种商品, 平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利, 该店采取了降价举措,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)假设降价3元,那么平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?24.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地 .两人之间的距离丁(米)与时间t(分钟)之飞/间的函数关系如下图. ’\ /1\/;一Q24 由『V」(1)根据图象信息,当分钟时甲乙两人相遇,甲的速度为米/分钟;(2)求出线段所表示的函数表达式.25.如图,在以线段一:为直径的00上取一点,连接AC. 3U将沿..翻折后得到 .〔1〕试说明点Q在上;〔2〕在线段.式»的延长线上取一点E,使= J1£.求证:BE为0.的切线;〔3〕在〔2〕的条件下,分别延长线段AE>相交于点F,假设8c = 2, AC = 4,求线段EF的长.26. 〔1〕【发现】如图①,等边JABC,将直角三角形的60,角顶点D任意放在BC边上〔点£>不与点看、C重合〕,使两边分别交线段AB、AC于点七、F①假设,45 = 6, AE = 4, BD = 2,那么CF =②求证:JEBD _ JDCR〔2〕【思考】假设将图①中的三角板的顶点D在5.边上移动,保持三角板与AB、UC的两个交点E、F都存在,连接EF,如图②所示.问点Q是否存在某一位置,使EQ平分Z3EF且FD平分£CFE?假设存在,求出般的值;假设不存在,请说明理由.〔3〕【探索】如图③,在等腰_118c中,AB=」C,点.为SC边的中点,将三角形透明纸板的一个顶点放在点O处〔其中£ If ON = £ 8〕,使两条边分别交边AB、AC 于点E、F〔点E、F均不与5r的顶点重合〕,连接EF设工B = 0,那么」在产与的周长之比为〔用含口的表达式表示〕.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于边所在的直线与抛物线相交于 P 、.两点(点产在点.的左侧),连接PQ,在线段PO上方抛物线上有一动点 D,连接DF 、D0. (I)假设点尸的横坐标为一[,求JDPO面积的最大值,并求此时点Q 的坐标;27.如图①,在平面直角坐标系中,抛物线= ax-+6+ 3经过点.*一 1 0)、30,0)工轴,并沿 工轴左右平移,直尺的左右两MS两点,且与I 轴交于点C(n)直尺在平移过程中,面积是否有最大值?假设有, 求出面积的最大值;假设没有, 请说明理由答案解析局部一、选择题1.【答案】A【考点】相反数及有理数的相反数【解析】【解答】解:-2021的相反数是2021.故答案为A【分析】负数的相反数是它的绝对值;-2021只要去掉负号就是它的相反数2.【答案】D【考点】轴对称图形,中央对称及中央对称图形【解析】【解答】解:A、既不是轴对称图形,也不是中央对称图形,故A不符合题意;B、是轴对称图形,但不是中央对称图形,故B不符合题意;C、是轴对称图形,但不是中央对称图形,故C不符合题意;D、是轴对称图形,但不是中央对称图形,故D符合题意;故答案为:D【分析】轴对称图形:沿着一条线折叠能够完全重合的图形;中央对称图形:绕着某一点旋转180.能够与自身重合的图形;根据定义逐个判断即可.3.【答案】C【考点】同底数哥的乘法,哥的乘方与积的乘方, 同底数哥的除法,合并同类项法那么及应用【解析】【解答】解:A、东+东二加2,故A不符合题意;B、求一.二展,故B不符合题意;C.苏・加二口:,故C符合题意;D.〔东广二承,故D不符合题意;故答案为:C【分析】根据合并同类项法那么、同底数哥的乘除法那么即可.4.【答案】A【考点】科学记数法一表示绝对值较大的数【解析】【解答】解:146000=1.46 X 100000= 1.46乂1廿故答案为:A【分析】用科学记数法表示绝对值较大的数,即表示为口Mio〞,其中1wa|<10,且n为正整数.5 .【答案】B【考点】简单几何体的三视图据是偶数个〕;这组数据一共有5个,是奇数个,那么把这组数据从小到大排列, 第空个 数就是中位数.7 .【答案】C【考点】圆周角定理【解析】【解答】解:: 人山U =/ADC 与/ B 所对的弧相同,・•・ / B= / ADC=35 ,・ . AB 是.O 的直径, ・ •. / ACB=90 , ・ ./ CAB=90 -/ B=55 ,故答案为:C【分析】由同弧所对的圆周角相等可知/B=/ADC=35 ;而由圆周角的推论不难得知/ACB=90° ,那么由/ CAB=90° -Z B 即可求得. 8 .【答案】B【考点】一元二次方程的根【解析】【解答】解:把x=1代入方程可得1+k-3=0,解得k=2o 故答案为:B 【分析】将x=1代入原方程可得关于 k 的一元一次方程,解之即可得 k 的值. 二、填空题9 .【答案】77.5【考点】有理数及其分类【解析】【解答】解:从左面看到的图形是 【分析】在侧投影面上的正投影叫做左视图; 形.6.【答案】B【考点】中位数故答案为:观察的方法是:从左面看几何体得到的平面图2,4,4,5,8,最中间的数是第3个是4,故答案为:中位数是一组数中最中间的一个数 〔数据是奇数个〕或是最中间两个数的平均数〔数【解析】【解答】解:车票上有¥77.5元",那么车票的价格是77.5元.故答案为:77.5【分析】根据车票信息中的价格信息可知.10.【答案】、羊2【考点】分式有意义的条件【解析】【解答】解:要使分式上有意义,即分母X-2WQ那么5入故答案为:“2 x-2【分析】分式有意义的条件是分母不为0:令分母的式子不为0,求出取值范围即可. 11.【答案】口一]『【考点】因式分解-运用公式法【解析】【解答】解:根据完全平方公式可得A--2A+1=I A- if故答案为:〔A -if【分析】考查用公式法分解因式;完全平方公式: (4)12.【答案】可【考点】几何概率【解析】【解答】解:一共有9个小方格,阴影局部的小方格有4个,那么P=1故答案为:【分析】根据概率公式P=等,找出所有结果数n,符合事件的结果数m,代入求值即可. 13.【答案】85°【考点】平行线的性质【解析】【解答】如图,作直线c//a,那么a//b//c,・・/ 3=/ 1=40° ,/ 5= / 4=90° -Z 3=90° -40 =50° ,・・/ 2=180°-/ 5-45 =85°故答案为:85°【分析】过三角形的顶点作直线c//a,根据平行线的性质即可翻开思路.14.【答案】4【考点】反比例函数系数k的几何意义【解析】【解答】解:二•点D在反比例函数y=4的图象上,,设点D(a, §), 丁点D 是AB的中点, ••B (2a, i),•・•点E与B的纵坐标相同,且点E在反比例函数忏冬的图象上,点E (2a,)那么BD=a,BE=二,那么k=4故答案为:4【分析】由的面积为1,构造方程的思路,可设点D (a,与),在后面的计算过程中a将被消掉;所以在解反比例函数中的k时设另外的未知数时依然能解出k的值.15.【答案】争【考点】弧长的计算【解析】【解答】解:由第一张图可知弧OA与弧OB的长度和与弧AB的长度相等,那么周上*120k2 S JT长为cm故答案为:【分析】仔细观察第一张图,可发现单个图的左右两条小弧的长度之和是弧AB的度,那么根据弧长公式1二检即可求得.16.【答案】号或学【考点】等腰三角形的判定与性质,相似三角形的判定与性质【解析】【解答】解:当^ BPQ是直角三角形时,有两种情况:/ BPQ=90度,/ BQP=90 度.在直角中,^.C = 90\ AC = 6, 8c = 8,那么AB=10 , AC : BC: AB=3:4:5.( 1 ) 当/ BPQ=90 度,那么△ BPQ-ABCA,贝U PQ: BP: BQ=AC : BC : AB=3:4:5 ,设PQ=3x,贝U BP=4x, BQ=5x , AQ=AB-BQ=10-5x ,此时/ AQP为钝角,那么当△ APQ是等腰三角形时,只有AQ=PQ,贝U 10-5x=3x ,解得x= -7 , 4那么AQ=10-5x二号;(2 )当/ BQP =90 度,那么4 BQP-△ BCA ,贝U PQ: BQ : BP=AC : BC : AB=3:4:5 ,设PQ=3x,贝U BQ=4x , BP=5x, AQ=AB-BQ=10-4x ,此时/ AQP为直角,那么当△ APQ是等腰三角形时,只有AQ=PQ,贝U 10-4x=3x ,解得x=号,贝U AQ=10-4x=平;4故答案为:号或【分析】要同时使是等腰三角形且是直角三角形,要先找突破口,可先确定当△ APQ是等腰三角形时,再讨论△ BPQ是直角三角形可能的情况;或者先确定△BPQ 是直角三角形,再讨论△ APQ是等腰三角形的情况;此题先确定△BPQ是直角三角形容易一些:△ BPQ是直角三角形有两种情况,根据相似的判定和性质可得到^ BQP与△ BCA相似,可得到△ BQP三边之比,设出未知数表示出三边的长度,再讨论△APQ是等腰三角形时,是哪两条相等,构造方程解出未知数即可,最后求出AQ.三、解做题17.【答案】原式=1-2+2=0【考点】实数的运算【解析】【分析】任何非零数的0次哥结果为1;负整数次哥法那么:bF=$,n为正整数. 18.【答案]解:解:31_ ]之2(1_ 1),去括号得力_ 122定一2,移项得3A-2T> -2+ 1?合并同类项得让-1,在数轴上表示如图:, I ^ ^ 一【考点】在数轴上表示不等式(组)的解集,解一元一次不等式【解析】【分析】根据解不等式的一般步骤解答即可,并在数轴上表示出解集.19 .【答案】原式=?导“ 亨= 2J 吗T二一,当一工二在一 1时,原式二R【考点】利用分式运算化简求值【解析】【分析】根据分式的加减乘除法那么计算即可;在做分式乘除法时,分子或分母的因 式能分解因式的要分解因式可帮助简便计算.〔2〕解:由〔1〕可得所有等可能的结果有 12种,拿到的两个是肉棕的有2种结果,那么P=12 = 6【考点】列表法与树状图法,概率公式【解析】【分析】〔1〕列树状图从开始,列出第一次所有可能拿到的棕子,再列出第二次 除第一次拿到的外所有可能拿到的棕子,注意用线连好;列表格:将每次可能拿到的棕子分别写在列或行中,再列举出所有可能,注意不能重复拿同一种的; 〔2〕由〔1〕可得出所有可能的结果数,再找出其中是两个都是肉的结果数,利用概率公式求得.21 .【答案】〔1〕解:证实:在正方形 ABCD 中,AB=AD , Z ABD= / ADB=45° ,那么/ ABE= ZADF=135 ,又< BE=DF ,ABE7A ADF .〔2〕解:解:四边形 AECF 是菱形.理由如下:由〔1〕得,△ ABE7AADF ,AE=AF .在正方形 ABCD 中,CB=CD , /CBD=/CDB=45 ,贝U/ CBE=/CDF=135 ,<内:豆沙 红军1〕,〔豆沙,肉2〕,〔豆沙,红枣〕.豆沙〕,〔豆沙,肉 〔红枣,肉1〕,〔红枣,肉2〕,〔红枣,双••• BE=DF ,CBE?ACDFo ,CE=CF.,. BE=BE, / CBE=/ABE=135 , CB=AB , CBE?AABE o•.CE=AE ,•.CE=AE=AF=CF ,••・四边形AECF是菱形.【考点】全等三角形的判定与性质,菱形的判定,正方形的性质【解析】【分析】〔1〕由正方形ABCD的性质可得AB=AD , / ABD= / ADB=45 ,由等角的补角相等可得/ ABE=/ADF=135,又由BE=DF ,根据“SAS可判定全等;〔2〕由〔1〕的全等可得AE=AF ,那么可猜测四边形AECF是菱形;由〔1〕的思路可证实△ CBE ?AABE ,得到CE=AE ;不难证实^ CBE?AABE ,可得CE=AE ,那么可根据四条边相等的四边形是菱形〞来判定即可.22.【答案】〔1〕 400〔2 〕解:解:B类家长和学生有:400-80-60-20=240 〔人〕,补全如图;Auk多集情统计用作臭情比磨利忱科a ………厂、石…必60C类所对应扇形的圆心角的度数:360 X 砺=54.〔3〕解:解:2000x 益 =100 〔人〕.答:该校2000名学生中家长和学生都未参与4UV有100人.【考点】扇形统计图,条形统计图【解析】【解答】解:〔1〕一共调查家长和学生:80+20%=400 〔人〕.【分析】〔1〕有A类学生的人数除以其所占的百分比即可得到;〔2〕由〔1〕求得的总人数,分别减去其他类的人数就是B类的人数;C类所占扇形的圆心角度数:由C类人数和总人数求出C类所占的百分比,而C类在扇形占的局部是就是这个百分比,用它乘以360.即可得答案;〔3〕用家长和学生都未参与〞在调查中的百分比看成占2000人的百分比计算即可.23.【答案】〔1〕 26〔2〕解:解:设每件商品降价x元时,该商店每天销售利润为1200元,那么平均每天销售数量为〔20+2x〕件,每件盈利为〔40-x〕元,且40-XA2球P xW1年据题意可得〔40-x〕〔20+2x〕=1200,整理得x2-30x+200=0, 解得x〔=10,x2=20 〔舍去〕,答:每件商品降价10元时,该商店每天销售利润为1200元.【考点】一元二次方程的实际应用-销售问题【解析】【分析】〔1〕根据等量关系原销售件数+2邓条价数=降价后的销售件数〞计算;〔2〕根据等量关系每件盈利X销量=利润〞,可设降价x元,那么销量根据〔1〕的等量关系可得为〔20+2x〕件,而每件盈利为〔40-x〕元,禾IJ润为1200元,代入等量关系解答即可.24.【答案】〔1〕 24; 40〔2〕解:乙的速度:2400+24-40=60 〔米/分钟〕,那么乙一共用的时间:2400y0=40分钟,此时甲、乙两人相距y=40X〔60+40〕-2400=1600〔米〕,那么点A 〔40,1600〕,又点B 〔60,2400〕,设线段AB的表达式为:y=kt+b,40-=16.° 60#解得+ 6 = 2400'那么线段AB的表达式为:y=40t 〔40<t<60【考点】一次函数的实际应用【解析】【解答】解:〔1〕当甲、乙两人相遇时,那么他们的距离y=0,由图象可得此时t=24 分钟;t=60分钟时,y=2400即表示甲到达图书馆,那么甲的速度为2400+24=40 〔米/分钟〕. 故答案为:24; 40【分析】〔1〕从题目中y关于t的图象出发,t表示时间,y表示甲乙两人的距离, 而当y=0时的实际意义就是甲、乙两人相遇,可得此时的时间;当t=0时,y=2400米就表示甲、乙两人都还没出发,表示学校和图书馆相距2400米,由图象可得在A点时乙先到达学校〔题中也提到了乙先到止的地〕,那么甲60分钟行完2400米,可求得速度;〔2〕线段AB是一次函数的图象的一局部,由待定系数法可知要求点A的坐标,即需要求出点A时的时间和甲、乙两人的距离:由于点A是乙到达目的地的位置,所以可先求乙的速度,由开始到相遇,共用了24分钟,甲的速度和一共行驶的路程2400米可求得乙的速度,再求点A位置的时间和距离即可;最后要写上自变量t的取值范围.25.【答案】〔1〕解:连接OC, OD,由翻折可得OD=OC,•••OC是.O的半径,.・•点D在.O上.(2)证实:•••点D 在..上,ADB=90 ,由翻折可得AC=AD ,•AB 2=AC AE ,••AB 2=ADAE ,•••嚼二号,又•./ BAE= Z DAB ,ABE-A ADB ,ABE= /ADB=90 ,.「OB是半径,.•.BE为的.O切线.(3)解:设EF=x, .. AB2=AC2+BC2=AC AE, /. AE=5 , DE=AE-AD=5-4=1••• / BDF= / C=90 , / BFD= / AFC ,•.△ BDF-A ACF ,.BF_2万一旅即5^-4贝U BF= 在Rt^BDF中,由勾股定理得BD2+DF2=BF2 , 那么22+〔1+x〕2=〔空〕2 ,解得X i= | ,X2=-1 〔舍去〕,那么EF=【考点】点与圆的位置关系,切线的判定,相似三角形的判定与性质【解析】【分析】〔1〕要证实点D在..上,那么需要证实点D到圆心的距离OD要等于半径,由折叠易知OD=OC;〔2〕证实BE为的.O切线,由切线判定定理可得需要证实/ ABE=90° ;易知/ ADB=90° ,由公共角/ BAE= / DAB ,那么需要△ ABE~ △ ADB ,由AB 2=AC - AE和AC=AD 可证实;〔3〕易知/ BDF= Z ADB=90°,那么^ BDF是一个直角三角形,由勾股定理可得BD2+DF2=BF2,而BD=BC=2 , DF=DE+EF , EF就是要求的,不妨先设EF=x,看能否求出DE或都BF,求不出的话可用x 表示出来,再代入BD2+DF2=BF2 解得即可.26.【答案】〔1〕解:4;证实:・. / EDF=60° , Z B=160°.,.Z CDF+Z BDE=120° , / BED+ZBDE=120 ,・ ./ BED= / CDF,又•. / B=/C,〔2〕解:解:存在.如图,作DM ± BE , DG±EF, DN±CF,垂足分别为M , G, N ,EQ平分且FQ平分/-CFE,.•.DM=DG=DN ,又・. / B=/C=60 , / BMD= ZCND=90 ,・ .△ BDM ?ACDN ,BD=CD ,即点D是BC的中点,9=1.(3)1-COS a【考点】全等三角形的判定与性质, 角平分线的性质,等腰三角形的性质, 等边三角形的判定与性质,相似三角形的判定与性质【解析】【解答】(1)①.一△ ABC是等边三角形,,AB=BC=AC=6 , / B= / C=60,二AE=4, BE=2,那么BE=BD , . BDE 是等边三角形,・ ./ BDE=60° ,又. / EDF=60° , ・ ./CDF=180 -ZEDF-Z B=60° ,那么/ CDF = / C=60 ,•.△ CDF 是等边三角形,・•. CF=CD=BC-BD=6-2=4.(3 )连结AO,作OG^BE, ODXEF, OHXCF,垂足分别为G, D, H,St那么/ BGO= / CHO=90 ,,. AB=AC , O是BC的中点•./ B=Z C, OB=OC ,OBG?AOCH,•.OG=OH , GB=CH , / BOG= / COH=90 - a ,那么/ GOH=180 - 〔/ BOG+/COH〕 =2a,•. / EOF=Z B=a,那么/ GOH=2 / EOF=2 ,由〔2〕题可猜测应用EF=ED+DF=EG+FH 〔可通过半角旋转证实〕,贝U =AE+EF+AF=AE+EG+FH+AF=AG+AH=2AG ,设AB=m ,贝U OB=mcos , GB=mcos2 a ,C Ji3C = 2〔A^OB}=再谈"wHwcosa = 1 - COSC〔【分析】〔1〕①先求出BE的长度后发现BE=BD的,又/ B=60° ,可知△ BDE是等边三角形,可得/ BDE=60 ,另外/ EDF=60 ,可证得△ CDF是等边三角形,从而CF=CD=BC-BD ;②证实JEBD ADCF,这个模型可称为〜线三等角相似模型〞,根据“AA'判定相似;(2)【思考】由平分线可联系到角平分线的性质角平分线上的点到角两边的距离相等〞,可过D 作DM^BE, DGXEF, DN XCF,贝U DM=DG=DN ,从而通过证实△ BDM 7ACDN可得BD=CD ;( 3 ) 【探索】由不难求得45c :+ = U5+20B=2(m+mcos),那么需要用m和a的三角函数表示出G UFF,G UTF=AE+EF+AF;题中直接 .是BC的中点,应用(2)题的方法和结论, 作OG,BE , OD ± EF , OH,CF ,可得EG=ED , FH=DF ,贝U C14f F =AE+EF+AF=AG+AH=2AG ,而AG=AB-OB ,从而可求得.27.【答案】(1)解:二•抛物线)二中口 +岳+ 3经过点.*一1,0)、3(3,0)两点,解得,抛物线 y= - ,v- + 2x+3(2)解:(I)」•点P 的横坐标是 一4,当x=-J 时,一4- 1+3=,,那么点P(~5,(),•.•直尺的宽度为4个单位长度,「.点Q 的横坐标为 一[+4=三,那么当x=1时,y=—孚+ 7+3=—3,,_ . 79. •点 Q (亍,- Z ), (1)7 7 9、 一设直线PQ 的表达式为:y=kx+c ,由P(—5,五),Q (5,--T ),可得_ ____________________如图②,过点 D 作直线DE 垂直于x 轴,交PQ 于点E,设D(m, 一非亡+ 2JH +3),那么E〔m,-m+ 彳〕图②贝 US △PQD=S △PDE+ S △QDE=5 x〔5 +5〕x一加^+加+3T 一 阳十利=-2nP+6wi+j = 7用一,' + 8, ,•- -4<m<"即当m="时,S^PQD =8最大,此时点 D 〔冷,竽〕.〔II 〕设 P P 〔n, 一东+2 + 3〕,那么 Q 〔n+4, _〔并 + 4『+ 2〔q + 4〕+ 3〕,即 Q 〔n+4, 一东一6^—5〕,而直线pQ的表达式为:y= । —力]—2〕工一了.+4" + 3,设D 〔7,一夕+ 2? + 3〕,那么E 〔t,求+由?+3一加,一2『〕• S APQD = ;工二三=2 一「一 1 — _; 一 ]「一 \〃T ―二厂=2 | -」- J .八,-7-4 9-4,那么直线PQ 的表达式为:y=-x+37于一得解=一业―川—2〕+ 808当t=n+2 时,S APQD=8.・•.△ PQD面积的最大值为8【考点】二次函数的最值,待定系数法求二次函数解析式,三角形的面积【解析】【分析】〔1〕将两点省- L0〕、5〔3,.〕坐标代入尸足+次一+3,可得方程组,解之即可;〔2 〕〔1〕在遇到几何或代数求最大值,可联系到二次函数求最大值的应用,即将△ PQD的面积用代数式的形式表示出来,由于它的面积随着点D的位置改变而改变,所以可设点D的坐标为〔m, -以.+ 2/^+3〕,过过点D作直线DE垂直于x轴,交PQ于点E,那么需要用m表示出点E的坐标,而点E在线段PQ上,求出PQ的坐标及直线PQ的表达式即可解答;〔II〕可设P 〔n, —求+ 2* + 3〕,那么Q 〔n+4, 一6 + 41+ 2〔曰+ 4〕 + 3〕,作法与〔I〕一样,表示出△ PQD的面积,运用二次函数求最值.。
2018年江苏省盐城市中考数学试卷含答案(Word版)
2018年江苏省盐城市中考数学试卷含答案(Word版)D.4二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.根据如图所示的车票信息,车票的价格为元.10.要使分式1有意义,则x的取值范围2x-是.11.分解因式:221-+=.x x12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为.13.将一个含有45角的直角三角板摆放在矩形上,如图所示,若140∠=,则2∠=.14.如图,点D 为矩形OABC 的AB 边的中点,反比例函数(0)k y x x=>的图象经过点D ,交BC 边于点E .若BDE ∆的面积为1,则k = 。
15.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径2OA cm =,120AOB ∠=.则右图的周长为 cm (结果保留π).16.如图,在直角ABC ∆中,90C ∠=,6AC =,8BC =,P 、Q 分别为边BC 、AB 上的两个动点,若要使APQ ∆是等腰三角形且BPQ ∆是直角三角形,则AQ = .三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)17.计算:011()2π--+18.解不等式:312(1)x x -≥-,并把它的解集在数轴上表示出来.19.先化简,再求值:21(1)11x x x -÷+-,其中21x =+.20.端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.21.在正方形ABCD 中,对角线BD 所在的直线上有两点E 、F 满足BE DF =,连接AE 、AF 、CE 、CF ,如图所示.(1)求证:ABE ADF∆≅∆;(2)试判断四边形AECF的形状,并说明理由.22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A. 仅学生自己参与;B. 家长和学生一起参与;C. 仅家长自己参与;D. 家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了_______名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.23.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为_______件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?24.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=_______分钟时甲乙两人相遇,甲的速度为_______米/分钟;(2)求出线段AB所表示的函数表达式.25.如图,在以线段AB为直径的O上取一点,连接AC、BC.将ABC∆沿AB翻折后得到ABD∆.(1)试说明点D在O上;(2)在线段AD的延长线上取一点E,使2AB AC AE=⋅.求证:BE为O的切线;(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若2AC=,求线段EF的长.BC=,426.【发现】如图①,已知等边ABC∆,将直角三角形的60角顶点D任意放在BC边上(点D不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若6AB=,4BD=,则CF=_______;AE=,2(2)求证:EBD DCF∆∆.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与AB、AC的两个交点E、F都存在,连接EF,如图②所示.问点D是否存在某一位置,使ED平分BEF∠?若存在,求∠且FD平分CFE的值;若不存在,请说明理由.出BDBC【探索】如图③,在等腰ABC=,点O为∆中,AB ACBC边的中点,将三角形透明纸板的一个顶点放在点O处(其中MON B∠=∠),使两条边分别交边AB、AC于点E、F(点E、F均不与ABC∆的顶点重合),连接EF.设Bα∆的周长之比为∠=,则AEF∆与ABC________(用含α的表达式表示).27.如图①,在平面直角坐标系xOy 中,抛物线23y ax bx =++经过点(1,0)A -、(3,0)B 两点,且与y 轴交于点C .(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x 轴,并沿x 轴左右平移,直尺的左右两边所在的直线与抛物线相交于P 、Q 两点(点P 在点Q 的左侧),连接PQ ,在线段PQ 上方抛物线上有一动点D ,连接DP 、DQ .(Ⅰ)若点P 的横坐标为12-,求DPQ ∆面积的最大值,并求此时点D 的坐标;(Ⅱ)直尺在平移过程中,DPQ ∆面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.参考答案1-8、ADCAB BCB9、77.5 10、 11、 12、 13、14、4 15、16、 17、18、19、20、21、22、23、24、25、26、27、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省盐城市2018年中考数学试卷
一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)
1.-2018的相反数是( )
A .2018
B .-2018
C .
12018 D .12018
- 2.下列图形中,既是轴对称图形又是中心对称图形的是( )
A .
B .
C .
D . 3.下列运算正确的是( )
A .224a a a +=
B .33a a a ÷=
C .235a a a ⋅=
D .24
6
()a a =
4.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为( )
A .51.4610⨯
B .60.14610⨯
C .61.4610⨯
D .314610⨯ 5.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是( )
A .
B .
C .
D . 6.一组数据2,4,6,4,8的中位数为( )
A .2
B .4
C .6
D .8
7.如图,AB 为O e 的直径,CD 是O e 的弦,35ADC ∠=o ,则CAB ∠的度数为( )
A .35o
B .45o
C .55o
D .65o 8.已知一元二次方程230x kx +-=有一个根为1,则k 的值为( ) A .-2 B .2 C .-4 D .4
二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上)
9.根据如图所示的车票信息,车票的价格为 元.
10.要使分式
1
2
x -有意义,则x 的取值范围是 . 11.分解因式:221x x -+= .
12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为 .
13.将一个含有45o 角的直角三角板摆放在矩形上,如图所示,若140∠=o ,则
2∠= .
14.如图,点D 为矩形OABC 的AB 边的中点,反比例函数(0)k
y x x
=>的图象经过点D ,交BC 边于点E .若BDE ∆的面积为1,则k = 。
15.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径2OA cm =,120AOB ∠=o .则右图的周长为 cm (结果保留π).
16.如图,在直角ABC ∆中,90C ∠=o ,6AC =,8BC =,P 、Q 分别为边BC 、AB 上的两个动点,若要使APQ ∆是等腰三角形且BPQ ∆是直角三角形,则AQ = .
三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)
17.计算:0131
()82
π--+.
18.解不等式:312(1)x x -≥-,并把它的解集在数轴上表示出来.
19.先化简,再求值:2
1(1)11
x
x x -
÷+-,其中21x =. 20.端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友
小悦.
(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;
(2)请你计算小悦拿到的两个粽子都是肉馅的概率.
=,连接AE、21.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE DF
AF、CE、CF,如图所示.
∆≅∆;
(1)求证:ABE ADF
(2)试判断四边形AECF的形状,并说明理由.
22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:
A. 仅学生自己参与;
B. 家长和学生一起参与;
C. 仅家长自己参与;
D. 家长和学生都未参与.
请根据图中提供的信息,解答下列问题:
(1)在这次抽样调查中,共调查了_______名学生;
(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;
(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.
23.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单
价每降低1元,平均每天可多售出2件.
(1)若降价3元,则平均每天销售数量为_______件;
(2)当每件商品降价多少元时,该商店每天销售利润为1200元?
24.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y (米)与时间(分钟)之间的函数关系如图所示.
(1)根据图象信息,当t =_______分钟时甲乙两人相遇,甲的速度为_______米/分钟; (2)求出线段AB 所表示的函数表达式.
25.如图,在以线段AB 为直径的O e 上取一点,连接AC 、BC .将ABC ∆沿AB 翻折后得到ABD ∆.
(1)试说明点D 在O e 上;
(2)在线段AD 的延长线上取一点E ,使2AB AC AE =⋅.求证:BE 为O e 的切线; (3)在(2)的条件下,分别延长线段AE 、CB 相交于点F ,若2BC =,4AC =,求线段EF 的长.
26.【发现】如图①,已知等边ABC ∆,将直角三角形的60o 角顶点D 任意放在BC 边上(点D 不与点B 、C 重合)
,使两边分别交线段AB 、AC 于点E 、F .
(1)若6AB =,4AE =,2BD =,则CF =_______; (2)求证:EBD DCF ∆∆:.
【思考】若将图①中的三角板的顶点D 在BC 边上移动,保持三角板与AB 、AC 的两个交点E 、F 都存在,连接EF ,如图②所示.问点D 是否存在某一位置,使ED 平分BEF ∠且FD 平分CFE ∠?若存在,求出
BD
BC
的值;若不存在,请说明理由. 【探索】如图③,在等腰ABC ∆中,AB AC =,点O 为BC 边的中点,将三角形透明纸板的一个顶点放在点O 处(其中MON B ∠=∠),使两条边分别交边AB 、AC 于点E 、F (点E 、F 均不与ABC ∆的顶点重合),连接EF .设B α∠=,则AEF ∆与ABC ∆的周长之比为________(用含α的表达式表示).
27.如图①,在平面直角坐标系xOy 中,抛物线2
3y ax bx =++经过点(1,0)A -、(3,0)B 两点,且与y 轴交于点C .
(1)求抛物线的表达式;
(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.
(Ⅰ)若点P的横坐标为
1
2
-,求DPQ
∆面积的最大值,并求此时点D的坐标;
(Ⅱ)直尺在平移过程中,DPQ
∆面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.
参考答案
1-8、ADCAB BCB
9、77.5 10、 11、 12、 13、 14、4 15、
16、 17、
18、
19、
20、
22、
24、
25、
26、
27、。