初中毕业班质量检测数学试卷含答案
学年度新人教版初中数学九年级下册毕业班质量监测测试及答案-精品试卷
初中毕业班第三次教学质量监测试题数 学(本试卷分第Ⅰ卷和第Ⅱ卷,考试时间120分钟,赋分120分)注意:答案一律填写在答题卡上,在试题卷上作答无效.考试结束将答题卡交回.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出标号为(A )、(B )、(C )、(D )的四个选项,其中只有一个是正确的.请考生用2B 铅笔在答题卡上将选定的答案标号涂黑.1.下列运算中正确的是(A )2a a a =+ (B )a a a 2=∙ (C )222)(b a ab = (D )532)(a a =2.如果110-=m ,那么m 的取值范围是 (A)10<<m (B)21<<m (C)32<<m(D)43<<m3.如图所示,AD 与BC 相交于点O ,AB ∥CD ,如果∠B=20°,∠D=40°,那么∠BOD 的度数为(A) 40° (B )50° (C )60°(D )70°4.某校在“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同,其中的一名学生想要知道自己能否进入前5名,则这名学生不仅要了解自己的成绩,还要了解这9名学生成绩的(A)众数 ( B)方差 (C)平均数(D)中位数5.已知一元二次方程的两根分别是2-和3,则这个一元二次方程是(A )0652=++x x (B )0652=+-x x (C )062=-+x x (D )062=--x x6.在一个口袋中,装有质地、大小均相同、颜色不同的红球3个,蓝球4个,黄球5个,现在随机抽取一个球是红球的概率是(A )31 (B )41 (C )51(D )617.在同一平面直角坐标系中,函数m mx y +=与)0(≠=m xm y 的图象可能是(A ) (B ) (C )(D )8.无论x 、y 取什么实数,代数式74222+-++y x y x 的值(A )不小于2 (B )不小于7 (C )可为任何实数 (D )可能为负数9.如图所示,在△ABC 中,D 、E 分别是AB 、BC 上的点,且DE ∥AC ,若41::=∆∆CD E BD E S S ,则ACD BD E S S ∆∆:等于(A )1:24 (B )1:20 (C )1:18(D )1:1610.如图所示,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM=CN ,MN 与AC 交于点O ,连接BO .若∠DAC=28°,则∠OBC 的度数为(A )72° (B )62° (C )52° (D )28°11.如图所示,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD .已知DE=6,∠BAC+∠EAD=180°,则点A 到弦BC 的距离为(A )241 (B )234 (C )4 (D )312.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[]12.1=,[]33=,[]35.2-=-,若5104=⎥⎦⎤⎢⎣⎡+x ,则x 的取值可以是 (A )40 (B )45 (C )51 (D )56第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.当实数a <0时,a +6a -6(填“<”或“>”).14.因式分解:=-234ab a .15.已知)0,0(0322≠≠=++b a b ab a ,则代数式ba ab +的值等于. 16.矩形纸片ABCD 中,已知AD=8,AB=6,E 是边BC 上的点,以AE 为折痕折叠纸片,使点B 落在点F 处,连接FC ,当△EFC 为直角三角形时,BE 的长为.17.函数1y x =与2y x =-图象交点的横坐标分别为,a b ,则11a b +的值为.18.如图所示,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE=CF; ②∠AEB=75°;③BE+DF=EF;④S 正方形ABCD =2+.其中正确的序号是 (把你认为正确的都填上).三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.(本题满分10分,每小题5分)(1)计算:3130tan 327)1(32--++-- ;(2)先化简,再求值:)12(122x x x xx x ++÷--,其中12-=x . 20.(本题满分5分)如图,在△ABC 中,先作∠BAC 的角平分线AD 交BC 于点D ,再以AC 边上的一点O 为圆心,过A 、D两点作⊙O (用尺规作图,不写作法,保留作图痕迹).21.(本题满分8分)如图,双曲线)0(>=x xk y 经过△OAB 的顶点A 和OB 的中点C ,AB ∥x 轴,点A 的坐标为(2,3).(1)确定k 的值;(2)若点D (3,m )在双曲线上,求直线AD 的解析式;(3)计算△OAB 的面积.22.(本题满分5分)小明和小强玩一种抽卡片游戏:将背面完全相同、正面分别写有1,2,3,4的四张卡片背面向上冼匀后,小明和小强各自随机抽取一张(不放回).将小明的数字作为十位数字,小强的数字作为个位数字,组成一个两位数.如果所组成的两位数为偶数,则小明胜;否则小强胜.(1)若小明先抽,且抽取的卡片数字为2时,问两人谁获胜的可能性大?(2)通过计算判断这个游戏对小明和小强是否公平?23.(本题满分8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28米长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=x米.(1)若花园的面积为192平方米,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15米和6米,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.24.(本题满分10分)如图,△ABC 内接于⊙O ,过点B 作⊙O 的切线,交于CA 的延长线于点E ,∠EBC=2∠C.(1)求证:AB=AC ;(2)当45=BC AB 时,求tan ∠ABE 的值.25.(本题满分11分)如图,抛物线c bx x y ++-=2与x 轴交于A(-1,0),B(5,0)两点,直线343+-=x y 与y 轴交于点C ,与x 轴交于点D.点P 是x 轴上方的抛物线上一动点,过点P 作PF ⊥x 轴于点F ,交直线CD 于点E.设点P 的横坐标为m 。
2024年福建省莆田市初中毕业班质量检查数学试卷 和答案
2024年莆田市初中毕业班质量检查试卷数学(满分150分;考试时间:120分钟)友情提示:本试卷分为“试题”和“答题卡”两部分,答题时,请按答题卡中的“注意事项”认真作答,答案写在答题卡上的相应位置。
一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.小华5月份体重增长2kg,记作+2kg.小颖体重减少1kg,记作A.+1kg B.-1kg C.-2kg D.-3kg2.2024年2月17日,全球首架C919大型客机从上海起飞参加第九届新加坡国际航空航天与防务展.商飞C919是中国首款按照国际通行适航标准自行研制、具备自主知识产权的喷气式中程干线客机.如图是C919大型客机的实物图,其俯视图是A.B.C.D.3.在2023中国正能量网络精品征集展播活动中,《16频道》以世界听得懂、看得见的表达方式,讲述海军故事,诠释了人类命运共同体理念.海外传播量超过3000万次,数据3000万用科学记数法表示是A.3000×104B.3×106C.3×107D.3×1084.红团是莆田的特色小吃,在以下红团图案中,既是中心对称图形,又是轴对称图形的是A.B.C.D.5.下列运算结果为x3的是A.x+x2B.x4-x C.x·x2D.x6÷x26.将一块含30°角的直角三角板ABC按如图方式放置在A4纸片上,其中点A,B分别落在纸片边上.若∠1=105°,则∠2的度数为A.15°B.60°C.65°D.75°7.若a =20242-2023×2024,2024420252⨯-=b ,20222024⨯=c ,则a ,b ,c 的大小关系是A .a <b <cB .a <c <bC .b <c <aD .c <b <a8.用一张正方形纸板,制成一副七巧板,如图1.在矩形区域内将它拼成一幅“火箭”图案,如图2.若在矩形区域内随机取点,则这个点落在“火箭”图案部分的概率为A .12B .22C .47D .389.如图,在Rt △ABC 中,∠ACB =90°,∠B =60°,求作∠ACB 的三等分线.阅读以下作图步骤:(1)分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧分别交于点D ,E ,作直线DE交AB 于点F ,交AC 于点H ,画射线CF ;(2)以点C 为圆心,适当的长为半径画弧,交BC 于点M ,交CF 于点N ;(3)分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠BCF 的内部交于点G ,画射线CG ,则射线CF ,CG 即为所求.下列说法不正确的是A .AF =CF B .12FH CH=C .CG ⊥ABD .△BCF 为等边三角形10.为了解全班学生的身高情况,王老师测量了班上在场学生的身高,经计算后发现男生的平均身高是170cm ,女生的平均身高是160cm ,当天有两名学生缺课.第二天这两名学生均到校上课,老师也测量了他们的身高.有趣的是,重新计算后全班男、女生的平均身高都不变.下列说法正确的是A .全班学生的平均身高不变B .缺课的两名学生身高相同C .若缺课的两名学生都是男生,则身高都是170cmD .若缺课的学生是男、女生各一名,则男生身高170cm ,女生身高160cm 二、填空题:本大题共6小题,每小题4分,共24分。
2024年宁德初中毕业班质检数学试卷答案
数学试题参考答案及评分说明 第 1 页 共 8 页2024年宁德市初中毕业班质量检测数学试题参考答案及评分标准⑴本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分.⑵对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的立意,可酌情给分. ⑶解答右端所注分数表示考生正确作完该步应得的累加分数. ⑷评分只给整数分,选择题和填空题均不给中间分. 一、选择题:(本大题有10小题,每小题4分,满分40分)1.C ;2.B ;3.C ;4.B ;5.D ;6.B ;7.A ;8.D ;9.A ;10.D . 二、填空题:(本大题有6小题,每小题4分,满分24分)11.(2)−x x ;12.1−;13(答案不唯一);14.120;15.23;163−. 三、解答题(本大题共9小题,共86分.请在答题卡...的相应位置作答) 17.(本题满分8分) 解法一:原式11=1969+×−() ··················································································· 4分 3=112+− ··························································································· 6分 3=2. ······························································································· 8分 解法二:原式11=1969+×−() ··················································································· 4分 1=1918+×························································································· 6分 3=2. ······························································································· 8分 18.(本题满分8分) 证明:∵AB ∥CE ,∴∠BAC =∠ECD . ·········································· ······································· 3分 ∵∠B =∠E ,AC =CD , ······································ ······································· 5分 ∴ABC CED △≌△. ········································ ······································· 8分 19.(本题满分8分) 解:31221)3.−+< ,①(②x x x数学试题参考答案及评分说明 第 2 页 共 8 页解不等式①,得1x . ············································································ 3分 解不等式②,得2>x .············································································ 6分 ∴不等式组的解集是2>x . ······································································ 8分 20. (本题满分8分)解:(1)正确作出图形.(如图所示) ·················· ···································· 3分 方法一:∴菱形ABCD就是所求作的图形. ······························································ 4分 (2)过点A 作AE BC ⊥于点E ,如图所示. 在Rt ABE △中,65ABE =°∠,6AB =. sin =∵∠AE ABE AB, ················································································ 5分 sin 6sin65AE AB ABE =⋅=°∴∠. ······························································· 6分∵四边形ABCD 是菱形,6=AB , ∴6==BC AB . ···················································································· 7分 66sin6532.76=×=×°≈菱形∴ABCD S BC AE . ················································ 8分21.(本题满分8分)问题1:大型. ················································ ···································· 2分 问题2: 解:平均单价=851081524202030350158242031×+×+×+×+×+×+++++ ······························ 5分16.72≈(万元). 答:该品牌的新能源乘用车的平均单价是16.72万元. ··························· 6分 问题3:从材料一数据可知,2024年1月销售数据中,销售量最大的车型为紧凑型车;从材料一来看增长率最高的是紧凑型车,所以建议多生产紧凑型车. ······································· 8分 22. (本题满分10分)数学试题参考答案及评分说明 第 3 页 共 8 页(1)证明:∵BD 平分∠ABC ,∴∠=∠ABD CBD . ··········································································· 1分 ∵ =AD AD , =CDCD , ∴∠=∠ACD ABD ,∠=∠DAC DBC .∴∠=∠DAC ACD . ··········································································· 4分 ∴=DA DC . ··················································································· 5分 (2)∵DE ∥AC ∴∠=∠ACD EDC .∵∠=∠ABD ACD , ∴∠=∠ABD CDE . ··········································································· 6分 ∵四边形ABCD 内接于O ⊙, ∴180∠+∠=°BCD BAD . ∵180∠+∠=°BCD DCE ,∴∠=∠BAD DCE . ··········································································· 7分 ∴△ABD ∽△CDE . ··········································································· 8分 ∴=AB ADCD CE. 又∵=AD CD , ∴=AB CDCD CE. ·················································································· 9分 ∴2326=×=CD . 又∵0>CD ,∴=CD ···················································································· 10分 23.(本题满分10分)解:(1)根据题意,得(32)30.82(3)+=×++x x x . ······························ 2分 解得10=x . ····································································· 3分∴甲种葡萄的实际销售单价=100.88×=(元), 乙种葡萄的实际销售单价=10313+=(元). 答:甲种葡萄的实际销售单价是8元,乙种葡萄的实际销售单价是13元. ···· 5分 (2)方案一的平均单价:(8)(13)2+++a m a m m =2122+a . ·························· 6分方案二的平均单价=2()813÷+++n n n a a=2(8)(13)212+++a a a . ·························· ·· 7分∵2122(8)(13)2212+++−+a a a a2502(212)>=+a . ··········································· ·· 9分 ∴农场选择方案一,合算. ································ ··································· 10分24.(本题满分13分) 证明:(1)∵直线AB 与抛物线有且只有一个交点,∴2134−=+x kx b , ··········································································· ·· 1分即241240−−−=x kx b .∴△=2164(124)0++=k b . ································································· ·· 2分 即23=−−b k . ················································ ···································· 3分 (2)由题意可知,联立221343=− =−− ,,yx y kx k 解得22 3.= =−,x k y k ∴点A 坐标是2(23)−,k k . ······························· ···································· 5分 又∵点B 坐标是2(03)−−,k ,点C 坐标是(02)−,, ∴21=+BC k . ·········································· 6分由勾股定理,得21=+AC k . ·························· 7分 ∴=AC BC . ················································· ···································· 8分 (3)点A 在抛物线上运动的过程中,AODBCDS S △△是定值. 设直线AC 的表达式为2=−y mx , 将点A 坐标是2(23)−,k k 代入2=−y mx , 得 2322−=−k km ,即212−=k m k. 联立221341 2.2 =− − =−,y x k y x k 解得1212 3.= =− ,x k y k (舍去),22221 3.=− =−,x k y k数学试题参考答案及评分说明 第 5 页 共 8 页∴点D 坐标是221(3)−−,k k. ······························ ··································· 10分又∵点A 坐标是2(23)−,k k ,点B 坐标是2(03)−−,k ,点C 坐标是(02)−,, ∴2122(1)2(2)=2+=×+ AODk S k k k , 22121(1)2+=+⋅=BCD k S k k k . ····························· ··································· 12分 ∴2AOD BCDSS =△△. ················································ ··································· 13分25.(本题满分13分) 证明:(1)如图3. 方法1: ∵AB=AC ,∴∠B =∠C . ·················································· ···································· 1分 ∵∠AED =∠B +∠BDE ,∠ADB =∠ADE +∠BDE 且∠AED =∠ADB ,∴∠B =∠ADE . ·············································· ···································· 2分 ∴∠C =∠ADE . ∵AD =CD , ∴∠DAC =∠C .∴∠DAC =∠ADE . ·········································· ···································· 3分 ∴DE ∥AC . ··················································· ···································· 4分 方法2:∵∠AED =∠ADB 且∠EAD =∠DAB ,∴△AED ∽△ADB . ······································································································· 1分 ∴∠ADE =∠B . ∵AB =AC , ∴∠B =∠C .∴∠ADE =∠C .·············································································································· 2分 ∵AD =CD ,∴∠DAC =∠C . ················································································································· 3分 ∴∠ADE =∠DAC .∴DE ∥AC . ··················································· ······································· 4分 方法3:∵AD=CD ,AB =AC ,F A EBCDG图3数学试题参考答案及评分说明 第 6 页 共 8 页∴∠DAC =∠C =∠B . ········································································································· 1分 ∵∠BAD +∠ADB +∠B =180°,∠AED =∠ADB ,∴∠AED +∠EAC =180°. ································································································ 3分 ∴DE ∥AC . ························································································································ 4分 (2)方法1:如图4,延长DE 至点K ,使得FK =FD ,连接BK ,AK . ∵AF ⊥DE , ∴AF 垂直平分DK . ∴AK =AD . ∴∠AKD =∠ADK . ∵∠ABC =∠ADE , ∴∠AKD =∠ABC . 又∵∠AEK =∠DEB ,∴△AEK ∽△DEB . ······································································································· 6分 ∴∠KAB =∠EDB . ∵∠BDE =∠DAC , ∴∠KAB =∠DAC . ∵AB =AC ,∴△AKB ≌△ADC . ···································································································· 7分 ∴∠ABK =∠C . ∵DF =FK ,DG =BG ,∴FG 是△BDK 的中位线. ································ ···································· 8分 ∴FG ∥BK . ∴∠KBD =∠FGD . ∵∠KBD =∠ABK +∠ABC , ∴∠FGD =∠ABK +∠ABC .即∠FGD =2∠ABC . ········································· ···································· 9分 方法2:如图5,取AD 的中点Q ,连结FQ ,GQ ,GQ 与FD 相交于点I . ∵G 是BD 的中点, ∴GQ 是△ABD 的中位线. ∴GQ ∥AB . ∴∠QGD =∠B .由(2)知,∠B =∠ADE ,F AE B C图4KFAEBCDG图5 QI。
初中毕业测试题数学pdf及答案
初中毕业测试题数学pdf及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333B. πC. √4D. 0.1252. 一个等腰三角形的底角是45°,那么它的顶角是多少度?A. 45°B. 90°C. 60°D. 75°3. 已知一个数列的前三项为1,2,3,第四项是?A. 4B. 5C. 6D. 74. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π5. 一个长方体的长、宽、高分别是3厘米、4厘米、5厘米,那么它的体积是多少立方厘米?B. 120C. 180D. 2406. 下列哪个函数是一次函数?A. y = x^2B. y = 2x + 3C. y = x/2D. y = x^3 - 27. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 108. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 3D. 以上都是9. 一个等差数列的首项是2,公差是3,那么它的第五项是多少?A. 14B. 17C. 20D. 2310. 一个直角三角形的两条直角边分别是3厘米和4厘米,那么它的斜边是多少厘米?B. 6C. 7D. 8二、填空题(每题3分,共30分)1. 一个数的平方根是2,那么这个数是______。
2. 一个数的立方根是8,那么这个数是______。
3. 一个数的倒数是1/4,那么这个数是______。
4. 一个数的绝对值是3,那么这个数可能是______或______。
5. 一个等差数列的首项是1,公差是2,那么它的第三项是______。
6. 一个等比数列的首项是2,公比是3,那么它的第四项是______。
7. 一个直角三角形的两条直角边分别是5厘米和12厘米,那么它的斜边是______厘米。
8. 一个圆的直径是10厘米,那么它的周长是______厘米。
初中毕业班质量检测数学试题含答案试卷分析详解
初中学业(升学)质检数学试题一、选择题(本大题共10小题,每小题4分,共40分) 1.计算11--的结果等于( ). A .-2 B .0 C .1 D .2 2.下列计算正确的是( ).A .4=2±B .22(31)61x x x -=- C .235+=a a a D .235=a a a ⋅ 3.掷两枚质地相同的硬币,正面都朝上的概率是( ). A .1 B .21 C .41D .0 4.右图是一个由4个相同的正方体组成的立体图形,它的俯视图是( ).5.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ). A .3229x x -=+ B .3(2)29x x -=+ C .2932x x+=- D .3(2)2(9)x x -=+6.如图,下列四个条件中,能判断DE //AC 的是( ). A .43∠=∠ B .21∠=∠ C .EFC EDC ∠=∠ D .AFE ACD ∠=∠7.实数,a b 在数轴上的对应点位置如图所示,把,0a b --,按照从小到大的顺序排列,正确的是( ).A .0a b -<<-B .0a b <-<-C .0b a -<<-D .0b a <-<- 8.在同一直角坐标系中,函数xky =和1+=kx y 的大致图象可能是( ).9.已知1234-+=x x k ,则满足k 为整数的所有整数x 的和是( ). A .-1 B .0 C .1 D .210.如图,︒=∠90ACB ,BC AC =,︒=∠45DCE ,如果4,3==BE AD ,则BC 的长是( ). A .5 B .25 C .26 D .7 二、填空题(本大题共6小题,每小题4分,共24分)11.使代数式2-x 有意义的x 的取值范围是_______.12.春节假期,某市接待游客超3 360 000人次,用科学记数法表示3 360 000,其结果是_______.13.若甲组数据1,2,3,4,5的方差是2甲s ,乙组数据6,7,8,9,10的方差是2乙s ,从正面看CA(第10题图)则2甲s ____2乙s .(填“>”、“<”或“=”)14.如图,在ABC ∆中,90,30ACB A ∠=︒∠=︒,2AB =,将ABC ∆绕着点C 逆时针旋转到DEC ∆位置时,点B 恰好落在DE 边上,则在旋转过程中,点B 运动到点E 的路径长为______.15.如图,四边形ABCD 和CEFG 都是菱形,连接AG ,,GE AE ,若60,4F EF ∠=︒=,则AEG ∆的面积为________.16.非负数,,a b c 满足39=-=+a c b a ,,设c b a y ++=的最大值为m ,最小值为n ,则m n -=_______.三、解答题(本大题共9小题,共86分)17.(8分)先化简,后求值:22321113x x x x x -++⋅---,其中1x =.18.(8分)如图,在□ABCD 中,,E F 是对角线上的两点,且AE CF =,求证:DF BE =.19.(8分)如图,在每个小正方形的边长为1的网格中,,,A B C 均为格点.(1)仅用不带刻度的直尺作AC BD ⊥,垂足为D ,并简要说明道理;(2)连接AB ,求ABC ∆的周长.20.(8分)“不忘初心,牢记使命.”全面建设小康社会到了攻坚克难阶段.为了解全国居民收支数G FEDCBA(第15题图)据,国家统计局组织实施了住户收支与生活状况调查,按季度发布.调查采用分层、多阶段、与人口规模大小成比例的概率抽样方法,在全国31个省(区、市)的1650个县(市、区)随机抽选16万个居民家庭作为调查户.已知前三季度居民人均消费可支配收入平均数是前三季度居民人均消费可支配收入平均数的00115,人均消费支出为11423元,根据下列两个统计图回答问题:(以下计算最终结果均保留整数)(1)求年度调查的样本容量及前三季度居民人均消费可支配收入平均数(元); (2)求在前三季度居民人均消费支出中用于医疗保健所占圆心角度数; (3)求在前三季度居民人均消费支出中用于居住的金额.21.(8分)甲、乙两种笔的单价分别为7元、3元,某学校用78元钱买这两种笔作为数学竞赛一、二等奖奖品,钱恰好用完.若买下的乙种笔是甲种笔的两倍,请问两种笔各买了几支? 22.(10分)(1)知识延伸:如图1,在ABC ∆中,=90C ∠︒,,,AB c BC a AC b ===,根据三角函数的定义得:22sin cos A A += ; (2)拓展运用:如图2,在锐角三角形ABC 中,,,AB c BC a AC b ===.① 求证:2222cos b a c ac B =+-⋅;② 已知:3,2a b c ===,求B ∠的度数.23.(10分)如图,在ABC ∆中,90,BAC ∠=︒AB AC ==AD BC ⊥,垂足为D ,过,A D的⊙O分别与,AB AC 交于点,E F ,连接,,EF DE DF . (1)求证:ADE ∆≌CDF ∆;(2)当BC 与⊙O 相切时,求⊙O 的面积.25.(14分)已知抛物线c bx x y ++=2.(1)当顶点坐标为),(01时,求抛物线的解析式;(2)当2=b 时,),(1y m M ,),2(2y N 是抛物线图象上的两点,且21y y >,求实数m 的取值范围;(3)若抛物线上的点(,)P s t ,满足11≤≤-s 时,b t +≤≤41,求,b c 的值.龙岩市九年级学业(升学)质量检查数学试题参考答案11.2x ≥ 12.63.3610⨯ 13.= 14.3π15. 16.9 三、解答题(本大题共9题,共86分)17.(8分)解:原式23(1)1(1)(1)3x x x x x -+=⋅-+-- ………………2分1111x x x x +-=--- ………………4分 21x =- ………………6分当1x =时,原式=== ………………8分 18.(8分)证明:∵四边形ABCD 是平行四边形∴,//CD AB CD AB = ………………2分 又∵//CD AB∴DCF BAE ∠=∠ ………………4分 又∵AE CF =∴DCF ∆≌()BAE SAS ∆ ………………6分 ∴DF BE = ………………8分 19. (8分) 解:(1)取线段AC 的中点为格点D ,则有DC AD =连BD ,则BD AC ⊥………………2分理由:由图可知5BC =,连AB ,则5AB = ∴BC AB =………………3分 又CD AD =∴BD AC ⊥………………4分(2)由图易得5,BC = ………………5分AC == ………………6分5BC == ………………7分∴ABC ∆的周长=5510+++分20.(8分) 解:(1)样本容量16万………………1分前三季度居民人均消费可支配收入平均数17735115%20395.2520395=⨯=≈(元)所以前三季度居民人均消费可支配收入平均数为20395元. …………3分 (2)8.3%36029.8830⨯︒=︒≈︒所以用于医疗保健所占圆心角度数为30︒. ………………5分(3)18.3% 2.6%29.2% 6.8% 6.2%13.6%11.2%0.221-------= …………7分∴0.22111423⨯2524≈(元)所以用于居住的金额为2524元. …………8分21.(8分)解:设甲、乙两种笔各买了,x y 支,依题意得……………………1分73782x y y x+=⎧⎨=⎩……………………4分 解得612x y =⎧⎨=⎩……………………7分答:甲、乙两种笔各买了6支、12支. ……………………8分22.(10分) 解:(1)1 …………2分 (2)(i )过A 作AD BC ⊥,垂足为点D设,BD x CD a x ==-,则由勾股定理得2222AB BD AC CD -=- …………4分 ∴2222()c x b a x -=--∴2222b a c ax =+-在Rt ABD ∆中,cos xB c =即cos x c B = ∴2222cos b a c ac B =+- …………7分(ii )当3,7,2a b c ===时,222(7)32232cos B =+-⨯⨯…………8分∴1cos 2B =…………9分∴60B ∠=︒…………10分23.(10分) 解:(1)证明:∵,90AB AC BAC =∠=︒∴45C ∠=︒ …………1分 又∵,AD BC AB AC ⊥=∴1145,,902BAC BD CD ADC ∠=∠=︒=∠=︒…………2分 又∵90,BAC BD CD ∠=︒= ∴AD CD =…………3分 又∵90EAF ∠=︒ ∴,E F 是⊙O 直径∴90EDF ∠=︒…………4分 ∴2490∠+∠=︒又∵3490∠+∠=︒ ∴23∠=∠ 又∵1C ∠=∠…………5分∴ADE ∆≌()CDF ASA ∆. …………6分(2)当BC 与⊙O 相切时,AD 是直径…………7分在Rt ADC ∆中,45,2C AC ∠=︒=…………8分∴sin ADC AC∠=∴1AD =…………9分∴⊙O 的半径为12∴⊙O 的面积为24π…………10分24.(12分)解:在正方形ABCD 中,可得︒=∠90DAB .在BAE Rt ∆中,233tan 63AE ABE AB ∠===, 30ABE ∴∠=︒ …………1分(1)分三种情况:①当点T 在AB 的上方,︒=∠90ATB ,显然此时点和点重合,即13.2AT AP AB === …………2分 法1:②当点T 在AB 的下方,︒=∠90ATB ,如图24-①所示.在APB Rt ∆中,由BF AF =, 可得:3===PF BF AF ,30BPF FBP ∴∠=∠=︒,︒=∠∴60BFT . 在ATB Rt ∆中,3===AF BF TF , FTB ∆∴是等边三角形,3=∴TB ,3322=-=BT AB AT . …………4分 法2:当点T 在AB 的下方,︒=∠90ATB ,如图24-①所示.在APB Rt ∆中,由BF AF =,可得:3===PF BF AF ,以F 为圆心AB 长为直径作圆,交射线PF 于点T ,可知︒=∠90ATB ∵,AB PT 是直径, 90PAT APB ATB ∴∠=∠=∠=︒ ∴四边形APBT 是矩形 AT BP ∴=在APB Rt ∆中,,30︒=∠ABE 3323630cos =⨯=︒⋅=AB BP , 33=∴AT .③当︒=∠90ABT 时,如图24-②所示.在FBT Rt ∆中,︒=∠60BFT ,3=BF ,tan6033BT BF =⋅︒= 在ABT Rt ∆中:7322=+=BT AB AT .综上所述:当ABT ∆为直角三角形时,AT 的长为3或33或73. …………6分 (2)法1:如图24-③所示,在正方形ABCD 中,可得︒=∠==90//,DAB BC AD BC AD AB , 43∠=∠∴ …………7分在EAB Rt ∆中,BE AP ⊥,易知︒=∠+∠︒=∠+∠9023,9021 31∠=∠∴,431∠=∠=∠∴AP PB =∠1tan ,AEAB=∠3tan 在Rt APB ∆和Rt EAB ∆中可得, AE AB AP PB =∴,BC AB AF AE ==, …………9分 AFBC AP PB =∴ 14∠=∠PBC ∴∆∽PAF ∆ …………11分T P65∠=∠∴︒=∠+∠18076 ,︒=∠︒=∠+∠∴90,18075CPF 即 CP FP ∴⊥. …………12分法2:如图24-④所示,过点P 作PC BH BC PK ⊥⊥,, 交于点O ,连接CO 并延长交AB 于点M . 可知BP CM ⊥,BE AP ⊥ ,MC AP //∴.在正方形ABCD 中,可得︒=∠=∠=90,DAB ABC CB AB , AB PK //∴∴四边形PAMO 是平行四边形,AM PO =∴. 易知︒=∠+∠︒=∠+∠9023,9021,31∠=∠∴ BAE ∴∆≌CBM ∆BM AE =∴,AF AE = ,BM AF =∴,BF AM =∴ BF PO =∴,∴四边形PFBO 是平行四边形,BH PF // PC BH ⊥ ,CP FP ∴⊥25.(14分)解:(1)由已知得212404bc b ⎧-=⎪⎪⎨-⎪=⎪⎩ ∴21b c =-⎧⎨=⎩ ………2分 ∴抛物线的解析式为221y x x =-+ ………3分(2)当2b =时,22y x x c =++对称轴直线212x =-=-………………4分 由图取抛物线上点Q ,使Q 与N 关于对称轴1x =-对称, 由2(2,)N y 得2(4,)Q y -………………6分又∵1(,)M m y 在抛物线图象上的点,且12y y >,由函数增减性得4m <-或2m >………………8分 (3)三种情况:①当2b-<-1,即b >2时,函数值y 随x 的增大而增大,依题意有 ⎩⎨⎧==⇒⎩⎨⎧+=++=+-334111c b b c b c b …………………………………………………10分 ②当121≤-≤-b ,即22≤≤-b 时,2bx -=时,函数值y 取最小值,(ⅰ)若012b≤-≤,即20b -≤≤时,依题意有2211426142112614b b b c c b c b ⎧⎧=--+=⎪⎪⇒⎨⎨=-⎪⎪⎩-+=+⎩或224261126b c ⎧=+⎪⎨=+⎪⎩ (ⅱ)若102b-≤-≤,即02b ≤≤时,依题意有22142314b b c b c b c b ⎧⎧-+==±⎪⎪⇒⎨⎨=⎪⎩⎪++=+⎩(舍去)……………………………………12分 ③当2b->1,即b <-2时,函数值y 随x 的增大而减小,141111b c b b b c c -+=+=-⎧⎧⇒⎨⎨++==⎩⎩(舍去) 综上所述,⎩⎨⎧==33c b或411b c ⎧=-⎪⎨=-⎪⎩分。
福州市初中毕业班质量检测数学试卷及答案
(ⅱ)李先生每天最迟7点10分出发,乘坐20路公交车比较合适.8分
理由如下:李先生每天7点10分出发,还有40分钟的乘车时间,由统计图可估计乘坐20路公交车不迟到的天数为 ,乘坐66路公交车不迟到的天数为 .因为一月上班22天,其中公司出于人文关怀允许两次迟到,所以,不迟到的天数应不少于20天,因此,李先生每天7点10分出发,乘坐20路公交车比较适合.10分
由(Ⅱ)得△FBE∽△FDA,
∴ ,11分
∵BE BF,
∴AD AF,
在Rt△ABD中,BD AD DF,
∴BE BD DF ( ห้องสมุดไป่ตู้)DF,
∴tan∠BDG tan∠BAE 1.12分
(25)解:(Ⅰ)A( ,0),B( , );4分
(Ⅱ)过点B作BF⊥x轴于F,
∴直线BF为抛物线的对称轴,
且F( ,0).
∵a>0,b<0,k>0,
∴BF ,AF OF ,
∴tan∠BAF= ,6分
∵直线y kx m过点B( , ),
∴m <0,
把y kx 代入y ax2 bx,
得ax2 bx kx ,
化简,得ax2 (b k)x 0,
Δ (b k)2 4a k2,
解得x1 ,x2 >0,
∵点D不与点A重合,
∴D点的横坐标为 ,
∴OC⊥CP.7分
∵OC是⊙O的半径,
∴PC是⊙O的切线.8分
证法二:过点O作OD⊥BC于D,则∠ODC 90°,1分
∴∠OCD ∠COD 90°.2分
漳州市初中毕业班质量检测数学试题和答案
202XX 市初中毕业班质量检测数学真题一、选择题(本大题共10小题,每题4分,共40分) 1.如图,数轴上点M 所表示的数的绝对值是〔 〕. A .3 B .3- C .±3 D .31-2.“中国天眼〞FAST 射电望远镜的反射面总面积约250 000m 2,数据250 000用科学记数法表示为〔 〕.A .25×104B .2.5×105C .2.5×106D .0.25×1063.如图是某几何体的左视图,则该几何体不可能...是〔 〕. 4.以下计算,结果等于x 5的是〔 〕.A .32x x + B .32x x ⋅ C .210x x÷ D .(x 2)35.如图,在右框解分式方程的4个步骤中,依据等式根本性 质的是〔 〕.A .①②B .②④C .①③D .③④6.如图,OP 平分∠AOB,PC⊥OA 于C ,点D 是OB 上的动点,假设PC=6cm 则PD 的长可以是〔 〕.A .3cmB .4cmC .5cmD .7 cm7.如图,点A ,B 在方格纸的格点上,将线段AB 先向右平移3格,再向下 平移2个单位,得线段DC ,点A 的对应点为D ,连接AD 、BC ,则关于 四边形ABCD 的对称性,以下说法正确的选项是〔 〕. A .既是轴对称图形,又是中心对称图形 B .是中心对称图形,但不是轴对称图形 C .是轴对称图形,但不是中心对称图形 D .既不是轴对称图形,也不是中心对称图形8.甲、乙两地今年2月份前5天的日平均气温如下图,则以下描述错误的选项是......〔 〕. A .两地气温的平均数相同B .甲地气温的众数是4℃C .乙地气温的中位数是6℃D .甲地气温相比照拟稳定9.如图,正六边形 ABCDEF 的中心与坐标原点0重合,其中A(-2,0). 将六边形 ABCDEF 绕原点O 按顺时针方向旋转202X 次,每次旋转 60°,则旋转后点A 的对应点A'的坐标是〔 〕. A . (1,3)B . (3,1)C .(1,3-)D .(-1,3) 10.如图,在矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且C 、D 两点在函数y=⎪⎩⎪⎨⎧<+-≥+)0(121)0(1x x x x 的图象上,假设在矩形ABCD左视图CBAD xyE FO C BA DxyO内随机取一点,则此点取自阴影局部的概率是〔 〕. A .21 B .83 C .41 D .61二,填空题(本大题共6小题,每题4分,共24分) 11.因式分解:a ax -2=________.12.一个不透明的袋子中装有4个红球、2个黑球,它们除颜色外其余都相同,从中任意搞出3个球,则事件“摸出的球至少有1个红球〞是________事件(填“必定〞、 “随机〞或“不可能〞) 13.如图,DE 是△ABC 的中位线,假设△ADE 的面积为3,则△ABC 的面积为________.14.“假设实数a ,b ,c 满足a <b <c ,则a +b <c 〞,能够说明该命题是假命题的一组a ,b ,c 的值依次为________. 15.如图,在□ABCD 中,点E ,F 分别在边AD 、BC 上,BF=2,∠DEF=60°将四边形EFCD 沿EF 翻折,得到四边形EFC’D’,ED’交BC 于点G ,则△GEF 的周长为________. 16.如图,双曲线y=xk(x >0)经过A 、B 两点,假设点A 的横坐标为1, ∠OAB=90°,且OA=AB ,则k 的值为________. 三、解答题(本大题共9小题,共86分) 17.(8分) 计算:91301-+-π 18.(8分)如图,在△ABC 中,∠A=80°,∠B=40°.(1)求作线段BC 的垂直平分线DE ,垂足为E ,交AB 于点D ; (要求;尺规作图,保存作图痕迹,不写作法) (2)在(1)的条件下,连接CD ,求证:AC=CD .19.(8分)求证:对角线相等的平行四边形是矩形. (要求:画出图形,写出已知和求证,并给予证明)20.(8分)为响应市收府关于〞垃圾不落地·市区更漂亮〞的主题宣传活动,某校随机调查了局部学生对垃圾分类知识的掌握情况.调查选项分为“A:非常了解,B :比拟了解C :了解较少,D :不了解〞四种,并将调查结果绘制成以下两幅不完整的统计图. 请依据图中提供的信息,解答以下问题: (1)把两幅统计图补充完整;(2)假设该校学生数1000名,依据调查结果,估量该校“非常了解〞与“比拟了解〞的学 生共有________名;(3)已知“非常了解〞的4名男生和1名女生,从 中随机抽取2名向全校做垃圾分类的知识交流,请用画树状图或列表的方法,求恰好抽到1男1女的概率.CB A D EA B CDD ’ EF G BAxyOB CABCD___%___%30%8%垃圾分类知识掌据情况条形统计图垃圾分类知识掌据情况A21.(8分)如图,AB 是⊙0的直径,AC 是弦,D 是BC 的中点,过点D 作EF 垂直于直线AC ,垂足为F ,交AB 的延长线于点E . (1)求证:EF 是⊙0的切线; (2)假设tan A=34,AF=6,求⊙0的半径.22.(10分)某景区售票处规定:非节假日的票价打a 折售票; 节假日依据团队人数x (人)实行分段售票:假设≤x 10,则按 原展价购置;假设x >10,则其中10人按原票价购置,超过部 分的按原那价打b 折购置.某旅游社带团到该景区巡游,设在非节假日的购票款为y 1元,在节假日的购票款为y 2元,y 1、y 2与x 之间的函数图象如下图.(1)观察图象可知:a ________,b ________;(2)当x >10时,求y 2与x 之间的函数表达式;(3)该旅游社在今年5月1目带甲团与5月10日(非节假日)带乙国到该景区巡游,两团合计50人,共付门票款3120元,已知甲团人数超过10人,求甲团人数与乙团人数.23.(10分)阅读:所谓勾股数就是满足方程x 2+y 2=z 2的正整数解,即满足勾股定理的三个正整数构成的 一组数.我国古代数学专著《九章算术》一书,在世界上第一次给出该方程的解为:)(2122n m x -=,y =mn ,)(2122n m z +=,其中m >n >0,m 、n 是互质的奇数. 应用:当n =5时,求一边长为12的直角三角形另两边的长.D24.(12分)已知抛物线c bx ax y ++=2(a 、b 、c 是常数,0≠a )的对称轴为直线2-=x . (1) b =______;(用含a 的代数式表示)(2)当1-=a 时,假设关于x 的方程02=++c bx ax 在13<<-x 的范围内有解,求c 的取值范围; (3)假设抛物线过点(2-,2-),当01≤≤-x 时,抛物线上的点到x 轴距离的最大值为4,求a 的值.25.(14分)如图,在正方形ABCD 中,对角线AC 、BD 相交于点O ,E 为OC 上动点(与点0不重合), 作A F⊥BE,垂足为G ,交BC 于F ,交B0于H ,连接0G ,CC . (1)求证:AH=BE ; (2)试探究:∠A GO 的度数是否为定值?请说明理由; (3)假设OG⊥CG,BG=5,求△OGC 的面积.CD202X年X市初中毕业班质量检测数学参考答案及评分建议一、选择题(本大题共10小题,每题4分,共40分)1 2 3 4 5 6 7 8 9 10A B D B C D A B A C二、填空题(本大题共6小题,每题4分,共24分)11. a〔x+1〕(x-1); 12. 必定; 13. 12; 14.答案不唯一,如1,2,3; 15. 6; 16.1+52.三、解答题(本大题共9小题,共86分)17.〔本小题总分值8分〕解:原式=11+133……………………………………………………………………6分=1. ……………………………………………………………………8分18.〔本小题总分值8分〕解:〔1〕如图,直线DE为所求作的垂直平分线,点D,E就是所求作的点;…………4分〔没标字母或字母标错扣1分〕〔2〕连接CD.方法一:∵DE垂直平分AB,∴BD=CD,∴∠1=∠B=40°. ……………………………5分∴∠2=∠B+∠1=80°. ……………………6分∵∠A=80°,∴∠2=∠A. …………………………………………………………7分∴AC=CD.……………………………………………………………8分方法二:∵DE垂直平分AB,∴BD=CD,∴∠1=∠B=40°. ………………………………………………………5分∵∠A=80°,∴∠ACB=180°-∠A-∠B=60°.∴∠ACD=60°-40°=20°. ……………………………………………6分∴∠2=180°-∠A-∠ACD=80°=∠A. …………………………………7分∴AC=CD.……………………………………………………………8分已知:如图,在□ABCD中, AC=BD. 〔画图2分,已知1分〕………………3分求证:□ABCD是矩形. …………………………………………………………4分证明:方法一:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD . …………………5分∵AC=BD,BC=BC,∴△ABC ≌△DCB.∴∠ABC=∠DCB . ………………………………………………6分∵AB∥CD,∴∠ABC+∠DCB=180°.∴∠ABC=11802⨯°=90°. …………………………………………7分∴□ABCD是矩形. ……………………………………………………8分方法二:设AC,BD交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD . ………………5分∵AC=BD,∴OA=OC=OB.∴∠1=∠3,∠2=∠4.……………………………………………6分∴∠ABC=∠1+∠2=11802⨯°=90°. …………………………………7分∴□ABCD是矩形. ………………………………………………8分20.〔本小题总分值8分〕解:〔1〕如下图〔补充2个或3个正确,得1分〕;…………………………………2分〔2〕500;………4分〔3〕树状图法:………………………………………6分共有12种等可能结果,其中满足条件有6种,∴P〔一男一女〕=12. ………………8分〔用列表法参照给分〕解:〔1〕方法一:如图1,连接OD . ∵EF ⊥AF ,∴∠F =90°.∵D 是BC 的中点,∴BD DC =.∴∠1=∠2=12∠BOC . ………………………………………………1分 ∵∠A =12∠BOC , ∴∠A =∠1 . ………………………………………2分 ∴OD ∥AF . ∴∠EDO =∠F =90°.∴OD ⊥EF . ……………………………………………………………3分 ∴EF 是⊙O 的切线. ……………………………………………………4分方法二:如图2,连接OD ,BC .∵D 是BC 的中点,∴BD DC =.∴∠1=∠2. …………………………………………………………1分 ∵OB =OC ,∴OD ⊥BC . ……………………………2分∵AB 是⊙O 的直径,∴∠ACB =90°. ∵AF ⊥EF ,∴∠F =∠ACB =90°.∴BC ∥EF .∴OD ⊥EF . ……………………………………………………………3分∴EF 是⊙O 的切线. …………………………………………………4分〔2〕设⊙O 半径为r ,则OA =OD =OB =r .方法一:在Rt △AFE 中,tan A =43,AF =6, ∴EF =AF ·tan A =8. ∴2210AE AF EF =+=. ………………5分∴OE =10-r .∵cos A = 35AF AE=, ………………………………………………………6分∴cos ∠1= cos A =3105OD r OE r ==-. ……………………………………7分 ∴r =154, 即⊙O 的半径为154. ……………………………………8分方法二:在Rt △AFE 中,tan A =43,AF =6, ∴EF =AF ·tan A =8. ∴2210AE AF EF =+=. ………………5分∴EO =10-r .∵∠A =∠1,∠E =∠E ,∴△EOD ∽△EAF . ……………………………………………………6分 ∴OD EO AFEA= . …………………………………………………………7分∴10610r r -=.∴r =154, 即⊙O 的半径为154. ……………………………………8分22. 〔本小题总分值10分〕解:〔1〕6,8; ………………………………………………………………………………2分 〔2〕当x ﹥10时,设y 2=kx +b .∵图象过点〔10,800〕,〔20,1440〕, …………………3分 ∴⎩⎨⎧=+=+.144020,80010b k b k ……………………………………4分解得⎩⎨⎧==.160,64b k …………………………………………5分∴y 2=64x +160 (x ﹥10) . ………………………………………………………6分 〔3〕设甲团有m 人,乙团有n 人.由图象,得y 1=48x . ……………………………………………………………7分 当m ﹥10时,依题意,得⎩⎨⎧=+=++.50,31204816064n m n m ………………………………………8分解得⎩⎨⎧==.15,35n m ……………………………………………………………………9分答:甲团有35人,乙团有15人. ………………………………………………10分23. 〔本小题总分值10分〕解:∵n =5,直角三角形一边长为12,∴有三种情况: ① 当x =12 时,12)52122=-m (. ………………………………………………………………1分 解得m 1=7,m 2= -7〔舍去〕. …………………………………………………2分∴y = mn =35. ……………………………………………………………………3分 ∴222211()(75)3722z m n =+=⨯+=. ……………………………………4分 ∴该情况符合题意. ② 当y =12时,5m =12, …………………………………………………………………………5分125m =. …………………………………………………………………………6分 ∵m 为奇数, ∴125m =舍去. …………………………………………………………………7分 ③ 当z =12时,221(5)122m +=,…………………………………………………………………8分 21m =-, …………………………………………………………………9分此方程无实数解. ………………………………………………………………10分 综上所述:当n =5时, 一边长为12的直角三角形另两边的长分别为35,37. 24. 〔本小题总分值12分〕解:〔1〕4a ; ………………………………………………………………………………2分〔2〕当a = -1时,∵关于x 的方程240x x c --+=在-3< x <1的范围内有解,即关于x 的方程x 2+4x-c =0在-3< x <1的范围内有解,∴b 2-4ac =16+4c ≥0,即c ≥ -4. …………………………………………………3分 方法一:∴抛物线y= x 2+4x =〔x +2〕2-4与直线y = c 在-3 <x <1的范围内有交点. ……………………………………………………………………4分 当x = -2时,y = -4,当x =1时,y = 5. ………………………………5分 由图像可知: -4≤ c < 5. …………………………………………7分方法二:∴抛物线y= x 2 +4x -c =〔x +2〕2-4-c 与x 轴在-3 <x <1的范围内有交点. ……………………………………………………………………4分 当x = -2,y =0时,c = -4,当x = 1,y =0时,c = 5. …………………5分 由图像可知:-4≤ c <5. ………………………………………………7分 方法三:∵224(2) 4.c x x x =+=+-∴c 是x 的二次函数. ……………………………………………………4分当x = -2时,c = -4,当x = 1时,c = 5. ……………………………5分由图像可知: -4≤ c < 5. ………………………………………………7分 〔3〕∵抛物线y =ax 2+4ax +c 过点〔-2,-2〕,∴c = 4a -2.∴抛物线解析式为:22442(2)2y ax ax a a x =++-=+-. …………………8分 方法一: ① 当a > 0时,抛物线开口向上.∵抛物线对称轴为x =-2.∴当-1≤x ≤0时,y 随x 增大而增大.∵抛物线上的点到x 轴距离的最大值为4,由图像可知:4a -2=4. ………………………………………………9分∴32a =. …………………………………………………………10分 ② 当a < 0时,抛物线开口向下.∵抛物线对称轴为x =-2.∴当-1≤x ≤0时,y 随x 增大而减小. ∵抛物线上的点到x 轴距离的最大值为4,由图像可知:4a -2= -4. ……………………………………………11分∴12a =-. …………………………………………………………12分 方法二: ∵-1≤x ≤0,∴当x = 0时,y = 4a -2;当x = -1时,y = a -2. ……………8分 ∵当-1≤x ≤0时,抛物线上的点到x 轴距离的最大值为4. ∴有两种情况:① 假设424a -=,则3122a a ==-或. ……………………9分 此时1242a -=<或5242a -=<,符合题意. ………10分 ② 假设24a -=,则a = 6或a = -2. ………………………11分此时42224a -=>或42104a -=>.∴a = 6或a = -2不合题意,舍去. ………………………12分综上所述: 3122a a ==-或. 25. 〔本小题总分值14分〕解:〔1〕方法一:∵四边形ABCD 是正方形,∴OA =OB ,∠AOB =∠BOE =90°.…………………………………………1分 ∵AF ⊥BE ,∴∠GAE+∠AEG =∠OBE +∠AEG =90°.∴∠ GAE =∠OBE . ………………………2分∴△AOH ≌ △BOE . ………………………3分∴AH =BE . …………………………………4分方法二:∵四边形ABCD 是正方形,∴∠ABC =90°,AB =CB ,∠ABO =∠ECB =45°. ……………………1分 ∵AF ⊥BE ,∴∠BAG+∠ABG =∠CBE +∠ABG =90°.∴∠BAH =∠CBE . ………………………………………………………2分 ∴△ABH ≌△BCE . ……………………………………………………3分 ∴AH =BE . ………………………………………………………………4分〔2〕方法一:∵∠AOH =∠BGH =90°, ∠AHO =∠BHG ,∴△AOH ∽△BGH . ……………………5分∴OH AH GH BH=. …………………………6分 ∴OH GH AH BH=. …………………………7分 ∵∠OHG =∠AHB .∴△OHG ∽△AHB . ………………………………………………………8分 ∴∠AGO =∠ABO =45°,即∠AGO 的度数为定值. ……………………9分方法二:如图,取AB 中点M ,连接MO ,MG . ………6分∵∠AGB =∠AOB =90°,∴AM =BM =GM =OM . ………………………7分∴点O ,G 在以AB 为直径的⊙M 上,即点A ,B ,G ,O 四点在以AB 为直径的⊙M 上, ………………………8分 ∴∠AGO =∠ABO =45°,即∠AGO 的度数为定值. ………………………………………………9分〔3〕∵∠ABC =90°,AF ⊥BE ,∴∠BAG =∠FBG ,∠AGB =∠BGF =90°,∴△ABG ∽△BFG . ……………………………………………………………10分 ∴GF BG BG AG =, ∴AG ·GF =BG 2 =5. …………………………………11分∵△AHB ∽△OHG ,∴∠BAH =∠GOH =∠GBF .∵∠AOB =∠BGF =90°,∴∠AOG =∠GFC . ……………………………………………………………12分 ∵∠AGO =45°,CG ⊥GO ,∴∠AGO =∠FGC =45°.∴△AGO ∽△CGF . ………………………………………………………13分 ∴CGAG GF GO =, ∴GO ·CG =AG ·GF =5.∴S △OGC =12CG ·GO =52. ……………………………………………………14分。
福建省南平市2023-2024学年初中毕业班教学质量第一次抽测数学试卷(含答案)
南平市2023-2024学年初中毕业班教学质量第一次抽测数学试题(考试时间:120分钟;满分:150分;考试形式:闭卷)友情提示:①所有答案都必须填在答题卡相应的位置上,答在试卷上一律无效;②试题未要求对结果取近似值的,不得采取近似计算.一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂)1.下面几何图形中,一定是中心对称图形的是A .三角形B .四边形C .正五边形D .圆2.下列事件是必然事件的是A .抛掷一枚硬币四次,有两次正面朝上B .打开电视频道,正在播放新闻C .射击运动员射击一次,命中十环D .明天太阳从东边升起3.下列各点中,在函数xy 2=图象上的是A .),-(12B .2(,0)C .21(,)D .22(,)4.如图,ADE △是由ABC △绕点A 顺时针旋转锐角α得到,下列各角中,是旋转角的是A .BAD ∠B .BAE ∠C .DAE∠D .CAD∠5.如图,⊙O 的半径为5,OC ⊥AB 于点C ,OC =3,则弦AB 的长为A .8B .6C .5D .4ED CBA第4题图6.水平地面上一个小球被推开后向前滑行,滑行的距离s 与时间t 的函数关系如图所示(图为抛物线的一部分,其中P 是该抛物线的顶点),则下列说法正确的是A .小球滑行6秒停止B .小球滑行12秒停止C .小球向前滑行的速度不变D .小球向前滑行的速度越来越大7.关于x 的一元二次方程22310x x a ++-=有一个根是0,则a 的值为A .0B .1或-1C .-1D .18.某校在社会实践活动中,小明同学用一个直径为30cm 的定滑轮带动重物上升.如图,滑轮上一点A 绕点O 逆时针旋转︒108,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了A .6πcm B .9πcm C .12πcmD .15πcm9.如图,线段AB 上的点C 满足关系式:2AC BC AB = ,且AB =2,则AC 的长为A .15-或53-B .215-C .15-D .53-P6Os (米)t (秒)第6题图OA第8题图C BA第9题图10.已知抛物线c bx ax y ++=2上某些点的横坐标x 与纵坐标y 的对应值如下表:x…﹣4﹣3﹣2﹣10…y…﹣3p1pm…有以下几个结论:①抛物线c bx ax y ++=2与y 轴的交点坐标是03(,-);②抛物线c bx ax y ++=2的对称轴为直线2-=x ;③关于x 的方程02=++c bx ax 的根为3-和1-;④当0<y 时,x 的取值范围是13-<<-x .其中正确的个数有A .1B .2C .3D .4二、填空题(本大题共6小题,每空4分,共24分.将答案填入答题卡...的相应位置)11.抛物线2y x =的顶点坐标是.12.点()4A m ,关于原点的对称点是()42B --,,则m 的值是.三、解答题(本大题共9小题,共86分.解答题写出文字说明、证明过程或演算步骤,在答题卡...的相应位置作答)17.(本小题满分8分)解方程:2210x x +-=.18.(本小题满分8分)在平面直角坐标系中,ABC △的三个顶点坐标分别为A (1,1),B(4,4),C (5,1),111A B C △是由ABC △绕点O 顺时针旋转︒180得到的(每个小方格都是边长为1个单位长度的正方形)(1)画出111A B C △;(2)直接写出点1B ,1C 的坐标.19.(本小题满分8分)在一个不透明的盒子里,装有四个分别标有数字1,3,4,5的小球.它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x ,放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y .(1)列出表示点(x ,y)的所有可能出现的结果;(2)求小明、小华各取一次小球所确定的点(x ,y )落在一次函数5y x =的图象上的概率.MFDE CB A第16题图20.(本小题满分8分)反比例函数ky x=图象经过点()1A ,6,()3B a ,.(1)求a 的值;(2)若点()C m n ,在反比例函数ky x=图象上,其中3n <,求m 的取值范围.21.(本小题满分8分)某商家将每件进价为15元的纪念品,按每件19元出售,每日可售出28件.经市场调查发现,这种纪念品每件涨价1元,日销售量会减少2件.(1)当每件纪念品涨价多少元时,单日的利润为154元?(2)商家为了单日获得的利润最大,每件纪念品应涨价多少元?最大利润是多少元?22.(本小题满分10分)已知关于x 的一元二次方程()2330x k x k -++=.(1)求证:无论k 为何值,此方程总有实数根;(2)若直角三角形的一边长为3,另两边长恰好是这个方程的两根,求k的值.23.(本小题满分10分)如图,直线AB 与⊙O 相切于点B ,AO 交⊙O 于点C ,AO 的延长线交⊙O 于点D ,︒=∠30A ,点E 在 BCD上,且不与B ,D 重合.(1)求BED ∠的大小;(2)若 BEDE =,EO 的延长线交直线AB 于点F ,求证:DF 与⊙O 相切.CEDFB AO第23题图24.(本小题满分12分)已知点(0,1-)在二次函数()n m x y +-=21的图象上.(1)求n 关于m 的函数关系式;(2)求n m +的最大值;(3)设直线t y =(t 为常数且n t >)与抛物线()n m x y +-=21交于点A ,B ,与抛物线()224y x h n =-+(h 为常数)交于点C ,D .求证:2AB CD =.25.(本小题满分14分)如图1,点D 是ABC △的边AB 上一点.AC AD =,CAB α∠=,⊙O 是BCD △的外接圆,点E 在 DBC 上(不与点C ,点D 重合),且90CED α∠︒-=.(1)求证:ABC △是直角三角形;(2)如图2,若CE 是⊙O 的直径,且2=CE ,折线ADF 是由折线ACE绕点A 顺时针旋转α得到.①当30α=︒时,求CDE △的面积;②求证:点C ,D ,F 三点共线.图1南平市2023-2024学年初中毕业班教学质量第一次抽测数学试题参考答案及评分说明说明:(1)解答右端所注分数为考生正确做完该步应得的累计分数,全卷满分150分.(2)对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分.(3)若考生的解法与本参考答案不同,可参照本参考答案的评分标准相应评分.(4)评分只给整数分.选择题和填空题不给中间分.一、选择题(本大题共10小题,每小题4分,共40分)1.D ;2.D ;3.C ;4.A ;5.A ;6.A ;7.B ;8.B ;9.C ;10.C .二、填空题(本大题共6小题,每小题4分,共24分)11.(0,0);12.2;13.43π;14.4π;15.6;16.10.第16题解答提示:解法1,取AD 中点N ,可证MN ∥AE ,当F ,E 重合时,BM 取最大值.解法2,以点B 为原点建立平面直角坐标系,可表示出点F ,点M 坐标.三、解答题(本大题共9小题,共86分)17.(8分)解:a=1,b =2,c =-1·····················································································1分08)1(142422>=-⨯⨯-=-=∆ac b ·······························································2分方程有两个不相等的实数根a acb b x 242-±-=·······················································································3分(说明:判别式不写不扣分,公式或代值正确得3分)282±-=···································································································6分21±-=····································································································8分即11x =-+21x =--(说明:本题只提供一种解法,其它解法酌情给分)18.(8分)解:(1)如图,△A 1B 1C 1为所作;···············································································4分(说明:画出正确图形3分,标出字母并说明1分)(2)点1B ,1C 的坐标分别是1B (-4,-4)·····················································································6分1C (-5,-1)·····················································································8分19.(8分)解:(1)列表如下:y x13451(1,1)(1,3)(1,4)(1,5)3(3,1)(3,3)(3,4)(3,5)4(4,1)(4,3)(4,4)(4,5)5(5,1)(5,3)(5,4)(5,5)(本题只提供一种解法,其它解法酌情给分)·······················································5分(2)共有16种情况,满足y =5x 只有一种情况,所以点(x ,y )落在一次函数y =5x 的图象上的概率是116······························································································································8分20.(8分)解:(1)因为反比例函数ky x=图象经过点A (1,6),B (a ,3)·····························1分所以166k =⨯=····················································································2分所以3a =6······························································································3分所以a =2·······························································································4分(2)因为点C (m ,n )是反比例函数6y x=图象上一点,且3n <当y =3时,x =2.······················································································5分因为k =6>0,在每一个象限内y 随x 的增大而减小.········································6分所以当3n <时,有m >2或m <0.································································8分(说明:写出一个答案给1分)21.(8分)解:(1)设当涨价x 元时,单日利润为154元.····························································1分()()4282154x x +-=···············································································2分解得:13x =,27x =·················································································4分答:当涨价3元或7元时,单日利润为154元.(2)设当涨价a 元时,单日利润为W 元W =()()4282a a +-···················································································5分()225162W a =--+因为20-<,抛物线开口向下·······································································6分所以当a =5时,W 最大=162·············································································8分答:当涨价5元时获得最大利润,为162元.22.(10分)(1)证明:1=a ,()3+-=k b ,k c 3=··························································1分24b ac ∆=-····················································································2分[]2(3)413k k =-+-⨯⨯269k k =-+()23k =-≥0··················································································4分所以无论k 为何值,此方程总有实数根···················································5分(2)解方程()0232=++-k x k x 由(1)得()230k ∆=-≥·······································································6分所以()()123323⨯-±+∆±-=k k a b x =解得31=x ,k x =2···············································································7分因为直角三角形的另两边长恰好是这个方程的两根,所以这个直角三角形的三边长分别是3、3、k所以该三角形斜边只能为k·······························································································8分(说明:只要做出判断即可得分)所以22233k=+解得k ±=···················································································9分因为0k >,所以k =········································································10分答:k 的值是2323.(10分)(1)连接OB ·······································································································1分∵AB 切⊙O 于点B∴OB ⊥AB····································································································································2分∴∠OBA =90°,在Rt △OAB 中,∠A =30°∴∠AOB =90°-∠A =60°···················································································3分∴∠BOD =180°-∠AOB =120°··········································································4分∵ =BDBD ∴∠BED =12∠BOD =60°·················································································5分(2)在⊙O 中,OB =OD∵ =BEDE ∴∠EOB =∠EOD···············································································6分∵∠EOB +∠BOF =∠EOD+∠DOF =180°∴∠BOF =∠DOF···············································································7分∵OF=OF∴△OBF ≌△ODF (SAS)················································8分∴∠ODF =∠OBF,∠OBF ==180°-∠OBA =90°∴∠ODF =90°∴OD ⊥DF··························································································9分∵点D 在⊙O 上∴DF 与⊙O 相切····························································10分24.(12分)(1)解:因为点(0,1-)在二次函数()n m x y +-=21的图象上所以()n m +-=-201··············································································2分12--=m n 所以····················································································4分(2)解:12--=m n 因为2213124m n m m m ⎛⎫+=-+-=--- ⎪⎝⎭所以················································6分432101-+=<-的最大值等于时,,所以当因为n m m ····························8分(3)证明:因为直线t y =与抛物线()n m x y +-=21交于点A ,B ,与抛物线()224y x h n =-+交于点C ,D 故设()t x A ,1、()t x B ,2、()t x C ,3、()t x D ,4······································9分把y =t 代入1y 得:()tn m x =+-20222=-++-t n m mx x 整理得:0122=---t mx x ()()2122122124x x x x x x AB -+=-==n t t m 444442-=++,····································································10分把y =t 代入2y 得:()24x h n t -+=224840x hx h n t -++-=()()4324324324x x x x x x CD -+=-==224444h n t h t n +--⨯=-································································11分所以2AB CD ==,即2AB CD =·····················································12分25.(14分)(1)证明:在⊙O 中∵ =CDCD ∴∠E =∠B···································································································································1分∵∠E =90°-∠A∴∠B =90°-∠A··························································································································2分即∠A +∠B =90°∴∠ACB =180°-(∠A +∠B )=90°·····································································3分∴△ABC 是直角三角形··················································································4分(2)解:①∵CE 是⊙O 直径∴∠CDE =90°·······························································································5分∴∠CED =90°-∠DCE∵∠CED =90°-α∴∠DCE =α=30°···························································································6分在Rt △CDE 中,CE =2DE =12CE =1CD 7分∴1==22CDE S DE CD ·················································································8分②∵AC =AD∴∠ACD =∠ADC························································································································9分在△ACD 中α+∠ACD +∠ADC =180°··················································································10分由①得∠DCE =α∴∠ACE =∠ACD +∠DCE =∠ACD +α·································································11分。
江苏省南通市海安市2024届九年级下学期学业质量监测数学试卷(含答案)
海安市2024届初三学业质量监测数学注意事项考生在答题前请认真阅读本注意事项1.本试卷满分为150分,考试时间为150分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡指定的位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、考试证号与你本人的是否相符,4.答案必须按要求书写在答题卡上,在草稿纸、试卷上答题一律无效.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列四个数中,最小的数是()A.B.0C.1D.2.我国现有农村人口数量为491040000,数据491040000用科学记数法表示为()A.B.C.D.3.下列运算正确的是()A.B.C.D.4.若一个正边形的内角和为,则它每个外角的度数是()A.B.C.D.5.如图,是的外接圆,,则的大小是()A.B.C.D.6.如图,,以为圆心,任意长为半径画弧,分别交于点,再分别以为圆心,大于长为半径画弧,两弧相交于点,画射线,交于点.若,则的度数为____________.A.B.C.D.7.已知一次函数的图象如图所示,则不等式的解集是()A.B.C.D.8.设函数是实数,当时,;当时,.()A.若,则B.若,则C.若,则D.若,则9.如图,是菱形的边上的点,连接.将菱形沿翻折,点恰好落在的中点处,则的值是()A.4B.5C.D.10.已知,则满足等式的的值可以是()A.B.C.D.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.如果二次根式在实数范围内有意义,那么的取值范围是____________.12.如图,与交于点,请添加一个条件____________,使.(只填一种情况)13.如图,物理实验中利用一个半径为的定滑轮提起砝码,小明向下拉动绳子一端,使得定滑轮逆时针转动了,此时砝码被提起了____________.(结果保留)14.若,则的值为____________.15.如图,平地上一幢建筑物与铁塔都垂直于地面,,在建筑物的顶部分别观测铁塔底部的俯角为,铁塔顶部的仰角为.则铁塔的高度为____________m(结果保留根号).16.在中,.若点在内部(含边界)且满足,则所有满足条件的点组成区域的面积为____________.17.如图,直线交双曲线于两点,交轴于点,且,连接.若,则的值为____________.18.如图,平行四边形中,分别是边上的动点,且,则的最小值为____________.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本小题满分10分)计算:(1)解不等式组:;(2)化简:.20.(本小题满分10分)某校举办“十佳歌手”演唱比赛,五位评委进行现场打分,将甲、乙、丙三位选手得分数据整理成下列统计图.根据以上信息,回答下列问题:(1)完成表格;平均数/分中位数/分方差/分甲8.8①____________0.56乙8.890.96丙②____________80.96(2)从三位选手中选一位参加市级比赛,你认为选谁更合适,请说明理由;(3)在演唱比赛中,往往在所有评委给出的分数中,去掉一个最高分和一个最低分,然后计算余下分数的平均分.如果去掉一个最高分和一个最低分之后甲的方差记为,则____________0.56.(填“<”或“>”或“=”)21.(本小题满分10分)如图,已知矩形.(1)用无刻度的直尺和圆规作菱形,使点分别在边上,(不写作法,保留作图痕迹,并给出证明.)(2)若,求菱形的周长.22.(本小题满分10分)第一盒中有2个白球、1个黄球,第二个盒中有1个白球、1个黄球,这些球除颜色外无其他差别,分别从每个盒中随机取出1个球.(1)从第一盒中取出1个球是白球的概率为____________;(2)求取出的2个球中1个白球、1个黄球的概率.23.(本小题满分12分)如图,点在半径为8的上,过点作的切线,交的延长线于点.连接,且.(1)求证:;(2)求图中阴影部分的面积.24.(本小题满分12分)两地相距,甲车从地驶往地,乙车同时从地以的速度匀速驶往地,乙车出发1小时后,中途休息.设甲车行驶的时间为,甲、乙两车离地的距离分别为,图中线段表示与的函数关系.(1)甲车的速度为____________;(2)若两车同时到达目的地,则甲车行驶几小时后与乙车相遇;(3)若甲、乙两车在距地至(包括和)之间的某处相遇,求的取值范围.25.(本小题满分13分)问题情境:“综合与实践”课上,老师让同学们以“矩形的翻折”为主题开展数学活动.第1步:有一张矩形纸片,在边上取一点沿翻折,使点落在矩形内部处;第2步:再次翻折矩形,使与所在直线重合,点落在直线上的点处,折痕为.翻折后的纸片如图1所示图1 图2(1)的度数为____________;(2)若,求的最大值;拓展应用:一张矩形纸片通过问题情境中的翻折方式得到如图2所示的四边形纸片,其中的一边与矩形纸片的一边重合,,,求该矩形纸片的面积.26.(本小题满分13分)在平面直角坐标系中,拋物线经过点,且.(1)求该抛物线的对称轴;(2)若抛物线经过点,设点与点横坐标的差为,点与点纵坐标的差为,求的值;(3)在(2)的条件下,连接,若线段交抛物线对称轴于点(点不与重合),在直线的同侧作矩形,且.当抛物线在矩形内部的部分始终在轴下方时,求的取值范围.数学答案一、选择题:本大题共10小题,每题3分,共30分.在每小题提供的四个选项中,只有一项是符合题目要求的.12345678910D C D D C C A C D B 二、填空题:本题共8 小题,第11~12小题每小题 3 分,第13~18小题每小题 4 分,共30 分.11.12. 13. 14. 20 15.16.17. 3 18.三、解答题:本题共8 小题,共90 分,解答应写出文字说明、证明过程或演算步骤.19.(1)(2)20.(1)①9 ②8.8(2)选甲,方差最小最稳定(3)21.(1)作对角线BD的垂直平分线即可证明即可(2)设菱形边长为x,AE=8-x,在中,根据勾股定理得,,解得,则周长.22.(1)(2)根据题意列出树状图,由树状图可以看出,结果共有6种,满足题意的3种,所以.23.(1)连接OD,∵,∴又∵,所以.(2).24.(1)60(2)乙:甲:所以甲乙相遇时,乙正在中途休息,所以相遇.(3)因为在距A地不足100km处相遇,因此乙车休息结束后出发才与甲车相遇,所以,,解得,当时,,解得,.25.(1)90°(2)∵∴,即当时,(3)由题可知∴将四边形补足成矩形FGMN,设QM=m,KN=n,则KM=45-n,FN=m+10由(2)中相似可知,,解得,.26.(1)对称轴(2)由抛物线经过点可得,即抛物线解析式为,将A、B两点横纵坐标代入后作差,可得,.(3)当,即时,,,当时,直线BC:,即。
数学试卷初三质量检测答案
1. 已知方程3x-5=2的解为()A. x=3B. x=4C. x=5D. x=6答案:B解析:将方程3x-5=2移项得3x=7,再除以3得x=7/3,化简得x=2.333...,约等于4。
2. 下列数中,有理数是()A. √3B. πC. 2/3D. 无理数答案:C解析:有理数是可以表示为两个整数之比的数,而2/3可以表示为两个整数2和3之比,因此2/3是有理数。
3. 若a,b是实数,且a+b=0,则a和b的关系是()A. a和b相等B. a和b互为相反数C. a和b互为倒数D. a和b互为倒数且相等答案:B解析:若a+b=0,则a=-b,即a和b互为相反数。
4. 已知函数f(x)=2x-3,若f(x)=5,则x的值为()A. 4B. 5C. 6D. 7答案:A解析:将f(x)=5代入函数f(x)=2x-3,得2x-3=5,移项得2x=8,再除以2得x=4。
5. 下列各数中,绝对值最小的是()A. -2B. 0C. 1D. 2答案:B解析:绝对值表示一个数与0的距离,因此0的绝对值最小。
二、填空题(每题5分,共25分)6. 若a+b=5,ab=6,则a²+b²的值为()答案:37解析:由(a+b)²=a²+2ab+b²,得a²+b²=(a+b)²-2ab=5²-2×6=25-12=13。
7. 若|a|=3,|b|=5,则a+b的最大值为()答案:8解析:a和b的绝对值分别为3和5,因此a和b可以分别为3和-3,或者-5和5。
a+b的最大值为3+5=8。
8. 若x²+4x+4=0,则x的值为()答案:-2解析:由x²+4x+4=(x+2)²=0,得x+2=0,解得x=-2。
9. 若函数f(x)=x²-2x+1在x=1时取得最小值,则该函数的最小值为()答案:0解析:f(x)=x²-2x+1可以化简为f(x)=(x-1)²,因此当x=1时,f(x)取得最小值0。
福建省莆田市2023届九年级毕业班质量检查(二模)数学试卷(pdf版 含答案)
2023年莆田市初中毕业班质量检查试卷数学(满分150分;考试时间:120分钟)友情提示:本试卷分为“试题”和“答题卡”两部分,答题时,请按答题卡中的“注意事项”认真作答,答案写在答题卡上的相应位置。
一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列四个数中,最大的数是A.-3B.0C5D.22.下列四个几何体中,主视图是三角形的是A.B.C.D.3.人工智能是推动全球数字化发展的重要赋能技术.根据中国信通院发布的最新数据测算,预计2023年我国人工智能市场规模达到3043亿元.其中304300000000用科学记数法表示为A.3043×108B.304.3×109C.3.043×1011D.0.3043×10124.达芬奇椭圆规是画椭圆的一种工具,如图所示,当滑标M在滑槽EF内往复运动,滑标N在滑槽GH内随之运动,将笔尖放置于D处即可画出椭圆,则画出的椭圆是A.是轴对称图形,也是中心对称图形B.是轴对称图形,不是中心对称图形C.不是轴对称图形,但是中心对称图形D.既不是轴对称图形,也不是中心对称图形5.下列各式中,计算结果是12a的是A.34a a⋅B.()43a C.12a a÷D.66+a a6.“谁知盘中果,荔荔皆幸福”,莆田市荔枝以色红、香艳甘美被誉为果中之王.某超市货架上有一批大小不一的荔枝,小红从中选购了部分大小均匀的荔枝.设货架上原有荔枝的质量(单位:g)平均数和方差分别为x,s2,小红选购的荔枝的质量平均数和方差分别为1x,s12,则下列结论一定成立的是A.x<1x B.x>1x C.s2<s12D.s2>s127.“曹冲称象”是流传很广的故事,参考他的方法:第一步先将象牵到大船上,并在船侧面标记水位,再将象牵出;第二步往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置;第三步往船上再抬入1块同样的条形石,船上只留1个搬运工,发现水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x斤,根据以上方法可列出的方程是A.20x+3×120=(20+1)x+120B.20x+3×120=(20+1)x-120C.20x-3×120=(20+1)x+120D.20x-3×120=(20+1)x-1208.如图,在⊙O 中,∠AOB =120°,点C 在 AB 上,连接AC ,BC ,过点B作BD ⊥AC 的延长线于点D ,当点C 从点A 运动到点B 的过程中,∠CBD 的度数A .先增大后减小B .先减小后增大C .保持不变D .一直减小9.圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标杆(称为“表”)和一把呈南北方向水平固定摆放的与标杆垂直的长尺(称为“圭”),当正午太阳照射在表上时,日影便会投影在圭面上.图2是一个根据某市地理位置设计的圭表平面示意图,表AC 垂直圭BC .已知该市冬至正午太阳高度角(即∠ABC )为α,夏至正午太阳高度角(即∠ADC )为β,若表AC 的长为m ,则圭面上冬至线与夏至线之间的距离(即DB 的长)为A .tan tan m m αβ-B .αtan m -βtan mC .sin cos m m αβ-D .αsin m -βcos m10.如图,在△ABD 中,AD <AB ,点D 在直线AB 上方,将△ABD绕点A 逆时针旋转90°得到△ACE ,点B ,D 的对应点分别是C ,E ,将线段BD 绕着点B 顺时针旋转90°得到线段BF ,点D 的对应点是F ,连接BE ,CF .当∠DAB 的度数从0°逐渐增大到180°的过程中,四边形BFCE 的形状依次是:平行四边形→→平行四边形.画线处应填入A .菱形→矩形→正方形B .矩形→菱形→正方形C .菱形→平行四边形→矩形D .矩形→平行四边形→菱形二、填空题:本大题共6小题,每小题4分,共24分。
初三质量监测数学试卷答案
1. 下列各式中,与 e 是同类二次根式的是()A. 4B. 2C. 3D. 5答案:B解析:e 是自然对数的底数,其近似值为2.718,因此与 e 同类的二次根式应该是2。
2. 已知 a > b > 0,下列不等式成立的是()A. a^2 > b^2B. a^3 > b^3C. a^2 < b^2D. a^3 < b^3答案:B解析:由于 a > b > 0,那么 a 的立方一定大于 b 的立方。
3. 已知一个等差数列的前三项分别为 1,4,7,则该数列的公差是()A. 2B. 3C. 4D. 5答案:A解析:等差数列的公差是相邻两项之差,所以公差为 4 - 1 = 3。
4. 已知函数 f(x) = x^2 - 2x + 1,则 f(2) 的值为()A. 3B. 4C. 5D. 6答案:B解析:将 x = 2 代入函数 f(x),得到 f(2) = 2^2 - 22 + 1 = 4 - 4 + 1 = 1。
5. 已知 a、b、c 是等边三角形的边长,则下列结论正确的是()A. a + b = cB. a^2 + b^2 = c^2C. a^2 + b^2 + c^2 = 2abD. a^2 + b^2 + c^2 = 3ab答案:C解析:等边三角形的三个边长相等,所以 a^2 + b^2 + c^2 = 2ab。
6. 已知 x^2 + y^2 = 25,则下列结论正确的是()A. x = 3,y = 4B. x = 4,y = 3C. x = 5,y = 0D. x = 0,y = 5答案:D解析:由于 x^2 + y^2 = 25,可以得出 x = 0,y = 5 或 x = 5,y = 0。
7. 已知 a、b、c 是直角三角形的边长,且 a^2 + b^2 = c^2,则下列结论正确的是()A. a = bB. a = cC. b = cD. a^2 = b^2 + c^2答案:D解析:根据勾股定理,直角三角形的斜边平方等于两直角边平方之和,所以 a^2 = b^2 + c^2。
南平市2022-2023学年初中毕业班教学质量第一次抽测数学试题与答案
南平市2022-2023学年初中毕业班教学质量第一次抽测数学试题一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂)1.“翻开人教版《数学》九年级上册课本恰好翻到第56页”这个事件是A .随机事件B .确定事件C .不可能事件D .必然事件2.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史.以下是在棋谱中截取的四个部分,由黑白棋子摆成的图案是中心对称图形的是A .B .C .D .3.下列函数中,是二次函数的是A .y =xB .3y x=C .y =x 2D.2y x =-4.已知x=1是关于x 的一元二次方程02=-+m x x 的一个根,则m 的值是A .﹣2B .﹣1C .1D .25.如图,点A ,B ,C ,D 是⊙O 上的点,若∠BCA =50°,则∠BDA 等于A .30°B .40°C .50°D .60°6.用配方法解一元二次方程2410x x -+=,变形后的结果正确的是A .()223x +=B .()223x -=C .()225x +=D .()225x -=7.对于二次函数1)1(2+-=x y 的图象,下列说法正确的是A .开口向下B .对称轴是1-=x C .顶点坐标是(1,1)D .当x =1时,y 有最大值是18.我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题“今有圆材埋在壁中,不知大小。
以锯锯之,深一寸,锯道长一尺,问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知大小,用锯子去锯这个木材,锯口深DE =1寸,锯道AB =1尺(1尺=10寸),则这根圆柱形木材的直径是A .12寸B .13寸C .24寸D .26寸第8题图第5题图第9题图第15题图9.如图,在△ABC 中,135BAC ∠=︒,将△ABC 绕点C 逆时针旋转得到△DEC ,点A ,B 的对应点分别为D ,E .当点A ,D ,E 在同一条直线上时,下列结论不正确...的是A .ABC DEC △≌△B .AE AB CD =+C .2AD =D .AB ⊥AE10.二次函数2y x =的图象上有两个不同的点1(A x ,1)y ,2(B x ,2)y ,给出下列推断:①对任意的12x x <,都有12y y <;②对任意的120x x +=,都有12y y =;③存在1x ,2x ,满足120x x +=,且120y y +=;④对于任意的正实数t ,存在1x ,2x ,满足12||1x x -=,且12||y y t -=.以上推断中正确的个数是A .1B .2C .3D .4二、填空题(本大题共6小题,每空4分,共24分.将答案填入答题卡...的相应位置)11.点A (3,-4)关于原点对称的点的坐标是_________.12.写出一个关于x 的一元二次方程,此方程可以为_________.13.在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.5附近,则袋子中红球约有_________个.14.某科技有限公司为了鼓励员工创新,计划逐年增加研发资金投入,已知该公司2020年全年投入的研发资金为200万元,2022年全年投入的研发资金为288万元,设平均每年增长的百分率为x ,可列方程为_________.15.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 的夹角为120°,AB 长为30cm ,贴纸部分BD 长为20cm ,则贴纸部分面积是_________.(结果保留π)16.在平面直角坐标系xOy 中,已知点A 在反比例函数xy 12=第一象限的图象上,点B 在x 轴的正半轴上,若△OAB 是等腰三角形,且腰OA 长为5,则AB 的长为多少?现给出以下四个结论:①AB =5;②AB =52;③AB =10;④32=AB .其中正确的是_________.(只填正确的序号)三、解答题(本大题共9小题,共86分.解答题写出文字说明、证明过程或演算步骤,在答题卡...的相应位置作答)17.(本小题满分8分)解方程:220x x -=.18.(本小题满分8分)如图,△OBC 的顶点坐标分别为O (0,0),B (3,3),C (1,3).将△OBC 绕原点O 逆时针旋转90°的图形得到△OB 1C 1.(1)画出△OB 1C 1的图形;(2)将点P (m ,2)绕原点O 逆时针旋转90°,求点P 旋转后对应点P 1的坐标.(用含m 的式子表示)19.(本小题满分8分)某校开展“经典诵读”活动,章老师推荐了4种不同的名著A ,B ,C ,D .甲,乙两位同学分别从中任意选一种阅读,假设选任意一种都是等可能的.(1)甲同学选中名著A 的概率是________;(2)请你利用画树状图或列表的方法,求甲、乙两位恰好选同一种名著的概率.第18题图如图,一次函数b x y +=与反比例函数ky x=的图象相交于点A ,B 两点,点B 的坐标为)24(--,.(1)分别求出一次函数和反比例函数的解析式;(2)已知点C 坐标为(2,0),求△ABC 的面积.21.(本小题满分8分)某商场销售一款商品,每件成本为50元,现在的售价为每件100元,每月可卖出50件.销售人员经调查发现:如调整价格,每降价1元,则每月可多卖出5件.(1)求出该商品每月的销售量y (件)与销售单价x (元/件)之间的函数关系式;(不需要求自变量取值范围)(2)若该商品每月的销售利润为4000元,为了让顾客获得更多的实惠,应如何定价.22.(本小题满分10分)已知关于x 的一元二次方程()2211104x k x k --++=.(1)当k 为何值时,方程有两个实数根;(2)若方程两个根m ,n ,满足()()1111m n --=,则k 的值为多少?第20题图第24题图如图,AB 为圆O 的直径,在直径AB 的同侧的圆上有两点C ,D , AD DC=,弦CE 平分∠ACB 交BD 于点F .(1)已知 2AC CB=,AB =6,求 BC 的长;(结果保留π)(2)求证:EF =EB .24.(本小题满分12分)在五边形ABCDE 中,四边形ABCD 是矩形,△ADE 是以E 为直角顶点的等腰直角三角形.CE 与AD 交于点G ,将直线EC 绕点E 顺时针旋转45°交AD 于点F .(1)求证:∠AEF =∠DCE ;(2)判断线段AB ,AF ,FC 之间的数量关系,并说明理由;(3)若FG=CG ,且AB =2,求线段BC的长.第23题图如图1,抛物线24y x x =-与x 轴相交于原点O 和点A ,直线y =x 与抛物线在第一象限的交点为B 点,抛物线的顶点为C 点.(1)求点B 和点C 的坐标;(2)抛物线上是否存在点D ,使得∠DOB =∠OBC ?若存在,求出所有点D 的坐标;若不存在,请说明理由;(3)如图2,点E 是点B 关于抛物线对称轴的对称点,点F 是直线OB 下方的抛物线上的动点,EF 与直线OB 交于点G .设△B F G 和△B E G 的面积分别为1S 和2S ,求12S S 的最大值.图1图2南平市2022-2023学年初中毕业班教学质量第一次抽测数学试题答案一、选择题(本大题共10小题,每小题4分,共40分)1.A ;2.B ;3.C ;4.D ;5.C ;6.B ;7.C ;8.D ;9.B ;10.B .(第10题解析:②,④正确。
初中毕业班质量检查数学试卷及答案
初中毕业班质量检查数学参考试卷的参考答案一、选择题(每小题4分, 共24分)1、C ; 2、A ; 3、B ; 4、C ; 5、B ; 6、D 。
二、填空题(每小题3分, 共36分)7、-15; 8、x (x -2); 9、2.17×1010; 10、14;11、1; 12、5; 13、70; 14、360; 15、 3; 16、10; 17、y=1x (或y=2x 等);18、-128x 8(或-27x 8)。
三、解答题(共90分)19、(本小题8分)解:原式=13+2-1(6分)=113。
(8分)20、(本小题8分)解:原式=x 2-1+2x -x 2 (4分)=2 x -1。
(5分) 当x =2+12时,原式=2×(2+12)-1 (6分)=22+1-1=22。
(8分)21、(本小题8分)证明:∵C 是AB 的中点, ∴AC=BC 。
(2分)在⊿DAC 和⊿EBC 中, ∵AC=BC ,∠A=∠B ,AD=BE , ∴⊿DAC ≌⊿EBC 。
(6分) ∴CD=CE 。
(8分)22、(本小题8分)解:(1) 4+8+10+16+12=50(名)。
(4分) (2) (5×4+10×815×10×+20×16+25×12)÷50×2000=34800(元)。
答:一共调查了50名捐款的学生;估计全校学生大约捐款34800元。
(8分) 23、(本小题8分)解:∵∠α=68º, ∴∠ABC=90º-68º=22º。
(1分)在Rt ⊿ABC 中, ∠ABC=22º,AB=78海里,∵cos ∠ABC=BCAB ,(4分) ∴BC=AB ·cos ∠ABC=78×cos 22º≈78×0.9272≈72.3(海里)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年初中毕业班质量检测数 学 试 题(满分:150分;考试时间:120分钟)友情提示:1.所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效;2.抛物线2y ax bx c =++的顶点坐标是(2ba -,244acba-).一、选择题(本大题有10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂) 1.-2的倒数是A .-2B .2C .21 D .12-2.如图,若a ∥b ,则下列选项中,能直接利用“两直线平行,内错角相等”判定∠1=∠2的是A .B .C .D .3.下列运算正确的是A .523a a a =+B .a a a =-23C .623a a a =⨯D .a a a =÷234.在下列调查中,适宜采用普查的是A .了解某校九(1)班学生视力情况B .调查2020年央视春晚的收视率C .检测一批电灯泡的使用寿命D .了解我市中学生课余上网时间5.如图,下列几何体中,左视图不是矩形的是A .B .C .D .6.化简2111x x x ---的结果是A .1x -B .11x +C .1x +D .1x x - 121 21 212a baba ba b7.某商场利用摸奖开展促销活动,中奖率为13,则下列说法正确的是A .若摸奖三次,则至少中奖一次B .若连续摸奖两次,则不会都中奖C .若只摸奖一次,则也有可能中奖D .若连续摸奖两次都不中奖,则第三次一定中奖 8.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,且AC =BD ,则下列条件能判定四边形ABCD 为矩形的是 A .AB =CD B .OA =OC ,OB =OD C .AC ⊥BDD .AB ∥CD ,AD =BC9.如图,在4×4的正方形网格中,已有四个小正方形被涂黑.若将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形,则该小正方形的位置可以是 A .(一,2) B .(二,4) C .(三,2)D .(四,4)10.某市需要铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时,每天铺设管道的长度比原计划增加10%,结果提前6天完成.求实际每天铺设管道的长度与实际施工天数.小宇同学根据题意列出方程:6606606(110%)x x -=+.则方程中未知数x 所表示的量是 A .实际每天铺设管道的长度 B .实际施工的天数 C .原计划每天铺设管道的长度D .原计划施工的天数二、填空题(本大题有6小题,每小题4分,共24分.请将答案填入答题卡...的相应位置) 11.计算:113+()2--=________.12.分解因式:236x x -=________.13.“十二五”期间,我市累计新增城镇就业人口147 000人,147 000用科学记数法表示为________.14.如图,有甲,乙两个可以自由转动的转盘,若同时转动,则停止后指针都落在阴影区域内的概率是________.D第8题图 2 3 41甲乙第14题图15.如图,在离地面高度5米处引拉线固定电线杆,拉线和地面成50°角,则拉线AC 的长为________米(精确到0.1米).16.如图,已知矩形ABCD 中,AB =4,AD =3,P 是以CD 为直径的半圆上的一个动点,连接BP ,则BP 的最大值是________.三、解答题(本大题有9小题,共86分.请在答题卡...的相应位置作答) 17.(本题满分7分)化简:2(3)(2)a a a +-+.18.(本题满分7分)求不等式组21,223x x x +⎧⎪-⎨⎪⎩<≤的整数解.19.(本题满分8分)如图,M 为正方形ABCD 边AB 上一点,DN ⊥DM 交BC 的延长线于点N . 求证:AM =CN .20.(本题满分8分)某校九年级共有四个班,各班人数比例如图1所示.在一次数学考试中,四个班的平均成绩如图2所示.(1)四个班平均成绩的中位数是________;(2)下列说法:① 3班85分以上人数最少;② 1,3两班的平均分差距最小;③ 本次考试年段成绩最高的学生在4班.其中正确的是________(填序号); (3)若用公式2m nx +=(m ,n 分别表示各班平均成绩)分别计算1,2两班和3,4两班的平均成绩,哪两班的计算结果会与实际平均成绩相同,请说明理由.图2第15题图1班 2班 4班 3班 a % b % 图1c %c %B第16题图21 3A BC D MN21.(本题满分10分)如图,已知△ABC 中,∠ABC =∠ACB ,以点B 为圆心,BC 长为半径的弧分别交AC ,AB 于点D ,E ,连接BD ,ED . (1)写出图中所有的等腰三角形;(2)若∠AED =114°,求∠ABD 和∠ACB 的度数.22.(本题满分10分)如图1,在矩形ABCD 中,动点P 从点A 出发,沿A →D →C →B 的路径运动.设点P 运动的路程为x ,△P AB 的面积为y .图2反映的是点P 在A →D →C 运动过程中,y 与x 的函数关系.请根据图象回答以下问题: (1)矩形ABCD 的边AD =________,AB =________;(2)写出点P 在C →B 运动过程中y 与x 的函数关系式,并在图2中补全函数图象.23.(本题满分10分)如图,已知△ABC ,以AB 为直径的⊙O 交AC 于点D ,CBD A ∠=∠.(1)求证:BC 为⊙O 的切线;(2)若E 为AB ⌒中点,BD =6,3sin 5BED ∠=,求BE 的长.ABECD图1图224.(本题满分12分)如图,直线12y kx=+与x轴交于点A(m,0)(m>4),与y轴交于点B,抛物线224cy ax ax=-+(a<0)经过A,B两点.P为线段AB上一点,过点P作PQ∥y轴交抛物线于点Q.(1)当m=5时,①求抛物线的关系式;②设点P的横坐标为x,用含x的代数式表示PQ的长,并求当x为何值时,PQ=85;(2)若PQ长的最大值为16,试讨论关于x的一元二次方程hkxaxax=--42的解的个数与h的取值范围的关系.25.(本题满分14分)我们把有一组邻边相等,一组对边平行但不相等的四边形称作 “准菱形”.(1)证明“准菱形”性质:“准菱形”的一条对角线平分一个内角.(要求:根据图1写出已知,求证,证明) 已知: 求证: 证明:(2)已知,在△ABC 中,∠A=90°,AB =3,AC =4.若点D ,E 分别在边BC ,AC 上,且四边形ABDE 为“准菱形”.请在下列给出的△ABC 中,作出满足条件的所有“准菱形”ABDE ,并写出相应DE 的长.(所给△ABC 不一定都用,不够可添)2020年宁德市初中毕业班质量检测数学试题参考答案及评分标准⑴本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分. ⑵对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的立意,可酌情给分.⑶解答右端所注分数表示考生正确作完该步应得的累加分数. ⑷评分只给整数分,选择题和填空题均不给中间分. 一、选择题:(本大题有10小题,每小题4分,满分40分)1.D 2.B 3.D 4.A 5.A 6.C 7.C 8.B 9.B 10.CABCD图1CAB DE = ________CAB DE =________CABDE =________CAB DE = ________二、填空题:(本大题有6小题,每小题4分,满分24分)11.5 12.3(2)x x - 13.51.4710⨯ 14.12 15.6.5 16.2三、解答题(本大题共9小题,共86分.请在答题卡...的相应位置作答) 17.(本题满分7分)解:原式=22692a a a a ++--, ··························································· 4分= 49a +. ···································································· 7分18.(本题满分7分)21,2 2.3x x x +⎧⎪⎨-⎪⎩<①≤②解:解不等式①,得 1x <. ································································ 2分解不等式②,得 4x ≥-. ······························································ 4分 在同一数轴上表示不等式①②的解集,如图∴原不等式组的解集为41x -≤<. ························································ 6分 ∴原不等式组的整数解为-4,-3,-2,-1,0. ··········································· 7分 19.(本题满分8分)证明:∵四边形ABCD 是正方形,∴AD =CD ,∠A =∠ADC=∠BCD=90°. ······· 2分 ∴∠DCN =90°.∴∠DCN =∠A . ······································································ 4分 ∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3. ·············································································· 6分 ∴△ADM ≌△DCN . ······························································· 7分 ∴AM =CN . ··············································································· 8分20.(本题满分8分)(1)69; ······················································································ 2分 (2)②; ······················································································ 5分 (3)用公式2m nx +=计算3,4两班的平均成绩,结果会与实际平均成绩相同,因为213 ACDM N3,4两班权重(人数或比例)相同.················································8分21.(本题满分10分)(1)答:等腰三角形有:△ABC,△BCD ,△BED; ···································3分(2)解:∵∠AED=114°,∴∠BED=180°-∠AED=66°. ······· 4分∵BD=BE,∴∠BDE=∠BED=66°.∴∠A BD=180°-66°×2=48°.······ 6分解法一:设∠ACB=x°,∴∠ABC=∠ACB=x°.∴∠A=180°-2x°.∵BC=BD,∴∠BDC=∠ACB=x°.又∵∠BDC为△ABD的外角,∴∠BDC=∠A+∠ABD. ··························································8分∴x=180-2x+48,解得:x=76.∴∠ACB=76°. ·································································· 10分解法二:设∠ACB=x°,∴∠ABC=∠ACB=x°.∴∠DBC=x°-48°.∵BC=BD,∴∠BDC=∠ACB=x°. ···························································8分又∵∠DBC+∠BCD+∠BDC =180°,∴x-48+x+x =180,解得:x=76.∴∠ACB=76°. ·································································· 10分22.(本题满分10分)(1)2,4;(每空2分)········································································4分(2) 当点P在C→B运动过程中,PB=8-x,∴14(8)2APBy S x∆==⨯⨯-,即:216y x=-+(68x≤≤).······· 8分正确作出图象.··························10分ABECD 图2(提示:学生未对函数关系式化简,未写出取值范围不扣分) 23.(本题满分10分)解:(1)∵AB 是⊙O 的直径,∴ ∠ADB =90°. ····································1分 ∴∠A+∠ABD=90°. 又∵∠A=∠CBD , ∴∠CBD+∠ABD=90°. ∴∠ABC =90°.∴AB ⊥BC . ·········································4分 又∵AB 是⊙O 的直径,∴BC 为⊙O 的切线.·····························5分 (2)连接AE .∵AB 是⊙O 的直径, ∴∠AEB =∠ADB =90°. ∵∠BAD=∠BED , ∴3sin sin 5BAD BED ∠=∠=. ························································· 6分 ∴在Rt ABD △中,3sin 5BD BAD AB ∠==. ∵6BD =,∴AB=10. ··················································································· 8分 ∵E 为AB ⌒中点, ∴AE =BE .∴AEB △是等腰直角三角形. ∴∠BAE =45°.∴sin 102BE AB BAE =∠=⨯=g . ···········24.(本题满分12分)解:(1)①∵m =5,∴点A 的坐标为(5,0). 将x=0代入12y kx =+,得y =2. ∴点B 的坐标为(0,2).将A (5,0),B (0,2)代入224y ax ax c =-+ B252002.a a c c -+=⎧⎨=⎩, ···································································· 2分 解得 252.a c ⎧=-⎪⎨⎪=⎩,∴抛物线的表达式为2228255y x x =-++. ········································· 4分②将A (5,0)代入12y kx =+,解得:25k =-.∴一次函数的表达为1225y x =-+. ··················································· 5分∴点P 的坐标为2(,2)5x x -+.又∵PQ ∥y 轴,∴点Q 的坐标为228(,2)55x x x -++.∴22822(2)555PQ x x x =-++--+,2225x x =-+. ······································································· 7分∵85PQ =,∴228255x x -+=.解得:11x =,24x =.∴当x =1或x =4时,85PQ =. ·························································· 9分(2)设22214(2)4S y y ax ax c kx ax ax kx =-=-+-+=--.∴S 为x 的二次函数 ∵PQ 长的最大值为16, ∴S 最大值为16. ∵a <0,∴由二次函数的图象性质可知当h =16时,一元二次方程h kx ax ax =--42有一个解; 当h >16时,一元二次方程h kx ax ax =--42无解;当h <16时,一元二次方程h kx ax ax =--42有两个解. ···················· 12分数学试题 第 11 页 共 11 页 (提示:学生答对一种情况即得2分,未说明理由不扣分)25.(本题满分14分)解:(1)已知:如图,“准菱形”ABCD中,AB =AD ,AD ∥BC, (AD BC ≠). ·································································································· 2分 求证:BD 平分∠ABC . ··································································· 3分 证明:∵AB =AD ,∴∠ABD=∠BDA .又∵AD ∥BC ,∴∠DBC=∠BDA .∴∠ABD=∠DBC . 即BD 平分∠ABC . ········································································ 6分(2)可以作出如下四种图形: ····························································· 14分(提示:正确作出一个图形并给出对应的DE 值得2分.若作图不规范适当扣分,最多扣2分)A B C D图1 B 34DE = B 65DE = 127DE = B 158DE =。