幂的运算单元测试

合集下载

七年级数学下册第八章《幂的运算》单元测试卷-苏科版(含答案)

七年级数学下册第八章《幂的运算》单元测试卷-苏科版(含答案)

七年级数学下册第八章《幂的运算》单元测试卷-苏科版(含答案)一.选择题(共7小题,满分21分)1.若a•2•23=26,则a等于()A.4B.8C.16D.322.已知a≠0,下列运算中正确的是()A.a2•a3=a6B.a5﹣a3=a2C.(﹣a3)2=a5D.a•a3=a43.若10m=5,10n=3,求102m﹣3n的值()A.B.C.675D.4.若(2x﹣1)0有意义,则x的取值范围是()A.x=﹣2B.x≠0C.x≠D.x=5.若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x取值范围是()A.x≠3B.x≠2C.x≠3且x≠﹣2D.x≠3且x≠2 6.“绿水青山就是金山银山”.某地积极响应党中央号召,大力推进农村厕所革命,已经累计投资1.102×108元资金.数据1.102×108用科学记数法可表示为()A.1102亿B.1.102亿C.110.2亿D.11.02亿7.嫦娥五号返回器携带月球样品安全着陆,标志着中国航天业向前又迈出了一大步.嫦娥五号返回器在接近大气层时,飞行1m大约需要0.0000893s.数据0.0000893s用科学记数法表示为()A.8.93×10﹣5B.893×10﹣4C.8.93×10﹣4D.8.93×10﹣7二.填空题(共7小题,满分21分)8.将2x﹣3y(x+y)﹣1表示成只含有正整数指数幂的形式为.9.新型冠状病毒直径约为100nm,计m(用科学记数法表示).10.若有意义,则x的取值范围是.11.若a2n=2(n为正整数),则(4a3n)2÷4a4n的值为.12.目前全国疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约7.5×105个,则科学记数法数据7.5×105的原数为.13.已知x2n=5,则(3x3n)2﹣4(x2)2n的值为.14.已知m x=2,m y=4,则m x+y=.三.解答题(共6小题,满分58分)15.计算:(1)2+(﹣2)×3+(﹣7)0;(2)×12.16.在数学中,我们经常会运用逆向思考的方法来解决一些问题,例如:“若a m=4,a m+n =20,求a n的值.”这道题我们可以这样思考:逆向运用同底数幂的乘法公式,即a m+n =a m•a n,所以20=4•a n,所以a n=5.(1)若a m=2,a2m+n=24,请你也利用逆向思考的方法求出a n的值.(2)下面是小贤用逆向思考的方法完成的一道作业题,请你参考小贤的方法解答下面的问题:小贤的作业计算:89×(﹣0.125)9.解:89×(﹣0.125)9=(﹣8×0.125)9=(﹣1)9=﹣1.①小贤的求解方法逆用了哪一条幂的运算性质,直接写出该逆向运用的公式:.②计算:52023×(﹣0.2)2022.17.(1)若3×27m÷9m=316,求m的值;(2)已知a x=﹣2,a y=3,求a3x﹣2y的值;(3)若n为正整数,且x2n=4,求(3x2n)2﹣4(x2)2n的值.18.我们知道,同底数幂的乘法法则为a m•a n=a m+n(其中a≠0,m、n为正整数),类似地,我们规定关于任意正整数m、n的一种新运算:f(m)•f(n)=f(m+n)(其中m、n为正整数).例如,若f(3)=2,则f(6)=f(3+3)=f(3)•f(3)=2×2=4.f(9)=f(3+3+3)=f(3)•f(3)•f(3)=2×2×2=8.(1)若f(2)=5,①填空:f(6)=;②当f(2n)=25,求n的值;(2)若f(a)=3,化简:f(a)•f(2a)•f(3a)•…•f(10a).19.如表是某河流今年某一周内的水位变化情况,上周末(星期六)的水位已经达到警戒水位33米.(正号表示水位比前一天上升,负号表示水位比前一天下降).(单位:米)星期日一二三四五六水位变化+0.2+0.8﹣0.4+0.2+0.3﹣0.5﹣0.2(1)本周哪一天河流的水位最高?哪一天河流的水位最低?分别是多少?(2)与上周末相比,本周末河流的水位是上升了还是下降了?本周末的水位是多少?(3)若水位每下降1厘米,就有2.5×102吨水蒸发到大气中,请计算这个星期共有多少吨水蒸发到大气中?20.已知10﹣2α=3,,求106α+2β的值.参考答案一.选择题(共7小题,满分21分)1.解:∵a•2•23=26,∴a=26÷24=22=4.故选:A.2.解:A、原式=a5,故不符合题意;B、a5与a3不是同类项,故不能合并,故不符合题意;C、原式=﹣a6,故不符合题意;D、原式=a4,故符合题意.故选:D.3.解:∵10m=5,10n=3,∴102m﹣3n=102m÷103n=.故选:D.4.解:(2x﹣1)0有意义,则2x﹣1≠0,解得:x≠.故选:C.5.解:若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x﹣3≠0且2x﹣4≠0,解得:x≠3且x≠2.故选:D.6.解:1.102×108=1.102亿.故选:B.7.解:0.0000893=8.93×10﹣5,故选:A.二.填空题(共7小题,满分21分)8.解:原式=•=.故答案为:.9.解:新型冠状病毒的直径约为100nm=100×10﹣9m=1×10﹣7m,故答案为1×10﹣7.10.解:∵有意义,∴0.∴x+2≠0,x﹣2≠0,∴x≠±2.故答案为:x≠±2.11.解:当a2n=2时,(4a3n)2÷4a4n=16(a2n)3÷4(a2n)2=16×23÷(4×22)=16×8÷(4×4)=16×8÷16=8.故答案为:8.12.解:7.5×105=750000,故答案为:750000.13.解:∵x2n=5,∴(3x3n)2﹣4(x2)2n=9x6n﹣4x4n=9(x2n)3﹣4(x2n)2=9×53﹣4×52=1125﹣100=1025.故答案为:1025.14.解:∵m x=2,m y=4,∴m x+y=m x•m y=8,故答案为:8.三.解答题(共6小题,满分58分)15.解:(1)原式=2﹣6+1=﹣3;(2)原式=×12+=5+8﹣1616.解:(1)∵a m=2,∴a2m+n=24,∴a2m×a n=24,(a m)2×a n=24,22×a n=24,∴4a n=24,∴a n=6;(2)①逆用积的乘方,其公式为:a n•b n=(ab)n,故答案为:a n•b n=(ab)n;②52023×(﹣0.2)2022=5×52022×(﹣0.2)2022=5×(﹣0.2×5)2022=5×(﹣1)2022=5×1=5.17.解:(1)∵3×27m÷9m=316,∴3×33m÷32m=316,∴33m+1﹣2m=316,∴3m﹣2m+1=16,解得m=15;(2)∵a x=﹣2,a y=3,∴a3x=﹣8,a2y=9,∴a3x﹣2y=a3x÷a2y=(﹣8)÷9=﹣;(3)∵x2n=4,∴(3x2n)2﹣4(x2)2n=(3x2n)2﹣4(x2n)2=(3×4)2﹣4×42=122﹣4×16=144﹣64=80.18.解:(1)①∵f(2)=5,∴f(6)=f(2+2+2)=f(2)•f(2)•f(2)=125;故答案为:125;②∵25=5×5=f(2)•f(2)=f(2+2),f(2n)=25,∴f(2n)=f(2+2),∴2n=4,∴n=2;(2)∵f(2a)=f(a+a)=f(a)•f(a)=3×3=31+1=32,f(3a)=f(a+a+a)=f(a)•f(a)•f(a)=3×3×3=31+1+1=33,…,f(10a)=310,∴f(a)•f(2a)•f(3a)•…•f(10a)=3×32×33×…×310=31+2+3+…+10=355.19.解:(1)周日:33+0.2=33.2(米),周一:33.2+0.8=34(米),周二:34﹣0.4=33.6(米),周三:33.6+0.2=33.8(米),周四:33.8+0.3=34.1(米),周五:34.1﹣0.5=33.6(米),周六:33.6﹣0.2=33.4(米).答:周四水位最高,最高水位是34.1米,周日水位最低,最低水位是33.2米;(2)33.4﹣33=0.4>0,答:与上周末相比,本周末河流的水位上升了,水位是33.4米;(3)100×(0.4+0.5+0.2)×2.5×102吨=2.75×104(吨),答:这个星期共有2.75×104吨水蒸发到大气中.20.解:∵10﹣2α==3,10﹣β==﹣,∴102α=,10β=﹣5,∴106α+2β=(102α)3•(10β)2,=()3×(﹣5)2,=×25,=.。

最新北京课改版七年级下册数学《幂的运算》单元测试题及答案.docx

最新北京课改版七年级下册数学《幂的运算》单元测试题及答案.docx

(新课标)京改版七年级数学下册第6章6.2幂的运算测试题一.选择题(共10小题)1.计算(a2)3的结果是()A.a5B.a6C.a8 D.3a2 2.计算(﹣a3)2的结果是()A.﹣a5B.a5C.﹣a6D.a6 3.下列计算正确的是()A.(a2)3=a5B.2a﹣a=2 C.(2a)2=4a D.a•a3=a44.下列运算正确的是()A.(a2)5=a7B.a2•a4=a6C.3a2b﹣3ab2=0 D.()2=5.下列计算,正确的是()A.x3•x4=x12 B.(x3)3=x6C.(3x)2=9x2 D.2x2÷x=x6.计算(﹣2a2b)3的结果是()A.﹣6a6b3B.﹣8a6b3C.8a6b3D.﹣8a5b37.计算:(ab2)3=()A.3ab2B.ab6C.a3b6D.a3b28.下列运算正确的是()A.3a+4b=12a B.(ab3)2=ab6C.(5a2﹣ab)﹣(4a2+2ab)=a2﹣3ab D.x12÷x6=x2 9.下列运算正确的是()A.()﹣1=﹣B.6×107=6000000C.(2a)2=2a2D.a3•a2=a510.已知10x=m,10y=n,则102x+3y等于()A.2m+3n B.m2+n2C.6mn D.m2n3二.填空题(共10小题)11.计算:(3x)2= .12.计算(a2)3的结果等于.13.若a2n=5,b2n=16,则(ab)n= .14.若a x=2,a y=3,则a2x+y= .15.若a+3b﹣2=0,则3a•27b= .16.已知a=255,b=344,c=433,d=522,则这四个数从大到小排列顺序是.17.(﹣0.125)2012×82012= .18.若a x=3,则(a2)x= .19.已知2n=3,则4n+1的值是.20.计算:(﹣x3)2•x2= .三.解答题(共5小题)21.计算:(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2 (2)a•a3•(﹣a2)3.22.计算:(1)(﹣x)•x2•(﹣x)6 (2)(y4)2+(y2)3•y2.23.已知:26=a2=4b,求a+b的值.24.已知3×9m×27m=316,求m的值.25.已知2x=8y+2,9y=3x﹣9,求x+2y的值.六年级数学下册第6章6.2幂的运算测试题参考答案与试题解析一.选择题(共10小题)1.分析:根据幂的乘方,底数不变,指数相乘,计算后直接选取答案.解答:解:(a2)3=a6.故选:B.2.分析:根据幂的乘方计算即可.解答:解:(﹣a3)2=a6,故选D3.分析:根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.解答:解:A、(a2)3=a6,故错误;B、2a﹣a=a,故错误;C、(2a)2=4a2,故错误;D、正确;故选:D.4.分析:根据幂的乘方、同底数幂的乘法和同类项合并计算即可.解答:解:A、(a2)5=a10,错误;B、a2•a4=a6,正确;C、3a2b与3ab2不能合并,错误;D、()2=,错误;故选B.5.分析:根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,整式的除法的法则,对各选项分析判断后利用排除法求解.2解答:解:A、x3•x4=x7,故错误;B、(x3)3=x9,故错误;C、正确;D、2x2÷x=2x,故错误;故选:C.6.分析:根据幂的乘方和积的乘方的运算法则求解.解答:解:(﹣2a2b)3=﹣8a6b3.故选B.7.有分析:根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,幂的乘方,底数不变指数相乘解答.解答:解:(ab2)3,=a3(b2)3,=a3b6故选C.8.分析:根据同底数幂的除法的性质,整式的加减,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.解答:解:A、3a与4b不是同类项,不能合并,故错误;B、(ab3)2=a2b6,故错误;C、正确;D、x12÷x6=x6,故错误;故选:C.9.分析:A:根据负整数指数幂的运算方法判断即可.B:科学记数法a×10n表示的数“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数,据此判断即可.C:根据积的乘方的运算方法判断即可.D:根据同底数幂的乘法法则判断即可.解答:解:∵=2,∴选项A不正确;∵6×107=60000000,∴选项B不正确;∵(2a)2=4a2,∴选项C不正确;∵a3•a2=a5,∴选项D正确.故选:D.10.分析:根据同底数幂相乘,底数不变指数相加,幂的乘方,底数不变指数相乘的性质的逆用,计算后直接选取答案.解答:解:102x+3y=102x•103y=(10x)2•(10y)3=m2n3.故选D.二.填空题(共10小题)11.分析:根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘计算.解答:解:(3x)2=32•x2=9x2.故填9x2.12.分析:根据幂的乘方,底数不变指数相乘,可得答案.解答:解:原式=a2×3=a6,故答案为:a6.13.分析:根据幂的乘方与即的乘方,即可解答.解答:解:∵a2n=5,b2n=16,∴(a n)2=5,(b n)2=16,∴,∴,故答案为:.14.分析:根据幂的乘方和同底数幂的乘法法则计算即可.解答:解:∵a x=2,a y=3,∴a2x+y=a2x•a y,=(a x)2•a y,=4×3,=12.15.分析:根据幂的乘方运算以及同底数幂的乘法运算法则得出即可.解答:解:∵a+3b﹣2=0,∴a+3b=2,则3a•27b=3a×33b=3a+3b=32=9.故答案为:9.16.分析:把四个数字的指数化为11,然后比较底数的大小.解答:解:a=255=3211,b=8111,c=6411,d=2511,∵81>64>32>25,∴b>c>a>d.故答案为:b>c>a>d.17.分析:根据积的乘方法则得出a m•b m=(ab)m,根据以上内容进行计算即可.解答:解:(﹣0.125)2012×82012=[(﹣0.125)×8]2012=(﹣1)2012=1,故答案为:1.18.分析:根据(a2)x=(a x)2即可求解.解答:解:(a2)x=(a x)2=32=9.故答案是:9.19.分析:根据4n+1=22n×4,代入运算即可.解答:解:因为4n+1=22n×4,所以把2n=3代入22n×4=9×4=36,故答案为:36.20.分析:先根据幂的乘方计算,再根据同底数幂的乘法计算即可.解答:解:(﹣x3)2•x2=x8.故答案为:x8.三.解答题(共5小题)21.解答:解:(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2=4+1+4=9;(2)a•a3•(﹣a2)3=a•a3•(﹣a6)=﹣a10.22.解答:解:(1)(﹣x)•x2•(﹣x)6=﹣x9;(2)(y4)2+(y2)3•y2=y8+y8=2y8.23.解答:解:∵26=22b,∴2b=6,∴b=3.又∵26=a2,∴(23)2=a2,∴a=±23=±8.故a+b=8+3=11或a+b=﹣8+3=﹣5.24.解答:解:∵3×9m×27m=3×32m×33m=35m+1=316,∴5m+1=16,∴m=3.25.解答:解:根据2x=23(y+2),32y=3x﹣9,列方程得:,解得:,则x+2y=11.。

七下第八章幂的运算试题

七下第八章幂的运算试题

2021年春季学期单元测试题〔二〕创作单位:*XXX创作时间:2022年4月12日 创作编者:聂明景七年级数学〔测试内容:第八章 幂的运算〕一、填空题:本大题一一共10小题;每一小题3分,一共30分.请将答案填写上在题中的横线上.1.〔-2021〕0= . 2.假设a m=8,a n=21,那么a 2m -3n= . 3.计算〔-2x 2〕3= .4.〔-a 〕4·a · =-a 10.5.〔-2m 2n 3〕2= ;[22〔x 2〕3]2= .6.在括号中填入适当的数或者式子:-〔x -y 〕8=〔y -x 〕7〔 〕=〔x -y 〕7〔 〕.7.〔6×106〕÷〔-3×10-3〕= .8.宇宙空间的年龄通常以光年作单位,1光年是光在一年内通过的间隔,假如光的速度为每秒3×107千米,一年约为3.2×107秒,那么1光年约为千米.9.在航天飞行中,通常把卫星绕地球的速度称为第一宇宙速度,第一宇宙速度为7.9×103米/秒,那么卫星绕地球运行24小时〔一天〕所走的路程是千米.10.假设〔x-1〕0=1,那么x应满足的条件是.二、选择题:本大题一一共8小题;每一小题3分,一共24分.在每一小题给出的四个选项里面,只有一项是哪一项正确的,请将正确答案前的字母填入题后的括号内.每一小题选对得3分,选错,不选或者多项选择均得零分.11.计算-a3·〔-a〕4的结果是····················〔〕.〔A〕a7〔B〕-a12〔C〕-a7〔D〕a1212.假设a m=2,a n=3,那么a m+n等于··················〔〕.〔A〕5 〔B〕6 〔C〕8 〔D〕1013.假设a2·a y=a10,那么y等于····················〔〕.〔A〕10 〔B〕8 〔C〕5 〔D〕214.计算200323⎛⎫⎪⎝⎭×1.52021×〔-1〕2021的结果是··············〔〕.〔A〕23〔B〕32〔C〕-23〔D〕-3215.以下计算正确的选项是·······················〔〕.〔A〕a5-a3=a2〔B〕a3·a5=a15〔C〕a6÷a3=a2〔D〕〔-a5〕2=a10 16.以下计算正确的选项是·······················〔〕.〔A〕2·a0=0 〔B〕a6-a=a5〔C〕〔-a〕3·a3=-a6 〔D〕〔-a〕2÷〔-a3〕=-117.以下计算中,错误的选项是·····················〔〕.〔A〕a·a2=a3 〔B〕2a+3b=6ab〔C〕a4÷a2=a2〔D〕〔ab〕2=a2b2 18.以下计算中,结果是66的是·····················〔〕.①63+63;②〔2×62〕×〔3×63〕;③〔22×32〕3;④〔22〕3×〔33〕2.〔A〕①②③〔B〕②③④〔C〕①③〔D〕①④三、解答题:本大题一一共4小题,一共46分.解容许写出文字说明或者演算步骤.19.〔11分〕举世瞩目的“神之六号〞载人飞船,在2021年10月12日上午发射升空,中国航天员聂海胜和费俊龙乘坐的飞船以每秒7.9×103米的速度飞行,历时115小时,那么这两位航天员的巡天之旅绕地球约飞行了多少米?〔结果保存两个有效数字,并用科学计数法表示〕20.〔11分〕〔1〕101111110982⎛⎫⨯⨯⨯⨯⨯⎪⎝⎭×〔10×9×8×…×2×1〕10;〔2〕假如x m-n·x2n+1=x11,且y n-1·y4+n=y11,求m,n的值.21.〔12分〕在施行国家“863〞方案中,某材料科学研究所研制出一种高分子聚合材料,且密度为9×102千克/立方米,介于酒精和水之间,又知铝的密度是2.7×103千克/立方米,求铝的密度是这种材料的密度的多少倍.22.〔12分〕假设n为正整数,且x2n=7,求〔3x3n〕2-13〔x2〕2n的值.[参考答案]一、填空题:〔每一小题3分,一共30分〕1.1 2.512 3.-8x6 4.-a5 5.4 m4n6;16x126.-〔y-x〕,-〔x-y〕7.-2×109 8.9.6×1014 9.6.8256×108 10.x ≠1二、选择题:〔每一小题3分,一共24分〕三、解答题:19.解:由题意知〔7.9×103〕×〔115×60×60〕=〔7.9×115×6×6〕×〔103×102〕=32706×105=3.2706×109≈3.3×109.20.解:〔1〕1;〔2〕由题意可知(21)11,1(4)11.m n nn n-++=⎧⎨-++=⎩所以6,4.mn=⎧⎨=⎩21.解:〔2.7×103〕÷〔9×102〕=〔2.7÷9〕×〔103÷102〕=0.3×10=3〔倍〕.22.解:因为〔3x3n〕2-13〔x2〕2n=9x6n-13x4n=9×〔x2n〕3-13×〔x2n〕2=9×73-13×72=9×7×72-13×72=63×72-13×72=〔63-13〕×72=50×49=2450.。

幂的单元测试题及答案

幂的单元测试题及答案

幂的单元测试题及答案一、选择题1. 下列哪个选项不是幂的运算法则?A. \( a^m \cdot a^n = a^{m+n} \)B. \( (a^m)^n = a^{mn} \)C. \( a^m \div a^n = a^{m-n} \)D. \( a^0 = 0 \)2. 如果 \( x \) 为正数,下列哪个表达式的结果不是正数?A. \( x^2 \)B. \( x^3 \)C. \( x^{-1} \)D. \( x^0 \)二、填空题1. 根据幂的乘方运算法则,\( (2^3)^2 \) 等于 ______ 。

2. 根据幂的除法运算法则,\( 81 \div 3^4 \) 等于 ______ 。

三、计算题1. 计算下列表达式的值:(1) \( 2^{10} \)(2) \( 5^{-2} \)(3) \( (3^2)^3 \)四、解答题1. 证明:\( (a^m)^n = a^{mn} \) 成立的条件是什么?五、应用题1. 一个球从 10 米的高度自由落下,每次弹起的高度是前一次的\( \frac{1}{2} \)。

求第三次弹起的高度。

答案:一、选择题1. D2. C二、填空题1. 642. 1三、计算题1. (1) \( 1024 \)(2) \( \frac{1}{25} \)(3) \( 81 \)四、解答题1. 幂的乘方运算法则 \( (a^m)^n = a^{mn} \) 成立的条件是 \( a \) 可以是任何实数,\( m \) 和 \( n \) 都是整数。

五、应用题1. 第一次弹起的高度是 \( 10 \times \frac{1}{2} = 5 \) 米,第二次弹起的高度是 \( 5 \times \frac{1}{2} =2.5 \) 米,第三次弹起的高度是 \( 2.5 \times \frac{1}{2} = 1.25 \) 米。

七年级数学下册第8章《幂的运算》单元综合测评卷含答案(新版)苏科版

七年级数学下册第8章《幂的运算》单元综合测评卷含答案(新版)苏科版

A. a3 m1
B.
am
3
+1
C.a·a3m
D. am 2m1
2.下列运算正确的是 ( )
A.a3·a4 =a12
C.a3÷a3=0
3.计算 6m3÷(-3m2)的结果是 (
A.-3m
B.-2m
B.a3+a3=2a6
D.3a2·5a3=15a5
)
C.2m
D.3m
4.如果 a=(-2012)0
(2)已知 9m÷32m+2=( 1 )n,求 n 的值; 3
(3)已知 9n+1-32n=72,求 n 的值.
19.(5 分)一般地,我们说地震的震级为 10 级,是指地震的强度是 1010,地震的震级为 8 级,是指 地震的强度是 108.1992 年 4 月,荷兰发生了 5 级地震,2011 年 3 月,日本近海发生了 9.0 级 强烈地震,问荷兰的地震强度是日本近海地震强度的多少倍?
_______mm.
12.若 a2n=3,则 2a6n-50=_______.
13.若 3n=2,3m=5,则 32m+3n-1 的值为_______. 14.如果(2a-1)a+2=1,那么 a 的值为_______.
三、解答题 (共 58 分)
1
如果您喜欢这份文档,欢迎下载! 来源网络,造福学生
3
如果您喜欢这份文档,欢迎下载! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
20.(8 分)阅读下列一段话,并解决下列问题: 观察下面一列数:1,2,4,8,…,我们发现,这列数从第二项起,每一项与它前一项的比值 都是 2.我们把这样的一列数叫做等比数列,这个共同的比值叫做等比数列的公比. (1)等比数列 5,-10,20,…的第 4 项是_______;

幂的运算测试题

幂的运算测试题

幂的运算测试题
1. 计算题
a) 计算 $2^3$。

b) 计算 $(-3)^4$。

c) 计算 $0.5^2$。

2. 拓展思考题
a) 如果底数为负数,而指数为偶数,结果是正数还是负数?为什么?
b) 如果底数为零,而指数为正数,结果是什么?为什么?
c) 如果底数为正数,而指数为零,结果是什么?为什么?
d) 如果底数和指数都为零,结果是什么?为什么?
3. 简答题
a) 什么是幂?
b) 幂运算的性质有哪些?
c) 如何进行幂运算的乘法?
d) 如何进行幂运算的除法?
4. 实际应用题
a) 一辆车以每小时60公里的速度行驶,计算4小时后车子行驶的总路程。

以幂运算的形式给出答案。

b) 一笔存款以年利率5%计算利息,计算5年后的本金和利息总和。

以幂运算的形式给出答案。

5. 推理题
根据已知条件,完成以下推理:
a) 如果 $a^2 = 25$,那么 $a$ 的值是多少?
b) 如果 $b^3 = 27$,那么 $b$ 的值是多少?
c) 如果 $c^4 = 81$,那么 $c$ 的值是多少?
6. 计算题
a) 计算 $(2^2)^3$。

b) 计算 $2^{2^3}$。

以上是幂的运算测试题目,请根据每个小题给出答案,并标明是否使用了幂的运算。

幂的运算单元测试

幂的运算单元测试

第六章 幂的运算 单元测试题班级: 姓名: 得分:一、选择题(每小题2分,共30分)1、下列计算正确的是( )A 、x 3+ x 3=x 6B 、x 3÷x 4=x1 C 、(m 5)5=m 10 D 、x 2y 3=(xy)5 2、81×27可以记为( )A 、93B 、36C 、37D 、3123、a 5可以等于( )A 、(-a )2·(-a)3·B 、(-a)·(-a)4C 、(-a 2)·a 3D 、(-a 3)·(-a 2)4、若a m =6,a n =10,则a m-n 值为( )A 、-4B 、4C 、 53 D 、35 5、计算- b 2·(-b 3)2的结果是( )A 、-b 8B 、-b 11C 、b 8D 、b 116、在等式a 2·a 3·( )=a 10中,括号内的代数式应当是( )A 、a 4B 、a 5C 、a 6D 、a 77、 (a 2)3÷(-a 2)2=( )A 、- a 2B 、a 2C 、-aD 、a8、0.000000108这个数,用科学记数法表示,正确的是( )A 、1.08×10-9B 、1.08×10-8C 、1.08×10-7D 、1.08×10-69、若n 是正整数,当a=-1时,-(-a 2n )2n+1等于( )A 、1B 、-1C 、0D 、1或-110.下列各式中错误的是( )A.()[]()623y x y x -=-B.84216)2(a a =-C.363227131n m n m -=⎪⎭⎫ ⎝⎛- D.6333)(b a ab -=- 11. 计算9910022)()(-+-所得的结果是( ) A.-2 B.2 C.-992 D.99212. 下列4个算式中,计算错误的有 ( )(1)()()-=-÷-24c c 2c (2)336)()(y y y -=-÷-(3)303z z z =÷(4)44a a a m m =÷A.4个B.3个C.2个D.1个13.如果(),990-=a ()11.0--=b ,235-⎪⎭⎫ ⎝⎛-=c ,那么c b a ,,三数的大小为( ) A.c b a >> B.b a c >> C.b c a >> D.a b c >>14.计算3112)(n n x xx +-⋅⋅的结果为( ) A.33+n x B.36+n x C.n x12 D.66+n x 15.已知 n 是大于1的自然数,则 ()()11+--⋅-n n c c 等于 ( ) A.()12--n c B.nc 2- C.n c 2- D.n c 2二、填空题(每空2分,共52分)16、(21)-1= ,(-3)-3= ,(-43)-2= ,81=( )-3。

苏科新版七年级下册《第8章幂的运算》2024年单元测试卷(4)+答案解析

苏科新版七年级下册《第8章幂的运算》2024年单元测试卷(4)+答案解析

苏科新版七年级下册《第8章幂的运算》2024年单元测试卷(4)一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.某款手机芯片的面积大约仅有,将用科学记数法表示正确的是()A.B.C.D.2.下列运算正确的是()A. B. C.D.3.将,,这三个数按从小到大的顺序排列,为()A. B. C.D.4.计算,则括号内应填入的式子为()A. B. C.D.5.计算等于()A. B.C.1D.6.若,则n 的值为() A.B.C.0D.17.a 与b 互为相反数,且都不等于0,n 为正整数,则下列各组中一定互为相反数的是()A.与B.与C.与D.与8.王老师有一个实际容量为的U 盘,内有三个文件夹,已知课件文件夹占用了的内存,照片文件夹内有32张大小都是的旅行照片,音乐文件夹内有若干首大小都是的音乐,若该U 盘内存恰好用完,则此时文件夹内有音乐首.()A.28B.30C.32D.34二、填空题:本题共11小题,每小题3分,共33分。

9.计算:______.10.比较与的大小,我们可以采用从“特殊到一般”的思想方法:通过计算比较下列各式中两数的大小:填“>”“<”或“=”①______;②______;③______;④______由可以猜测与正整数的大小关系:当n ______时,;当n______时,根据上面的猜想,则有______填“>”“<”或“=”11.根据数值转换机的示意图,输出的值为,则输入的x值为______.12.计算:______.13.把的结果用科学记数法表示为______.14.若,则______.15.,则______.16.若,则______.17.已知,则______.18.若,,则用x的代数式表示y为______.19.一质点P从距原点1个单位的M点处向原点方向跳动,第一次跳动到OM的中点处,第二次从跳到的中点处,第三次从点跳到的中点处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为______.三、解答题:本题共6小题,共48分。

苏科版七年级数学下册幂的运算单元测试卷58

苏科版七年级数学下册幂的运算单元测试卷58

苏科版七年级数学下册幂的运算单元测试卷58一、选择题(共10小题;共50分)1. 的结果是A. B. C. D.2. 小林最近刚买了一个存储量为的U盘,某一份数学试卷的大小为,若这个U盘全部用来存储像这样的数学试卷,则大约可存放的份数为(注:信息技术的存储设备常用,,,等作为存储量的单位,其中)A. B. C. D.3. 的值是B. C. D.4. 流感病毒的直径为,该数值用科学记数法表示为A. B. C. D.5. 等式成立的条件是A. 为有理数B.C.D.6. 若,则单项式是A. B. C. D.7. 下列运算正确的是A. C. D.8. 可乐中含有大量的咖啡因,世界卫生组织建议青少年每天咖啡因的摄入量不能超过,则这个数字可用科学记数法表示为A. B. C. D.9. 若,则应满足的条件是A. B. C. D.10. 已知多项式与的乘积中不含项,则常数的值是B. C.二、填空题(共6小题;共30分)11. 一种细菌的半径为12. 在括号里填上适当的式子:().13. 若,则.14. 将下列各式表示成不含分母的形式.().().().().15. 用科学记数法表示:.16. 若关于的多项式的一个因式是,则的值为.三、解答题(共8小题;共104分)17. 用科学记数法表示下列各数:(1);(2);(3);(4)(5).18. 计算:.19. 计算:20. 用小数表示下列各数:(1);(2;(3.21. (1)填空:,,,;,,,;(2)从上面的计算中,你发现了什么?用字母来描述你的发现,并验证你发现的结论(3)运用你发现的结论计算下列各题.①;②.22. 是一个很大的数,怎样求出它的个位数字呢?我们依次计算一下,,,观察其个位数字的变化,寻找其中的规律,从而用归纳的方法得出结论:,,,,,,,.(1)观察上述各式,你可以得出它们的个位数字出现的规律是 .(2)请你猜测:的个位数字为;的个位数字为.23. 若,求的值.24. 已知,求的值.答案第一部分1. B 【解析】.2. A 【解析】.3. A 【解析】根据得.4. B 【解析】.5. D6. D7. D8. A9. A 【解析】,,解得.10. C【解析】令,.故选:C.第二部分11.12.【解析】根据题意:,,.14. ,,,16.【解析】设多项式另一个因式为,多项式的一个因式是,则,,,,,,,.第三部分17. (1).(2).(3).(4)(5).18. .19. 原式20. (1)(2)(3)21. (1);;;;(2)(是整数,),.(3)①;②.22. (1),,,(2);23.,.24. 因为,所以,所以,所以,,所以,所以.。

幂的运算 单元测试卷 (含答案)

幂的运算 单元测试卷 (含答案)

幂的运算 单元测试卷一、选择题1.若a m =12,a n =3,则a m ﹣n 等于( )A .4 B .9 C .15 D .362.在等式a 2×a 4×( )=a 11中,括号里面的代数式应当是( )A .a 3B .a 4C .a 5D .a 63.计算25m ÷5m 的结果是( )A .5 B .20 C .5m D .20m4、a 与b 互为相反数,且都不等于0,n 为正整数,则下列各组中一定互为相反数的是( )A 、a n 与b nB 、a 2n 与b 2nC 、a 2n+1与b 2n+1D 、a 2n ﹣1与﹣b 2n ﹣15、下列等式中正确的个数是( )①a 5+a 5=a 10;②(﹣a )6•(﹣a )3•a=a 10;③﹣a 4•(﹣a )5=a 20;④25+25=26.A 、0个B 、1个C 、2个D 、3个6、数学上一般把n aa a a a 个···…·记为( )A .na B .n a + C .n a D .a n7、下列计算不正确的是( )A.933)(a a =B.326)(n n a a =C.2221)(++=n n x xD.623x x x =⋅8、计算()4323b a --的结果是( ) A.12881b a B.7612b a C.7612b a - D.12881b a -二、填空题。

1、计算:x 2•x 3= _________ ;(﹣a 2)3+(﹣a 3)2= _________ .2、若2m =5,2n =6,则2m+2n = _________ .3、①最薄的金箔的厚度为0.000000091m ,用科学记数法表示为 m ; ②每立方厘米的空气质量约为1.239×10﹣3g ,用小数把它表示为 g .4.= ;﹣y 2n+1÷y n+1= ;[(﹣m )3]2= .5.(a+b )2•(b+a )3= ;(2m ﹣n )3•(n ﹣2m )2= .6.( )2=a 4b 2; ×2n ﹣1=22n+3.7.已知:,,,…,若(a ,b 为正整数),则ab= .8、已知102103m n ==,,则3210m n +=____________.三、解答题1、已知3x (x n +5)=3x n+1+45,求x 的值.3、已知2x+5y=3,求4x •32y 的值.2、若1+2+3+…+n=a,求代数式(x n y )(x n ﹣1y 2)(x n ﹣2y 3)…(x 2y n ﹣1)(xy n )的值.4、已知25m •2•10n =57•24,求m 、n .5、已知a x =5,a x+y =25,求a x +a y 的值.6、若x m+2n=16,x n=2,求x m+n的值. 8、比较下列一组数的大小.8131,2741,9617、已知10a=3,10β=5,10γ=7,试把105写成底数是10的幂的形式。

苏科版七年级数学下册幂的运算单元测试卷76

苏科版七年级数学下册幂的运算单元测试卷76

苏科版七年级数学下册幂的运算单元测试卷76一、选择题(共10小题;共50分)1. 的结果是A. B. C. D.2. 小林最近刚买了一个存储量为的U盘,某一份数学试卷的大小为,若这个U盘全部用来存储像这样的数学试卷,则大约可存放的份数为(注:信息技术的存储设备常用,,,等作为存储量的单位,其中)A. B. C. D.3. 的值是B. C. D.4. 流感病毒的直径为,该数值用科学记数法表示为A. B. C. D.5. 等式成立的条件是A. 为有理数B.C.D.6. 如果,那么是A. B. C. D.7. 下列运算正确的是A. C. D.8. 指大气中直径小于或等于微米的颗粒物微米()用科学记数法表示为A. B. C. D.9. 若,则应满足的条件是A. B. C. D.10. 设多项式是个三项式,是个四项式,则的结果的多项式的项数一定是A. 多于项B. 不多于项C. 多于项D. 不多于项二、填空题(共6小题;共30分)11. 实验表明,人体内某种细胞的形状可近似看作球,它的直径约为,则这个数用12. 在括号里填上适当的式子:().13. 若,则.14. 计算:.15. 岁末年初,一场突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,全国人民团结一心、众志成城,取得了抗击疫情的阶段性胜利;据科学研究表明,新型冠状病毒颗粒的最大直径为纳米;纳米用科学记数法表示为米.(纳米米)16. 若,则代数式的值为.三、解答题(共8小题;共104分)17. 用科学记数法表示下列叙述中的数据:(1)中国历代长城总长大约为;(2)氢原子的电子和原子核之间的距离约为.18. 计算:.19. 计算:20. 用小数表示下列各数:(1);(2;(3.21. 已知,,求的值.22. 是一个很大的数,怎样求出它的个位数字呢?我们依次计算一下,,,观察其个位数字的变化,寻找其中的规律,从而用归纳的方法得出结论:,,,,,,,.(1)观察上述各式,你可以得出它们的个位数字出现的规律是 .(2)请你猜测:的个位数字为;的个位数字为.23. 已知,,求的值.24. 已知,求的值.答案第一部分1. B 【解析】.2. A 【解析】.3. A 【解析】根据得.4. B 【解析】.5. D6. D7. D8. B 【解析】根据科学记数法的表示形式可知,,要想使得变为,则小数点需要向右移动位,故.9. A 【解析】,,解得.10. D第二部分11.12.【解析】根据题意:,,.15.【解析】纳米米米.16.第三部分17. (1).(2).18.19. 原式20. (1)(2)(3)21. .22. (1),,,(2);23. ,,,,,,.24. 因为,所以,所以,所以,,所以,所以.。

苏科版七年级下册幂的运算单元检测2份1

苏科版七年级下册幂的运算单元检测2份1

第八章幂的运算测试姓名: 得分: ( 总分:100分;时间:100分钟)一、选择题(每小题2分,共16分)1.下列各式中错误的是( )A.()[]()623y x y x -=- B.84216)2(a a =- C.363227131n m n m -=⎪⎭⎫⎝⎛- D.6333)(b a ab -=-2.若2=ma,3=n a ,则n m a +等于 ( )A.5B.6C.8D.9 3.在等式⋅⋅23a a ( )11a =中,括号里填入的代数式应当是 ( )A.7aB.8aC.6aD.3a 4.计算mm 525÷的结果为 ( )A.5B.20C.m 5D.m20 5. 下列4个算式中,计算错误的有 ( )(1)()()-=-÷-24c c 2c (2)336)()(y y y -=-÷-(3)33z z z =÷(4)44a a a m m =÷A.4个B.3个C.2个D.1个6.如果(),990-=a ()11.0--=b ,235-⎪⎭⎫⎝⎛-=c ,那么c b a ,,三数的大小为( )A.c b a >>B.b a c >>C.b c a >>D.a b c >>7.计算3112)(n n x x x +-⋅⋅的结果为( )A.33+n xB.36+n x C.nx12 D.66+n x8.已知 n 是大于1的自然数,则 ()()11+--⋅-n n c c 等于 ( )A.()12--n c B.nc 2- C.nc 2- D.nc2二、填空题(每题3分,共30分)9.最薄的金箔的厚度为 m 000000091.0,用科学记数法表示为 m ;10.()=-⋅⎪⎭⎫⎝⎛n n221 ;=÷-++112n n y y ;=-23])[(m . 11.=+⋅+32)()(a b b a ;=-⋅-23)2()2(m n n m ;(-21)100×2101= 。

2019-2020年七年级下第八章《幂的运算》单元综合测试卷含答案.docx

2019-2020年七年级下第八章《幂的运算》单元综合测试卷含答案.docx

2019-2020 年七年级下第八章《幂的运算》单元综合测试卷含答案一、选择题 (每小题 3 分,共 24 分)1.已知空气的单位体积质量为 1.24 ×10-3 g/cm 3,1.24 ×10-3 用小数表示为 ()A.0.000124B. 0.0124C. 0.00124D. 0.001242.下列各式 : ① a 2 n ga na 3 n ;② (xy 2 )3 x 3 y 6 ;③ 4m 21 2 ;④ ( 3)0 1 ;⑤4m( a)2 g( a)3a 5 .其中计算正确的有 ()A.4 个B.3 个C.2个D.1个3.如果 a( 99) 0 , b( 0.1) 1 , c ( 5 ) 2 ,那么 a , b , c 的大小关系为 ()3A. a c bB. c a bC. a b cD. c b a4.计算 ( 2)100 ( 2)99 所得的结果是 ()A.2B. 2C. 299D.2995.9m32m 2( 1)n , n 的值是 ()3A.2B. 2C. 0.5D.0.56.下列各式 : ① a 5 g[( a)2 ]3 ;② a 4 g( a)3 ;③ ( a 2 )3 g( a 3 )2;④ [( a)4 ]3 . 其中计算结果为a 12 的有 ()A. ①和③B. ①和②C.②和③D. ③和④7.a999, b119,则 a , b 的大小关系是 ()999 990A. abB. a bC. abD. 以上都不对8.定义这样一种运算 :a N ( a 0, N 0),那么b就叫做以 a 为底的 N的对数,如果 b记作 blog a N .例如 :因为 23 8 ,所以 log 2 8 3 ,那么 log 3 81 的值为 ()A. 27B. 9C. 3D. 4二、填空题 (每小题 2 分,共 20 分)9.计算 :( 2)3; x 3 gx 2; aga 7 a 4 ( a)4;(xy)5 g( y x)3.10. 若 a , b 为正整数,且 2a3b 3,则 9a g27b 的值为;若 3m 2 , 3n 5 ,则 3m n.11. 若 a2n25 , b 2 n 16 ,则 (ab) n;若 22 822n ,则 n 的值为.12. (1) 若 9n g27n320 ,则 n;(2) 若 x4 y 3 0,则 2x g16 y.13. (1) 若 a m2 ,则 (3a m )2 4( a 3) m ;(2) 若 2m9 , 3m6 ,则 62m 1.14. 某种电子元件的面积大约为0. 000 000 7 mm 2,用科学记数法表示该数为.15. 设 x 3m, y27m 1 ,用 x 的代数式表示 y 是.16. 计算 :(5 ) 2015 (2 2) 2016;125(2 103 )2 (3 103 ).( 结果用科学记数法表示 )17.已知实数 a , b满足 a b 2, ab 5 , (a b)3g(a b)3的值是.则18. 已知 a255 ,b 344,c433 ,d 522,则这四个数从大到小排列顺序是 .三、解答题 (共 56 分 )19. (12 分 )计算 :(1) ( x)gx 2 g( x)6 ;(2) ( 2x 2 ) 3 x 2 gx 4 ( 3x 3 )2(3) t 3 g( t )4 ( t )5(4) ( 1)20152 1(3) 2 ( 3.14) 02(5)( 0.25)14 230(6) 2( x3)2gx3(4 x3 )3( 3x) 4 gx520. ( 4 分 )已知n为正整数,且x m 2 , x n3(1)求x2m 3 n的值 ;(2)(2 x n )2 (x2 ) 2n的值21. ( 6 分 )已知2x3, 2y 5 .求:(1)2x y的值;(2)23 x的值(3)22 x y 1的值22. (6 分)(1) 已知3 9m27m316,求 m 的值.(2) 已知x2m 3 ,求 (2 x3 m) 2(3 x m )2的值.23. (4 分 )已知a m 2 , a n 4 , a k32(a0)(1)求 a3m 2 n k的值;(2)求k3m n 的值.24. (6分)(1) 已知10a 5 , 10b6,求102 a 3 b的值 .(2) 已知2x 5 y 30 ,求 4x g32 y的值.(3) 已知(32)n(4)n33,求 n 的值.2439825. (6 分)(1) 已知 2m g4m26 ,求 ( m 2 )6 (m 3 gm 2 )m 的值 .(2)先化简,再求值 : ( 2a)3 g( b 3 )2( ab 2 )3 ,其中 a1 , b 2226. (6分)(1)你发现了吗 ? (2) 222 ,(2) 21 113 3 由上述计算,我们发现33332 2222 2( )33(2)2(3) 2; 332(5)3 与 ( 4) 3之间的关系(2) 仿照 (1) ,请你通过计算,判断4 5(3) 我们可以发现: ( b) m( a)m (ab 0)ab(4)计算:(7)2( 7)215527. (6分)m11)n92)m n2)3 n (1)已知2, (,求 (1 x(1 x的值163(2)已知122232⋯ +n21n(n 1)(2n 1) ,试求 224262⋯ 502的值6参考答案一、 1.D 2. B 3. A 4. C5.B6. D7. A8. D二、 9.8x52a8( x y)810.271011.201112.(1)4(2)813.(1)4(2)48614.7 10715.y 27x316.12 1.21010517.100018. b c a d三、 19. (1)原式x3 gx6x9(2)原式8x6x69x616x6(3)原式t 3 gt 4(t5 )t 2(4)原式11411 2918(5)原式(1)14415(14)14 4 444(6)原式2x964x981x919x920. ( 1)x2 m 3n x2m gx3n( x m ) 2 g( x n )32233427108( 2)(2 x n)2( x2 )2 n4x2n x4n4( x n ) 2(x n ) 44 32344521. ( 1)2x y2x g2y35 15( 2)23 x(2 x ) 33327( 3) 22 x y 122 x2 y 2 (2 x ) 2 2y2 32 5 291022. ( 1)因为 3 32m33m316 ,所以 1 2m 3m 16解得 m 15( 2) (2 x 3 m ) 2 (3x m )24( x 2 m )3 9x 2m4 39 3 8 1323. ( 1) a 3 m 2n ka 3 m ga 2na k(a m )3 g(a n )2 a k23 42 324( 2 ) 因 为 a k 3 m na k a 3 m a n 32 234 1, 易 知 a 0 , 且 a1,所以k 3m n 024. ( 1) 102a3b (10a ) 2 g(10b )3 52 635400( 2) 4x g32 y 22 x g25 y 22 x5 y23 8( 3)因为 (32)n( 4 )n3324398所以 ( 2)5n( 2 )2n (2) 3 333所以 5n 2n3 , n 125. ( 1 ) 因 为 2m g4m26,即2m g22m 26 , 所 以 3m6 , m2.所以( m 2 ) 6 m(g 3 m m2 ) m 12m1 0m 4( 2) ( 2a)3 g( b 3 )2 ( ab 2 )3( 8a 3 )b 6 ( a 3b 6 ) 7a 3b 6当 a1 , b2 时2原式7( 1)32656226. ( 1)(2)因为 (5)35 5 5 , 44 4 4(4) 3 1 11 1 5 5 55(4 34 4 44 4 4)5 555所以 ( 5)3(4) 345( 3) (4)(7)2(7)2(15)2 (7)2(15 7 )2915575 7527. ( 1) (1x 2 ) m n(1x 2 )3 n (1x 2 )m n 3n (1 x 2 )m 2 n因为 2m1 2 4 , (1)n9 (1)21633所以 m 4 , n2所以原式 (1 x 2 ) 4 41(2)122222 22 32 22⋯ 252 2222(12 22 32 ⋯ 252)1 4 25 26 51 221006。

幂的运算单元测试题

幂的运算单元测试题

幂的运算检测题 姓名一、选择题(每小题3分,共24分) 1.下列各式中错误的是( )()[]()623y x y x -=- 84216)2(a a =-363227131nm n m -=⎪⎭⎫⎝⎛-6333)(b a ab -=-2.若2=ma,3=na ,则nm a+等于 ( )A.5B.6C.8D.9 3.在等式⋅⋅23a a( )11a =中,括号里填入的代数式应当是 ( )A.7a B.8a C.6a D.3a 4. 计算9910022)()(-+-所得的结果是( ) A.-2 B.2 C.-992 D.992 5. 下列4个算式中,计算错误的有 ( )()()-=-÷-24c c 2c336)()(yy y -=-÷-33z z z =÷ 44a a a mm=÷ A.4个 B.3个 C.2个 D.1个6.如果(),990-=a()11.0--=b ,235-⎪⎭⎫ ⎝⎛-=c ,那么c b a ,,三数的大小为( )A.c b a >>B.b a c >>C.b c a>> D.a b c >>7.计算3112)(n n x x x +-⋅⋅的结果为( )A.33+n xB.36+n xC.nx12 D.66+n x8.已知 n 是大于1的自然数,则()()11+--⋅-n n c c 等于( )A.()12--n c B.nc 2- C.n c 2- D.n c 2二、填空题(每空2分,共22分)9.最薄的金箔的厚度为m 000000091.0,用科学记数法表示为 m ;10.()=-⋅⎪⎭⎫ ⎝⎛nn221 ;=÷-++112n n y y ;=-23])[(m .11.=+⋅+32)()(a b b a ;=-⋅-23)2()2(m n n m .12.( )242b a =; 32122+-=⨯n n .13.若2,xa =则3x a = .14.计算:20072006522125⎛⎫⎛⎫-⨯ ⎪ ⎪⎝⎭⎝⎭= .15.,=+,,15441544833833322322222⨯⨯=+⨯=+··· 若bab a ⨯=21010+(b a 、为正整数),则 =+b a .三、解答题(共54分)16.计算(每小题3分,共21分):(1)3223)()(a a -⋅-(2)543)()(t t t -⋅-⋅-(3)234)()()(q p p q q p -⋅-÷-(4)23)3()()3(a a a -⋅---(5)022)14.3(3)2(4π-÷----(6) ()()2302559131-÷-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--(7) ()5.1)32(2000⨯1999()19991-⨯17.(5分)先化简,再求值:32233)21()(ab b a-+-⋅,其中441==b a ,.18.(5分)已知 1632793=⨯⨯m m,求m 的值.19.(5分)已知2x +5y -3=0,求y x324∙的值.20.(5分)已知a m =2,a n =3,求a 2m-3n的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂的运算单元测试卷
班级__________姓名___________得分____________
一、选择题
1、下列计算正确的是( )
A 、x 3+ x 3=x 6
B 、x 3÷x 4=x
1 C 、(m 5)5=m 10 D 、x 2y 3=(xy)5 2、81×27可以记为( )
A 、93
B 、36
C 、37
D 、312
3、a 5可以等于( )
A 、(-a )2·(-a)3·
B 、(-a)·(-a)4
C 、(-a 2)·a 3
D 、(-a 3)·(-a 2)
4、若a m =6,a n =10,则a m-n 值为( )
A 、-4
B 、4
C 、 5
3 D 、35 5、计算- b 2·(-b 3)2的结果是( )
A 、-b 8
B 、-b 11
C 、b 8
D 、b 11
6、连结边长为1的正方形对边中点,可将一个正方形分成四个全等的小正方形,选右下角的小正方形进行第二次操作,又可将这个小正方形分成四个更小的小正方形,……重复这样的操作,则2004( )
A 、20041
B 、(2
1)2004 C 、(41)2004 D 、1-(4
1)2004 7、下列运算正确的是( )
A 、x 3+2x 3=3x 6
B 、(x 3)3=x 6
C 、x 3·x 9=x 27
D 、x ÷x 3=x -2
8、在等式a 2·a 3·( )=a 10中,括号内的代数式应当是( )
A 、a 4
B 、a 5
C 、a 6
D 、a 7
9、 (a 2)3÷(-a 2)2=( )
A 、- a 2
B 、a 2
C 、-a
D 、a
10、0.000000108这个数,用科学记数法表示,正确的是( )
A 、1.08×10-9
B 、1.08×10-8
C 、1.08×10-7
D 、1.08×10-6
11、若n 是正整数,当a=-1时,-(-a 2n )2n+1等于( )
A 、1
B 、-1
C 、0
D 、1或-1
12、计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如(1101)
2
表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数(1111)2转换成十进制形式数是( )
A 、8
B 、15
C 、20
D 、30
二、填空题(每空3分,共42分)
7、(2
1)-1= ,(-3)-3= , (π-3)0 ,(-2
1)100×2101= 。

8、0.0001=10( ),3.01×10-5= (写成小数)。

9、x 2·( )=x 6, x 2·x 3-x 6÷x=
(m 2)3÷(m 3)2= 。

10、比较大小:233 322(填>、=、<) 。

11、32÷8n-1=2n ,则n=
12、如果x+4y-3=0,那么2x ·16y =
13、一个长方体的长、宽、高分别为a 2,a ,a 3,则这个长方体的体积是 。

14、一种花粉的直径约为35微米,这种花粉的直径约为 米。

15、(-43)-2= ,8
1=( )-3。

16、[(a 4)3]2= a 6=( )3,-(2ab 2)3= 。

17、(-y)5×(-y)4×(-y)3= , x 10÷(x 4÷x 2)= 。

18、已知4x =2x+3,则x= 。

19、已知a m =2,a n =3,则a m+n = ,a m-n = 。

20、三个数(-31)-2,(-2
1)-3,(-1)0中最大的是 ,最小的是 。

21、一列数按以下规律排列1,2,4,8,16,……,则第2004个数是 。

22、计算机在1秒时间内可完成200万次存储,则计算机完成一次存储的时间为 秒。

三、解答题(15、16每小题6分,17、18每小题8分,共40分)
23、计算
(1)(41)0×4-2
(2)(4×106)×(-2
1×10-3)
24、计算
(1)(m-n )2·(n-m )3·(n-m)4 (2) (b 2n )3 (b 3)4n ÷(b 5)n+1
(3)(a 2)3-a 3·a 3+(2a 3)2 ; (4) (-4a m+1)3÷[2(2a m )2·a]
(5) (1001×991×981×……×31×2
1×1)200×(100×99×98×……×3×2×1)200
25、已知a x =21,b k =-31,求3
1 (a 2)x ÷(b 3)k 的值。

26、请看下面的解题过程:
“比较2100与375大小,解:∵2100=(24)25,375=(33)25,又∵24=16,33=27,16<27,∴2100<375”。

请你根据上面的解题过程,比较3100与560的大小,并总结本题的解题方法。

思考题:
(1)今天是星期日,若明天算第1天,则第13+23+33+…+20023天是星期几?
(2)将一张长方形的纸对折,可得到一条折痕。

继续对折,对折时每次折痕与上次折痕保持平行,连续对折4次有多少条折痕?10次呢? n 次呢?。

相关文档
最新文档