模拟电路实验报告单级共射放大电路
单级共射放大电路的设计与制作实验报告
05
结论与展望
实验结论总结
实验目标达成情况
本次实验成功设计和制作了单级共射放大电路,实现了预期的放大效果。通过实验,我们掌握了共射放大电路的基本 原理、设计步骤和制作方法。
实验数据与分析
在实验过程中,我们记录了不同输入信号下的输出信号,并进行了详细的数据分析。分析结果表明,单级共射放大电 路具有较高的放大倍数和良好的线性度,适用于低频信号的放大。
1. 搭建电路板
根据电路图,搭建单级共射放大电路的电路板。
3. 安装晶体管和其他元件
按照电路图,将晶体管、电阻、电容等元件安装在电路 板上。
ABCD
2. 连接电源和信号源
将电源和信号源正确连接到电路板上。
4. 检查电路连接
确保所有连接正确无误,无短路或断路现象。
测试放大电路的性能指标
1. 调整静态工作点
元件的分布电容和电感引起的。
输入阻抗和输出阻抗
03
实验测得的输入阻抗为1kΩ,输出阻抗为50Ω,符合理论预期。
电路优化建议与改进措施
选择更高品质的元件
为了提高电路性能,可以选择更高品质的电阻、电容和晶体管。
调整元件参数
根据实验结果,可以适当调整元件参数,如电阻值和电容实践能力的提升
通过本次实验,我们认识到自己 在实践操作方面还有很大的提升 空间。因此,我们计划在今后的 实验和实践中多动手、多思考, 提高自己的实践能力和解决问题 的能力。
探索更多应用领域
共射放大电路在许多领域都有广 泛的应用,如音频放大、传感器 信号处理等。我们计划在今后的 学习和实践中积极探索共射放大 电路在其他领域的应用,拓宽自 己的知识面和实践经验。
共射极单管放大器模拟仿真实验报告
共射极单管放大器模拟仿真实验报告一、实验目的(1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。
(2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。
(3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。
二、实验设备及材料函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。
三、实验原理图3.2.1 共射极单管放大器电阻分压式共射极单管放大器电路如图3.2.1所示。
它的偏置电路采用(R W+R1)和R2组成的分压电路,发射极接有电阻R4(R E),稳定放大器的静态工作点。
在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o,从而实现了电压放大。
在图3.2.1电路中,当流过偏置电阻R1和R2的电流远大于晶体管T的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC为电源电压):CC 21W 2BQ ≈U R R R R U ++ (3-2-1)C 4BEB EQ ≈I R U U I -=(3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3)电压放大倍数 beL3u ||=r R R βA - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5) 输出电阻 3o ≈R R (3-2-6) 1、放大器静态工作点的测量与调试 (1)静态工作点的测量测量放大器的静态工作点,应在输入信号U i = 0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的万用表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。
一般实验中,为了避免测量集电极电流时断开集电极,所以采用测量电压,然后计算出I C 的方法。
例如,只要测出U E ,即可用EEE C ≈R U I I =计算出I C (也可根据CC CC C R U U I -=,由U C 确定I C ),同时也能计算出U BE = U B -U E ,U CE = U C -U E 。
模电实验报告之单级共射放大电路性能
模拟电子线路实验报告——单级共射、共集放大电路性能与研究实验学院电子工程学院班级卓越工程师班学号00101201姓名冉艳伟实验时间2012.5.4单级共射、共集放大电路性能与研究实验一、实验目的1.放大器组成基本原理及其放大条件;2.交流通路与直流通路的区别;3.器静态工作点的调整;4.共射放大器放大倍数、输入电阻、输出电阻的测量方法;5.共集放大器的特点和应用场合。
掌握场效应管放大器的特点及应用。
二、实验仪器1.仪器;双踪示波器、三用表、信号源、毫伏表、直流稳压电源等2.电路通用实验板(内含三极管、电阻、电位器、电容)3.线路器件工具箱三、实验内容及要求基本命题1.首先用万用表判断所用器件的好坏。
(比如连接导线,所用三极管的极性与好坏)2.以下电路在给定的通用板上搭建电路,用万用表检查电路连线是否正确,特别要判断电源与地之间是否有短路现象;如果有短路现象则重新检查电路。
3.加电源+12V ,调节Rw ,用万用表观察U CE 直流电压在较大范围变化即可(一般在2V 到10V 之间)。
4.将Rw 分别调到最大和最小的情况下,输入1KHz 正弦信号,用示波器观察其输出波形,并判断失真类型。
5.将静态工作点调至( =5V ),输入1KHz 正弦信号(有效值为5mV),大小以不失真为原则。
测量放大器的直流工作点、放大倍数(R L =10K 接入放大器)、输入电阻、输出电阻,并将测试数据列入下表中。
6.将R L 调到最大,接入电路,改变信号源输出正弦波幅度大小,用示波器监视输出在刚要使失真又没有失真的情况下,测量出放大器最大动态范围 。
四、 实验路线与策略1.直流工作点的调整及测试放大器的直流工作点通常是指管压降 和集电极电流 ,记作( , )。
当放大电路及晶体管确定后,可以通过调整上偏O P P U C EU C E Q U C Q I C E Q U C Q I置电阻,以达到所需要的直流工作点。
2.放大器参数 、 、 、 测试。
模电实验报告【范本模板】
模拟电子技术基础实验报告**:***学号:**********日期:2015。
12.21实验1:单极共射放大器实验目的:对于单极共射放大电路,进行静态工作点与输入电阻输出电阻的测量。
实验原理:静态工作点的测量是指在接通电源电压后放大器输入端不加信号(通过隔直电容将输入端接地)时,测量晶体管集电极电流ICQ 和管压降VCEQ.其中集电极电流有两种测量方法。
直接法:将万用表传到集电极回路中.间接法:用万用表先测出RC 两端的电压,再求出RC两端的压降,根据已知的RE的阻值,计算ICQ。
输出波底失真为饱和失真,输出波顶失真为截止失真.电压放大倍数即输出电压与输入电压之比。
输入电阻是从输入端看进去的等效电阻,输入电阻一般用间接法进行测量.输出电阻是从输出端看进去的等效电阻,输出电阻也用间接法进行测量. 实验电路:实验仪器:(1)双路直流稳压电源一台.(2)函数信号发生器一台。
(3)示波器一台。
(4)毫伏表一台。
(5)万用表一台。
(6)三极管一个.(7)电阻各种组织若干。
(8)电解电容10uF两个,100uF一个。
(9)模拟电路试验箱一个。
实验结果:经软件模拟与实验测试,在误差允许范围内,结果基本一致。
实验2:共射放大器的幅频相频实验目的:测量放大电路的频率特性。
实验原理:放大器的实际信号是由许多频率不同的谐波组成的,只有当放大器对不同频率的放大能力相同时,放大的信号才不失真。
但实际上,放大器的交流放大电路含有耦合电容、旁路电容、分布电容和晶体管极间电容等电抗原件,即使得放大倍数与信号的频率有关,此关系为频率特性。
放大器的幅频特性是指放大器的电压放大倍数与输入信号的频率之间的关系。
在一端频率范围内,曲线平坦,放大倍数基本不变,叫作中频区。
在中频段以外的频率放大倍数都会变化,放大倍数左右下降到0.707倍时,对应的低频和高频频率分别对应下限频率和上限频率。
通频带为:f BW=f H-f L实验电路:实验结果:理论估算值实际计算值参考f L f H f L f H=2k欧17.98H Z53.13MH Z17。
《模拟电子线路实验》实验二 晶体管共射极单管放大器
模拟电子线路实验实验二晶体管共射极单管放大器【实验名称】晶体管共射极单管放大器【实验目的】1.学习单管放大器静态工作点的测量方法。
2.学习单管放大电路交流放大倍数的测量方法。
3.了解放大电路的静态工作点对动态特性的影响。
4.熟悉常用电子仪器及电子技术实验台的使用。
【预习要点】1.复习课件中有关单管放大电路工作点稳定问题的内容。
2.放大电路输出信号波形在哪些情况下可能产生失真?应如何消除失真?【实验仪器设备】【实验原理】实验电路图如图2-1所示。
温度的变化会导致三极管的性能发生变化,致使放大器的工作点发生变化,R和射极电阻影响放大器的正常工作。
图2-1所示电路中通过增加下偏置电阻B2R来改善直流工作点的稳定性,其工作原理如下:E图2-1 分压偏置共射极放大电路①利用B1R 和B2R 的分压作用固定基极电压V B 。
当B1R 、B2R 选择适当,满足I B1>> I B 时,有B2B CC B1B2R V V R R =+式中B1R 、B2R 和CC V 都是固定的,不随温度变化,所以基极电位V B 基本上为一定值。
②通过E R 的负反馈作用,限制C I 的改变,使工作点保持稳定。
具体稳定过程如下:CT ︒I电容C 1、C 2有隔直通交的作用,C 1滤除输入信号的直流成份,C 2滤除输出信号的直流成份。
射极电容C E 在静态时稳定工作点;动态时短路R E ,增大放大倍数。
当流过偏置电阻B1R (b1R 和电位器W R 的阻值和)的电流I B1远大于晶体管的基极电流B I (一般5~10倍),基极电压V B 远大于V BE 时,它的静态工作点可用下式估算B1B CC B1B2R V V R R =+B BEC E E=V V I I R ≈- CE CC C C E =(+)V V I R R -当放大器的输入端加交流输入信号i v 后,基极回路便有交流输入b i 产生,经过放大在集电极回路产生β倍的c i ,同时在负载输出o c L 'v i R =,从而实现了电压放大。
模电实验共射级单管放大电路
实验报告实验名称课程名称共射级单管放大电路模拟电子技术实验院系:控计学院专业名称:学生姓名:学号:同组人:实验台号:指导教师:成绩:实验日期:华北电力大学实验报告要求:一、实验目的及要求:学会放大电路静态工作点的调试方法,分析静态工作点对放大电路性能的影响。
掌握放大电路电压放大倍数和最大不失真输出电压的测试方法。
熟悉常用电子仪器及模拟电路实验设备的使用。
仪器用具三、实验原理图1-2共射极单管放大器实验电路如图所示为电阻分压式工作点稳定单管放大电路实验电路图。
它,U B U B EI EFT"V CCRB1 RB2UCE =Ucc- Ic(Rc+ RE) Ri = RB1//RB2// r be的偏置电路米用Rb1和Rb2组成的分压电路,并在发射极中接有电阻RE 以稳定放大电路的静态工作点。
挡在放大电路的输入端加入输入 信号ui 后,在放大电路的输出端便可得到一个与 ui 相位相反,幅值 被放大了的输出信号uo ,从而实现了电压放大。
在图1-2电路中,当流过偏置电阻R BI 和R B 2的电流远大于晶体管T 的基极电流I B (一般5〜10倍),则它的静态工作点可用下式估算:U B电压放大倍数AR B //R LA u输入电阻输出电阻:Ro ^ Rc 。
由于电子器件性能的分散性比较大,因此在设计和制作晶体管放 大电路时,离不开测量和调试技术。
在设计前应测量所用元器件的参 数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测 量和调试放大器的静态工作点和各项性能指标。
一个优质放大器,必 定是理论设计与实验调整相结合的产物。
因此,除了学习放大器的理 论知识和设计方法外,还必须掌握必要的测量和调试技术。
放大电路的测量和调试一般包括:放大电路的静态工作点的测量与调试,消除干扰与自激振荡及放大电路各项动态指标的测量与调试1. 放大电路静态工作点的测量与测试(1)静态工作点的测量。
为了减小误差,提高测量精度,应选用内阻较高的直流电压表,一般数字万用表的输入阻抗为100兆欧左右。
单管共射极放大实训报告
一、实验目的1. 理解单管共射极放大电路的工作原理,掌握电路的基本分析方法。
2. 学习晶体管放大电路的静态工作点调试方法,分析静态工作点对放大器性能的影响。
3. 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。
4. 熟悉常用电子仪器及模拟电路实验设备的使用。
二、实验原理单管共射极放大电路是一种常用的放大电路,利用晶体管的放大作用,将微弱的输入信号放大到较大的输出信号。
电路主要由晶体管、电阻、电容等元件组成。
晶体管的三个引脚分别为发射极(E)、基极(B)、集电极(C)。
在共射极单管放大电路中,输入信号加在基极与发射极之间,输出信号从集电极与发射极之间取出。
三、实验仪器与设备1. 晶体管(NPN型,如3DG6)2. 电阻(1kΩ、10kΩ、100kΩ、1MΩ)3. 电容(0.1μF、0.01μF)4. 模拟信号发生器5. 示波器6. 万用表7. 模拟电路实验台四、实验步骤1. 按照实验电路图搭建单管共射极放大电路,连接晶体管、电阻、电容等元件。
2. 调整偏置电阻,使晶体管工作在放大状态。
根据晶体管型号和电源电压,确定合适的静态工作点(Ic、Vce)。
3. 使用示波器观察放大电路的输出波形,分析输入信号与输出信号的相位关系。
4. 使用万用表测量放大电路的电压放大倍数、输入电阻、输出电阻及最大不失真输出电压。
5. 改变电路参数,如电阻、电容等,观察放大器性能的变化。
五、实验数据与结果分析1. 静态工作点调试根据实验电路图,选择合适的电阻值搭建偏置电路。
通过调整偏置电阻,使晶体管工作在放大状态。
实验中,我们选择了1kΩ的Rb1、10kΩ的Rb2、100kΩ的Re、1MΩ的Rc。
通过测量,得到晶体管的静态工作点Ic=2mA,Vce=6V。
2. 电压放大倍数测试在放大电路的输入端加入正弦波信号,频率为1kHz,幅度为100mV。
使用示波器观察输出波形,并测量输出电压。
根据电压放大倍数公式,计算电压放大倍数:A_v = V_out / V_in = 5V / 100mV = 503. 输入电阻测试在放大电路的输入端加入正弦波信号,频率为1kHz,幅度为100mV。
模拟电路实验报告单级共射放大电路
模拟电子系统设计实验第2次实验报告1 实验原理:一:单级共射放大电路电路原理图如下:当I 1>>I BQ 时,有:CC b2b1b2B V R R R V ⋅+≈eBE B E C R V V I I -=≈)(e c C CC e E c C CC CE R R I V R I R I V V +-≈--=βCB I I =调节Rp大小可以改变电路的静态工作点。
接入100mV,1kHz正弦波后,在实验要求的30~50倍增益条件下,调节Rp使输入电压幅值增大时,输出波形波峰和波谷同时开始失真,则静态工作点设置合适,可以作为后续电路电压比较器的输入之一二:三角波产生电路、电压比较器及功率放大器(一)三角波产生电路1.施密特触发器:电路符号如下:输入输出特性图线如下:2.积分电路3.三角波发生器积分后反馈至施密特触发器。
(二)比较器:功能:比较同相输入端和反相输入端的电压,前者高则输出高,反之输出低。
电路包含一个正反馈。
(三)功率放大器:对输入音频做PWM,然后驱动半桥做功率放大,最后滤波2实验元器件仪器:EE1643C型信号发生器/计算器TDS2001C型示波器稳压电源万用表电烙铁主要器件:电阻,电容,电位器,面包板,BJT,各类运放(如TL082,TL3116等)3实验结果和分析D类功率放大器在焊板上走锡线,注意信号线与地线的布线。
得到焊板如下:因实验中电路前一部分的三角波产生电路波形出了问题,所以未得到功放的测试波形。
实验中最常见的问题就是元件焊接时短路或者虚焊。
4实验总结与反思本次试验中,我主要承担了第一级BJT放大电路的搭建工作和最后一级功率放大器的焊接工作。
搭建放大电路主要是计算元件参数,在找到与理论值最接近的电阻之后,搭建电路并寻找静态工作点使得输出波形不失真。
在这个过程中,遇到了面包板接触不良,布线不合理导致干扰过大或者没有输出波形,以及直流电源的使用错误(如未按下output键)等很多问题。
模拟电子技术基础 单级共射放大电路实验报告(免费)
单级共射放大电路一.实验目的1.2.二.实验设备模拟电子技术实验箱、双踪示波器、数字万用表三.实验原理1.实验电路图2. 理论分析计算(1)静态工作点(2)放大倍数:全旁路:空载带负载部分旁路:空载带负载(3)输入电阻:全旁路:部分旁路:(4)输出电阻:3.实验测量方法(1)静态工作点测量(2)放大倍数测量方法(3)输入电阻测量(4)输出电阻测量(5)最大不失真电压测量四.实验测试内容及数据记录1.静态工作点的调试与测量静态测量应在u i(即不接入交流输入信号)的情况下进行,调节R W,使U EQ=2.8V,用万用表测量U BQ、U CQ,并测量R W的值(注意:电阻R W的值要在断电和断路的情况下测量)。
静态工作点测试数据记录表(仿真结果)2.动态参数测量保持R W的值不变,在放大器输入端加入频率为1kHz的正弦信号,调节信号源使放大器的输入信号和输出信号幅度适中(保证输出不失真),同时用示波器观察放大器输入信号u i和输出信号u o的波形并完成相关测量。
动态参数测量数据记录表(仿真结果)3.测量最大不失真输出电压测试条件:Ce只旁路R e”,带负载R L测试方法:调整Q点使电路动态范围最大,加大输入信号i u使o u稍有失真,调节R W使失真消失,再加大输入信号使o u 失真,再调节R W 使失真消失,为此反复调节直到o u 波形正、负半周同时出现失真,此时输出达最大不失真输出幅度,记录该最大不失真输出幅度并测量此时的静态工作点。
最大不失真输出测量数据记录表(实 验 结 果)4.Q 点对输出的影响调节R W 改变电路的静态工作点,同时配合调节输入信号的幅度是输出出现截止失真、饱和失真、同时出现截止、饱和失真,记录三种情况下的输入、输出波形。
失真波形记录 (仿 真 结 果)(实 验 结 果)u itu otu itu ot u itu otu itu otu itu ot u itu ot。
单级共射放大电路实验报告.doc
单级共射放大电路实验报告.doc本实验通过搭建单级共射放大电路并进行测试和分析,加深了我们对基本电路的理解和实践技能的提升。
本文将从实验原理、实验步骤、实验结果及分析等方面进行阐述。
一、实验原理1、单级共射放大器的原理共射放大器即输人输出均在晶体管的基极和发射极之间,因此在放大系数上面具有一定的增益,其输入电阻比共集(电流随输入电阻的变化而变化)放大器高,输出电阻比共射(输出电阻不随输入电阻的变化而变化)放大器要低得多,因此同时具有输入输出阻抗都比较好的特点,也就是可以适用于各种电阻范围内的负载。
单级共射放大器是一种常见的基本放大电路,其基本结构如图1所示。
在正常工作状态下,晶体管的基极极间电位为0.6V时,为了使集电极端的电压维持在5V左右,必须给共射电路提供至少5.6V的电压。
为了让信号能够被放大,必须在基极端加上一个交流信号,造成基极到发射极的直流偏置电压波动,而这种交流电压就是引入的输入信号。
3、放大器的放大性能指标放大器的放大性能指标主要包括频率响应、幅度与相位特性、增益、输入输出电阻、噪声系数等多项指标,其中增益是一项非常关键的指标。
二、实验步骤1、实验所需器材和材料(1) C945B三极管1颗(2)1kΩ电阻4个(4)10μf电解电容1个(6)调码器一个(7)万用表(8)示波器(9)直流电源(10)信号发生器2、实验操作流程(1)根据电路图搭建实验电路。
(2)用万用表测出电路中各个元件的参数值。
(3)连接示波器和信号发生器,使信号发生器输出一个1kHz正弦波。
(4)打开直流电源,调节电源电压为5V.(5)显示器显示开始显示信号曲线,用示波器观察信号波形和增益。
(6)通过调节信号源和示波器来得到最佳的放大性能。
三、实验结果及分析搭建完实验电路并进行调试后,我们得到了以下数据:信号频率 | 10kHz | 100kHz | 1MHz |输入电压 | 200mV | 200mV | 200mV |输出电压 | 1.05V | 1.02V | 390mV |增益(Vout/Vin) | 5.25 | 5.1 | 1.95 |从表格数据中可以看出,在低频范围内,输出电压随着输入电压的增加而增加,实现了较好的信号放大效果。
模拟电路实验 实验2 单级放大电路(2)
实验1 单级放大电路(2)一、实验目的1.学习测量共射极放大器的A V的方法,了解共射极电路特性。
2.加深理解静态工作点的设置对放大器动态范围的影响。
二、实验仪器1.双踪示波器 OS-5040A2.信号发生器 FG-7002C3.台式数字万用表 DM-441B三、实验原理1、调节Rp5可以改变放大器的静态工作点,当Uc=Vcc/2时,Q点为最佳工作点,放大器具有最大动态范围,改变Rp5当Ic增大时Uc减小Q点上移,反之Q点下移。
2、图1.3中1R1和1R2构成衰减器(分压电路),其作用时将输入的强信号衰减100倍后再送入放大器输入端,目的是为了降低放大器输入端的干扰信号,改善实验效果。
3、图1.3中1R8的作用时稳定直流工作点Q,降低Q点的漂移,1C4为旁路电容,其作用是给交流信号提供通路,避免交流信号在1R8上产生电压降,而引入负反馈,降低Vi的电压增益Av。
四、实验内容及步骤(1)按图1.3接线。
Vo1R9: 5K11R10: 2K2(2)将信号线带BNC头的一端接到信号发生器的“OUTPUT”端,信号线另一端的红色鳄鱼夹接A点,黑色鳄鱼夹接B点;分别按下正弦函数选择键“~”、频率范围键“1K”及幅度衰减键(ATT/-20dB),调节“Frequency”旋钮,使输出频率f = 1KH Z;调节幅度旋钮“AMPL”,使C点信号峰峰值为Vi=20mV(用示波器CH1通道监测),调节R P5使V o端波形(用示波器CH2通道监测)达到最大不失真,然后记录V i 和V o波形(在同一坐标轴中画出V i和V o波形)。
(3)信号源频率不变,顺时针调节幅度旋钮“AMPL”,逐渐加大幅度,观察V o不失真时的最大值并填表1.3。
=∞(输出端悬空,不接负载)表1.3 测试条件:RL(4)保持V i =20mV不变,放大器接入负载R L ,按表1.4给定值进行测量,并填表。
表1.4注意:若失真观察不明显可增大或减小V i 幅值重测。
模电实验一 单级共射放大电路
模电仿真实验报告单级共射放大电路班级:电子信息类一班学号:2014117225姓名:梁霄实验一单级共射放大电路实验目的:1.熟悉常用电子仪器的使用方法。
2.掌握放大器静态工作点的调试方法及其对放大电路性能的影响。
3.掌握放大器动态性能参数的测试方法。
4.进一步掌握单级放大电路的工作原理。
实验仪器:1.示波器2.型号发生器3.数字万用表4.交流毫伏表5.直流稳压源实验原理:1.电路静态工作点的调整将放大电路的输入端短路,让其工作在直流状态,用直流电压表测量三极管C,E 间电压,调整电位器使UCE在4-6V之间,这表明放大电路的静态工作点基本设置在放大区,然后测量B极对地的电位并记录。
2.电压放大倍数的测量放大电路静态工作点设置合理后,在电路的输入端加入正弦信号,用示波器观察放大电路的输出波形,并调节输入信号幅度,使输出波形基本不失真。
用交流毫伏表或示波器分别测量放大电路的输入,输出电压,按定义式计算。
3.输入电阻Ri 的测量测量输入电阻时,可采用串联电阻法来进行。
4.输出电阻Ro的测量测量输出电阻时采用单负载电阻法。
实验内容:1.装接电路1).用万用表判断试验箱上三极管,电解电容的极性好坏,测试三极管的放大倍数。
2).按图示连接电路,将电位器调到电阻最大位置。
3).接线后仔细检查电路,确认无误后接通电源。
2.静态工作点的调整测量1)同时,在示波器的另一通道监视放大器输出电压U0的波形调整RP的阻值,是静态工作点处于合适的位置,UCE=5.16V。
2)保持静态工作点不变撤去输入信号源,使电路工作在直流状态,用直流电压表测量UB,UC,UE的值,在计算静态工作点的值,并和理论计算值进行比较。
3.电压放大倍数的测量与计算1).放大电路的静态测量完毕后,输入端加上正弦信号,在输出波形不失真的情况下,测量输入信号电压UI和输出信号电压U0的电压值。
改变UI值,在测量U0的值以计算电压放大倍数的平均值,减小测量误差。
单级共射放大电路实验报告
单级共射放大电路实验报告实验目的:本次实验旨在了解单级共射放大电路的工作原理和特点,通过实验掌握该电路的调试方法和测量技巧,提高学生的电路分析和设计能力。
实验原理:单级共射放大电路是一种常用的晶体管放大电路,它具有输入阻抗高、输出阻抗低、电压放大系数大等优点。
该电路的原理图如下所示:搭建电路:为了实现该电路的正常工作,我们需要准备以下元器件和设备:元器件:晶体管2N3904;电容器C1、C2;电阻R1、R2、R3;射极电阻RL。
设备:函数信号发生器;直流电源;示波器;万用表。
接下来,我们按照原理图搭建出如下电路:调试电路:搭建好电路之后,我们需要进行调试。
具体步骤如下:1. 调整直流工作点将电源输出电压调整为2V左右,观察示波器上的波形,调整可变电阻R1,使得直流工作点在Collector特性曲线的下降区域,同时保证该点的电压符合晶体管的工作条件。
2. 选择信号调节函数信号发生器,选择适当的信号源,要保证电路在输出信号时正常工作。
我们可以选择一个1kHz的正弦信号作为输入信号。
3. 测量电压放大系数使用万用表测量电路的输入电压Vi和输出电压Vo,计算出电压放大系数Av=Vo/Vi。
通过多组数据计算平均值,得到最终的电压放大系数。
4. 测量输入输出阻抗使用万用表测量输入阻抗Ri和输出阻抗Ro,记录下相应数据,并结合电路特性进行分析。
实验结果和分析:本次实验得出的数据如下:直流工作点:Uc=1.84V,Ic=1.8mA,Ue=580mV,Ie=1.8mA。
电压放大系数:Av≈55。
输入阻抗:Ri≈1.5kΩ。
输出阻抗:Ro≈200Ω。
通过以上数据可以得出以下分析结果:1. 该电路的输入阻抗较高,表明它能够很好地接受信号源的输入信号。
2. 该电路的输出阻抗较低,表明它能够很好地输出信号,能够在下一级电路中起到良好的负载作用。
3. 该电路的电压放大系数较大,表明它能够很好地增强输入信号,同时保证输出信号的稳定性。
模电实验单级共射放大电路
模电实验单级共射放⼤电路单极共射放⼤电路⼀、实验⽬的(1)掌握⽤Multisim 13 仿真软件分析单极放⼤电路主要性能指标的⽅法。
(2)熟悉掌握常⽤电⼦仪器的使⽤⽅法,熟悉基本电⼦元器件的作⽤。
(3)学会并熟悉“先静态后动态”的电⼦线路的基本调试⽅法。
(4)分析静态⼯作点对放⼤器性能的影响,学会调试放⼤器的静态⼯作点。
(5)掌握放⼤器的放⼤倍数、输⼊电阻、输出电阻及最⼤不失真输出电压的测试⽅法。
(5)测量放⼤电路的频率特性。
⼆、实验原理1.基本电路电路在接通直流电源CC V ⽽未加⼊输⼊信号时(通过隔直流电容1C 将输⼊端接地),电路中产⽣的电流、电压为直流量,记为BEQ V ,CEQ V ,BQ I ,CQ I ,由它们确定了电路的⼀个⼯作点,称为静态⼯作的Q 。
三极管的静态⼯作点可⽤下式近似估算:)7.0~6.0(=BEQ V V 硅管;(0.2~0.3)V 锗管()e c CQ CC CEQ R R I V V +-=CC P BQ V R R R R V 212++= EBEQBQ EQ CQ R V V I I -=≈βCQ BQ I I =2.静态⼯作点的选择放⼤器静态⼯作点的选择是指对三极管集电极电流C I (或CE V )的调整与测试。
在晶体管低频放⼤电路中,静态⼯作点的选择及稳定具有举⾜轻重的作⽤,直接关系到放⼤电路能否正常可靠地⼯作。
若⼯作点偏⾼(C I 放⼤),则放⼤器在加⼊交流信号以后易产⽣饱和失真,此时输出信号o u 的负半周将被削底;若⼯作点偏低,则易产⽣截⽌失真,即o u 的正半周被削顶(⼀般截⽌失真不如饱和失真明显)。
这些情况都不符合不失真放⼤的要求。
所以在选定⼯作点以后还必须进⾏动态调试,即在放⼤电路的输⼊端加⼊⼀定的输⼊电压i u ,并检查输出电压o u 的⼤⼩和波形是否满⾜要求。
如不满⾜,则应调节静态⼯作点的位置。
还应说明的是,上⾯所说的⼯作点“偏⾼”或“偏低”不是绝对的,应该是相对信号的幅度⽽⾔。
单级共射放大电路实验报告
单级共射放大电路实验报告实验目的,通过搭建单级共射放大电路,了解其工作原理和特性,并通过实验验证其放大功能和频率响应。
实验仪器和器材,示波器、信号发生器、直流稳压电源、电阻、电容、三极管等。
实验原理,单级共射放大电路是一种常用的放大电路,其工作原理是利用三极管的放大特性,将输入信号进行放大。
在单级共射放大电路中,输入信号通过输入电容耦合到基极,经过输入电阻进入三极管的基极,通过基极-发射极间的电流放大作用,输出到负载电阻上,实现信号放大。
实验步骤:1. 按照电路图连接实验电路,注意接线正确,电路连接紧密。
2. 调节直流稳压电源,使其输出电压为所需工作电压。
3. 调节信号发生器,输入所需频率和幅值的正弦信号。
4. 连接示波器,观察输入信号和输出信号的波形,记录波形特点和参数。
5. 调节信号频率和幅值,观察输出信号的变化,记录频率响应曲线。
实验结果:经过实验观察和记录,我们得到了以下实验结果:1. 输入信号和输出信号的波形基本一致,幅值经过放大。
2. 随着输入信号频率的增加,输出信号的幅值有所下降,频率响应存在一定的衰减。
实验分析:通过实验结果的观察和分析,我们可以得出以下结论:1. 单级共射放大电路具有信号放大的功能,能够将输入信号进行放大。
2. 由于电容和电感元件的存在,单级共射放大电路存在一定的频率响应特性,随着频率的增加,放大倍数会有所下降。
实验总结:本次实验通过搭建单级共射放大电路,验证了其放大功能和频率响应特性。
同时,通过观察实验现象和分析实验结果,加深了对单级共射放大电路的工作原理和特性的理解。
在今后的学习和工作中,我们将更加熟练地运用单级共射放大电路,并加深对其特性的认识。
实验存在的不足和改进方向:在实验过程中,我们发现了一些不足之处,比如实验中可能存在的误差、实验数据的不够精确等。
因此,我们需要在以后的实验中加强对实验过程的控制,提高实验数据的准确性和可靠性。
通过本次实验,我们对单级共射放大电路有了更深入的了解,也为以后的学习和工作积累了宝贵的经验。
模拟电路应用实验—晶体管单级放大电路实验报告
1 实验二晶体管单级放大电路实验一、实验目的1、熟悉分压式偏置共射极单管放大电路和射极输出器的组成。
2、掌握放大电路静态工作点的调试方法,加深静态工作点对放大电路性能的影响。
3、进一步熟悉常用电子仪器的使用方法。
二、预习要求1、熟悉分压式偏置共射极单管放大电路的构成。
2、熟悉共射放大电路静态工作点及调试方法。
3、什么是信号源电压u s ?什么是放大器的输入信号u i ?什么是放大器的输出信号u o ?如何用示波器和交流毫伏表测量这些信号?4、如何通过动态指标的测量求出放大器的电压放大倍数A V 、输入电阻R i 和输出电阻R o ?5、了解负载变化对放大器的放大倍数的影响。
6、观察静态工作点选择得不合适或输入信号u i 过大所造成的失真现象,从而掌握放大器不失真的条件。
三、实验设备及仪器模拟电子技术实验台、数字存储示波器、数字万用表、函数信号发生器、数字交流毫伏表。
四、实验内容及步骤1、连线如图1.1所示的分压式偏置共射放大电路。
2、共射放大电路静态工作点的测量图1.1 三极管共射放大电路接通电源V CC ,调节电位器RP1RP1,使发射极电位,使发射极电位U E =2.6V 2.6V,用直流电压表测量,用直流电压表测量U B 、U C 以及电阻R C1上的电压U Rc 的值,填入表1.1中。
中。
表1.1 静态直流工作点参数测量测 量 值 (V ) 计 算 值U E U B U C U Rc I E (mA ) I C (mA ) U CE (V )共射放大电路交流参数测量共射放大电路交流参数测量维持已调好的静态工作点不变,在输入端加入f =1kHz 1kHz、、u s =100mVrms 的正弦波信号,分别用交流毫伏表和双踪示波器测量u s 、u i 、u o 的值,并观察输入、输出波形及其相位,将结果填入表1.2中。
中。
表1.2 动态交流参数测量条件条件 测量值(mV ) 计 算 值 波 形R L u su iu oA V A VS R i R o 输入(u i ) 输出(u o )∞2k Ω输入电阻和输出电阻的计算方法如下:∵ s s i ii u R R R u += ∴ is i s i u u u R R -=∵ L Lo oo o R R R u u +=∴ L o o oo o R u u u R -=式中:式中:u u oo 为R L =∞时的输出开路电压,=∞时的输出开路电压,u u o =2k Ω时的输出负载电压。
单级放大电路仿真实验报告
单级共射放大电路
一、画电路图
(一)元器件
一个二极管2N222A、直流电压源V2、交流电压源V1、三个电阻、两个电容及接地线。
各元器件的参数设置参见电路图。
(二)电路图如图2-1所示
图2-1 单级共射放大电路
二、分析电路图
(一)直流工作点分析
选择所有的输出变量到分析变量列表,直流工作点仿真结果如图2-2所示
图2-2 直流工作点仿真结果
(二)瞬态分析
由于信号源的频率为1khz,故将终结时间设置为2ms即可得到两个周期的瞬态波形,将输出变量分别设置为V1和V5,即可得到如图2-3、图2-4所示的输入及输出波形。
输入波形
输出波形
对所有数据进行分析后,启动后处理程序,求放大电路电压增益的幅频响应、相频响应及输入阻抗频率响应。
定义输出波形函数为v5/v1,点击“Draw”按钮即可得到如图2-6所示的电压增益的幅频响应及相频响应
电压增益的幅频响应及相频响应
输入阻抗频率响应
有输入阻抗频率响应图,激活游标,如图2-8所示,可读出当频率为1Khz时的输入电阻为2.8093KOhm.
2.求输出电阻
由图2-9所示电路图可获得如图2-10所示的输出阻抗的频率响应图
(之后的图片是课后完成,故有所不同)
输出阻抗电路图
输出电阻的读取,由图可读出输出阻抗为3.7190KOhm
求上、下限频率
由电压增益的幅频响应及相频响应图,可知电压最大增益为146.5022,可求出当电压增益为103.5770时所对应的两个频率分别为上、下限频率。
由图2-10可读出下限频率为6.3096hz;由图2-11可读出上限频率为19.9526Mhz。
模拟电路实验:实验五 三极管单级共射放大电路
授课内容与实验要求
实验五 三极管单级共射放大电路
一、实验目的 二、实验电路与性能估算 三、准备元器件和组装电路 四、初步检查(粗测)与故障排除 五、测量性能指标
1. 测量静态工作点 2. 测量增益和输出电阻 3. 测量输入电阻 4. 测量通频带
六、非线性失真的研究 七、选做:实验七 共射-共集放大电路
-
Rp
Rc +VCC
七、选做:实验七 100k
+12V 5.1k
+ C2
共射-共集放大电路
20k c
b
10F +
T
实验原理图
e
Re1
RL vo
共射-共集放大电路(68页)
51
5.1k
Re2 1k
+
Ce 47F
-
*Rb11
51k
C1
+
+ 10F
Rb12
vi 10k
-
Rc1 5.1k
c b
e Re11
Re12 1k
Rb1
测量技术指标
测量电压放大倍数和输出电阻
测量输入电阻;
C1
测量上限频率和下限频率;
+
研究静态工作点与非线性失真
+ 10F
调Rp ,使输出波形分别出现饱和失真和截止失
真; 记录失真时的输入、输出波形和Q点
验收要求
Rb2
vi 10k
验收学生单级共射放大电路性能指标测试数
据记录;
-
验收幅频特性测量方法。
路
按要求测 试结果
强烈建议阅读
3.2节(42页~48页)的内容
8
四、初步检查(粗测)与故障排除
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟电子系统设计实验第2次实验报告
1 实验原理:
一:单级共射放大电路
电路原理图如下:
当I 1>>I BQ 时,有:
CC b2b1b2
B V R R R V ⋅+≈e
BE B E C R V V I I -=≈)
(e c C CC e E c C CC CE R R I V R I R I V V +-≈--=β
C
B I I =
调节Rp大小可以改变电路的静态工作点。
接入100mV,1kHz正弦波后,在实验要求的30~50倍增益条件下,调节Rp使输入电压幅值增大时,输出波形波峰和波谷同时开始失真,则静态工作点设置合适,可以作为后续电路电压比较器的输入之一
二:三角波产生电路、电压比较器及功率放大器
(一)三角波产生电路
1.施密特触发器:
电路符号如下:
输入输出特性图线如下:
2.积分电路
3.三角波发生器
积分后反馈至施密特触发器。
(二)比较器:
功能:比较同相输入端和反相输入端的电压,前者高则输出高,反之输出低。
电路包含一个正反馈。
(三)功率放大器:
对输入音频做PWM,然后驱动半桥做功率放大,最后滤波
2实验元器件
仪器:EE1643C型信号发生器/计算器
TDS2001C型示波器
稳压电源
万用表
电烙铁
主要器件:电阻,电容,电位器,面包板,BJT,各类运放(如TL082,TL3116等)
3实验结果和分析
D类功率放大器
在焊板上走锡线,注意信号线与地线的布线。
得到焊板如下:
因实验中电路前一部分的三角波产生电路波形出了问题,所以未得到功放的测试波形。
实验中最常见的问题就是元件焊接时短路或者虚焊。
4实验总结与反思
本次试验中,我主要承担了第一级BJT放大电路的搭建工作和最后一级功率放大器的焊接工作。
搭建放大电路主要是计算元件参数,在找到与理论值最接近的电阻之后,搭建电路并寻找静态工作点使得输出波形不失真。
在这个过程中,遇到了面包板接触不良,布线不合理导致干扰过大或者没有输出波形,以及直流电源的使用错误(如未按下output键)等很多问题。
接触不良主要是通过在示波器上显示的波形会有那么一瞬间跳变为期望的形状,但瞬间又消失而发现的,这主要通过更改元件引脚的插孔以及压深引脚使其牢固接触解决的;至于布线不合理,因为在之前未系统训练过布线的方法,再加上个人习惯不太好,喜欢把元件挤在一起搭建电路,这样很容易发生走飞线或者元件露在外面的引脚短路的情况,而且信号线,电源线和地线也很容易发生电磁干扰,这就需要同学来帮忙指正与纠错,自己也在逐渐增多的搭电路过程中慢慢体会,领悟;直流电源一直是模电实验中比较头痛的一个问题,电源内外连接方法因为多种所以很容易弄混,双电源的地线也是常出错的一个点。
不过这些问题在逐渐的学习过程中已经学会了很多,但还有一个问题,不同型号的直流电源的输出方式不同,有时会忘记开电源,这个的解决方式就是用万用表的直流电压档在电源输出侧测试。
在不断发现,改正错误的过程中,训练了我不同的解决问题的方法,如信号循迹法,分部检查法,对今后在面包板上搭电路的实验或者研究有很大作用。
最后一级功率放大器主要是按照已经给定的电路原理图把相关的元件焊在板子上。
相关贴片元件或者需要焊引脚的元件准备问题不大,基地提供给了我们这样一个平台,但是我们面临着布局与布线的问题。
电源供应和去耦电容已经在提供的电路图中有所体现了,我们要自己设计板子上元件的相邻相关关系。
布局时,应尽量让相关模块靠近,以便使得所有重要信号的走线尽量短;一个电路单元,其信号输入走线应尽量远离信号输出走线,不能让它们靠得太近或并行;一个电路单元,输入信号和输出信号的走线应尽量远离电源线;相邻的电感器,应该相互远离或者相互垂直,以免产生互感;电路中的射频部分应使用屏蔽,并尽量远离其它部分;高速数字电路应远离处理小信号的模拟部;开关电源、DC-DC 变换器会产生较大的电磁干扰,应远离模拟部分,或加屏蔽,它们使用的电感应尽量采用封闭式的电感;包含电机驱动、大继电器驱动的电路,应远离小信号模拟部分,最好能将大电流驱动部分与电路其它部分隔离,可采用光耦等器件;
此外,在板子上还要走锡线,这对焊工不是那么娴熟的我们也是一个比较大的挑战;这就又引出下一个问题,我们的元件很多在焊的过程中可能已有所损害:焊的时间过长导致芯片烫坏,或者贴片电阻电容有虚焊,或者走线时不小心沾到代表地的圆点。
这些问题都会导致电路在最后调试时出问题。
总之,模拟实验的特点就是,可能出错的地方很多,但也不是没有规律可循。
虽然这次的实验没有出结果,但是我们在相互协作,相互讨论的过程中学到了很多知识,已在上面提及,不再赘述,还收获了小组同学深厚的友谊。
相信在今后的学习实践过程中会更多地掌握有关知识和方法,更好地完成实验!。