变频器的主电路如何上电检修
海利普HLP-P型15kW变频器主电路的故障检修方法
(1)变频器无法送电,上电即跳闸。
变频器的电源进线之前,一般接有空气断路器,作为电源开关。
空气断路器具有严重过载(短路)跳闸保护功能,上电跳闸,说明负载(变频器)有短路故障。
变频器主电路的三相整流电路(往往由整流模块构成)中任一只或多只二极管击穿短路,都会造成相间短路故障,引发前级电源开关器件跳闸的保护动作。
如果故障变频器,已送至维修部,不要对故障变频器贸然上电,以免扩大故障,先测量变频器主端子之间的电阻值,确定故障电路(及元件)并排除短路故障后,再为主电路上电。
(2)变频器上电无反应(或无指示),如同没有接通电源一样。
三相整流电路内部有3只以上整流二极管断路故障(此故障概率极低)。
限流充电电阻开路,使开关电源电路失去供电电源,或开关电源电路本身故障,使整机控制电路工作电源丢失。
故障表现为操作面板的相关指示灯不亮,操作显示面板(由数码管显示屏或液晶屏及按键、指示灯等组成)无显示,变频器控制端子的24V、10V辅助电源电压为零。
第一步,要区分是充电电阻开路还是开关电源电路无输出(停振)故障,可用测量直流回路有无DC550V电压和充电接触器主触点两端电阻值的方法来确定。
停电状态下,测量充电接触器主触点两端的电阻值,一般应为几欧姆至几十欧姆,若呈现千欧姆以上电阻值,说明充电电阻已经断路,由此使整机控制电路失去工作电源;若测量限流电阻的电阻值正常(或上电后测量DC550V电压正常),说明上电无反应故障,系由开关电源电路故障所引起。
第二步,确定是限流电阻的故障后,并非是一换了之。
充电电阻的损坏往往与充电接触器的主触点状态相关联:如果是因充电接触器未产生吸合动作或主触点有接触不良故障,则导致变频器运行电流通过充电电阻,投入起动信号后,有可能会在发生跳欠电压故障以前,限流电阻即已烧毁。
所以,换用限流电阻以后,在空载状态下,要继续检查和确认充电接触器KMO的工作状态是正常的以后,才能放心交付用户。
限流电阻损坏后,要选用优质元件,如果一时不能购到原型号器件,则可用小功率电阻,用多只串、并联方法,满足原电阻的功率和电阻值( 120W50Ω)要求,替代原限流电阻。
变频器维修方法
变频器维修方法变频器作为一种重要的电力传动设备,在工业生产中起着至关重要的作用。
然而,由于长时间使用或者操作不当,变频器可能会出现各种故障,需要及时进行维修。
下面将介绍一些常见的变频器维修方法,希望能够对大家有所帮助。
首先,当变频器出现故障时,我们需要及时对其进行检查。
首先,检查变频器的外部线路和连接器是否松动或者损坏,需要确保连接牢固。
其次,检查变频器的散热器是否被堵塞,导致散热不良。
另外,还需要检查变频器内部的电路板和元件是否有明显的损坏或者烧坏现象。
通过这些检查,可以初步确定变频器故障的原因,为后续的维修提供依据。
其次,针对不同的故障原因,我们需要采取相应的维修方法。
如果是由于外部线路松动或者损坏导致的故障,我们需要重新连接线路或者更换损坏的连接器。
如果是散热器堵塞导致的故障,我们需要清洁散热器,并确保散热通畅。
对于电路板和元件的损坏,我们需要及时更换损坏的部件,并进行相应的调试和测试。
另外,对于一些常见的故障现象,我们也可以采取一些常规的维修方法。
比如,当变频器出现过载保护时,我们可以适当降低负载,或者增加散热措施,以解决过载问题。
当变频器出现短路故障时,我们需要检查输出端子是否短路,及时排除短路故障。
当变频器出现缺相故障时,我们需要检查输入端子的供电情况,确保三相电源正常供电。
最后,维修完成后,我们需要对变频器进行全面的测试和调试,确保其正常运行。
在测试和调试过程中,需要严格按照操作手册和安全规程进行,以确保人身安全和设备完好。
同时,还需要对维修过程进行记录和总结,为今后的维修工作提供经验和参考。
综上所述,变频器的维修工作需要我们对设备进行全面的检查、维修和测试,确保设备的正常运行。
希望以上介绍的变频器维修方法能够对大家有所帮助,也希望大家在使用变频器时能够严格按照操作规程进行,以确保设备的安全运行。
UC3844组成的变频器维修技术之开关电源电路图和维修技巧
】 UC3844组成的变频器维修技术之开关电源电路图及维修技巧2011—03-19 11:37转载自分享最终编辑欧陆变频器变频器的开关电源电路完全可以简化为上图电路模型,电路中的关键要素都包含在内了。
而任何复杂的开关电源,剔除枝蔓后,也会剩下上图这样的主干.其实在检修中,要具备对复杂电路的“化简”的能力,要在看似杂乱无章的电路伸展中,拈出这几条主要的脉络。
要向解牛的庖丁学习,训练自己的眼前不存在什么整体的开关电源电路,只有各部分脉络和脉络的走向-—振荡回路、稳压回路、保护回路和负载回路等.看一下电路中有几路脉络。
1、振荡回路:开关变压器的主绕组N1、Q1的漏——源极、R4为电源工作电流的通路;R1提供了启动电流;自供电绕组N2、D1、C1形成振荡芯片的供电电压.这三个环节的正常运行,是电源能够振荡起来的先决条件.当然,PC1的4脚外接定时元件R2、C2和PC1芯片本身,也构成了振荡回路的一部分。
2、稳压回路:N3、D3、C4等的+5V电源,R7—R10、PC3、R5、R6等元件构成了稳压控制回路.当然,PC1芯片和1、2脚外围元件R3、C3,也是稳压回路的一部分。
3、保护回路:PC1芯片本身和3脚外围元件R4构成过流保护回路;N1绕组上并联的D2、R6、C4元件构成了IGBT的保护电路;实质上稳压回路的电压反馈信号—-稳压信号,也可看作是一路电压保护信号.但保护电路的内容并不仅是局限于保护电路本身,保护电路的起控往往是由于负载电路的异常所引起。
4、负载回路:N3、N4次级绕组及后续电路,均为负载回路。
负载回路的异常,会牵涉到保护回路和稳压回路,使两个回路做出相应的保护和调整动作。
振荡芯片本身参与和构成了前三个回路,芯片损坏,三个回路都会一齐罢工。
对三个或四个回路的检修,是在芯片本身正常的前提下进行的。
另外,要像下象棋一样,用全局观念和系统思路来进行故障判断,透过现象看本质。
如停振故障,也许并非由振荡回路元件损坏所引起,有可能是稳压回路故障或负载回路异常,导致了芯片内部保护电路起控,而停止了PWM脉冲的输出.并不能将和各个回路完全孤立起来进行检修,某一故障元件的出现很可能表现出“牵一发而全身动”的效果。
(完整word版)高压变频器检修规程
变频器保护功能整定值 ............................................................. 10
高压变频器检修规程
页 共14页- ①变压器通过±2×5%的抽头,可以对电网电压的输入范围进行调整。 ②变压器有温度检测传感器,进行温度的检测和监控。 四、技术参数 1、进线变压器技术数据 序号 规范 单位 参数 1. 型式,型号 干式,TMdrive-MV-2720/6 2. 制造商及产地 东芝-三菱,日本 3. 系统最高电压 KV 6.6 4. 额定容量 KVA 2×1360 5. 额定电压 V 一次: 6 二次:0.64 6. 额定电流 A 263 7. 额定频率 Hz 50 8. 相数 相 3 9. 接线组别 一次:Y 二次:扩展△接、△接、扩展△接 10. 付边绕组 二次:18绕组 11. 总损耗 KW 46 12. 阻抗电压 % 5.4 13. 冷却方式 风冷 14. 过载能力 100%-连续,125%-1分钟 15. 变压器外形尺寸 mm 2×1545×800×1585 16. 变压器重量 Kg 2×3050 17. 变压器防护等级 IP20 2、变频装置技术数据 序号 规范 单位 参数 1. 型式及型号 Tmdrive-MV-2720/6 2. 制造商及产地 东芝-三菱,日本 3. 额定输入电压/允许变化范围 KV 6±10% 4. 系统输入电压 KV 6 5. 变频装置输出电压/变化范围 KV 0-6 6. 变频装置输出电流/变化范围 A 266/0-125% 7. 逆变侧最高输出电压 KV 6 8. 额定容量 KVA 2760 9. 额定输入频率/允许变化范围 Hz 50±5% 10. 输入侧功率因数 0.95 11. 控制方式 无传感器矢量控制 12. 控制电源 三相3800/VAC,7KVA
变频器怎么接线变频器主电路和控制电路接线方法变频器_软启动器
变频器怎么接线?变频器主电路和把握电路接线方法 - 变频器_软启动器变频器怎么接线?变频器主电路和把握电路接线方法一、主电路的接线1、电源应接到变频器输入端R、S、T接线端子上,肯定不能接到变频器输出端(U、V、W)上,否则将损坏变频器。
接线后,零碎线头必需清除洁净,零碎线头可能造成特别,失灵和故障,必需始终保持变频器清洁。
在把握台上打孔时,要留意不要使碎片粉末等进入变频器中。
2、在端子+,PR间,不要连接除建议的制动电阻器选件以外的东西,或确定不要短路。
3、电磁波干扰,变频器输入/输出(主回路)包含有谐波成分,可能干扰变频器四周的通讯设备。
因此,安装选件无线电噪音滤波器FR-BIF或FRBSF01或FR-BLF线路噪音滤波器,使干扰降到最小。
4、长距离布线时,由于受到布线的寄生电容充电电流的影响,会使快速响应电流限制功能降低,接于二次侧的仪器误动作而产生故障。
因此,最大布线长度要小于规定值。
不得已布线长度超过时,要把Pr.156设为1。
5、在变频器输出侧不要安装电力电容器,浪涌抑制器和无线电噪音滤波器。
否则将导致变频器故障或电容和浪涌抑制器的损坏。
6、为使电压降在2%以内,应使用适当型号的导线接线。
变频器和电动机间的接线距离较长时,特殊是低频率输出状况下,会由于主电路电缆的电压下降而导致电机的转矩下降。
7、运行后,转变接线的操作,必需在电源切断10min以上,用万用表检查电压后进行。
断电后一段时间内,电容上仍旧有危急的高压电。
二、把握电路的接线变频器的把握电路大体可分为模拟和数字两种。
1、把握电路端子的接线应使用屏蔽线或双绞线,而且必需与主回路,强电回路(含200V继电器程序回路)分开布线。
2、由于把握电路的频率输入信号是微小电流,所以在接点输入的场合,为了防止接触不良,微小信号接点应使用两个并联的节点或使用双生接点。
3、把握回路的接线一般选用0.3~0.75平方米的电缆。
三、地线的接线1、由于在变频器内有漏电流,为了防止触电,变频器和电机必需接地。
变频器电路图整流、滤波、电源及电压检测电路
变频器电路图-整流、滤波、电源及电压检测电路以下仅仅对变频器电路图-整流、滤波、电源及电压检测电路的分析,好象论坛上发不了图纸.1. 整流滤波部分电路三相220V电压由端子J3的T、S、R引入,加至整流模块D55(SKD25-08)的交流输入端,在输出端得到直流电压,RV1是压敏电阻,当整流电压超过额定电压385V时,压敏电阻呈短路状态,短路的大电流会引起前级空开跳闸,从而保护后级电路不受高压损坏。
整流后的电压通过负温度系数热敏电阻RT5、RT6给滤波电容C133、C163充电。
负温度系数热敏电阻的特点是:自身温度超高,阻值赿低,因为这个特点,变频器刚上电瞬间,RT5、RT6处于冷态,阻值相对较大,限制了初始充电电流大小,从而避免了大电流对电路的冲击。
2. 直流电压检测部分电路电阻R81、R65、R51、R77、R71、R52、R62、R39、R40组成串联分压电路,从电阻上分得的电压分别加到U15(TL084)的三个运放组成的射极跟随器的同向输入端,在各自的输出端得到跟输入端相同的电压(输出电压的驱动能力得到加强)。
U13(LM339)是4个比较器芯片,因为是集电集开路输出形式,所以输出端都接有上接电阻,这几组比较器的比较参考电压由Q1(TL431)组成的高精度稳压电路提供,调整电位器R9可以调节参考电压的大小,此电路中参考电压是6.74V。
如果直流母线上的电压变化,势必使比较器的输入电压变化,当其变化到超过6.74V的比较值时,则各比较器输出电平翻转,母线电压过低则驱动光耦U1(TLP181)输出低电平,CPU接收这个信号后报电压低故障。
母线电压过高则U10(TL082)的第7脚输出高电平,通过模拟开关U73(DG418)从其第8脚输出高电平,从而驱动刹车电路,同时LED DS7点亮指示刹车电路动作。
由整流二极管D5、D6、D7、D18、D19、D20组成的整流电路输出脉动直流电,其后级的检测电路可对交流电压过低的情况进行实时检测,检测报警信号也通过光耦U1输出。
变频器的维护检修规程
变频器旳维护检修规程维护、检查是防止装置发生偶发性故障旳有效手段。
为了有效进行维护、检查,应制作检查检查单,记录并保留装置固有旳特性变化和构成部件旳稳定性,防止发生故障,以及在发生故障时调查故障原因。
维护、检查分为平常检查和定期检查,在装置旳安装之初,应缩短检查周期,详细进行检查,防止发生初始故障,运转时间变长后,需要检查部件与否出现特性劣化等。
1、检查、维护作业时旳准备环节2、平常检查2.1检查周期:每月一次。
2.2检查项目:(1)确认安装环境:确认温度、湿度、有无特殊气体、有无尘埃;(2)确认电抗器、变压器、冷却风扇等有无异常声音,有无振动;(3)确认有无异味、绝缘物旳气味及各电路元件特有旳气味;(4)确认设备内部脏污状况,根据脏污状况减少清洁周期;对于以上项目,以目测检查为中心实行,有异常时应立即进行维修。
3、定期检查3.1检查周期:按机组小修周期进行。
3.2检查旳项目如下:(1)柜内旳清洁;(2)设备内部旳清洁;(3)电路部件旳变色、变形,漏液(电容器电阻电抗器变压器等)确实认;(4)基板(电阻、电容器旳变色、变形,基板旳变色、变形、脏污、焊接旳老化等)确实认和清洁;(5)配线(有无因发热导致旳变色、腐蚀)确实认;(6)紧固部分(螺栓,螺帽,螺钉类旳松动)确实认;(7)进行装置旳主电路部分旳检查时,应在断开输入电源后,通过约5分钟以上,在验电后进行。
请注意:装置内部旳电容器在将输入电源断开后电荷仍会残留一段时间,会有触电旳危险。
此外,为防止发生触电事故,在设备运转旳状态下不要打开门。
4、维护重点4.1 主电路部及控制电路部旳清洁维护,检查旳第一步就是清洁。
清洁应根据设备旳状态实行。
清洁时,应在切断电源,确认主电路没有电压后,通过吸引或吹扫等将设备内旳尘埃取去。
注意:假如压缩空气旳压力太强,有也许会损坏部件和配线。
此外,吹扫无法除去旳附着物应用布擦掉。
清洁原则上从上部开始,在下部结束。
灰尘,金属旳切屑从上面落下,假如从先从下部检查,则无法发现和除去上面旳落下物。
变频器常见问题及维修方法
变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。
变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。
变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。
随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。
那在我们日常使用过程中有哪些常见问题呢?今天我们就来分析几例:一.对于变频器来说,它们都有一个正常的工作电压范围,当电压超过这个范围时,就很可能会造成损坏。
这种就是过压类故障,常见的有两类:1. 输入交流过电压:这种是指输入输入交流电源的电压超过正常值,一般发生在节假日线路负载较轻,电压升高或者线路出现故障。
例如,遇到星期一刚上班,变频器故障指示报警,断开电源,过一会再送电启动即可正常。
2. 发电状态时的过电压:这种情况出现的概率较高,主要是电动机的实际转速比同步转速还高,而使电动机处于发电状态或者是中频炉工作于向电网回馈能量时,而变频器又没有安装制动单元引起的。
以下情况可引起这一故障。
(1)当变频器拖动大惯性负载时,其减速时间设置较小,在减速过程中,变频器输出频率减小的速度快,而负载靠本身阻力减速较慢,使得负载拖动电动机的转速比变频器输出频率所对应的同步转速还要高,电动机处于发电状态,而变频器没有能量回馈功能,因而变频器直流回路电压升高,超过其保护值,出现故障。
.(2)中频炉或中频设备在向电网回馈能量时也会使输入电压过高而出现故障。
(3)多个电动机拖动同一负载时,也可能出现这一故障.主要是由于没有负荷分配所引起的,即多台电动机速度不同步.以两台电动机拖动同负载为例,当一台电动机的实际转速大于另台电动机的同步转速时,则转速较高的电动机相当于原动机,转速低的电动机则处于发电状态,易引起故障,处理此类故障可加负荷分配器,也可修改变频器参数.二.过载故障包括变频过载和电机过载。
变频器检修注意事项 变频器常见问题解决方法
变频器检修注意事项变频器常见问题解决方法1、确定的故障范围在实际阅历检修中,一般在没有变频器电路原理图情况下,变频器多由主电路元件的损坏造成。
对于主回路部分首先应判定故障范围,给变频器上电,测1、确定的故障范围在实际阅历检修中,一般在没有变频器电路原理图情况下,变频器多由主电路元件的损坏造成。
对于主回路部分首先应判定故障范围,给变频器上电,测量直流母线电压值是否等于输入电压有效值的1.35倍。
若电压正常可分判定逆变部分故障,否则可能是整流功率元件、预充电回路或滤波等元件损坏。
对于少数内部有的变频器,接触器是直流母线预充电部分,其启动是由变频器上电后,自检测无故障报警信号和给定“启动”信号后才启动接触器。
接触器假如不启动没有直流母线电压,就无法判定故障范围。
首先,模拟给定逆变部分“无故障”反馈信号和外部启动信号,人为让接触器吸合,可测量到直流母线电压,依据直流电压大小判定故障范围,方法同上。
注意启动预充电接触器前,给定的信号有时是脉冲触发信号而不是电平信号。
2、整流单元静态检测判定整流部分某个功率元件损坏方法是利用整流元件的单向导电性,在静态下正、反阻值正常时应不同,实在方法如下:整流部分的三相桥式整流电路可能是整流、可控硅半控整流、可控硅全控整流或是igbt整流。
不管是哪种方式,三相整流电路是对称的,则静态测试阻值结果应符合对称原则,即在静态下三相输入或输出端相对直流母线正、负极正反测试值应是对称的。
选择的“二极管”档。
(1)第一步,将红表笔接直流母线正极,黑表笔分别接输入三相接线端处,3个测试值应当是相同的。
再反过来,将黑表笔接直流母线正极,红表笔分别接输入电源三相接线处,3个测试值也应当是相同的。
若接受二极管整流桥进行整流导通时万用表显示0.4~0.6v,反向截止时显示无穷大。
假如三相测量值偏差较大,或是某相正反测量值相近或相同,则此二极管元件损坏。
(2)第二步,将红表笔接直流母线负极,黑表笔分别接输入电源三相接线处,3个测试值应当是相同的。
变频器通电无反应故障检查维修
变频器通电无反应故障检查维修变频器通电后没有反应的检查方法一、首先检查一下电源开关通电方面是不是出现了问题,如果不确定可以进行一下专业的电源测试,如果是电源问题直接换一个电源开关接线即可!二、如果电源测试正常的,我们再进行一下静态测试。
把万用表调到电阻X1O档,红表棒接到变频器的P端,黑表棒分别依次接到R、S、T,这时候会有大约几十欧的阻值且基本平衡。
当将黑表棒接到P端,红表棒依次接到R、S、T,这时候会有一个接近于无穷大的阻值。
然后将红表棒接到N 端,重复上面的过程,如果结果一样则静态测试正常。
三、如果变频器的静态测试正常,我们再进行一下动态测试即上机测试。
进行空载(不接电机)情况下启动变频器,并测试U、V、W三相输出电压值。
如出现缺相、三相不平衡等情况,则模块或驱动板等有故障在输出电压正常(无缺相、三相平衡)的情况下,带载测试。
测试时最好是满负载测试。
以上操作完成了我们基本就可以确定变频器通电后无反应的具体原因了,这时候再专门的解决问题就可以了。
建议各位朋友上面的步骤都应该有专业的变频器维修人员来处理,以免造成变频器的损伤。
变频器通电无显示故障的原因与解决方法变频器上电无显示原因的故障通常发生在三个模块上:一是接触器;二是变频器的控制面板;三是给控制面板供电的电源模块。
故障检测一:变频器通电的瞬间,正常情况下有接触器吸合的声音,如果没有这种声音,则可能是接触器坏了。
解决方法:更换新的接触器。
故障检测二:如果接触器无问题,则检测电源模块是否有问题,如果变频器高压供电1ED灯亮,说明高压直流供电正常。
检测低压直流供电没有直流电压,这是开关电源不工作的现象。
开关电源电源不工作相当于开关管不工作,检测直流电压没有送过来,则是连接高压直流电端与脉冲变压器初级端之间降压电阻损坏开路,进而导致高压直流电未加到脉冲变压器的初级绕组上。
开关电源无法工作,整个变频器无低压直流供电,出现无显示故障。
解决方法:更换降压电阻。
UC3844组成的变频器维修技术之开关电源电路图及维修技巧
】UC3844组成的变频器维修技术之开关电源电路图及维修技巧2011-03-19 11:37转载自分享最终编辑欧陆变频器变频器的开关电源电路完全可以简化为上图电路模型,电路中的关键要素都包含在内了。
而任何复杂的开关电源,剔除枝蔓后,也会剩下上图这样的主干。
其实在检修中,要具备对复杂电路的“化简”的能力,要在看似杂乱无章的电路伸展中,拈出这几条主要的脉络。
要向解牛的庖丁学习,训练自己的眼前不存在什么整体的开关电源电路,只有各部分脉络和脉络的走向——振荡回路、稳压回路、保护回路和负载回路等。
看一下电路中有几路脉络。
1、振荡回路:开关变压器的主绕组N1、Q1的漏--源极、R4为电源工作电流的通路;R1提供了启动电流;自供电绕组N2、D1、C1形成振荡芯片的供电电压。
这三个环节的正常运行,是电源能够振荡起来的先决条件。
当然,PC1的4脚外接定时元件R2、C2和PC1芯片本身,也构成了振荡回路的一部分。
2、稳压回路:N3、D3、C4等的+5V电源,R7—R10、PC3、R5、R6等元件构成了稳压控制回路。
当然,PC1芯片和1、2脚外围元件R3、C3,也是稳压回路的一部分。
3、保护回路:PC1芯片本身和3脚外围元件R4构成过流保护回路;N1绕组上并联的D2、R6、C4元件构成了IGBT的保护电路;实质上稳压回路的电压反馈信号——稳压信号,也可看作是一路电压保护信号。
但保护电路的内容并不仅是局限于保护电路本身,保护电路的起控往往是由于负载电路的异常所引起。
4、负载回路:N3、N4次级绕组及后续电路,均为负载回路。
负载回路的异常,会牵涉到保护回路和稳压回路,使两个回路做出相应的保护和调整动作。
振荡芯片本身参与和构成了前三个回路,芯片损坏,三个回路都会一齐罢工。
对三个或四个回路的检修,是在芯片本身正常的前提下进行的。
另外,要像下象棋一样,用全局观念和系统思路来进行故障判断,透过现象看本质。
如停振故障,也许并非由振荡回路元件损坏所引起,有可能是稳压回路故障或负载回路异常,导致了芯片内部保护电路起控,而停止了PWM脉冲的输出。
变频器的常见故障以及维修方法详解
变频器的常见故障以及维修方法详解1.维修变频器整流块损坏变频器整流桥的损坏也是变频器的常见故障之一,早期生产的变频器整流块均以二极管整流为主,目前部分整流块采用晶闸管的整流方式(调压调频型变频器)。
中、大功率普通变频器整流模块一般为三相全波整流,承担着变频器所有输出电能的整流,易过热,也易击穿,其损坏后一般会出现变频器不能送电、保险熔断等现象,三相输入或输出端呈低阻值(正常时其阻值达到兆欧以上)或短路。
在更换整流块时,要求其在与散热片接触面上均匀地涂上一层传热性能良好的硅导热膏,再紧固螺丝。
如果没有同型号整流块时,可用同容量的其它类型的整流块替代,其固定螺丝孔,必须重新钻孔、攻丝,再安装、接线。
2.变频器充电电阻易损坏维修导致变频器充电电阻损坏原因一般是:如主回路接触器吸合不好时,造成通流时间过长而烧坏;或充电电流太大而烧坏电阻;或由于重载启动时,主回路通电和RUN信号同时接通,使充电电阻既要通过充电电流,同时又要通过负载逆变电流,故易被烧坏。
其损坏的特征,一般表现为烧毁、外壳变黑、炸裂等损坏痕迹。
也可根据万用表测量其电阻(不同容量的机器,其阻值不同,可参考同一种机型的阻值大小确定)判断。
3.变频器逆变器模块烧坏维修中、小型变频器一般用三组IGTR(大功率晶体管模块);大容量的机种均采用多组IGTR并联,故测量检查时应分别逐一进行检测。
IGTR的损坏也可引起变频器OC(+pA或+pd或+pn)保护功能动作。
逆变器模块的损坏原因很多:如输出负载发生短路;负载过大,大电流持续运行;负载波动很大,导致浪涌电流过大;冷却风扇效果差;致使模块温度过高,导致模块烧坏、性能变差、参数变化等问题,引起逆变器输出异常。
一、维修变频器辅助控制电路常见故障变频器驱动电路、保护信号检测及处理电路、脉冲发生及信号处理电路等控制电路称为辅助电路。
辅助电路发生故障后,其故障原因较为复杂,除固化程序丢失或集成块损坏(这类故障处理方法一般只能采用控制板整块更换或集成块更换)外,其他故障较易判断和处理。
变频器主电路的检测与维修探索
随频率的上升而闪烁的J 晴况。 如果逆变模块正常或修理完毕仍存在问题 ,那么就需要对驱动 电路进行重点检测。 驱动电路主要由隔离放大电路 、 驱动放大电路、 驱 动电路的电源组成。 其工作原理是将主电路中 C P U产生的 6 个P WM 信号经过光电耦合器隔离和放大后 , 作为逆变电路 的换流器件的驱动 信号。在使用过程中由于使用者的错误操作或电网故障等原因, 会造 成光电耦合器和电源电路的损毁, 所以对变频驱动器的检修重点应放
在光电耦合器器件和电源电路 的检修方面。 总而言之 , 变频器作为一个现代科技的精华体现 , 其 自身主电路 现损坏, 同样 当驱动电路出现故障时 , 逆变模块也必然会受到牵连 , 所 以无论是两者当中的哪一环节出现故障, 都必须要将这两个环节进行 所具有 的复杂结构标志着对其进行检测和维修的工作必然是一项复 杂的 、 技术含量要求极高的工作 。 对于这项复杂的工作而言 , 其工作人 全 面的检 查 。 还要具有充分的实际工 股 隋况下 ,对变频器主电路的检测工作都采取电试机的检测 员不仅要具有丰富的理论知识作为工作基础 , 方法 。 在上电试机之前必须要确定主电路 当中驱动电路是处在正常工 作能力,只有如此才能够真正的做到为变频器主电路进行检查和维 工作人员不仅要对 作状态下 , 即能够正常输 出 6 路驱动脉冲。 在此基础上 , 还需要将损坏 修。在对变频器主电路进行检测和维修 的过程中, 从 中看清问题的本质 的逆变模块更换后才能上电试机。 由于整个变频器主电路当中各个环 能够对主电路产生影响的因素进行考虑和分析 , 进而保证变频器的正常工作状态。从技术角度来 节都是相互连通的, 所 以在更换损坏设备后 , 必须要做好相应 的保护 并将其彻底的解决 ,
一
和电压可以改变的三相交流电压 , 从u , v , w 负载端输出。 2 变频 器主 电路 故 障分 析 对有故障的变频器 , 一定要先与用户仔细交流 , 掌握使用和损坏 的大致隋况, 这对于故障的判断和修理都有好处 。想要实现对变频器 故障的透彻分析 , 就必须要对主电路当中的逆变 电路与驱动电路进行 系统 的、 全面的检查。因为在变频器的主电路当中逆变模块与驱动电 路是最主要 的工作环节 ,所以其在故障上也存在着很大的联系性 , 倘 若逆变模块出现炸裂损坏, 那么驱动电路必然也会因为受到冲击而出
变频器维修之主回路充电控制电路知识
变频器维修之主回路充电控制电路知识变频器维修之主回路充电控制电路主电路为电压型、交直交能量转换方式的变频器,因整流与逆变电路之间有大容量电容的储能回路,因电容两端电压不能突变的特性,在上电初始阶段,电容器件形同“短路”,将形成极大的浪涌充电电流,会对整流模块很大的电流冲击而损坏,也会使变频器供电端连接的空气断路器因过流而跳闸。
常规处理方式,是在整流和电容储能回路之间串入充电了限流电阻和充电接触器(继电器),对电容充电过程的控制是这样的:变频器上电,先由充电电阻对电容进行限流充电,抑制了最大充电电流,随着充电过程的延伸,电容上逐渐建立起充电电压,其电压幅值达到530V的80%左右时,出现两种方式的控制过程,一为变频器的开关电源电路起振,由开关电源的24V输出直接驱动充电继电器,或由此继电器,接通充电接触器的线圈供电回路,充电接触器(继电器)闭合,当充电限流电阻短接,变频器进入待机工作状态。
电容器上建立一定电压后,其充电电流幅度大为降低,充电接触器的闭合/切换电流并不是太大,此后储能电容回路与逆变电路的供电,由闭合的接触器触点供给,充电电阻被接触器常开触点所短接。
二是随着电容上充电电压的建立,开关电源起振工作,C P U检测到由直流回路电压检检测电路送来电压幅度信号,判断储能电容的充电过程已经完毕,输出一个充电接触器动作指令,充电接触器得电闭合,电容上电充电过程结束。
变频器常见主电路形式及充电接触器控制电路如下图:图二:充电接触器的控制电路部分变频器及大功率变频器,整流电路常采用三相半控桥的电路方式,即三相整流桥的下三臂为整流二极管,而上三臂采用三只单向可控硅,用可控硅这种“无触点开关”,代替了充电接触器。
节省了安装空间,提高了电路的可靠性。
电路形式如下图所示:虽然省掉了充电接触器,但工作原理还是一样的,只不过控制电路有所差异。
变频器上电期间,先由D1∽D6整流,R限流为C1、C2充电,在充电过程接近结束时,C P U输出S C R1∽S C R3三只可控硅的开通指令,控制电路强制三只可控硅导通,由D1、D2、D3、R构成的上电预充电回路使用作用,S C R1∽S C R3与D4、D5、D6构成三相整流桥,此时可控硅处于全导通状态下,等效于整流二极管。
UC3844组成的变频器维修技术之开关电源电路图和维修技巧
]UC3844组成的变频器维修技术之开关电源电路图及维修技巧2011-03-19 11:37转载自分享最终编辑欧陆变频器020-3720^116R1I one i com cnUC33+U变频IS开关电翠坏.肖黃修复,单价100 800元± EnePC617广东容济机电科技J5限公司开关电源简化电路图变频器的开关电源电路完全可以简化为上图电路模型,电路中的关键要素都包含在内了。
而任何复杂的开关电源,剔除枝蔓后,也会剩下上图这样的主干。
其实在检修中,要具备对复杂电路的“化简”的能力,要在看似杂乱无章的电路伸展中,拈出这几条主要的脉络。
要向解牛的庖丁学习,训练自己的眼前不存在什么整体的开关电源电路,只有各部分脉络和脉络的走向一一振荡回路、稳压回路、保护回路和负载回路等。
看一下电路中有几路脉络。
1、振荡回路:开关变压器的主绕组N1、Q1的漏--源极、R4为电源工作电流的通路;R1提供了启动电流;自供电绕组N2、D1、C1形成振荡芯片的供电电压。
这三个环节的正常运行,是电源能够振荡起来的先决条件。
当然,PC1的4脚外接定时元件R2、C2和PC1芯片本身,也构成了振荡回路的一部分。
2、稳压回路:N3、D3、C4等的+5V电源,R7—R10、PC3、R5、R6等元件构成了稳压控制回路。
当然,PC1芯片和1、2脚外围元件R3、C3,也是稳压回路的一部分。
3、保护回路:PC1芯片本身和3脚外围元件R4构成过流保护回路;N1绕组上并联的D2、R6、C4元件构成了IGBT的保护电路;实质上稳压回路的电压反馈信号一一稳压信号,也可看作是一路电压保护信号。
但保护电路的内容并不仅是局限于保护电路本身,保护电路的起控往往是由于负载电路的异常所引起。
4、负载回路:N3、N4次级绕组及后续电路,均为负载回路。
负载回路的异常,会牵涉到保护回路和稳压回路,使两个回路做出相应的保护和调整动作。
振荡芯片本身参与和构成了前三个回路,芯片损坏,三个回路都会一齐罢工。
变频器维修方法
变频器维修方法变频器是工业生产中常用的电气设备,它能够调节电机的转速,实现对生产过程的精确控制。
然而,随着设备的长时间运行,变频器也会出现各种故障,影响生产效率。
因此,掌握变频器的维修方法对于保障生产的顺利进行至关重要。
首先,当变频器出现故障时,我们应该及时进行故障排除。
在进行维修之前,首先要对变频器进行全面的检查,包括外部连接是否松动、散热器是否清洁、电路板是否受潮等。
针对不同的故障表现,我们需要有针对性地进行检查,比如对于电机无法启动的故障,需要检查电机本身是否损坏,电源是否正常等。
其次,在进行维修时,我们需要注意安全问题。
变频器内部带有高压电路,因此在拆卸和维修时必须先切断电源,并在操作时戴上绝缘手套,以免触电事故发生。
另外,对于不熟悉电气知识的维修人员,最好能有专业人员指导或者全程监督,以确保维修过程的安全性。
在维修过程中,我们还需要注意维修工具的选择和使用。
首先,要选择合适的工具,比如扭力扳手、螺丝刀、万用表等,以保证维修的准确性和高效性。
其次,在使用工具时,要注意力度和方式,避免因为操作不当导致二次损坏。
另外,维修过程中还需要注意维修记录的完善。
在进行维修时,要及时记录下故障现象、维修过程和维修结果,以便日后的维护和管理。
维修记录不仅可以帮助我们总结经验,还可以为日后的维修提供参考依据。
最后,在维修完成后,我们需要对变频器进行全面的测试。
测试内容包括电机启动、运行稳定性、输出电压和电流等参数的检测。
只有经过全面的测试,我们才能确保变频器的维修工作得到了彻底的解决。
综上所述,变频器的维修方法需要我们在故障排除、安全注意、工具选择和使用、维修记录和测试等方面都要做到严谨细致。
只有这样,我们才能确保变频器的正常运行,保障生产的顺利进行。
希望以上内容能对您有所帮助,谢谢阅读!。
变频器的安全事项及检修
变频器的安全事项及检修一、安全事项:1. 安装前的准备工作:变频器安装前,需要了解设备的电源接线,地线接线等有关安装知识,确保设备安装正确,电源接线牢固可靠。
2. 动力电路:变频器的动力电路中充满高压电,所以在接线和维修过程中,务必注意断电并断开电源开关,以免触电事故的发生。
3. 接线过程:接线时,必须遵循电气安全操作规程,并根据电路图正确接线。
特别是高电压接线,务必使用绝缘工具,并尽量避免触摸高压金属部件。
4. 维修时的安全操作:在维修过程中,需要事先将设备断电并断开电源开关。
在检修前,应先将主电源离开变频器,然后进行相关的检修工作。
为了避免电容放电危险,需要等待足够长的时间,保证电容已经完全放电后再进行检修。
5. 防止误操作:变频器的操作参数设置非常复杂,为避免误操作,应该仅由专业人员进行。
6. 温度控制:变频器在工作过程中会产生热量,因此需要保证设备周围的通风和散热。
如果变频器长时间工作在过高的温度下,可能会导致设备故障或者损坏。
7. 绝缘检测和维护:定期进行绝缘检测,并确保绝缘性能正常,以确保设备运行的安全性能。
如果绝缘降低,应及时维修或更换变频器进行保护。
8. 定期检查和维护:定期检查变频器的接线、接触点的状态和松动程度,确保变频器正常运行。
同时,定期对设备进行维护和保养,清洁设备,包括散热器,尘埃和杂物的积聚可能导致设备故障和火灾的发生。
9. 示波器接线的安全和注意事项:当使用示波器检测变频器时,需要明确的设备工作原理和操作方法,确保操作人员的安全。
10. 增加警示标志:在设备周围安装一些需要人员特别警惕的警示标志,以提醒人们注意设备的安全性。
二、变频器的检修:1. 故障的检查和排除:当设备故障发生时,需要首先对设备进行基本的检查和排除,查看设备的电源供应是否正常,设备是否有电,电源开关是否打开等。
2. 检查接线:检查设备的电缆接线是否正常,是否存在接线松动情况。
对电缆进行视检,如果发现电缆断裂、损坏或有明显的磨损,应及时更换新的电缆。
中达vdf变频器主电路原理及检修
中达VDF-B 型22kW 变频器主电路原理及检修——晶闸管主电路和触发脉冲形成电路的故障检修方法一、主电路工作原理简析中达VDF-B 型22kW 变频器主电路结构(见下图1),与其它变频器主电路的不同,是省去了充电接触器,3相输入整流电路采用晶闸管半控桥电路。
U/T1+2(DC+)P*R23WV/T2W/T3R/L1S/L2T/L3N 200k 30k 2200uF400Vx4uuu123V A R 8SKKH 72/16Ex311332220D911k VAR1D1V A R 925741V A R 7DSP11200V x30.56u DSI45-16Ax2120R0 8Wx210WR1R33W200k 30k 10WR4VAR225741uVAR4uVAR5uVAR620D911kx5N(DC-)+1(DC+)P中达VFD-B 22kW变频器VFD220B43A 34.3kVA 1C E192988 94V-0 0614主电路附件板:IGBT逆变功率电路/CS1-CS3电流互感器电路FU2945001303DT1DC50DD41DJP125V470u DR45DR64GND 15 Vol THr 6Dis 78 Vcc Tri 23 OUT4 Rst DPH7DU21455B1302DD27DD28DC43DC422203DR33DR39DR54 23DQ1547014701DR70 DQ14DR69512DR3615003001DR38DD30160DR723001DC49DD35DR75DR74DD34DC483001DD31160DR73DD16160DR71DR43DD18DC273001DC51DD295100DR65750075001C E192988 94V-0 0625电源/驱动板:3811089907 00晶闸管开通信号+5VDR32 0VT1VT2VT3图1 中达VDF-B 型22kW 变频器主电路(简化图)晶闸管3相半控桥的工作原理简述如下:变频器上电初始时期,VT1~VT3等3只晶闸管器件因无触发信号送入,处于截止状态。
变频器电源故障检查步骤及检验方法 变频器是如何工作的
变频器电源故障检查步骤及检验方法变频器是如何工作的在使用时,常常会碰到这种现象:面板无显示,变频器无输出的问题。
起初我以为只要将将变频器内部主电路接点紧固一下再重新装上就不会再出这样的问题了。
谁知道几天过后这个问题又再次困扰着我。
为此,我请了专业的维护和修理人员来看看,他说这是变频器电源故障,需要进行如下的检查步骤以及检验方法。
电源故障检查:故障状态:上电后整机无反应,操纵显示面板无显示。
丈量掌控端子的24V、10V掌控电源都为O。
故障实质:变频器的开关电源没有工作。
检验思路:开关电压故障;预充电回路故障。
检验方法:1、先查开关电源的供电来源,直流回路有无正常530V电压。
直流回路电压为O,说明预充电回路故障,充电电阻开路、半波整流电路损坏、串进接触器或继电器常闭点接触不良,应将预充电回路先行修复,再检查开关电源的故障。
而往往修复预充电回路,变频器也就修复了。
先不必在开关电源电路上大展拳脚;2、开关电源的530V或300V直流供电都有了,还是不要在其稳压和振荡电路上下功夫,先检测开关变压器次级负载电路有无短路等故障,如散热风扇损坏,故障检测电路中的ic短路、整流二极管有无击穿等。
开关电源负载侧的故障率较高,振荡和稳压环节的题目倒少一些。
检验思路和检验次序,便决议了检验工作的高效率和低效率。
而从整机电路来看,开关电源不工作的故障,检查预充电电路则是一个特别紧要的环节,甚至是第一位必需考虑到的环节。
显现过载的紧要原因1、机械设备负荷过重。
紧要特征表现为发热,可通过变频器面板显示屏上读取运行电流来判定。
大部分变频器会显示OL报警。
2、输出三相不平衡,其中某相的运行电流过大,导致过载跳闸。
其特点是电动机发热不均衡。
3、错误动作,变频器内部的电流检测部分发生误过载故障,检测出的电流信号偏大,导致跳闸。
检查维护和修理方法1、检查电动机是否发热,假如电动机温升不高,则应先检查变频器的热保护功能设置的是否合理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器的主电路如何上电检修变频器维修者必须树立这样的观念:逆变模块与驱动电路在故障上有极强的连带性。
当模块炸裂损坏后,驱动电路势必受到冲击而损坏;模块的损坏也可能正是因驱动电路的故障而造成。
因而无论表现为驱动电路或是逆变输出电路的故障,必须将逆变输出电路与驱动电路一同彻底检查。
对主电路上电试机,须在确定驱动电路正常——能正常输出六路激励脉冲的前提下进行。
对驱动电路的检修见本书第四章。
检查驱动电路正常后,将损坏逆变模块换新,才可以上电试机。
整机装配后的上电试机,是一个必须慎重从事的事件。
必须采取相应的措施,保证异常情况出现时,新换IGBT 模块不至于损坏。
试机时,变频器启动瞬间是最“要命的一个时刻”,无一点防护措施下的匆忙上电,会使新换上的价值昂贵的模块损坏于刹那间。
以前所付出的检修的努力不仅白废了,而且造成了更大的损失,有可能使故障范围扩大了。
有的维修人员炸过几次模块,便对变频器维修望而却步了。
采取相应的上电试机措施,能基本上杜绝上电试机逆变模块损坏的发生,只要细心一点的话基本没有问题。
方法一:将逆变模块的供电断开,其实电路中为连接铜排,拆去一段连接铜排,即将三相逆变电路的正供电端断开。
注意:断开点必须在储能电容之后!假定在KM 之前断开,储能电容上的储存电量,会在逆变电路故障发生时,释放足够的能量将逆变模块炸毁!连接简图如下:S TRV WUHL1HL2N图1 变频器逆变回路的上电检修电路接线一图在断开处串入两只25W 交流220V 灯泡,因变频器直流电压约为530V 左右,一只灯泡的耐压不足(故障情况下),须两只串联以满足耐压要求。
即使逆变电路有短路故障存在,因灯泡的降压限流作用,将逆变电路的供给电流限于100mA 以内,逆变模块不会再有损坏的危险。
变频器空载,U、V、W端子不接任何负载。
先切断驱动电路的模块OC信号输出回路,避免CPU做出停机保护动作,中断试机过程(具体操作方法见博文《驱动电路的维修》)。
上电后可能出现如下种情况:1、变频器在停机状态,灯泡亮。
三只模块有一只上、下臂IGBT漏电,如Q1和Q2。
此种漏电在低电压情况下不易暴露,如万用表不能测出,但引入直流高压后,出现了较大的漏电,说明模块内部有严重的绝缘缺限。
购买的拆机品模块有时候出现这种情况。
可用排除法检修,如拆除U相模块(Q1、Q2)后灯泡不亮了,说明该模块已损坏。
2、上电后,灯泡不亮,但接受运行信号后,灯光随频率的上升同步闪烁发亮,说明三相逆变模块中,出现一相上臂或下臂IGBT损坏故障。
如当Q1激励信号而开通时,已损坏的Q2与导通的Q1一起,形成了对供电电源的短路。
两只串联灯泡承受530V直流电压而发出亮光。
3、上电后,灯泡不亮,接受运行信号后,灯泡仍不亮;用指针式万用表的交流500V 档,测量U、V、W端子输出电压,随频率上升而均匀上升,三相输出电压平衡。
说明逆变输出模块基本上是好的,可以带些负载试验了。
4、上电后,灯泡不亮,启动变频器后,灯泡仍不亮。
但测量三相输出电压,不平衡,严重偏相。
故障原因:a、某一臂IGBT管子内部已呈开路性损坏;b、某一臂IGBT管子导通内阻变大,接近开路状态了。
对此故障的检测方法如(1)、让我们掌握用直流电压档测量变频器U、V、W端子输出电压的方法。
当变频器输出端子输出三相平衡的交流电压时,说明输出电压中不含有直流成分。
换句话说,此时指针式万用表的直流500V档所测得直流电压值为零。
当输出偏相时,实质是逆变输出电路的某一臂IGBT导通不良或呈开路状态,致使该相输出为正或负的半波输出,或者该相输出的正、负半波不对称,输出电压中出现了直流分量。
一臂IGBT为开路(断路)状态时,则为纯直流分量了。
此时用万用表直流500V档测量,可得出如下结果:假定测量U、V之间无直流电压,但测量W、V和W、U之间有直流电压值出现,说明W相模块不良。
若为红笔搭W相,表针正偏转,测说明W相下臂IGBT(Q6)导通不良或没有导通;若黑表笔搭接W端子表针为正偏转,则说明U相上臂IGBT(Q5)导通不良或没有导通。
也可以换一种测量方法,直接测量U、V、W三个输出端子对P、N之间的电压值。
仍用直流500V档。
由分析可以得出结论:当U相的上、下臂IGBT管子Q1、Q2完全正常地对称导通时,在U端子形成了“等效的”对直流供电530V的分压,U端子P、N两点都能测出二分之一的530V直流电压,即260V左右的直流电压。
而异常状态下,可得出这样的测量结果,如P、U之间所测电压远远高于260V甚至等于530V,说明Q1内部断路或导通不良;若在U 、N 之间所测电压远远高于260V 甚至等于530V ,则说Q2内部C 、E 之间断路或导通不良,不能形成对530V 的“正常分压”而使U 相直流电压升高。
(2)、下述的测量方法,也为一有效方法。
修复一台37kW 东元变频器,检查为逆变模块损坏,型号为CM100DU-24H 。
购得一块相同型号的模块,走了一遍脱机测量的所有“程序”,确认模块无问题后,装机上电试验。
三相输出电压很不平衡,彻底检查驱动电路确认无故障后,按下图2-6(简化图)接线方式测量出新换模块导通内阻变大,换新模块后故障排除。
V WUHL1HL2N图2 变频器逆变回路的上电检修电路接线二图我国的动力和居民供电,一般采用三相四线制。
N 为中性线,也称为零线。
注意!变频器直流回路负端常常标注为N ,与三相供电的中性线不是一码事,在图中以N*(中性线)相区分。
有的电工老师弄混了,以为变频器中的N 点是与三相供电的N 线相连的,连接后,一上电,整流模块就炸飞了。
将三相U 、V 、W 输出端对三相供电的零线(N*)测量(用指针式万用表直流500V 档),U 相,W 相直流成分为零.而V 相约有300V 的直流负压。
由此判断:V 相下管导通良好,而上管导通不良,两管输出的正、负半波不对称,致使V 相对零线有负电压输出。
而V 相上管,恰巧就是新换上的模块。
另购一只CM100DU-24H 更换后,三相输出正常。
模块的故障,为内部输出管C 、E 极间导通内阻变大。
说明了一件事,即使是细致测量后,认为是好的逆变模块,也不能百分之百断定就是没有问题的。
万用表的测量判断能力毕竟是有限的。
对接入电路上电后反映出的问题,不要存有先入之见,认为模块不可能是坏的,从而造成对故障的误断,使检修走入弯路!串接灯泡上电检查逆变电路,对绝大部分变频器是适用的,因灯泡的限流和指示作用,带来了检修上的很大方便。
但例外,也让我碰到了,在检修一例安川55kW变频器时,上电试机时倒把我搞懵了。
安川616G3型55kW变频器的主电路见下图:R风扇故障检测端子2.3开路时跳FAN故障开路时跳FU故障开路时跳OH故障开路时跳OH故障图3 安川616G3型55kW变频器主电路图[故障实例]:在图3中DKD*点串入两只灯泡,上电,灯泡不亮,是对的,我松了一口气;按操作面板启动变频器,灯泡变为雪亮!坏了,输出模块有短路现象!这是我的第一判断。
停电检查模块和驱动电路,均无异常。
回头查看电路结构,在拆除掉MS1250D225P和MS1250D225N 后,启动变频器后灯泡不亮了。
测空载输出三相电压正常。
这两只元件与外接10Ω80W电阻,提供了约百毫安的电流通路,使25W灯泡变为雪亮。
安川与台湾产东元大功率变频器,IGBT上往往并联有MS1250D225P和MS1250D225N等元件,内含电容、二极管元年,与外接电阻元件一件构成了IBGT的保护电路,是为抑制尖峰电压,提供IGBT的反向电流通路来保护IGBT安全的,以几十瓦的功耗的牺牲换来IGBT管子更高的安全性,这是安川变频器的模块保护电路的特色。
变频器空载启动后,由于MS1250D225P和MS1250D225N等元件的关系,逆变电路自身形成了一定的电流通路,并非为逆变模块不良造成。
该机是一个特例。
有了电流通路,也并一定是模块已经损坏了,观察一下,是不是有哪些元件提供了此电流通路?当新鲜的经验固化成思维定式,对故障的误判就在所难免了。
方法二:因灯泡的降压作用,虽有一定的输出电压,但幅值较低(模块相关电路取用了一部分电流),不能满足对三相输出电压的检测和判断要求,变频器有可能报出“输出异常”等故障,采取保护停机措施,由此引出了上电检修方法二,见下图2-8(简化)图:S TRV WU N图4 变频器逆变回路的上电检修电路接线三图将串联灯泡拆除,串入一只2A 玻壳保险管,上电检检测图2-7安川变频器主电路的U 、V 、W 三相输出电路,无直流成分,输出三相电压平衡。
将切断的OC 信号回路恢复,将U 、V 、W 输出端接入2.2kW 三相电动机,进行频率增减和起、停操作,表现良好,机器修复。
第三节 上电检修方法三逆变输出电路,在无防护措施下的高电压供电情况下,带电状态(尤其是启动运行状态),严禁测量触发端子G1、E1—G6、E6,搭笔即由表笔引线引入干扰,使IGBT 误触发,对电源形成短路而炸毁!用示波器的探头检测也不可以!将驱动板脱开逆变电路后,单独检修驱动板时,可对六路输出脉冲进行检测。
一旦连接好主电路,在无限流降压措施下,不可贸然搭笔测量!且记!好像见过哪一本变频器维修书籍,一位“专家人士”指导读者在变频器整机正常连接和启动状态下,检测触发端子上的激励电压和波形,简直是胆大妄为,胡扯一通! 上电检修前,一定要检查逆变模块的触发端子的连线是否牢固,无保护措施下,触发引线的连接不良,将导致模块的炸裂。
故障机理见其它博文中的相关论述。
即使串入保险,高电压状态下,不建议进行激励电压(脉冲)的测量,由此引出了上电检修方法三,低电压供电条件下是可以测量激励脉冲有无的。
见下图5:UVWN图6 变频器逆变回路的上电检修电路接线四图将逆变输出电路供电正端P(+)断开,另行接入一个低压直流电源,如常用的S-100-24型24V100W的一体化仪用开关电源,或低压线性电源。
因为低电压供电,且电源本身有输出限流保护(电源本身的电流输出能力也是有限的,这恰好是一个好处,有了自限流功能),检测逆变输出电路,就变得非常安全了。
可配合测量触发端子上的截止负压和正的激励电压,来判断哪一相模块或哪一臂IGBT管子异常。
图6这种接线与供电方式,可以在启动和运行状态下,方便检测驱动电路和逆变电路的工作情况。
[故障实例1]:接修一台PI-18型11kW普传牌变频器,开关电源电路、驱动电路等全部检测并修复后,将新购逆变输出模块SKM75GD124D焊接到线路上。
保险起见,先将逆变电路的供电正端断开,串接了两只灯泡上电试机。
上电,灯光不亮,操作面板启动按钮,灯泡一闪,接着跳OC停机。
此前,对驱动电路已做了彻底的检查,对所购模块也做了细致的测量。