2020-2021学年七年级数学下册第二章二元一次方程组2.4二元一次方程组的应用二练习新版浙教版

合集下载

2024年七年级下册《二元一次方程组》教案

2024年七年级下册《二元一次方程组》教案

2024年七年级下册《二元一次方程组》教案2024年七年级下册《二元一次方程组》教案1(约913字)教学目标1.会用加减法解一般地二元一次方程组。

2.进一步理解解方程组的消元思想,渗透转化思想。

3.增强克服困难的勇力,提高学习兴趣。

教学重点把方程组变形后用加减法消元。

教学难点根据方程组特点对方程组变形。

教学过程一、复习引入用加减消元法解方程组。

二、新课。

1.思考如何解方程组(用加减法)。

先观察方程组中每个方程x的系数,y的系数,是否有一个相等。

或互为相反数?能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。

学生解方程组。

2.例1.解方程组思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?学生讨论,小组合作解方程组。

提问:用加减消元法解方程组有哪些基本步骤?三、练习。

1.P40练习题(3)、(5)、(6)。

2.分别用加减法,代入法解方程组。

四、小结。

解二元一次方程组的加减法,代入法有何异同?五、作业。

P33.习题2.2A组第2题(3)~(6)。

B组第1题。

选作:阅读信息时代小窗口,高斯消去法。

后记:2.3二元一次方程组的应用(1)2024年七年级下册《二元一次方程组》教案2(约900字)教学目标:通过学生积极思考,互相讨论,经历探索事物之间的数量关系,形成方程模型,解方程和运用方程解决实际问题的过程进一步体会方程是刻划现实世界的有效数学模型重点:让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题难点:寻找等量关系教学过程:看一看:课本99页探究2问题:1“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?2、“甲、乙两种作物的总产量比为3:4”是什么意思?3、本题中有哪些等量关系?提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?思考:这块地还可以怎样分?练一练一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:农作物品种每公顷需劳动力每公顷需投入奖金水稻4人1万元棉花8人1万元蔬菜5人2万元已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?教材106页:探究3:如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。

专题04 二元一次方程组(解析版)-2020-2021学年七年级数学期末复习特训

专题04 二元一次方程组(解析版)-2020-2021学年七年级数学期末复习特训

专题04 二元一次方程组一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列方程中,为二元一次方程的是()A.2a+1=0B.3x+y=2z C.xy=9D.3x﹣2y=5【解答】解:A.是一元一次方程,不是二元一次方程,故本选项不符合题意;B.是三元一次方程,不是二元一次方程,故本选项不符合题意;C.是二元二次方程,不是二元一次方程,故本选项不符合题意;D.是二元一次方程,故本选项符合题意;故选:D.2.(3分)如果3x3m﹣2n﹣4y n﹣m+12=0是关于x、y的二元一次方程,那么m、n的值分别为()A.m=2,n=3B.m=2,n=1C.m=﹣1,n=2D.m=3,n=4【解答】解:∵3x3m﹣2n﹣4y n﹣m+12=0是关于x、y的二元一次方程,∴,解得:,故选:D.3.(3分)若是二元一次方程mx﹣y=3的解,则m为()A.7B.6C.D.0【解答】解:把代入方程得:m﹣3=3,解得:m=6,故选:B.4.(3分)下列方程组中,不是二元一次方程组的是()A.B.C.D.【解答】解:由二元一次方程组的定义可知,方程组中不是二元一次方程组的是,因为方程xy=0中未知数的次数是2次,故选:B.5.(3分)如果方程组的解为,那么“□”和“△”所表示的数分别是()A.14,4B.11,1C.9,﹣1D.6,﹣4【解答】解:设“□”为a,“△”为b,则方程组为的解是,代入②得:5﹣2b=3,解得:b=1,方程组的解是,代入①得:10+1=a,解得:a=11,即“□”为11,“△”为1,故选:B.6.(3分)已知x,y满足方程组,则无论m取何值,x,y恒有关系式是()A.x+y=1B.x+y=﹣1C.x+y=9D.x+y=﹣9【解答】解:由方程组,有y﹣5=m∴将上式代入x+m=4,得到x+(y﹣5)=4,∴x+y=9.故选:C.7.(3分)关于x,y的方程组的解是整数,则整数a的个数为()A.4个B.3个C.2个D.1个【解答】解:①×2﹣②得:(﹣2a﹣1)y=5,y=﹣,把y=﹣代入②得:4x﹣=7,解得:x=,∵方程组的解为整数,∴x、y都是整数,∴要使y为整数,a为整数,必须1+2a=﹣1或1+2a=5或1+2a=1或1+2a=﹣5,解得:a=﹣1或2或0或﹣3,当a=﹣1时,x==,不是整数,舍去;当a=2时,x==2,是整数,符合;当a=0时,x==3,是整数,符合;当a=﹣3时,x==,不是整数,舍去;故选:C.8.(3分)若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2B.m=4,n=1C.m=4,n=2D.m=2,n=3【解答】解:由题意,得,解得.故选:C.9.(3分)天虹商场现销售某品牌运动套装,上衣和裤子一套售价500元.若将上衣价格下调5%,将裤子价格上调8%,则这样一套运动套装的售价提高0.2%.设上衣和裤子在调价前单价分别为x元和y元,则可列方程组为()A.B.C.D.【解答】解:根据题意可列方程组为,故选:C.10.(3分)方程组消去字母c后,得到的方程一定不是()A.a+b=1B.a﹣b=1C.4a+b=10D.7a+b=19【解答】解:,②﹣①得:3a+3b=3,即a+b=1,③﹣①得:24a+6b=60,即4a+b=10,③﹣②得:21a+3b=57,即7a+b=19,故选:B.二.填空题(共6小题,满分18分,每小题3分)11.(3分)对于方程3x+y=5,用含x的式子表示y=﹣3x+5.【解答】解:方程3x+y=5,解得:y=﹣3x+5.故答案为:﹣3x+5.12.(3分)一种运算:x*y=ax+by(a,b为常数),若3*4=2,5*(﹣1)=11,则2*6=﹣2.【解答】解:∵3*4=2,5*(﹣1)=11,,解得:a=2,b=﹣1,∴2*6=2×2+6×(﹣1)=﹣2,故答案为:﹣2.13.(3分)已知a﹣3b+c=8,7a+b﹣c=12,则5a﹣4b+c=18.【解答】解:由题意:a﹣3b+c=8①,7a+b﹣c=12②,②+①,得8a﹣2b=20.所以4a﹣b=10③.所以①+③,得5a﹣4b+c=18.故答案为:18.14.(3分)若满足方程组的x与y互为相反数,则m的值为11.【解答】解:,①+②得:5x=3m+2,解得:x=,把x=代入①得:y=,由x与y互为相反数,得到+=0,去分母得:3m+2+9﹣4m=0,解得:m=11,故答案为:1115.(3分)把一根长7m的钢管截成2m长和1m长两种规格的钢管,截成不造成浪费的截法有3种.【解答】解;截下来的符合条件的钢管长度之和刚好等于总长7米时,不造成浪费,设截成2米长的钢管x根,1米长的y根,由题意得,2x+y=7,因为x,y都是正整数,所以符合条件的解为:,,,则有3种不同的截法.故答案为:3.16.(3分)如图,由四个形状相同,大小相等的小矩形,拼成一个大矩形,大矩形的周长为12cm.设小矩形的长为xcm,宽为ycm,依题意,可列方程组得.【解答】解:设小矩形的长为xcm,宽为ycm,由题意得:,故答案为.三.解答题(共9小题,满分72分)17.(4分)解方程(组)(1);(2).【解答】解:(1)去分母得:4(2x+5)﹣3(3x﹣2)=24,去括号得:8x+20﹣9x+6=24,移项合并得:﹣x=﹣2,解得:x=2;(2),①﹣②得:3n=15,解得:n=5,将n=5代入②得:3m﹣5=1,解得:m=2,∴原方程组的解为:.18.(4分)已知关于x、y的方程组的x、y的值之和等于2,求m的值.【解答】解:关于x、y的方程组为:,由①﹣②得:x+2y=2,∵x、y的值之和等于2,∴,解这个方程组得,把代入②得:m=4.答:m的值是4.19.(6分)有大小两种货车,3辆大货车与2辆小货车一次可以运货17吨,5辆大货车与6辆小货车一次可以运货35吨,那么3辆大货车与6辆小货车一次可以运货多少吨?【解答】解:设每辆大货车一次可以运货x吨,每辆小货车一次可以运货y吨,依题意,得:,解得:,∴3x+6y=3×4+6×=27.答:3辆大货车与6辆小货车一次可以运货27吨.20.(8分)在等式y=ax2+bx+c中,当x=0时,y=﹣5;当x=2时,y=3;当x=﹣2时,y=11.(1)求a,b,c的值;(2)小苏发现:当x=﹣1或x=时,y的值相等.请分析“小苏发现”是否正确?【解答】解:(1)根据题意,得,②﹣③,得4b=﹣8,解得b=﹣2;把b=﹣2,c=﹣5代入②得4a﹣4﹣5=3,解得a=3,因此;(2)“小苏发现”是正确的,由(1)可知等式为y=3x2﹣2x﹣5,把x=﹣1时,y=3+2﹣5=0;把x=时,y=﹣﹣5=0,所以当x=﹣1或x=时,y的值相等.21.(8分)如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图.【解答】解:(1)根据题意得:,解得:.(2)∵x=﹣1,y=2,∴3+4+x=6,2y﹣x=5.∵每行的3个数、每列的3个数、斜对角的3个数之和均相等,∴6﹣(﹣2)﹣y=6;6﹣4﹣y=0;6﹣3﹣y=1.完成方阵图,如图所示.22.(10分)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付给两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付给两组费用共3480元,问:(1)甲、乙两组单独工作一天,商店应各付多少元?(2)已知甲组单独完成需要12天,乙组单独完成需要24天,单独请哪组,商店所付费用较少?【解答】解:(1)设甲单独工作一天需要x元,乙单独工作一天商店需付y元,由题意得,,解得:.答:甲单独工作一天需要300元,乙单独工作一天商店需付140元;(2)甲单独完成需付:300×12=3600(元),乙单独完成需付:140×24=3360(元).答:选择乙组商店所付费用较少.23.(10分)甲、乙二人解关于x、y的方程组,甲正确地解出,而乙因把c抄错了,结果解得,求出a、b、c的值,并求乙将c抄成了何值?【解答】解:把代入方程组,可得:,解得:c=﹣2,把代入ax+by=2中,可得:﹣2a+2b=2,可得新的方程组:,解得:,把代入cx﹣7y=8中,可得:c=﹣11.答:乙把c抄成了﹣11,a的值是4,b的值是5,c的值是﹣2.24.(10分)已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货18吨,某物流公司现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.【解答】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解方程组,得:,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=35,∴a=∵a、b都是正整数∴或或答:有3种租车方案:方案一:A型车9辆,B型车2辆;方案二:A型车5辆,B型车5辆;方案三:A型车1辆,B型车8辆.(3)∵A型车每辆需租金200元/次,B型车每辆需租金240元/次,∴方案一需租金:9×200+2×240=2280(元)方案二需租金:5×200+5×240=2200(元)方案三需租金:1×200+8×240=2120(元)∵2280>2200>2120∴最省钱的租车方案是方案三:A型车1辆,B型车8辆,最少租车费为2120元.25.(12分)面对资源紧缺与环境保护问题,发展电动汽车成为汽车工业发展的主流趋势.我国某著名汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘m(0<m<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发8000元的工资,给每名新工人每月发4800元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?【解答】解:(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车.根据题意,得:,解得:.答:每名熟练工和新工人每月分别可以安装4、2辆电动汽车.(2)设工厂有a名熟练工.根据题意,得12(4a+2m)=240,2a+m=10,m=10﹣2a,又a,m都是正整数,0<m<10,所以m=8,6,4,2.即工厂有4种新工人的招聘方案.①m=8,a=1,即新工人8人,熟练工1人;②m=6,a=2,即新工人6人,熟练工2人;③m=4,a=3,即新工人4人,熟练工3人;④m=2,a=4,即新工人2人,熟练工4人.(3)结合(2)知:要使新工人的数量多于熟练工,则m=8,a=1;或m=6,a=2;或m=4,a=3;根据题意,得W=8000a+4800m=8000a+4800(10﹣2a)=48000﹣1600a.要使工厂每月支出的工资总额W(元)尽可能地少,则a应最大.显然当m=4,a=3时,工厂每月支出的工资总额W(元)尽可能地少.。

二元一次方程组的解法(教师版)2021-2022学年七年级数学下册同步精品讲义(人教版)

二元一次方程组的解法(教师版)2021-2022学年七年级数学下册同步精品讲义(人教版)

第17课二元一次方程组的解法目标导航课程标准1. 理解消元的思想;2. 会用代入法解二元一次方程组.3. 掌握加减消元法解二元一次方程组的方法;4. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组;5.会对一些特殊的方程组进行特殊的求解.知识精讲知识点01 消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.知识点02 代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.注意:(1)代入消元法的关键是先把系数较简单的方程变形为用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的.(2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便;(3)若方程组中所有方程里的未知数的系数都不是1或-1,选系数的绝对值较小的方程变形比较简便.代入消元法的一般步骤:(1)转化:从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)代入:把(1)中所得的方程代入另一个方程,消去一个未知数.(3)求解:解所得到的一元一次方程,求得一个未知数的值.(4)回代、写解:把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.(5)检验: 把方程组的解代回方程组检验,当满足每个方程时才是方程组的解。

知识点03 加减消元法解二元一次方程组两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法. 注意: 用加减消元法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解.知识点04 选择适当的方法解二元一次方程组解二元一次方程组的基本思想(一般思路)是消元,消元的方法有两种:代入消元和加减消元,通过适当练习做到巧妙选择,快速消元.考法01 用代入法解二元一次方程组【典例1】用代入法解方程组:【分析】比较两个方程未知数的系数,发现①中x 的系数较小,所以先把方程①中x 用y 表示出来,代入②,这样会使计算比较简便.【答案与解析】解:由①得 ③ 将③代入② ,解得. 237338x y x y +=⎧⎨-=⎩①②732y x -=733382y y -⨯-=13y =能力拓展将代入③,得x =3 所以原方程组的解为. 【点睛】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”.【即学即练】m 取什么数值时,方程组的解(1)是正数;(2)当m 取什么整数时,方程组的解是正整数?并求它的所有正整数解.【答案】(1)m 是大于-4 的数时,原方程组的解为正数;(2)m=-3,-2,0,.【典例2】对于某些数学问题,灵活运用整体思想,可以化难为易.在解二元一次方程组时,就可以运用整体代入法:如解方程组:解:把②代入①得,x+2×1=3,解得x=1.把x=1代入②得,y=0.所以方程组的解为 请用同样的方法解方程组:.【分析】仿照已知整体代入法求出方程组的解即可.【答案与解析】解:由①得,2x ﹣y=2③,把③代入②得,1+2y=9,解得:y=4,把y=4代入③得,x=3,则方程组的解为【点睛】本题体现了整体思想在解二元一次方程组时的优越性,利用整体思想可简化计算.【即学即练】解方程组(1)(2)【答案】 13y =313x y =⎧⎪⎨=⎪⎩2320,2352y 9.7x y x y --=⎧⎪-+⎨+=⎪⎩45:4:3x y x y -=⎧⎨=⎩①②解: 将①代入②:, 得 y=4,将y=4代入①:2x -12=2得 x=7,∴原方程组的解是. (2) 解:由②,设x=4,y=3代入①:4-4·3=54-12=5-8=5∴,, ∴原方程组的解为. 考法02 方程组解的应用【典例3】如果方程组359x y x y +=⎧⎨-=⎩的解是方程3x+my=8的一个解,则m=( ) A .1B .2C .3D .4 【分析】求出方程组的解得到x 与y 的值,代入已知方程即可求出m 的值. 【答案】B .【解析】解:, 由①得y=3-x ③将③代入②得:6x=12,解得:x=2,将x=2代入②得:10﹣y=9,解得:y=1,将x=2,y=1代入3x+my=8中得:6+m=8,解得:m=2. 232235297x y x y y -=⎧⎪⎨-++=⎪⎩①②25297y ++=74x y =⎧⎨=⎩45:4:3x y x y -=⎧⎨=⎩①②k k k k k k k 58k =-542x k ==-1538y k ==-52158x y ⎧=-⎪⎪⎨⎪=-⎪⎩【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.【典例4】已知和方程组的解相同,求的值.【分析】两个方程组有相同的解,这个解是2x+5y =-6和3x-5y =16的解.由于这两个方程的系数都已知,故可联立在一起,求出x 、y 的值.再将x 、y 的值代入ax-by =-4,bx+ay =-8中建立关于a 、b 的方程组即可求出a 、b 的值.【答案与解析】解:依题意联立方程组①+③得5x =10,解得x =2.把x =2代入①得:2×2+5y =-6,解得y =-2,所以, 又联立方程组,则有, 解得. 所以(2a+b)2011=-1.【点睛】求方程(组)中的系数,需建立关于系数的方程(组)来求解,本例中利用解相同,将方程组重新组合换位联立是解答本题的关键.【即学即练】小明和小文解一个二元一次组322cx y ax by -=-⎧⎨+=⎩小明正确解得11x y =⎧⎨=-⎩小文因抄错了c ,解得26x y =⎧⎨=-⎩已知小文除抄错了c 外没有发生其他错误,求a+b+c 的值.【答案】解:把代入cx ﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5,把与分别代入ax+by=2,得,解得:, 2564x y ax by +=-⎧⎨-=-⎩①②35168x y bx ay -=⎧⎨+=-⎩③④2011(2)a b +2563516①x y x y +=-⎧⎨-=⎩③22x y =⎧⎨=-⎩48ax by bx ay -=-⎧⎨+=-⎩224228a b a b +=-⎧⎨-+=-⎩13a b =⎧⎨=-⎩则a+b+c=2+﹣5=3﹣5=﹣2.考法03 加减法解二元一次方程组【典例5】用加减消元法解方程组3465923x y x y ++== 【分析】先将原方程写成方程组的形式后,再求解.【答案与解析】 解:此式可化为:349(1)2659(2)3x y x y +⎧=⎪⎪⎨+⎪=⎪⎩ 由(1):3x+4y=18 (1)由(2):6x+5y=27 (2)(1)×2:6x+8y=36 (3)(3)-(2):3y=9y=3代入(1):3x+12=183x=6x=2∴23x y =⎧⎨=⎩【点睛】先将每个式子化至最简,即形如ax+by=c 的形式再消元.【即学即练】方程组201020092008200820072006x y x y -=⎧⎨-=⎩的解为: . 【答案】12x y =-⎧⎨=-⎩【典例6】若关于x 、y 的二元一次方程组1615ax my bx ny -=⎧⎨+=⎩的解为71x y =⎧⎨=-⎩,求关于x 、y 的方程组(2)()16(2)()15a x y m x yb x y n x y +--=⎧⎨++-=⎩的解. 【分析】如果用一般方法来解答此题,很难达到目标,观察发现,两方程的系数相同,只是未知数的呈现方式不同,如果我们把2x +y ,x -y 看作一个整体,则两个方程同解.【答案与解析】解:方程组的解仅仅与未知数的系数有关,与未知数选用什么字母无关,因此把(2x +y )与(x -y )分别看成一个整体当作未知数,可得27,1.x y x y +=⎧⎨-=-⎩ 解得:23x y =⎧⎨=⎩【点睛】本例采用了类比的方法,利用了消元的思想,消元的方法有:代入消元法与加减消元法.【即学即练】三个同学对问题“若方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是: .【答案】解:由方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,得1112223434a b c a b c +=⎧⎨+=⎩, 上式可写成111222352105352105a b c a b c ⨯+⨯=⎧⎨⨯+⨯=⎩,与111222325325a x b y c a x b y c +=⎧⎨+=⎩比较, 可得:510x y =⎧⎨=⎩. 考法04 用适当方法解二元一次方程组【典例7】解方程组36101610x y x y x y x y +-⎧+=⎪⎪⎨+-⎪-=-⎪⎩ 【分析】解决本题有多种方法:加减法或代入法,或整体代入法,整体代入法最简单.【答案与解析】 解:设,610x y x y m n +-==,则 原方程组可化为31m n m n +=⎧⎨-=-⎩①② 解得12m n =⎧⎨=⎩即16210x y x y +⎧=⎪⎪⎨-⎪=⎪⎩ ,所以620x y x y +=⎧⎨-=⎩ 解得137x y =⎧⎨=-⎩所以原方程组的解为137x y =⎧⎨=-⎩. 【点睛】解一个方程组的方法一般有多种方法,我们要根据方程组的特点选择最简便的求解方法.【即学即练】【答案】解:去分母,整理化简得,9112061925x y x y +=⎧⎨+=⎩①②, ②×3-①×2得,3535y =,即1y =,将1y =代入①得,99x =,即1x =,所以原方程组的解为11x y =⎧⎨=⎩.【典例8】试求方程组27526x y x y ⎧-=--⎪⎨-=-⎪⎩的解. 【答案与解析】 解:27526x y x y ⎧-=--⎪⎨-=-⎪⎩①② ①-②,整理得513y y -=- ③ ∵50y -≥,∴13-y ≥0,即y ≤13,当513y ≤≤时,③可化为513y y -=-,解得9y =;当5y ≤时,③可化为513y y -=-,无解.将9y =代入②,得23x -=,解得15x =-或.综上可得,原方程组的解为:19x y =-⎧⎨=⎩或59x y =⎧⎨=⎩.【点睛】解含有绝对值的方程组,一般先转化为含绝对值的一元一次方程,再分类讨论求出解.【即学即练】若二元一次方程组37231x y x y -=⎧⎨+=⎩和y=kx+9有相同解,求(k+1)2的值.【答案】解:方程组,①×3+②得:11x=22,解得:x=2,将x=2代入①得:6﹣y=7,解得:y=﹣1,∴方程组的解为, 将代入y=kx+9得:k=﹣5, 则当k=﹣5时,(k+1)2=16.题组A 基础过关练1.用加减法解方程组235327x y x y -=⎧⎨-=⎩①②下列解法错误的是( ) A .①×3-②×2,消去xB .①×2-②×3,消去yC .①×(-3)+②×2,消去xD .①×2-②×(-3),消去y 【答案】D【解析】【详解】本题考查了加减法解二元一次方程组用加减法解二元一次方程组时,必须使同一未知数的系数相等或者互为相反数.如果系数相等,那么相减消元;如果系数互为相反数,那么相加消元.A 、32⨯-⨯①②,可消去x ,故不合题意;B 、23⨯-⨯①②,可消去y ,故不合题意;C 、(3)2⨯-+⨯①②,可消去x ,故不合题意;D 、2(3)⨯-⨯-①②,得,不能消去y ,符合题意. 故选D . 分层提分2.用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩①②时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×3【答案】D【解析】【分析】根据各选项分别计算,即可解答.【详解】方程组利用加减消元法变形即可.解:A、①×2﹣②可以消元x,不符合题意;B、②×(﹣3)﹣①可以消元y,不符合题意;C、①×(﹣2)+②可以消元x,不符合题意;D、①﹣②×3无法消元,符合题意.故选:D.【点睛】本题考查了加减消元法解二元一次方程组,只有当两个二元一次方程未知数的系数相同或相反时才可以用加减法消元,系数相同相减消元,系数相反相加消元.3.解方程组231367x yx y+=⎧⎨-=⎩①②,用加减法消去y,需要()A.①×2﹣②B.①×3﹣②×2C.①×2+②D.①×3+②×2【答案】C【解析】【分析】先把的系数化成绝对值相等的方程,再相加即可.【详解】解:①×2得:4x+6y=2③,③+②得:7x=9,即用减法消去y,需要①×2+②,故选C.【点睛】本题考查了解二元一次方程组的应用,主要考查学生的理解能力和计算能力.4.用加减法将方程组2311255x yx y-=⎧⎨+=-⎩中的未知数x消去后,得到的方程是().A.26y= B.816y=C.26y-=D.816y-=【答案】D【解析】【分析】方程组两方程相减消去x即可得到结果.【详解】解:2311? 255?x yx y-=⎧⎨+=-⎩①②②-①得:8y=-16,即-8y=16,故选D.【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.利用加减消元法解方程组2510{536x yx y+=-=,①②,下列做法正确的是()A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×2【答案】D【解析】【详解】由已知可得,消元的方法有两种,分别为:(1)要消去y,可以将①×3+②×5;(2)要消去x,可以将①×(-5)+②×2.故选D6.用代入消元法解方程组3+4=225x yx y⎧⎨-=⎩①②使得代入后化简比较容易的变形是()A.由①得243yx-=B.由①得234xy-=C.由②得52yx+=D.由②得y=2x-5【答案】D【解析】【分析】根据代入消元法解二元一次方程组的步骤可知变形②更简单.【详解】解:观察方程①②可知,②中的系数为-1,比其它未知数的系数更为简单,所只要将②变形为y=2x-5③,再把③代入①即可求出方程组的解.故应选D.【点睛】本题考查了用代入消元法解二元一次方程组,理解代入消元法解方程组时化简系数较简单的方程是解题的关键.7.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4B.4C.﹣2D.2【答案】B【解析】【详解】试题解析:512{34a ba b+=-=①②,①+②:4a+4b=16则a+b=4,故选B.考点:解二元一次方程组.8.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2B2C.2D.4【解析】【详解】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.【分析】∵=2{=1x y 是二元一次方程组+=8{ =1mx ny nx my -的解,∴2+=8{2=1m n n m -,解得=3{=2m n . 2=232=4=2m n -⨯-.即2m n -的算术平方根为2.故选C .9.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩【答案】D【解析】【详解】 分析:先根据非负数的性质列出关于x 、y 的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y 的值即可. 详解:∵32120x y x y --+-=,∴321020x y x y --⎧⎨+-⎩== 将方程组变形为32=1=2x y x y -⎧⎨+⎩①②, ①+②×2得,5x=5,解得x=1,把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩. 故选D .点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.10.以方程组21x y x y +=⎧⎨-=⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置是( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【分析】先求出方程组的解,然后即可判断点的位置.【详解】解:解方程组21x y x y +=⎧⎨-=⎩,得 1.50.5x y =⎧⎨=⎩, ∴点(1.5,0.5)在第一象限.故选:A .【点睛】本题考查了二元一次方程组的解法和坐标系中点的坐标特点,属于基本题型,熟练掌握上述基础知识是解题关键.11.若方程组31331x y a x y a+=+⎧⎨+=-⎩的解满足x +y =0,则a 的值为( ) A .﹣1B .1C .0D .无法确定 【答案】A【解析】【详解】试题解析:方程组两方程相加得:4(x+y )=2+2a ,即x+y=12(1+a ),由x+y=0,得到12(1+a )=0,解得:a=-1.故选A . 12.在解方程组2278ax by cx y +=⎧⎨+=⎩,时,甲同学正确解得32x y =⎧⎨=⎩,乙同学把c 看错了,而得到26x y =-⎧⎨=⎩,那么a ,b ,c 的值为( )A .2a =-,4b =,5c =B .4a =,5b =,2c =-C .5a =,4b =,2c =D .不能确定 【答案】B【解析】【分析】【详解】解:由甲同学的解正确,可知3c+2×7=8,解得2,c =-且3222a b +=①,由于乙看错c ,所以2622a b -+=②,解由①②构成的方程组可得:4,5a b =⎧⎨=⎩故选B .题组B 能力提升练13.已知23x y +=,用含x 的代数式表示y =________.【答案】y=3-2x【解析】【详解】23x y +=移项得:y=3-2x.故答案是:y=3-2x .14.已知x 、y 满足方程组2524x y x y +=⎧⎨+=⎩,则x y -的值为___. 【答案】1【解析】【分析】首先根据方程组的解的定义正确求出方程组的解,然后计算出x -y 或直接让两个方程相减求解.【详解】方法一:解方程组2524x y x y +=⎧⎨+=⎩, 解得:21x y =⎧⎨=⎩, ∴x -y=1;方法二:两个方程相减,得.x -y=1,【点睛】本题考查了解二元一次方程组,熟练掌握解二元一次方程组的基本方法是解题的关键,同时注意此题中的整体思想.15.如果方程组45x by ax =⎧⎨+=⎩的解与方程组32y bx ay =⎧⎨+=⎩的解相同,则a+b 的值为______. 【答案】1【解析】【分析】根据题意,把43x y =⎧⎨=⎩代入方程组52by ax bx ay +=⎧⎨+=⎩,得到一个关于a ,b 的方程组,将方程组的两个方程左右两边分别相加,整理即可得出a+b 的值.【详解】解:根据题意把43x y =⎧⎨=⎩代入方程组52by ax bx ay +=⎧⎨+=⎩,得 345432b a b a +⎧⎨+⎩=①=②, ①+②,得:7(a+b )=7,则a+b=1,故答案为:1.【点睛】此题主要考查了二元一次方程组的解的定义以及加减消元法解方程组.一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.注意两个方程组有相同的解时,往往需要将两个方程组进行重组解题.16.若方程组x y 73x 5y 3+=⎧⎨-=-⎩,则()()3x y 3x 5y +--的值是_____. 【答案】24.【解析】【分析】把x y 3x 5y +-、分别看作一个整体,代入进行计算即可得解.解:∵x y 73x 5y 3+=⎧⎨-=-⎩, ∴()()()3x y 3x 5y 37324+--=⨯--=.故答案为:24.17.已知关于x 、y 的方程221255x y a x y a +=+⎧⎨+=-⎩的解满足3x y +=-,则a 的值为__________________. 【答案】5【解析】【分析】①+②可得x+y=2-a ,然后列出关于a 的方程求解即可.【详解】解:221255x y a x y a +=+⎧⎨+=-⎩①②, ①+②,得3x+3y=6-3a ,∴x+y=2-a ,∵3x y +=-,∴2-a=-3,∴a=5.故答案为:5.【点睛】本题考查了二元一次方程组的特殊解法,在求二元一次方程组中两个未知数的和或差的时候,有时可以采用把两个方程直接相加或相减的方法,而不必求出两个未知数的具体值.18.已知x 2{y 1==是二元一次方程组mx ny 7{nx my 1+=-=的解,则m+3n 的立方根为 . 【答案】2【解析】【详解】把x 2{y 1==代入方程组mx ny 7{nx my 1+=-=,得:2m n 7{2n m 1+=-=,解得13m 5{9n 5==, ∴139m 3n 3855+=+⨯=33m 3n 82+=, 故答案为2.19.若单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,则m -7n 的算术平方根是_________.【答案】4【解析】【详解】试题分析:根据同类项定义由单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,可以得到关于m 、n 的二元一次方程4=m ﹣n ,2m+n=2,解得:m=2,n=﹣2,因此可求得m ﹣7n=16,即m ﹣7n 的算术平方根==4,故答案为 4.考点:1、算术平方根;2、同类项;3、解二元一次方程组 20.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是_______. 【答案】3212a b ⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】方法一:利用关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩可得m 、n 的数值,代入关于a 、b 的方程组即可求解;方法二:根据方程组的特点可得方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是12a b a b +=⎧⎨-=⎩,再利用加减消元法即可求出a,b .【详解】详解:∵关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,∴将解12xy=⎧⎨=⎩代入方程组3526x myx ny-=⎧⎨+=⎩可得m=﹣1,n=2∴关于a、b的二元一次方程组()()()()3=526a b m a ba b n a b⎧+--⎪⎨++-=⎪⎩整理为:42546a ba+=⎧⎨=⎩解得:3212 ab⎧=⎪⎪⎨⎪=-⎪⎩方法二:∵关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩∴方程组3()()=52()()6a b m a ba b n a b+--⎧⎨++-=⎩的解是12a ba b+=⎧⎨-=⎩解12a ba b+=⎧⎨-=⎩得3212ab⎧=⎪⎪⎨⎪=-⎪⎩故答案为:3212ab⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.21.若方程组2313{3530.9a ba b-=+=的解是8.3{1.2,ab==则方程组的解为________【答案】6.32.2 xy==⎧⎨⎩【解析】【详解】试题分析:根据整体思想,可设a=x+2,b=y-1,可发现两个方程组相同,因此可知x+2=8.3,y-1=1.2,解得x=6.3,y=2.2,即方程组的解为:6.3{2.2xy==.题组C 培优拔尖练22.解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩ 【答案】(1)55x y ⎧=⎨=⎩;(2)025x y ⎧=⎪⎨=⎪⎩【解析】【分析】本题需要把两个方程组化简后,根据方程的形式选用合适的方法求解.【详解】(1)257320x y x y -=⎧⎨-=⎩, 整理得63157320-=⎧⎨-=⎩x y x y , 两式相减得:5x =,把 5x =代入25x y -=中,得y 5=;所以原方程组的解为:55x y ⎧=⎨=⎩. (2)原方程组变式为51565104x y x y ⎧+=⎨-=-⎩, 两式相减得:25y =, 将25y =代入5156x y +=中,得251565x +⨯=, 解得:0x =. 所以原方程组的解为025x y ⎧=⎪⎨=⎪⎩. 【点睛】本题考查了我二元一次方程组的解法,通过变形选择合适的方法求解是快速解题的关键.23.(1)用代入法解方程组:3759x y x y -=⎧⎨+=-⎩(2)用加减法解方程组:2232(3)31x y x y ⎧+=⎪⎨⎪+-=⎩【答案】(1)1x=21y=22⎧⎪⎪⎨⎪-⎪⎩;(2)x=2y=3⎧⎨⎩.【解析】【分析】(1)由x-y=3得x=3+y,再代入求出x,再求出y;(2)先对原方程组变形,再运用加减消元法解答.【详解】解:(1)3759 x yx y-=⎧⎨+=-⎩①②由①得x=3+y③将③代入②得:y=1 22 -将y=122-代入③得:x=12-所以原方程组的解为:1x=21 y=22⎧⎪⎪⎨⎪-⎪⎩(2)原方程组可化为:3x212 235yx y+=⎧⎨-=-⎩①②①×2得:6x+4y=24③②×3得:6x-9y=-15④③-④得:13y=39,解得:y=3将y=3代入①中得:x=2所以原方程组的解为:x=2 y=3⎧⎨⎩【点睛】本题考查了二元一次方程组得两种解法,其关键在于扎实的计算能力和严谨的思维.24.甲、乙两名同学在解方程组5{213mx yx ny+=-=时,甲解题时看错了m,解得7{22xy==-;乙解题时看错了n,解得3{7xy==-.请你以上两种结果,求出原方程组的正确解.【答案】n = 3, m = 4,2 {3 xy==-【解析】【详解】试题分析:由题意可知722xy⎧=⎪⎨⎪=-⎩是方程213x ny-=的解,由此即可求得n的值;37xy=⎧⎨=-⎩是方程5mx y+=的解,由此看求得m的值;这样即可得到正确的原方程组,再解方程组,即可求得原方程组的正确解;试题解析:由题意可知722xy⎧=⎪⎨⎪=-⎩是方程213x ny-=的解,∴72(2)132n⨯--=,解得n=3;37xy =⎧⎨=-⎩是方程5mx y+=的解,∴375m-=,解得m=4;∴原方程组为:452313x yx y+=⎧⎨-=⎩,解此方程组得23xy=⎧⎨=-⎩,∴m=4,n=3,原方程组的解为:23 xy=⎧⎨=-⎩.点睛:在本题中“甲、乙两名同学在解方程组5213mx yx ny+=⎧⎨-=⎩时,甲解题时看错了m,解得722xy⎧=⎪⎨⎪=-⎩”这句话的含义是:“722xy⎧=⎪⎨⎪=-⎩”是关于x y、的二元一次方程“213x ny-=”的解.25.阅读探索解方程组(1)2(2)6 2(1)(2)6 a ba b-++=⎧⎨-++=⎩解:设a&#ξΦ02∆;1&#ξΦ03∆;x,b&#ξΦ02B;2&#ξΦ03∆;y,原方程组可变为26 26 x yx y+=⎧⎨+=⎩解方程组得22xy=⎧⎨=⎩,即1222ab-=⎧⎨+=⎩,所以3ab=⎧⎨=⎩.此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组:(1)2(2)4352(1)(2)535a b a b ⎧-++=⎪⎪⎨⎪-++=⎪⎩ (2)能力运用已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为53x y =⎧⎨=⎩,直接写出关于m 、n 的方程组1112225(3)3(2)5(3)3(2)a m b n c a m b n c ++-=⎧⎨++-=⎩的解为_______.【答案】(1)95a b =⎧⎨=-⎩;(2)23m n =-⎧⎨=⎩. 【解析】【分析】(1)设13a -=x ,25b +=y ,可得出关于x 、y 的方程组,即可求出x 、y 的值,进而可求出a 、b 的值;(2)设5(m+3)=x ,3(n -2)=y ,根据已知方程组的解确定出m 、n 的值即可.【详解】(1)设13a -=x ,25b +=y , 原方程组可变形为2425x y x y +=⎧⎨+=⎩, 解得:21x y =⎧⎨=⎩,即123215a b ⎧-=⎪⎪⎨⎪+=⎪⎩, 解得:95a b =⎧⎨=-⎩. (2)设5(m+3)=x ,3(n -2)=y ,原方程组可变形为:111222a x b y c a x b y c +=⎧⎨+=⎩, ∵关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为53x y =⎧⎨=⎩, ∴5(3)53(2)3m n +=⎧⎨-=⎩,解得:23mn=-⎧⎨=⎩.故答案为23 mn=-⎧⎨=⎩【点睛】本题考查解二元一次方程组,正确理解并熟练掌握换元法是解题关键.。

2021-2022学年人教版七年级数学下册 二元一次方程组(章节复习)

2021-2022学年人教版七年级数学下册   二元一次方程组(章节复习)

二元一次方程组(章节复习)-2021年人教新版数学七年级下册一.选择题1.若是方程组的解,那么a﹣b的值是()A.5B.1C.﹣1D.﹣52.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x间、房客y人,下列方程组中正确的是()A.B.C.D.3.已知捷立租车行有甲、乙两个营业据点,顾客租车后当日须于营业结束前在任意一个据点还车.某日营业结束清点车辆时,发现在甲归还的自行车比从甲出租的多4辆.若当日从甲出租且在甲归还的自行车为15辆,从乙出租且在乙归还的自行车为13辆,则关于当日从甲、乙出租的自行车数量下列比较何者正确?()A.从甲出租的比从乙出租的多2辆B.从甲出租的比从乙出租的少2辆C.从甲出租的比从乙出租的多6辆D.从甲出租的比从乙出租的少6辆4.已知x,y满足方程组,则无论m取何值,x,y恒有关系式()A.x+y=3B.x+y=﹣3C.x+y=9D.x+y=﹣95.小文原本计划使用甲、乙两台影印机于10:00开始一起印制文件并持续到下午,但10:00时有人正在使用乙,于是他先使用甲印制,于10:05才开始使用乙一起印制,且到10:15时乙印制的总张数与甲相同,到10:45时甲、乙印制的总张数合计为2100张.若甲、乙的印制张数与印制时间皆成正比,则依照小文原本的计划,甲、乙印制的总张数会在哪个时间达到2100张?()A.10:40B.10:41C.10:42D.10:436.如图为某超商促销活动的内容,今阿贤到该超商拿相差4元的2种饭团各1个结账时,店员说:要不要多买2瓶指定饮料?搭配促销活动后2组优惠价的金额,只比你买2个饭团的金额多30元.若阿贤只多买1瓶指定饮料,且店员会以对消费者最便宜的方式结账,则与原本只买2个饭团相比,他要多付多少元?()A.12B.13C.15D.167.某校组织10名党员教师和38名优秀学生团干部去某地参观学习.学校准备租用汽车,学校可选择的车辆(除司机外)分别可以乘坐4人或6人,为了安全每辆车上至少有1名教师,且没有空座,那么可以选择的方案有()A.2种B.3种C.4种D.5种8.甲、乙二人相距6千米,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇,则甲、乙二人的平均速度各是()A.3千米/时,4千米/时B.4千米/时,2千米/时C.2千米/时,4千米/时D.4千米/时,3千米/时9.周末,小明的妈妈让他到药店购买口罩和酒精湿巾,已知口罩每包3元,酒精湿巾每包2元,共用了30元钱(两种物品都买),小明的购买方案共有()A.3种B.4种C.5种D.6种10.已知三个实数a、b、c满足a+b+c=0,ac+b+1=0(c≠1),则()A.a=1,b2﹣4ac>0B.a≠1,b2﹣4ac≥0C.a=1,b2﹣4ac<0D.a≠1,b2﹣4ac≤011.关于x,y的方程x2m﹣n﹣2+y m+n+1=6是二元一次方程,则m+n=()A.﹣1B.0C.1D.212.小虎、大壮和明明三人玩飞镖游戏,各投5支镖,规定在同一环内得分相同,中靶和得分情况如图,则大壮的得分是()A.20B.22C.23D.25二.填空题13.对于实数a,b,定义运算“◆”:a◆b=,例如4◆3,因为4>3,所以4◆3=.若x,y满足方程组,则x◆y=.14.如图,在长方形ABCD中,放入6个形状、大小都相同的长方形,所标尺寸如图所示,则图中阴影部分面积是,若平移这六个长方形,则图中剩余的阴影部分面积是否改变?(填“变”或“不变”).15.若方程(m﹣4)x|m|﹣3=3y n+1+4是二元一次方程,则m=,n=.16.如果关于x、y的方程组的解是二元一次方程3x+2y=14的一个解,那么m的值是.17.对于实数a,b,定义运算“*”:a*b=,例如:4*2,因为4>2,所以4*2=42﹣4×2=8.若x,y是二元一次方程组的解,则x*y=.三.解答题18.若一个两位数P的十位数字为a,个位数字为b,其中1≤a≤9,1≤b≤9,规定:s=a+b,t=a﹣b,F(P)=2s+3t.例如:P=32,则F(32)=2×(3+2)+3×(3﹣2)=13.(1)求F(21)和F(58)的值;(2)若一个两位数M满足个位数字比十位数字大1,另一个两位数N满足个位数字比十位数字的2倍少3,规定:k=,当F(M)+F(N)=28时,求k的最大值.19.甲、乙两位同学一起解方程组由于甲看错了方程①中的a,得到的解为,乙看错了方程②中的b,得到的解为,试根据上述条件,求解下列问题:(1)求a、b的值;(2)计算.20.在重庆南开中学建校85周年之际,学校举行了隆重的庆祝活动.为感谢参与活动的师生,学校定制了水杯和手账两种纪念品,已知定制2个水杯和3本手账共需180元,定制5个水杯和6本手账共需420元.(1)定制一个水杯和一本手账的单价各是多少元?(2)学校最终决定定制水杯和手账的总数量为600件(其中水杯不超过300个),并委托商家进行包装,现有如下两种方案:方案1:一个水杯的包装费为6元,一本手账的包装费为1元,总费用打8折;方案2:定制一个水杯,就赠送一本手账,并将一个水杯和一本手账作为套装进行包装,此种方案中每个套装的包装费为4元,剩下需要单独定制的单品每件包装费为2元.求定制水杯多少个时,两种方案的总费用相同?(总费用=定制物品的总费用+包装总费用)21.(1)如图的方格纸中每个小方格都是边长为1个单位长度的正方形.若A点的坐标是(1,2),根据所给条件解答下列问题:①请在图中建立适当的直角坐标系,并写出B点的坐标;②若点C的坐标为(﹣3,3),请在所建的直角坐标系中描出C点的位置;③顺次连接点A、B、C得到△ABC,直接写出△ABC的面积.(2)已知方程组,将①×2﹣②能消去x,将②+①能消去y,求4m﹣4n的平方根.。

2.4.2 运用二元一次方程组解决较复杂的实际问题 浙教版七年级数学下册同步练习(含解析)

2.4.2 运用二元一次方程组解决较复杂的实际问题 浙教版七年级数学下册同步练习(含解析)

2.4二元一次方程组的应用第2课时运用二元一次方程组解决较复杂的实际问题基础过关全练知识点1十进制问题1.一个两位数,十位上的数字比个位上的数字的2倍大1,若这个两位数减去36恰好等于个位上的数字与十位上的数字对调后所得的两位数,则这个两位数是()A.86B.68C.97D.732.(2022浙江杭州余杭期中)一个两位数,十位上的数字与个位上的数字之和为7,若把十位上的数字和个位上的数字交换位置,所得的数比原数大9,则原来的两位数是.3.有一个三位数,若将最左边的数字移到最右边,则得到的数比原来的数小45;又知百位上的数字的9倍比由十位上的数字和个位上的数字组成的两位数小3,求原三位数.知识点2求公式中字母的值4.【跨学科·物理】声音在空气中传播的速度随着温度的变化而变化,如果用v表示声音在空气中的传播速度,t表示温度,则v,t满足公式v=at+b,当t=10时,v=336;当t=-10时,v=324,则a,b的值分别为() A.-0.6,330 B.0.6,330C.6,33D.-6,335.【跨学科·物理】(2022浙江杭州上城期中)在弹性限度内,弹簧总长y(cm)与所挂物体质量x(kg)满足公式:y=kx+b(k,b为常数).当挂1 kg物体时,弹簧总长为6.3 cm;当挂4 kg物体时,弹簧总长为7.2 cm,则公式中b的值为.6.【教材变式·P47例2变式】实验表明,某种气体的体积V(L)随着温度t(℃)的变化而变化,它的体积可用公式V=pt+q计算.已测得当t=0时,体积V=100;当t=10时,V=103.5.求:(1)p,q的值;(2)当温度为30 ℃时该气体的体积.知识点3百分比问题7.某校现有学生2 300人,与去年相比,男生人数增加了25%,女生人数减少了25%,学生总数增加了15%.学校现有男生、女生各多少人?8.(2022安徽中考)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元.能力提升全练9.(2022浙江宁波模拟,8,)《九章算术》是中国古代数学著作之一,书中有这样一个问题:今有黄金九枚,白银一十一枚,称之重,适等.交易其一,金轻十三两.问金、银一枚各重几何.其大意:甲袋中装有质量相同的黄金9枚,乙袋中装有质量相同的白银11枚,且两袋的质量相等,两袋互换一枚后,甲袋比乙袋轻13两.问:每枚黄金、白银的质量各为多少两.设一枚黄金的质量为x 两,一枚白银的质量为y 两,则可列方程组为 ( ) A.{9x =11y 9x −y =11y −x +13 B.{9x =11y 9x −y =11y −x −13 C.{9x =11y 8x +y =10y +x +13 D.{9x =11y 8x +y =10y +x −1310.【主题教育·中华优秀传统文化】(2021湖北仙桃、潜江、天门、江汉油田中考,12,)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为 尺.(其大意为现有一根竿和一条绳索,如果用绳索去量竿,绳索比竿长5尺;如果将绳索对折后再去量竿,就比竿短5尺,则绳索长几尺)11.一天,小民问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已经是125岁了,哈哈!”则爷爷现在是 岁.素养探究全练12.【模型观念】某次考试结束后,老师找小强进行了谈话.老师:小强同学,你这次考试的语文、数学、英语三科的总成绩为348分,在下次考试中,要使这三科的总成绩达到382分,你有什么计划吗? 小强:老师,我争取在下次考试中,语文成绩保持124分,英语成绩再多16分,数学成绩增加15%,这样刚好达到382分.请问:小强这次考试的英语、数学成绩各是多少分.13.【模型观念】某出租车公司有出租车100辆,平均每天每辆车消耗的汽油费为80元.为了减少环境污染,市场推出一种将烧汽油改为烧天然气的装置.每辆车的改装价格为4 000元.公司第一次改装了部分车辆后核算:已改装的车辆每天的燃料费是未改装车辆每天燃料费用.公司第二次改装同样多的车辆后,此时已改装的车辆每天的燃料的320.费是未改装车辆每天燃料费用的25(1)公司第一次改装了多少辆出租车?改装后的出租车平均每辆每天的燃料费比改装前下降了百分之几?(2)若公司一次性将全部出租车改装,则多少天后就可以从节省的燃料费中收回改装成本?答案全解全析基础过关全练1.D 设这个两位数的十位上的数字为x,个位上的数字为y. 根据题意得{x =2y +1,(10x +y)−36=10y +x,解得{x =7,y =3,则这个两位数是73.2.答案 34解析 设原来的两位数的十位上的数字为x,个位上的数字为y,依题意得{x +y =7,10y +x −(10x +y)=9,解得{x =3,y =4, ∴原来的两位数为34.3.解析 设原三位数的百位上的数字为x,十位上的数字和个位上的数字组成的两位数为y,由题意,得{9x =y −3,10y +x =100x +y −45,解得{x =4,y =39,则4×100+39=439.故原三位数为439.4.B ∵v,t 满足公式v=at+b,当t=10时,v=336;当t=-10时,v=324, ∴{10a +b =336,−10a +b =324,解得{a =0.6,b =330.5.答案 6解析 依题意得{k +b =6.3,4k +b =7.2, 解得{k =0.3,b =6,∴公式中b 的值为6.6.解析 (1)由题意得{q =100,10p +q =103.5,解得{p =0.35,q =100.(2)由(1)可知V=0.35t+100.当t=30时,V=110.5.故当温度为30 ℃时,该气体的体积为110.5 L.7.解析 设学校现有男生x 人,女生y 人,则{x +y =2 300,x 1+25%+y 1−25%= 2 3001+15%,解得{x =2 000,y =300. 答:学校现有男生2 000人,女生300人.8.解析 (1)题表中空格填1.25x+1.3y(表格略).(2)由题表可得,{x +y =520,1.25x +1.3y =520+140,解得{x =320,y =200,∴1.25x=400,1.3y=260. 答:2021年进口额是400亿元,出口额是260亿元.能力提升全练9.D 根据9枚黄金与11枚白银的质量相等可知,9x=11y,根据两袋互相交换1枚后,甲袋比乙袋轻13两可知,8x+y=10y+x-13,故可列方程组为{9x =11y,8x +y =10y +x −13.故选D.10.答案 20解析 设绳索长为x 尺,竿长为y 尺,依题意得{x −y =5,y −12x =5,解得{x =20,y =15,∴绳索长为20尺. 11.答案 70解析 设爷爷现在是x 岁,小民现在是y 岁,依题意得{x −y =y +40,x +(x −y)=125,解得{x =70,y =15. 故爷爷现在是70岁.素养探究全练12.解析 设小强这次考试的英语成绩为x 分,数学成绩为y 分,由题意得{124+x +y =348,124+x +16+(1+15%)y =382,解得{x =104,y =120.答:小强这次考试的英语成绩为104分,数学成绩为120分.13.解析 (1)设公司第一次改装了x 辆车,改装后的出租车平均每辆每天的燃料费比改装前下降了y%.根据题意,得{x(1−y%)×80=320×(100−x)×80,2x(1−y%)×80=25×(100−2x)×80, 解得{x =20,y =40.答:公司第一次改装了20辆车,改装后的出租车平均每辆每天的燃料费比改装前下降了40%.(2)设公司一次性将全部出租车改装,a 天后可以收回改装成本,则100×80×40%a=4 000×100,解得a=125.答:125天后就可以从节省的燃料费中收回改装成本.。

七年级数学—二元一次方程组的解法

七年级数学—二元一次方程组的解法

根据市场调查,某种消毒液的大瓶装 (500g)和小瓶装(250g),两种产品的销 2:5 售数量(按瓶计算)的比为 某厂每天 生产这种消毒液22.5吨,这些消毒液应该分 装大、小瓶两种产品各多少瓶?
解:设这些消毒液应该分装x大瓶、y小瓶。 ① 5 x 2 y 根据题意可 ② 列方程组: 500 x 250 y 22500000 5 由 ① 得: y x ③ 2 5 500 x 250 x 22500000 把 ③ 代入 ② 得: 2 x 20000 解得:x=20000
x+4y=13 x=13 - 4y
② ③
把y=2代入① 或②可以吗?
把③代入① ,得 2(13 - 4y)+3y=16 26 –8y +3y =16 -5y= -10 y=2 把y=2代入③ ,得 x=5 ∴原方程组的解是 x=5 y=2
把求出的解 代入原方程 组,可以知 道你解得对 不对。
例2 学以致用
七年级数学下册(人教版)
8.2消元—二元一次方程组的解法
(第1课时)
不如好之者,
好之者不如乐之者。
本节学习目标 :
1、会用代入法解二元一次方程组。 2、初步体会解二元一次方程组的基本思 想——“消元”。 3、通过对方程中未知数特点的观察和分析, 明确解二元一次方程组的主要思路是 “消元”,从而促成未知向已知的转化, 培养观察能力和体会化归的思想。
y 22 x 由①我们可以得到:
再将②中的y换为 22 x 就得到了③ ③是一元一次方程,相信大家都会解。那么 根据上面的提示,你会解这个方程组吗?
比较一下上面的 方程组与方程有 什么关系?
二元一次方程组中有两个未知数, 如果消去其中一个未知数,将二元一 次方程组转化为我们熟悉的一元一次 方程,我们就可以先解出一个未知数, 然后再设法求另一未知数.这种将未知 数的个数由多化少、逐一解决的思想, 叫做消元思想.

专题04第二章二元一次方程组[能力提优测评卷]七年级数学下册新考向多视角同步训练(浙教版)(解析版)

专题04第二章二元一次方程组[能力提优测评卷]七年级数学下册新考向多视角同步训练(浙教版)(解析版)

2020-2021学年度浙教版七年级数学下册新考向多视角同步训练第二章 二元一次方程组[能力提优测评卷]一,单项选择题(本大题共10小题,每小题3分,共30分)1.(2018·浙江嘉兴市·七年级期末)下列四个方程:①x 2+y =0;①x =2y +1;①3x y+=2y ;①x 2+x -2=0.其中为二元一次方程的是( ) A .① B .①C .①D .①【答案】C 【分析】根据二元一次方程的定义解答. 【详解】①x 2+y =0,未知数的最高次是2,是二元二次方程;①x =2y+1,不是整式方程,故不是二元一次方程; ①3x y+=2y 是二元一次方程; ①x 2+x -2=0是一元二次方程,故不是二元一次方程. 故选:C . 【点睛】本题考查了二元一次方程的定义,判断一个方程是否是二元一次方程,首先要看是否是整式方程,然后看化简后是否是只含有两个未知数且未知数的最高次数.2.(2020·浙江杭州市·七年级期中)二元一次方程3420x y +=的正整数解有( )试卷第2页,总25页A .1组B .2组C .3组D .4组【答案】A 【分析】通过将方程变形,得到以x 的代数式,利用倍数逻辑关系,枚举法可得. 【详解】①由3420x y += 可得,34y 203, 54x y x =-=-,,x y 是正整数. ①根据题意,x 是4的倍数,则05x y ==,(不符题意);4,2x y == 是方程的解,8,1x y ==- (不符题意).故答案是A . 【点睛】本题既考查正整数的概念又考查代数式的变形,理解二元一次方程解的概念是本题的关键.3.(2020·浙江七年级月考)如果方程组54356x y kx y -=⎧⎨+=⎩的解中的x 与y 互为相反数,则k 的值为( ) A .1 B .1或1-C .27-D .5-【答案】C 【分析】根据x 与y 互为相反数,得到y=-x ,代入方程组求出k 的值即可. 【详解】解:由题意得:y=-x ,代入方程组得:926x kx ⎧⎨-⎩==,①x=-3 解得:k=-27. 故选:C . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.4.(2020·绍兴市文澜中学七年级期中)已知关于x 、y 的方程组2323216ax by cax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,则关于x 、y 的方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解是 ( )A .42x y =⎧⎨=⎩B .32x y =⎧⎨=⎩C .52x y =⎧⎨=⎩D .51x y =⎧⎨=⎩【答案】B 【分析】方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(),由方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩即可求得方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 【详解】方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(),试卷第4页,总25页①方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,①142x y +=⎧⎨=⎩,即方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 故选B. 【点睛】本题考查了二元一次方程组的解,把方程组232232316ax by a cax by a c -+=⎧⎨++=⎩化为213231216a x by c a x by c +-=⎧⎨++=⎩()()是解决问题的关键. 5.(2018·余姚市兰江中学七年级期中)已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,则m ,n 的值为( ) A .m =1,n =-1 B .m =-1,n =1 C .14m ,n 33==-D .14,33m n =-=【答案】A 【分析】根据二元一次方程的概念列出关于m 、n 的方程组,解之即可. 【详解】①关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,①22111m n m n --=⎧⎨++=⎩即23m n m n -=⎧⎨+=⎩,解得:11m n =⎧⎨=-⎩,故选:A.【点睛】本题考查了二元一次方程的定义、解二元一次方程组,理解二元一次方程的定义,熟练掌握二元一次方程组的解法是解答的关键.6.(2020·浙江杭州市·七年级其他模拟)如图,由33⨯组成的方格中每个方格内均有代数式(图中只列出了部分代数式),方格中每一行(横)、每一列(竖)以及每一条对角线(斜)上的三个代数式的和均相等,则方格中“a”的数是()A.6B.7C.8D.9【答案】B【分析】根据第一列、第三行、对角线建立关于x、y的方程组,解方程组求出x、y的值,由此即可得.【详解】由题意得:29411299211 y y y xy y x++=-+⎧⎨++=-+⎩,整理得:422 2311x yx y+=⎧⎨+=⎩,试卷第6页,总25页解得25x y =-⎧⎨=⎩,则2949y y a x ++=-+,即()5259429a +⨯+=-⨯-+, 解得7a =, 故选:B . 【点睛】本题考查了二元一次方程组的应用,依据题意,正确建立方程组是解题关键.7.(2019·浙江宁波市·七年级期中)已知关于x 、y 的方程组3453x y ax y a+=-⎧⎨-=⎩,给出下列结论:①51x y =⎧⎨=-⎩是方程组的解;①无论a 取何值,x ,y 的值都不可能互为相反数;①当a =1时,方程组的解也是方程x +y =4﹣a 的解;①x ,y 的都为自然数的解有4对. 其中正确的个数为( ) A .4个 B .3个C .2个D .1个【答案】B 【解析】 【分析】①将x=5,y=-1代入检验即可做出判断;①将x 和y 分别用a 表示出来,然后求出x+y=3来判断; ①将a=1代入方程组求出方程组的解,代入方程中检验即可; ①有x+y=3得到x 、y 都为自然数的解有4对. 【详解】①将x=5,y=-1代入方程组得:534553aa--⎧⎨+⎩=①=②,由①得a=2,由①得a=103,故①不正确.①解方程3453x y ax y a+-⎧⎨-⎩=①=②①-①得:8y=4-4a解得:y=12a -将y的值代入①得:x=5 2a+.所以x+y=3,故无论a取何值,x、y的值都不可能互为相反数,故①正确.①将a=1代入方程组得:3353 x yx y+⎧⎨-⎩==,解此方程得:30 xy⎧⎨⎩==,将x=3,y=0代入方程x+y=3,方程左边=3=右边,是方程的解,故①正确.①因为x+y=3,所以x、y都为自然数的解有3xy⎧⎨⎩==,3xy==⎧⎨⎩,12xy==⎧⎨⎩,21xy⎧⎨⎩==.故①正确.则正确的选项有①①①.故选B.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.试卷第8页,总25页8.(2020·杭州市十三中教育集团(总校)七年级期中)若关于x ,y 的方程组4510(1)8x y kx k y +=⎧⎨--=⎩中x 的值比y 的相反数大2,则k 是( ) A .-3 B .-2C .-1D .1【答案】A 【分析】根据“x 的值比y 的相反数大2”得出“x=-y+2”,再代入到方程组的第一个方程得到y 的值,进而得出x 的值,把x ,y 的值代入方程组中第二方程中求出k 的值即可. 【详解】①x 的值比y 的相反数大2, ①x=-y+2,把x=-y+2代入4x+5y=10得,-4y+8+5y=10, 解得,y=2, ①x=0,把x=0,y=2代入kx -(k -1)y=8,得k=-3. 故选A. 【点睛】此主要考查了与二元一次方程组的解有关的问题,解题的关键是列出等式“x=-y+2”.9.(2018·浙江杭州市·七年级月考)已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;①若此方程组的解也是方程61516x y +=的解,则10k =;①无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( ) A .①①①B .①①C .①①D .①①【答案】A 【分析】根据二元一次方程组的解法逐个判断即可. 【详解】当5k =时,方程组为3563510x y x y +=⎧⎨+=⎩,此时方程组无解∴结论①正确由题意,解方程组35661516x y x y +=⎧⎨+=⎩得:2345x y ⎧=⎪⎪⎨⎪=⎪⎩把23x =,45y =代入310x ky +=得2431035k ⨯+=解得10k =,则结论①正确解方程组356310x y x ky +=⎧⎨+=⎩得:20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩又k 为整数x 、y 不能均为整数∴结论①正确综上,正确的结论是①①① 故选:A . 【点睛】试卷第10页,总25页本题考查了二元一次方程组的解与解法,掌握二元一次方程组的解法是解题关键. 10.(2018·浙江七年级月考)已知等式()()32558A B x A B x -++=-对于一切实数x 都成立,则A 、B 的值为( )A .12A B =⎧⎨=-⎩B .64A B =⎧⎨=-⎩C .12A B =⎧⎨=⎩D .21A B =⎧⎨=⎩【答案】A 【分析】根据条件“对于一切实数x 都成立”,将原式转化为关于A 、B 的二元一次方程组解答. 【详解】原式可化为(3A -B -5)x+(2A+5B+8)=0, 由于对于一切实数x 都成立, 故3502580A B A B --⎧⎨++⎩==解得12A B ⎧⎨-⎩== 故选A . 【点睛】此题考查解二元一次方程组,解题关键在于转化为关于A 、B 的二元一次方程组;体现了转化思想的应用.二、填空题(本大题共7小题,每小题3分,共21分)11.(2019·温州市第二实验中学七年级期中)若关于,x y 的二元一次方程231ax by +=的一组解是11x y =⎧⎨=-⎩,则48a b ÷的值为__________.【答案】2 【分析】根据方程组解的定义,把问题转化为关于a 、b 的方程,求出2a -3b 即可解决问题;【详解】把11x y =⎧⎨=-⎩代入231ax by +=,可得:2a -3b=1,232348222a b a b a b -==÷÷把2a -3b=1代入2322a b -=;故答案为:2【点睛】本题考查二元一次方程的解,解题的关键是理解题意,学会用转化的思想思考问题,属于常见题型.12.(2018·浙江七年级月考)若方程组40ax by ax by -=⎧⎨+=⎩的解为21x y =⎧⎨=⎩,则23a b +的值为______.【答案】4-【分析】 将21x y =⎧⎨=⎩代入40ax by ax by -=⎧⎨+=⎩得:2420a b a b -=⎧⎨+=⎩,然后解出方程组代入计算即可. 【详解】①21x y =⎧⎨=⎩, ①2420a b a b -=⎧⎨+=⎩,试卷第12页,总25页解得:1a =,2b =-,①()232324a b +=+⨯-=-,所以答案为4-.【点睛】本题主要考查了二元一次方程组的求解,熟练掌握相关方法是解题关键.13.(2019·浙江绍兴市·七年级期末)对于任意实数,a b ,定义关于“⊗”的一种运算如下:2a b a b ⊗=+。

2020-2021学年苏科版数学七年级下《二元一次方程组》实际应用培优提升(二)含答案

2020-2021学年苏科版数学七年级下《二元一次方程组》实际应用培优提升(二)含答案

苏科版数学七年级下《二元一次方程组》实际应用培优专练习(二)1.某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车.据了解,2辆A型汽车和3辆B型汽车的进价共计80万元;3辆A型汽车和2辆B型汽车的进价共计95万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请直接写出该公司的采购方案.2.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.3.某厂工人小王某月工作的部分信息如下:信息一:工作时间为每天上午8:00~12:00,下午14:00~16:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系如表:生产甲种产品件数(件)生产乙种产品件数(件)所用总时间(分钟)10 10 35030 20 850信息三:按件计酬,每生产1件甲种产品可得1.5元,每生产1件乙种产品可得2.8元.根据以上信息,回答下列问题:(1)小王每生产1件甲种产品、1件乙种产品分别需要多少分钟?(2)小王该月最多能得多少元?此时分别生产甲、乙两种产品多少件?4.某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35 (1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.5.某商场出售A、B两种型号的自行车,已知购买1辆A型号自行车比1辆B型号自行车少20元,购买2辆A型号自行车与3辆B型号自行车共需560元,求A、B两种型号自行车的购买价各是多少元?6.深圳市某小区为了以崭新的面貌迎接“创文”工作,决定请甲、乙两个装饰公司对小区外墙进行装饰维护.若由甲、乙两个公司合作,需8天完成,小区需支付费用12.8万元;若由甲公司单独做4天后,剩下的由乙公司来做,还需10天才能完成,小区需支付费用12.4万元.问:甲、乙两个装饰公司平均每天收取的费用分别是多少万元?7.某电器商场销售进价分别为120元、190元的A、B两种型号的电风扇,如下表所示是近二周的销售情况(进价、售价均保持不变,利润=销售收入﹣进货成本):销售时段销售数量销售收入A种型号B种型号第一周 5 6 2310第二周8 9 3540 (1)求A、B两种型号的电风扇的销售单价;(2)若商场再购进这两种型号的电风扇共120台,并且全部销售完,该商场能否实现这两批电风扇的总利润为8240元的目标?若能,请给出相应的采购方案:若不能,请说明理由.8.某大学组织“大手拉小手,义卖献爱心”活动,该校美术社团计划购买黑、白两种颜色的文化衫进行手绘创作后出售,并将所获利润全部捐给山区困难孩子.已知美术社团从批发市场花4800元购买了黑、白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表所示:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35(1)美术社团购进黑、白文化衫各多少件?(要求列方程组解答)(2)这批文化衫手绘创作后全部售出,求美术社团这次义卖活动所获利润.9.今年新型冠状病毒肺炎(COVID﹣19,简称为新冠肺炎)疫情在全球蔓延,我们国家坚决打赢这场无硝烟的人民战争,我市各单位为同学们的返校复学采取了一系列前所未有的举措.复课返校后,为了拉大学生锻炼的间距,某学校决定增购适合独立训练的两种体育器材:跳绳和毽子,原来购进5根跳绳和6个毽子共需196元;购进2根跳绳和5个毽子共需120元.(1)求跳绳和毽子的售价原来分别是多少元?(2)学校计划购买跳绳和毽子两种器材共400个,由于受疫情影响,商场决定对这两种器材打折销售,其中跳绳以八折出售,毽子以七五折出售,学校要求跳绳的数量不少于毽子数量的3倍,跳绳的数量不多于310根,请你求出学校花钱最少的购买方案.10.某校八年级师生共368人准备参加社会实践活动,现已预备了A、B两种型号的客车,除司机外A型号客车有49个座,B型号客车有37个座,两种客车共8辆,刚好坐满,求A、B两种型号的客车各用了多少辆?11.杭州某公司准备安装完成5700辆如图所示款共享单车投入市场.由于抽调不出足够熟练工人,公司准备招聘一批新工人.生产开始后发现:1名熟练工人和2名新工人每天共安装28辆共享单车;2名熟练工人每天装的共享单车数与3名新工人每天安装的共享单车数一样多.(1)求每名熟练工人和新工人每天分别可以安装多少辆共享单车?(2)若公司原有熟练工a人,现招聘n名新工人(a>n),使得最后能刚好一个月(30天)完成安装任务,已知工人们安装的共享单车中不能正常投入运营的占5%,求n的值.12.五一节前,某商店拟用1000元的总价购进A、B两种品牌的电风扇进行销售,为更好的销售,每种品牌电风扇都至少购进1台.已知购进3台A种品牌电风扇所需费用与购进2台B种品牌电风扇所需费用相同,购进1台A种品牌电风扇与2台B种品牌电风扇共需费用400元.(1)求A、B两种品牌电风扇每台的进价分别是多少元?(2)销售时,该商店将A种品牌电风扇定价为180元/台,B种品牌电风扇定价为250元/台,为能在销售完这两种电风扇后获得最大的利润,该商店应采用哪种进货方案?13.某集团购买了150吨物资打算运往某地支援,现有甲、乙、丙三种车型供选择,每辆汽车的运载能力和运费如表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆) 5 8 10汽车运费(元/辆)1000 1200 1500(1)若全部物资都用甲、乙两种车型来运送,需运费24000元,问分别需甲、乙两种车型各多少辆?(2)若该集团决定用甲、乙、丙三种汽车共18辆同时参与运送,请你写出可能的运送方案,并帮助该集团找出运费最省的方案(甲、乙、丙三种车辆均要参与运送).14.滨江区各学校积极参加“给贫困山区献爱心”活动,教育局筹集了120吨的衣物书籍等物品运往山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆) 5 8 10汽车运费(元/辆)200 250 300(1)全部物资可用甲型车8辆,乙型车5量,丙型车辆来运送.(2)若全部物资都用甲、乙两种车型来运送,需运费4100元,问分别需甲、乙两种车型各几辆?(3)为了节省运费,教育局打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?参考答案1.解:(1)设A型汽车每辆的进价为x万元,B型汽车每辆的进价为y万元,依题意,得:,解得:,答:A型汽车每辆的进价为25万元,B型汽车每辆的进价为10万元.(2)设购进A型汽车m辆,购进B型汽车n辆,m<n,依题意,得:25m+10n=200,∴m=8﹣n.∵m,n均为正整数,∴n为5的倍数,∴或或,∵m<n,∴不合题意舍去,∴共2种购买方案,方案一:购进A型车4辆,B型车10辆;方案二:购进A型车2辆,B型车15辆.2.解:(1)设学校购进黑色文化衫x件,白色文化衫y件,依题意,得:,解得:.答:学校购进黑色文化衫80件,白色文化衫20件.(2)(45﹣25)×80+(35﹣20)×20=1900(元).答:该校这次义卖活动所获利润为1900元.3.解:(1)设小王每生产1件甲种产品需要x分钟,每生产1件乙种产品需要y分钟,依题意,得:,解得:.答:小王每生产1件甲种产品需要15分钟,每生产1件乙种产品需要20分钟.(2)设小王该月生产m件甲种产品,该月获得的报酬为w元,则小王该月生产件乙种产品,依题意,得:w=1.5m+2.8×=﹣0.6m+1260.∵﹣0.6<0,∴当m=60时,w取得最大值,最大值为1224,此时=405.答:小王该月最多能得1224元,此时生产甲种产品60件,乙种产品405件.4.解:(1)设学校购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:学校购进黑文化衫160件,白文化衫40件.(2)(45﹣25)×160+(35﹣20)×40=3800(元).答:该校这次义卖活动共获得3800元利润.5.解:设A型号自行车的购买价为x元,B型号自行车的购买价为y元,依题意,得:,解得:.答:A型号自行车的购买价为100元,B型号自行车的购买价为120元.6.解:设甲装饰公司平均每天收取的费用为x万元,乙装饰公司平均每天收取的费用为y 万元,依题意,得:,解得:.答:甲装饰公司平均每天收取的费用为0.6万元,乙装饰公司平均每天收取的费用为1万元.7.解:(1)设A种型号的电风扇的销售单价为x元/台,B种型号的电风扇的销售单价为y 元/台,依题意,得:,解得:.答:A种型号的电风扇的销售单价为150元/台,B种型号的电风扇的销售单价为260元/台.(2)设再购进A种型号的电风扇m台,则购进B种型号的电风扇(120﹣m)台,依题意,得:2310+3540+150m+260(120﹣m)﹣120(5+8+m)﹣190[6+9+(120﹣m)]=8240,解得:m=40,∴120﹣m=80.答:再购进A种型号的电风扇40台,B种型号的电风扇80台,就能实现这两批电风扇的总利润为8240元的目标.8.解:(1)设美术社团购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:美术社团购进黑文化衫160件,白文化衫40件.(2)(45﹣25)×160+(35﹣20)×40=3800(元).答:美术社团这次义卖活动共获得3800元利润.9.解:(1)设跳绳原来的售价为x元,毽子原来的售价为y元,依题意得:,解得:.答:跳绳原来的售价为20元,毽子原来的售价为16元.(2)设学校购进m根跳绳,则购进(400﹣m)个毽子,依题意得:,解得:300≤m≤310.设学校购进跳绳和毽子一共花了w元,则w=20×0.8m+16×0.75(400﹣m)=4m+4800,∵4>0,∴w随m的增大而增大,∴当m=300时,w取最小值,此时400﹣m=100.∴学校花钱最少的购买方案为:购进跳绳300根,毽子100个.10.解:设A型号客车用了x辆,B型号客车用了y辆,依题意,得:,解得:.答:A型号客车用了6辆,B型号客车用了2辆.11.解:(1)设每名熟练工人每天可以安装x辆共享单车,每名新工人每天可以安装y辆共享单车,根据题意得:,解得:.答:每名熟练工人每天可以安装12辆共享单车,每名新工人每天可以安装8辆共享单车.(2)根据题意得:30×(8n+12a)×(1﹣5%)=5700,整理得:n=25﹣a,∵n,a均为正整数,且n<a,∴,,.∴n的值为1或4或7.12.解:(1)设A、B两种品牌电风扇每台的进价分别是x元、y元,,解得,答:A、B两种品牌电风扇每台的进价分别是100元、150元;(2)设购进A种品牌的电风扇a台,购进B种品牌的电风扇b台,利润为w元,w=(180﹣100)a+(250﹣150)b=80a+100b,∵某商店拟用1000元的总价购进A、B两种品牌的电风扇进行销售,为更好的销售,每种品牌电风扇都至少购进1台,∴100a+150b=1000且a≥1,b≥1,∴2a+3b=20(a≥1,b≥1),∴或或,∴当a=1,b=6时,w=80×1+100×6=680,当a=4,b=4时,w=80×4+100×4=720,当a=7,b=2时,w=80×7+100×2=760,由上可得,当a=7,b=2时,w取得最大值,答:为能在销售完这两种电风扇后获得最大的利润,该商店应采用购进A种品牌的电风扇7台,购进B种品牌的电风2台.13.解:(1)设需甲种车型x辆,乙种车型y辆,由题意得:,解得:,答:需甲种车型6辆,需乙种车型15辆;(2)设需甲车型x辆,乙车型y辆,丙车型z辆,由题意得:,消去z得:5x+2y=30,x=6﹣y,∵甲、乙、丙三种车型都参与运送,∴x、y、z是正整数,且不大于18,得y=5,10,解得:,,∴有两种运送方案:①甲车型4辆,乙车型5辆,丙车型9辆;②甲车型2辆,乙车型10辆,丙车型6辆;∴应该是甲车型4辆,乙车型5辆,丙车型6辆;或甲车型2辆,乙车型10辆,丙车型3辆;两种方案的运费分别是:①1000×4+1200×5+1500×9=23500(元),②1000×2+1200×10+1500×6=23000(元),∵23000<23500,∴甲车型2辆,乙车型10辆,丙车型6辆,运费最省.14.解:(1)根据题意得:(120﹣5×8﹣5×8)÷10=4(辆),答:丙型车需4辆来运送.故答案为:4.(2)设需要甲x辆,乙y辆,根据题意得:,解得:,答:分别需甲、乙两种车型为8辆和10辆.(3)设甲车有a辆,乙车有b辆,则丙车有(14﹣a﹣b)辆,由题意得5a+8b+10(14﹣a﹣b)=120,即a=4﹣b,∵a、b、14﹣a﹣b均为正整数,∴b只能等于5,从而a=2,14﹣a﹣b=7,∴甲车2辆,乙车5辆,丙车7辆,则需运费200×2+250×5+300×7=3750(元),答:甲车2辆,乙车5辆,丙车7辆,需运费3750元.。

七年级数学下册二元一次方程组课件人教版

七年级数学下册二元一次方程组课件人教版
1.复习
(1)用代入法解二元一次方程组的基本思想是什么? (2)用代入法解下列方程组,并检验所得结果是否正 确.
3 x 2 y 13 3 x 2 y 5 (1) (2) x 3 y 2
对于二元一次方程组,是否存在其他方法,也可以消 去一个未知数,达到化“二元”为“一元”的目的呢?
解: 略
总结2
如果两个方程中,未知数系数的绝对值都不相等,可 以在方程两边都乘以同一个适当的数,使两个方程中 有一个未知数的系数绝对值相等,然后再加减消元.
用加减法解二元一次方程组的步骤:
(1) 方程组的两个方程中,如果同一个未知数的系数既不互为相 反数又不相等,就用适当的数去乘方程的两边,使一个未知数的 系数互为相反数或相等; (2) 把两个方程的两边分别相加或相减,消去一个未知数,得到 一个一元一次方程;
2.新课
第(2)题的两个方程中,未知数 y 的系数有什么特 点? 解:①+②,得 6 x 18
把 x 3 代入①,得 9 2 y 13 ∴ y2
x 3 ∴ y 2
试比较用这种方法得到的 x 、y 值是否与用代入法得到 的相同?
问题1:上面方程组的两个方程中,因为y 的系数互 为相反数,所以我们把两个方程相加,就消去了 y .观察一下,
x
(3)把 y 3 代入①, 的值是多少?是代入①计算 简单还是代入②计算简单?
x
总结1
用加减法解二元一次方程组的条件是某个未知数的系 数绝对值相等.
例2 解方程组
9 x 2 y 15 3x 4 y 10
(1) (2)
(1)上面的方程组是否符合用加减法消元的条件? (2)如何转化可使某个未知数系数的绝对值相等?

人教版七年级数学下册8.1《二元一次方程组》说课稿

人教版七年级数学下册8.1《二元一次方程组》说课稿

人教版七年级数学下册8.1《二元一次方程组》说课稿一. 教材分析《二元一次方程组》是人教版七年级数学下册第8.1节的内容,主要包括二元一次方程组的定义、解法及其应用。

这部分内容是学生学习方程组的基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。

在教材中,通过引入实际问题,引导学生认识和理解二元一次方程组,并运用数学方法解决实际问题。

二. 学情分析学生在学习本节内容前,已经掌握了整式的加减、一元一次方程的解法等基础知识。

但七年级的学生对抽象的数学概念和逻辑推理能力尚在培养中,因此,在教学过程中,需要注重引导学生从具体问题中提炼出数学模型,培养学生的逻辑思维和解决问题的能力。

三. 说教学目标1.知识与技能:让学生掌握二元一次方程组的定义、解法及其应用,能运用所学知识解决实际问题。

2.过程与方法:通过合作学习、探究学习,培养学生提出问题、分析问题、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,提高学生运用数学知识解决实际问题的能力。

四. 说教学重难点1.重点:二元一次方程组的定义、解法及其应用。

2.难点:如何引导学生从具体问题中提炼出数学模型,以及运用方程组解决实际问题。

五. 说教学方法与手段1.教学方法:采用启发式教学、案例教学、合作学习等方法,引导学生主动探究、积极思考。

2.教学手段:利用多媒体课件、黑板、粉笔等传统教学手段,结合数学软件、网络资源等现代教育技术,提高教学效果。

六. 说教学过程1.导入:通过生活实例引入二元一次方程组的概念,激发学生学习兴趣。

2.新课导入:讲解二元一次方程组的定义、解法,引导学生掌握解题方法。

3.案例分析:分析实际问题,引导学生运用方程组解决问题。

4.小组讨论:学生分组讨论,总结解题方法,分享解题心得。

5.练习巩固:布置练习题,让学生巩固所学知识。

6.课堂小结:总结本节课的主要内容,强调重点知识点。

7.课后作业:布置课后作业,巩固所学知识,提高解题能力。

2020—2021学年青岛版七年级下数学二元一次方程组单元测试题含答案

2020—2021学年青岛版七年级下数学二元一次方程组单元测试题含答案

2020-2021学年七年级下册数学青岛新版《二元一次方程组》单元测试题一.选择题1.下列方程组中,是二元一次方程组的是()A.B.C.D.2.小明购买了5本日记本、2支钢笔、3支圆珠笔共花了24.5元,小红购买了同样的日记本3本、钢笔6支、圆珠笔5支共花了43.5元,小华购买了同样的1本日记本、1支钢笔和1支圆珠笔,则小华花的钱是()A.6.5元B.8.5元C.13.5元D.无法确定3.以为解的二元一次方程组()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个4.若方程y=kx+b当x与y互为相反数时,b比k少1,且x=,则k、b的值分别是()A.2,1B.,C.﹣2,1D.,﹣5.若2x+5y﹣3z=2,3x+8z=3,则x+y+z的值等于()A.0B.1C.2D.无法求出6.国家为九年义务教有期间的学生实行“两免一补”政策.下表是某中学提供教科书补助的情况:七年级八年级九年级合计每人补助金额(元)1109050…人数(人)80300补助总金额(元)400026200如果要知道空白处的数据,可设七年级有x人,八年级有y人,根据题意列出方程组为()A.B.C.D.7.一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付给两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付给两组费用共3480元,甲、乙两组单独工作一天,商店应各付多少元?()A.甲单独工作一天商店应付240元,乙单独工作一天商店应付320元B.甲单独工作一天商店应付200元,乙单独工作一天商店应付180元C.甲单独工作一天商店应付140元,乙单独工作一天商店应付300元D.甲单独工作一天商店应付300元,乙单独工作一天商店应付140元二.填空题8.小红有5分和2分的硬币共20枚,共6角7分,设5分硬币有x枚,2分硬币有y枚,则可列方程组为.9.关于x、y的方程组的解互为相反数,则m=.10.对于有理数,规定新运算:x※y=ax+by,其中a、b是常数,等式右边是通常的加法和乘法运算,若2※3=8,1※2=5,则a+b=.11.某车间有28个工人生产某种螺栓和螺母.每人每天能生产螺栓12个或螺母18个,为了合理分配劳动使生产的螺栓和螺母配套(一个螺栓配两个螺母),应分配人生产螺栓.12.如图,一个正方形由四个相同的小长方形组成,如果每个小长方形的周长为25,那么正方形的面积为.13.用3.50元买了10分、20分、50分三种邮票共18枚,其中10分邮票的总价与20分邮票的总价相同,则50分邮票共买了枚.14.如果中x、y互为相反数,则a=.三.解答题15.(1)(2)(3)(4).16.已知关于x、y的二元一次方程组的解互为相反数,求m的值.17.在等式y=ax2+bx+c中,当x=0时,y=0;当x=1时,y=﹣1;当x=﹣1时,y=2,求a,b,c的值.18.有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件共需315元;若购甲4件、乙10件、丙1件共需420元.问购甲、乙、丙各5件共需多少元?19.某体育文化用品商店购进篮球和排球共30个,进价和售价如下表,全部销售完后共获利润660元.篮球排球进价(元/个)150120售价(元/个)175140(1)请利用二元一次方程组求购进篮球和排球各多少个?(2)销售8个篮球的利润与销售几个排球的利润相等?20.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?参考答案与试题解析一.选择题1.解:A、方程(1)未知项的次数是2次;B、含3个未知数;C、符合二元一次方程组;D、方程(1)的未知项的次数是2次.故选:C.2.解:(24.5+43.5)÷8=68÷8=8.5(元).答:小华花的钱是8.5元.故选:B.3.解:根据方程组的解的定义,则以为解的二元一次方程组有无数个.故选:D.4.解:由题意可列方程组,当x=时,代入方程组解得k=,把k的值代入第二个方程得:b=﹣1=﹣.故选:D.5.解:把2x+5y﹣3z=2,3x+8z=3两式相加得:5x+5y+5z=5,两边同除以5得:x+y+z=1.故选:B.6.解:设七年级有x人,八年级有y人,根据题意得:,故选:D.7.解:设甲单独做一天商店应付x元,乙单独做一天商店应付y元,由题意得:,解得:.即甲单独工作一天商店应付300元,乙单独工作一天商店应付140元.故选:D.二.填空题8.解:根据5分和2分的硬币共20枚,得方程x+y=20;根据共6角7分,得方程5x+2y=67.可列方程组为.9.解:根据题意可得:,消元得m=2.故本题答案为:2.10.解:∵x※y=ax+by,∴2※3=8可转化为:2a+3b=8,1※2=5可转化为:a+2b=5.将这两个方程组成方程组:解这个方程组得:.∴a+b=1+2=3.故答案为3.11.解:设分配x人生产螺栓,则有(28﹣x)人生产螺母,根据题意得:12x×2=(28﹣x)×18,解得:x=12,答:应分配12人生产螺栓,16人生产螺母,才能使每天生产量刚好配套.故答案为:12.12.解:设长方形的长为x,宽为y,由题意得,,解得:,故正方形的边长为10,面积为100.故答案为:100.13.解:10分、20分、50的邮票各有x,y,z张.由③得x=2y,把x=2y代入①得3y+z=18④,代入②得4y+5z=35⑤,由④得z=18﹣3y⑥,把⑥代入⑤得y=5,∴z=3.故答案为:3.14.解:由题意得:x+y=0,即y=﹣x,代入方程组得:,解得:a=﹣6,x=﹣2.故答案为:﹣6.三.解答题15.解:(1)方程组整理为,②﹣①得y+2y=3,解得y=1,把y=1代入②得x+1=2,解得x=1.所以方程组的解为;(2),①+②得x+2x=9,解得x=3,把x=3代入①得3+y=6,解得y=3,所以方程组的解为;(3),①﹣②×4得3y+8y=﹣11,解得y=﹣1,把y=﹣1代入②得x+2=4,解得x=2,所以方程组的解为;(4),①+②得x+3x=14,解得x=,把x=代入①+2y=9,解得y=,所以方程组的解为.16.解:根据题意得:x+y=0,即y=﹣x,代入方程组得:,可得18m+9=2m+1,解得:m=﹣.17.解:根据题意得,②+③得2a+2c=1④,把①代入④得2a=1,解得a=,把a=,c=0代入②得+b+0=﹣1,解得b=﹣,所以方程组的解为.18.解:设购买甲、乙、丙各1件分别需要x,y,z元,则依题意,∴,由(3)×3﹣(4)×2得x+y+z=105,∴5(x+y+z)=525(元).19.解:(1)设购进篮球x个,购进排球y个,由题意,得,解得:.答:购进篮球12个,购进排球18个;(2)设销售8个篮球的利润与销售a个排球的利润相等,由题意,得8(175﹣150)=(140﹣120)a,解得:a=10.答:销售8个篮球的利润与销售10个排球的利润相等.20.(1)解:设0.8元的邮票买了x枚,2元的邮票买了y枚,根据题意得.(2)解:设有x只鸡,y个笼,根据题意得.。

专题04 二元一次方程组【压轴题专项训练】-2020-2021学年七年级数学下学期(人教版)(解析版

专题04 二元一次方程组【压轴题专项训练】-2020-2021学年七年级数学下学期(人教版)(解析版

专题04 二元一次方程组【压轴题专项训练】一、单选题1.(2021·北京二中七年级期末)已知关于x ,y 的二元一次方程组的解满足23x y -=,则m 的值是( )A .2B .-2C .1D .-1 【答案】D【解析】解:用①-②,得:()234x m y m +--=-,即212x y m -=-又∵23x y -=∴12=3m -,解得:故选:D .2.(2021·北京二中七年级期末)已知关于x ,y 的二元一次方程组的解为,则2a b -的值为( )A .23B .2C .-2D .-3【答案】B【解析】解:将代入,可得:将①-②,得:()231a b a b --+=-,即2=2a b -故选:B .3.(2020·浙江七年级期末)一个数a 在数轴上表示的点是A ,当点A 在数轴上向左平移了3个单位长度后到点B ,点A 与点B 表示的数恰好互为相反数,则数a 是( )A .1.5B .3C . 1.5-D .3-【答案】A【解析】解:设B 点表示的数是b ,根据题意得:a -3=b ,a =-b ,解得:a =1.5,b =-1.5.故选:A .4.(2020·四川眉山市·七年级期末)如果2150x y x y -+++-=,则x 、y 的值分别是( )A .B .C .D .【答案】C【解析】 解:∵2150x y x y -+++-=,∴ ,解此方程组得:.故选:C .5.(2020·四川眉山市·七年级期末)若是方程31ax y -= 的一个解,则a 的值是( )A .B .2C .1-D .5-【答案】B【解析】解:由题意可得:2a-3×1=1,解之可得:a=2,故选B .6.(2020·广东惠州市·七年级期末)用代入法解方程组使得代入后,化简比较容易的变形是()A .由①得72yx += B .由①得27y x =-C .由②得343y x +=D .由②得334x y -=【答案】B【解析】解:观察可知,由①得27y x =-代入后化简比较容易.故选:B .7.(2021·北京二中七年级期末)《孙子算经》是中国古代最重要的数学著作,现在传世的共有三卷,卷中记载:“今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺.木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问木长多少尺?”设绳子长x 尺,木长y 尺,可列方程组为______________.【答案】【解析】解:设绳子长x 尺,长木长y 尺,依题意,得:,故答案为:.8. 若()2352280x y x y -++-+=,则x y +的值为___.【答案】3【解析】∵()2352280x y x y -++-+=∴∴解得:∴3x y +=故答案为:3.9. 已知是二元一次方程26x y -=的一组解,那么a =_____.【答案】2【解析】∵是二元一次方程26x y -=的一组解∴246a ⨯-=∴2a =故答案为:2.10.(2020·湖北荆州市·七年级期末)如果是方程3x ﹣ay =10的一个解,那么a =_____.【答案】1.解:∵是方程3x ﹣ay =10的一个解,∴3×3+a =10,解得a =1,故答案为:1.11.(2021·湖南邵阳市·七年级期末)如果4a 2x ﹣3y b 4与﹣23a 3b x+y 是同类项,则xy =_____. 【答案】3【解析】解:∵4a 2x ﹣3y b 4与﹣23a 3b x +y 是同类项, ∴,解得:,则xy =3.故答案为:3.12. 已知是二元一次方程组的解,则3m n +的算术平方根为__________.【答案】3【解析】解:把代入方程组得:,解得:,∴3m n +==9,∴3m n +的算术平方根为3,故答案为:3.三、解答题13.(2021·北京二中七年级期末)解方程(组):(1);(2).【答案】解:(1)去分母,得:去括号,得:42516x x +-+=移项,合并同类项,得:3x -=系数化1,得:3x =-(2)将①×2,得:228x y -=③③+②,得:55=x ,解得:1x =将1x =代入①,得:14y -=,解得:3y =-∴方程组的解为【解析】(1)解一元一次方程,先去分母,然后去括号,移项,合并同类项,最后系数化1求解;(2)用加减消元法解二元一次方程组.14.(2020·四川眉山市·七年级期末)解方程组:【答案】解:①+②得,31x y -=④,②×2+③得,731x y -=⑤④与⑤组成方程组得 ,解方程组得,,把代入①得,124z +-=,解得,1z =-∴原方程组的解为:,【解析】先消去z ,把三元一次方程组变成二元一次方程组,解二元一次方程组即可.15.(2021·安徽安庆市·七年级期末)某校开展校园艺术节系列活动,校学生会代表小亮到文体超市购买文具作为奖品.(1)小亮第一次购买若干个文具袋作为奖品,这种文具袋标价每个10元,请认真阅读结账时老板与小亮的对话图片,求小亮原计划购买文具袋多少个?(2)小亮第二次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予8折优惠,钢笔和签字笔合计288元,问小亮购买了钢笔和签字笔各多少支?【答案】解:(1)设小亮原计划购买文具袋x 个,依题意得:()10100.85111x x -⨯+=,解得:13x =.答:小亮原计划购买文具袋13个.(2)设小亮购买了钢笔m 支,签字笔n 支,依题意得:,解得:.答:小亮购买了钢笔30支,签字笔20支.【解析】(1)设小亮原计划购买文具袋x 个,根据题意列一元一次方程求解即可;(2)设小亮购买了钢笔m 支,签字笔n 支,根据题意列二元一次方程组求解即可.16.(2020·湖北荆州市·七年级期末)两位同学在解方程组时,甲同学正确解得,乙同学因写错c 解得,试求a 、b 、c 的值.【答案】解:把与分别代入ax +by =﹣2得:,①+②得:a =﹣4,把a =﹣4代入①得:b =﹣5,把代入cx ﹣7y =20得:3c +14=20,解得:c =2,则a 、b 、c 的值分别是a =﹣4,b =﹣5,c =2.【解析】把甲乙两名同学的结果代入ax+by =﹣2中求出a 与b 的值,把甲的结果代入cx ﹣7y =﹣2中求出c 的值即可.17.(2021·湖南邵阳市·七年级期末)2020年新型冠状病毒肺炎在全球蔓延,口罩成了人们生活中的必备物资.某口罩厂现安排A 、B 两组工人共150人加工口罩,A 组工人每人每小时可加工口罩70个,B 组工人每人每小时可加工口罩50个,A 、B 两组工人每小时一共可加工口罩9300个.试问:A 、B 两组工人各多少人?【答案】设A 组工人有x 人,B 组工人有y 人,依题意得:,解得:.答:A组工人有90人,B组工人有60人.【解析】设A组工人有x人,B组工人有y人,根据A、B两组工人共150人每小时可加工口罩9300个,即可得出关于x,y的二元一次方程组,解之即可得出结论.。

2020-2021初中数学方程与不等式之二元一次方程组基础测试题及答案(2)

2020-2021初中数学方程与不等式之二元一次方程组基础测试题及答案(2)

2020-2021初中数学方程与不等式之二元一次方程组基础测试题及答案(2)一、选择题1.幼儿园阿姨分别给甲、乙两个小朋友若干颗糖果,她们数了一下,甲说“把你的一半给我,我就有14颗糖果”,乙说:“那把你的一半给我,我就有16颗糖果.”那么原来甲小朋友有糖果( )颗.A .6B .8C .10D .12【答案】B【解析】【分析】设原来甲小朋友有x 颗,乙小朋友有y 颗,根据描述建立二元一次方程组求解.【详解】设原来甲小朋友有x 颗,乙小朋友有y 颗,由题意得: 11421162x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩解得812x y =⎧⎨=⎩ ∴甲小朋友原来有8颗故选B .【点睛】本题考查二元一次方程组的应用,题目较简单,根据描述建立方程是解题的关键.2.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩ 【答案】B【解析】【分析】 本题的等量关系是:绳长-木长 4.5=;木长12-绳长1=,据此可列方程组求解. 【详解】设绳长x 尺,长木为y 尺,依题意得 4.5112x y y x -=⎧⎪⎨-=⎪⎩, 故选B .【点睛】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.3.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套,现有120张白铁皮,设用x 张制盒身,y 张制盒底,得方程组( )A .1204016x y y x +=⎧⎨=⎩B .1204332x y y x +=⎧⎨=⎩C .12040210x y y x +=⎧⎨=⨯⎩D .以上都不对【答案】C【解析】【分析】根据题意可知,本题中的等量关系是(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,从而列方程组.【详解】解:根据题意,盒身的个数×2=盒底的个数,可得;2×10x =40y ;制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,可得x +y =120,故可得方程组12040210x y y x +=⎧⎨=⨯⎩. 故选:C .【点睛】本题考查了根据实际问题抽象二元一次方程组的知识,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.4.若关于x ,y 的方程组2315x y m x y +=-⎧⎨-=⎩的解满足x +y =3,则m 的值为 ( ) A .-2 B .2 C .-1 D .1【答案】D【解析】【分析】首先把m 看成常数,然后进一步解关于x 与y 的方程组,求得用m 表示的x 与y 的值后,再进一步代入3x y +=加以求解即可.【详解】由题意得:2315x y m x y +=-⎧⎨-=⎩①②, ∴由①−②可得:()2315x y x y m +--=--,化简可得:336y m =-,即:2y m =-,将其代入②可得:25x m -+=,∴3x m =+∵3x y +=,∴323m m ++-=,∴1m =,故选:D.【点睛】本题主要考查了二元一次方程组的综合运用,熟练掌握相关方法是解题关键.5.某人购买甲种树苗12棵,乙种树苗15棵,共付款450元,已知甲种树苗比乙种树苗每棵便宜3元,设甲种树苗每棵x 元,乙种树苗每棵y 元.由题意可列方程组( )A .12154503x y x y +=⎧⎨-=⎩B .12154503x y y x +=⎧⎨-=⎩C .12154503x y y x +=⎧⎨=-⎩D .12154503x y x y +=⎧⎨=-⎩【答案】B【解析】【分析】 根据“购买甲种树苗12棵,乙种树苗15棵,共付款450元”可列方程12x+15y =450;由“甲种树苗比乙种树苗每棵便宜3元”可列方程y ﹣x =3,据此可得.【详解】设甲种树苗每棵x 元,乙种树苗每棵y 元.由题意可列方程组12154503x y y x +=⎧⎨-=⎩ , 故选:B .【点睛】本题主要考查了由实际问题抽象出二元一次方程组,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组.6.若关于x ,y 的方程组4510(1)8x y kx k y +=⎧⎨--=⎩中x 的值比y 的相反数大2,则k 是( ) A .-3 B .-2 C .-1 D .1【答案】A【解析】【分析】根据“x 的值比y 的相反数大2”得出“x=-y+2”,再代入到方程组的第一个方程得到y 的值,进而得出x 的值,把x ,y 的值代入方程组中第二方程中求出k 的值即可.【详解】∵x 的值比y 的相反数大2,∴x=-y+2,把x=-y+2代入4x+5y=10得,-4y+8+5y=10,解得,y=2,∴x=0,把x=0,y=2代入kx-(k-1)y=8,得k=-3.故选A.【点睛】此主要考查了与二元一次方程组的解有关的问题,解题的关键是列出等式“x=-y+2”.7.如果方程组4x y m x y m+=⎧⎨-=⎩的解是二元一次方程3x ﹣5y ﹣30=0的一个解,那么m 的值为( )A .7B .6C .3D .2 【答案】D【解析】【分析】理解清楚题意,运用三元一次方程组的知识,把x ,y 用含m 的代数式表示出来,代入方程3x-5y-30=0求得a 的值.【详解】 ()()142x y m x y m ⎧+⎪⎨-⎪⎩== (1)+(2)得x=52m , 代入(1)得y=-32m , 把x ,y 代入方程3x-5y-30=0得: 3×52m +5×32m -30=0, 解得m=2;故选D .【点睛】 本题的实质是解三元一次方程组,用加减法或代入法来解答.8.若2334a b x y +与634a b x y -的和是单项式,则a b +=( ) A .3-B .0C .3D .6【答案】C【解析】【分析】 根据同类项的定义可得方程组263a b a b +=⎧⎨-=⎩,解方程组即可求得a 、b 的值,即可求得a+b 的值.【详解】 ∵2334a b x y +与643a b x y -是同类项, ∴263a b a b +=⎧⎨-=⎩, 解得30a b =⎧⎨=⎩, ∴a+b=3.故选C.【点睛】本题考查了同类项的定义及二元一次方程组的解法,根据同类项的定义得到方程组263a b a b +=⎧⎨-=⎩是解决问题的关键.9.若方程组32232732x y k x y k -=-⎧⎨+=-⎩的解满足2020x y +=,则k 等于( ) A .2018B .2019C .2020D .2021 【答案】D【解析】【分析】把两个方程相加,可得5x +5y =5k-5,再根据2020x y +=可得到关于k 的方程,进而求k 即可.【详解】解:32232732x y k x y k -=-⎧⎨+=-⎩①② ①+②得 5x +5y =5k-5,∴x +y =k -1.∵2020x y +=,∴k -1=2020,∴k=2021.故选:D .【点睛】本题考查了二元一次方程组的特殊解法,依据方程系数特点整体代入是求值的关键.10.在方程组657237x y m x y +=+⎧⎨-=⎩的解中,x 、y 的和等于9,则72m +的算术平方根为( )A .7B .7±CD . 【答案】A【解析】【分析】根据条件得到二元一次方程组937y x y x ⎧⎨-=+=⎩,求出x ,y 的值,进而求出72m +的算术平方根,即可.【详解】 ∵657237x y m x y +=+⎧⎨-=⎩且x+y=9, ∴937y x y x ⎧⎨-=+=⎩,解得:45x y =⎧⎨=⎩, ∴72m +=65x y +=6×4+5×5=49,∴72m +的算术平方根为:7.故选A .【点睛】本题主要考查二元一次方程组的解的意义,掌握解二元一次方程组的方法,是解题的关键.11.已知2728x y x y +=⎧⎨+=⎩,那么x y -的值是( ) A .-1B .0C .1D .2【答案】A【分析】观察方程组,利用第一个方程减去第二个方程即可求解.【详解】2728x y x y ①②+=⎧⎨+=⎩, ①-②得,x-y=-1.故选A.【点睛】本题考查了二元一次方程的解法,利用整体思想可以是本题解决过程变得简单.12.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A .3201036x y x y -=⎧⎨+=⎩ B .3201036x y x y +=⎧⎨+=⎩ C .3201036y x x y -=⎧⎨+=⎩ D .3102036x y x y +=⎧⎨+=⎩【答案】B【解析】 分析:根据等量关系“一本练习本和一支水笔的单价合计为3元”,“20本练习本的总价+10支水笔的总价=36”,列方程组求解即可.详解:设练习本每本为x 元,水笔每支为y 元,根据单价的等量关系可得方程为x+y=3,根据总价36得到的方程为20x+10y=36,所以可列方程为:3201036x y x y +⎧⎨+⎩==, 故选:B .点睛:此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.13.关于x ,y 的方程组2647x ay x y -=⎧⎨+=⎩的解是整数,则整数a 的个数为() A .4个B .3个C .2个D .1个【答案】C【解析】【分析】先解方程组求出x y 、的值,根据y 和a 都是整数求出121a +=-或125a +=或121a +=或125a +=-,求出a 的值,再代入x 求出x ,再逐个判断即可;2647x ay x y -=⎧⎨+=⎩①② 2⨯①-②得:()215a y --= 解得:521y a =-- 把521y a =--代入②得:54721x a -=+ 解得:7624a x a +=+ Q 方程组的解为整数∴ ,x y 均为整数∴ 121a +=-或125a +=或121a +=或125a +=-解得:1,2,0,3a =--,当1a =-时,12x =,不是整数,舍去; 当2a =时,2x =,是整数,符合; 当0a =时,3x =,是整数,符合;当3a =-时,32x =,不是整数,舍去; 故选:C.【点睛】本题主要考查二元一次方程组的含参问题,准确的解出方程组并且列出整数解的情况是求解本题的关键.14.A 地至B 地的航线长9360km ,一架飞机从A 地顺风飞往B 地需12h ,它逆风飞行同样的航线要13h ,则飞机无风时的平均速度是( )A .720km/hB .750 km/hC .765 km/hD .780 km/h【答案】B【解析】【分析】设飞机无风时的平均速度为x 千米/时,风速为y 千米/时,根据飞机顺风速度×时间=路程,飞机逆风速度×时间=路程,列方程组进行求解.【详解】设飞机无风时的平均速度为x 千米/时,风速为y 千米/时, 由题意得,12()936013()9360x y x y +=⎧⎨-=⎩,解得,75030x y =⎧⎨=⎩, 答:飞机无风时的平均速度为750千米/时,故选B .【点睛】本题考查二元一次方程组的应用,熟练掌握顺风速度=静风速度+风速,逆风速度=静风速度-风速是解题的关键.15.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ). A .m >2 B .m >-3 C .-3<m <2 D .m <3或m >2【答案】A【解析】【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可.【详解】解325x y m x y m -=+⎧⎨+=⎩,得 212x m y m =+⎧⎨=-⎩. ∵x >y >0,∴21220m m m +>-⎧⎨->⎩, 解之得m >2.故选A.【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.16.方程组2x y x y 3n+=⎧+=⎨⎩的解为{x 2y ==n ,则被遮盖的两个数分别为( ) A .2,1B .5,1C .2,3D .2,4【答案】B【解析】 把x=2代入x+y=3中,得:y=1,把x=2,y=1代入得:2x+y=4+1=5,故选B .17.已知方程组31331x y m x y m +=+⎧⎨+=-⎩的解满足0x y +>,则m 取值范围是( ) A .m >1B .m <-1C .m >-1D .m <1 【答案】C【解析】【分析】 直接把两个方程相加,得到12m x y ++=,然后结合0x y +>,即可求出m 的取值范围. 【详解】解:31331x y m x y m+=+⎧⎨+=-⎩, 直接把两个方程相加,得:4422x y m +=+, ∴12m x y ++=, ∵0x y +>, ∴102m +>, ∴1m >-;故选:C.【点睛】 本题考查了加减消元法解方程组,解题的关键是掌握解方程组的方法,正确得到12m x y ++=,然后进行解题.18.某商店对一种商品进行促销,促销方式:若购买不超过10件,按每件a 元付款:若一次性购买10件以上,超出部分按每件b 元付款.小明购买了14件付款90元;小聪购买了19件付款115元,则a ,b 的值为( )A .7,5a b == B .5,7a b == C .8,5a b == D .7,4a b ==【答案】A【解析】【分析】根据题意可列出关于a 、b 的二元一次方程组,解方程组即可.【详解】解:由题意得: 10490109115a b a b +=⎧⎨+=⎩①②, 由②−①得:525=b ,解得:5b =,将5b =代入①得:104590+⨯=a ,解得:7a =,∴方程组的解为75a b =⎧⎨=⎩, 故选:A .【点睛】此题考查了二元一次方程组的应用,解题的关键是读懂题意,找出题目中的数量关系,列出方程组.19.用5个大小相同的小长方形拼成了如图所示的大长方形,若大长方形的周长是28,则每个小长方形的周长是( )A .12B .14C .13D .16【答案】A【解析】【分析】设小长方形的长为x,宽为y ,根据题意列出方程组,解方程组求出x,y 的值,进而可求小长方形的周长.【详解】设小长方形的长为x,宽为y ,根据题意有 2(3)228x y y x x =⎧⎨++⨯=⎩ 解得42x y =⎧⎨=⎩∴小长方形的周长为(42)212+⨯= ,故选:A .【点睛】本题主要考查二元一次方程组的应用,读懂题意列出方程组是解题的关键.20.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,若每人出8钱,则多了3钱;若每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为( )A .8374x y x y -=⎧⎨+=⎩B .8374x y x y +=⎧⎨-=⎩C .8374y x y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩【答案】A【解析】【分析】设有x 人,物品价值y 钱,根据题意相等关系:①8×人数﹣3=物品价值,②7×人数+4=物品价值,可列方程组.【详解】设有x 人,物品价值y 钱,由题意,得83 74x y x y -=⎧⎨+=⎩, 故选A.。

浙教版2022-2023学年数学七年级下册第2章二元一次方程组2

浙教版2022-2023学年数学七年级下册第2章二元一次方程组2

浙教版2022-2023学年数学七年级下册第2章 二元一次方程组2.4二元一次方程组的应用(1)【知识重点】1.当问题中所求的未知数有两个时,用两个字母来表示未知数往往比较容易列出方程. 2.一般地,应用二元一次方程组解决实际问题的基本步骤为: (1)理解问题(审题,搞清已知和未知,分析数量关系); (2)制定计划(考虑如何根据等量关系设元,列出方程组); (3)执行计划(列出方程组并求解,得到答案);(4)回顾(检查和反思解题过程,检验答案的正确性以及是否符合题意). 【经典例题】【例1】顺风旅行社组织200人到花果岭和云水涧旅游,到花果岭的人数比到云水涧的人数的2倍少1人.设到花果岭的人数为x 人,到云水涧的人数为y 人,根据题意可列方程组为()A .{x +y =200x =2y −1B .{x +y =200y =2x −1C .{x +y =200x =2y +1D .{x +y =200y =2x +1【例2】某工厂有26名工人,一个工人每天可加工800个螺栓或1000个螺帽,1个螺栓与2个螺帽配套,现要求工人每天加工的螺栓和螺帽完整配套且没有剩余.若设安排x 个工人加工螺栓,y 个工人加工螺帽,则列出正确的二元一次方程组为( )A .{x +y =261600x −1000y =0B .{x +y =26800x −2000y =0C .{x +y =263200x −1000y =0D .{x +y =211600x −2000y =0【例3】打折前,买50件A 商品和20件B 商品用了1300元,买30件A 商品和10件B 商品用了750元.打折后,买100件A 商品和100件B 商品用了2800元,问比不打折少花了多少钱?【基础训练】1.如图,用10块形状、大小完全相同的小长方形墙砖拼成一个大长方形,设每个小长方形墙砖的长和宽分别为xcm 和ycm ,则依题意可列方程组为( )A .{x +2y =25y =3xB .{x +2y =25x =3yC .{2x −y =25x =3yD .{2x +y =25y =3x2.盲盒近来火爆,这种不确定的“盲抽”模式受到了大家的喜爱,一服装厂用某种布料生产玩偶A 与玩偶B 组合成一批盲盒,一个盲盒搭配1个玩偶A 和2个玩偶B ,已知每米布料可做1个玩偶A 或3个玩偶B ,现计划用136米这种布料生产这批盲盒(不考虑布料的损耗),设用x 米布料做玩偶A ,用y 米布料做玩偶B ,使得恰好配套,则下列方程组正确的是( )A .{x +y =136x =3yB .{x +y =136x =2×3yC .{x +y =1363x =yD .{x +y =1362x =3y3.七年级一班有x 人,分y 个学习小组,若每组7人,则余下3人;若每组8人,则不足5人,求全班人数及分组数.正确的方程组为( )A .{7x =y −38x =y +5B .{7y =x +38x =y −5C .{7y =x +38y =x −5D .{7y =x −38y =x +54.某校运动员分组训练,若每组7人,则余3人:若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则可列方程为( )A .{7y =x +38y =x +5B .{7y =x +38y +5=xC .{7y =x −38y +5=xD .{7y =x −38y =x +55.《九章算术》中的“方程”一章中讲述了算筹图,如图1、图2所示,图中各行从左到右列出的算筹数分别表示未知数x 、y 的系数与相应的常数项,图1表示的算筹图用我们现在所熟悉的方程组形式表述出来为{3x +2y =114x +3y =26,类似地,图2所示的算筹图我们可以表述为( )A .{2x +3y =233x +4y =32B .{2x +3y =233x +4y =37C .{11x +3y =233x +4y =32D .{3x +2y =234x +3y =326.一副三角板按如图所示的方式摆放,且∠1的度数是∠2的3倍,则∠2的度数为 .7.如图,8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为12cm ,则每一个小长方形的面积为 cm 2.8.有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货 吨. 9.如图,周长为68cm 的长方形ABCD 被分成7个相同的矩形,长方形ABCD 的面积为 cm 2.10.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满.设大房间有x 个,小房间有y 个,则列出方程组为 .11.某工地调来72人参加挖土和运土,已知3人挖出的土1人恰好全部运走,怎样调配劳力才能使挖出来的土能及时运走且不窝工?12.被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km,隧道累计长度的2倍比桥梁累计长度多36km.求隧道累计长度与桥梁累计长度.13.A,B两地相距80km.一艘船从A出发,顺水航行4h到B,而从B出发逆水航行5h到A,已知船顺水航行、逆水航行的速度分别是船在静水中的速度与水流速度的和与差,求船在静水中的速度和水流速度.14.一支部队第一天行军4h,第二天行军5h,两天共行军89km,且第一天比第天少走1km,第一天和第二天行军的平均速度各是多少?15.如图,三个一样大小的小长方形沿“横-竖-横”排列在一个长为10,宽为8的大长方形中,求图中一个小长方形的面积.【培优训练】16.某班环保小组收集废旧电池,数据统计如下表.问1节5号电池和1节7号电池的质量分别是多少?设1节5号电池的质量为x克,1节7号电池的质量为y克,列方程组,由消元法可得x的值为(17.小明在拼图时发现8个一样大小的长方形恰好拼成一个大的长方形,如图1所示.小红看见了,说:“我也来试一试.“结果小红七拼八凑,拼成如图2那样的正方形,但中间留下了一个洞,恰好是边长为2mm的小正方形,则每个小长方形的长和宽分别为()A .10mm ,18mmB .18mm ,10mmC .10mm ,6mmD .6mm ,10mm18.上学年初一某班的学生都是两人一桌,其中34男生与女生同桌,这些女生占全班女生的35,本学年该班新转入4个男生后,男女生刚好一样多.设上学年该班有男生x 人,女生y 人,则列方程组为( )A .{x +4=y 34x =35yB .{x +4=y 35x =34yC .{x −4=y 34x =35yD .{x −4=y 35x =34y19.玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具?设生产甲种玩具零件x 天,乙种玩具零件y 天,则有( )A .{x +y =6024x =12yB .{x +y =6012x =24yC .{x +y =602×24x =12yD .{x +y =6024x =2×12y20.某纸厂要制作如图的甲、乙两种无盖的小长方体盒子.该厂利用边角材料裁出了长方形和正方形两种纸片,其中长方形纸片的宽和正方形纸片的边长相等.现用150张正方形纸片和300张长方形纸片制作这两种小盒,恰好用完.设可做成甲、乙两种盒子各x 、y 个,根据题意,可列正确的方程组为 .21.一片草原上的一片青草,到处长的一样密、一样快.20头牛在96天可以吃完,30头牛在60天可以吃完,则70头牛吃完这片青草需 天.22.一艘轮船顺流航行时,每小时行32km ;逆流航行时,每小时行28km ,则轮船在静水中的速度是每小时行 km .(轮船在静水中的速度大于水流速度) 23.某眼镜厂有工人25名,每人每天平均生产镜架9个或镜片12片.为了使每天生产的镜架和镜片刚好配套,设x 名工人生产镜架,y 名工人生产镜片,则可列出方程组: .24.把长都是宽的两倍的1个大长方形纸片和4个相同的小长方形纸片按图①、图②方式摆放,则图②中的大长方形纸片未被4个小长方形纸片覆盖部分的面积为 cm 2.25.在某工程建设中,有A、B两种卡车搬运沙土.据了解,3辆A种卡车与2辆B种卡车一次共可搬运沙土38立方米,2辆A种卡车与3辆B种卡车一次共可搬运沙土42立方米,求每辆A种卡车和每辆B种卡车分别可搬运沙土多少立方米?26.2022年5月8日是“母亲节”,小明买了一束百合和康乃馨组合的鲜花送给妈妈,以表祝福.在买花过程中,爱思考的小明发现一个数学问题:3支康乃馨的价格比2支百合的价格多2元,买2支百合和1支康乃馨共花费14元.如果买一束百合和康乃馨组合的鲜花共11支,且百合不少于2支,那么怎样组合,能使费用支出最少?请你帮助小明解决这个数学问题.27.甲乙两人同时加工一批零件,前3小时两人共加工126件,后5小时中甲先花了1小时修理工具,之后甲每小时比以前多加工10件,结果在后5小时内,甲比乙多加工了10件.甲、乙两人原来每小时各加工多少件?28.2010年春季我国西南大旱,导致大量农田减产,如图所示是一对农民父子的对话内容,请根据对话内容分别求出该农户今年两块农田的花生产量分别是多少千克?29.某班为充实图书角图书,在学习委员的倡议下进行了一次给班级捐书活动,受污染区域(阴影部分)记录了在相应捐书数目为N时的人数分布情况.本以下的同学平均捐书3.5本.问捐书4本和5本的各有多少人?30.如图,已知点A、点B在数轴上表示的数分别是-20、64,动点M从点A出发,以每秒若干个单位长度的速度向右匀速运动,动点N从点B出发,以每秒若干个单位长度的速度向左匀速运动.若点M、N同时出发,则出发后12秒相遇;若点N先出发7秒,则点M出发10秒后与点N相遇.动点M、N运动的速度分别是多少?31.为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如下表是某省的电价标准(每月).例如:方女士家5月份用电500度,电费=180×0.6+220×二档电价+100×三档电价=352元;李先生家5月份用电460度,交费316元.请问表中二档电价、三档电价各【直击中考】32.五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为( ) A .30 B .26 C .24 D .2233.“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x 场,平了y 场,根据题意可列方程组为( ) A .{x +y =7,3x +y =17. B .{x +y =9,3x +y =17.C .{x +y =7,x +3y =17.D .{x +y =9,x +3y =17.34.上学期某班的学生都是双人桌,其中 14 男生与女生同桌,这些女生占全班女生的 15。

七年级数学知识点笔记

七年级数学知识点笔记

七年级数学知识点笔记学校(一班级数学)上册学问点二元一次方程组1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.留意:一般说二元一次方程有很多个解.2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.留意:一般说二元一次方程组只有解(即公共解).4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)留意:推断如何解简洁是关键.※5.一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能简单一些,但解方程组可能比较麻烦,反之则难列易解(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.一元一次不等式(组)1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.2.不等式的基本性质:不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要转变.3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式全部解的集合,叫做这个不等式的解集.4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但肯定要留意不等式性质3的应用;留意:在数轴上表示不等式的解集时,要留意空圈和实点.初一下册数学《三角形》学问点一、目标与要求1.熟悉三角形,了解三角形的意义,熟悉三角形的边、内角、顶点,能用符号语言表示三角形。

2020-2021初中数学方程与不等式之二元一次方程组经典测试题含答案解析

2020-2021初中数学方程与不等式之二元一次方程组经典测试题含答案解析

2020-2021初中数学方程与不等式之二元一次方程组经典测试题含答案解析一、选择题1.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-3分,不答的题得-1分.已知欢欢这次竞赛得了72分,设欢欢答对了x 道题,答错了y 道题,则( ) A .5372x y -= B .5372x y +=C .6292x y -=D .6292x y +=【答案】C 【解析】 【分析】设欢欢答对了x 道题,答错了y 道题,根据“每答对一题得+5分,每答错一题得-3分,不答的题得-1分,已知欢欢这次竞赛得了72分”列出方程. 【详解】解:设答对了x 道题,答错了y 道题,则不答的题有()20x y -- 道, 依题意得:()532072x y x y ----=, 化简得:6292x y -=. 故选:C . 【点睛】本题考查了由实际问题抽象出二元一次方程,关键是读懂题意,根据题目中的数量关系,列出方程,注意:本题中的等量关系之一为:答对的题目数量+答错的题目数量+不答的题目数量=20.2.某家具生产厂生产某种配套桌椅(一张桌子,两把椅子),已知每块板材可制作桌子1张或椅子4把,现计划用120块这种板材生产一批桌椅(不考虑板材的损耗,恰好配套),设用x 块板材做椅子,用y 块板材做桌子,则下列方程组正确的是( )A .12024x y x y+=⎧⎨=⎩B .12024x y x y +=⎧⎨⨯=⎩C .12042x y x y+=⎧⎨=⎩D .12024x y x y +=⎧⎨=⨯⎩【答案】C 【解析】 【分析】根据“用120块这种板材生产一批桌椅”,即可列出一个二元一次方程,根据“每块板材可做桌子1张或椅子4把,使得恰好配套,一张桌子两把椅子”,列出另一个二元一次方程,即可得到答案. 【详解】解:设用x 块板材做椅子,用y 块板材做桌子, ∵用120块这种板材生产一批桌椅, ∴x+y=120 ①,生产了y 张桌子,4x 把椅子, ∵使得恰好配套,1张桌子2把椅子, ∴4x=2y ②, ①和②联立得:12042x y x y +=⎧⎨=⎩, 故选:C. 【点睛】本题考查了由实际问题抽象出二元一次方程组,正确找出等量关系,列出二元一次方程组是解题的关键.3.如果方程组3921ax y x y +=⎧⎨-=⎩无解,则a 为( )A .6B .-6C .9D .-9【答案】B 【解析】 【分析】用代入法或加减法把未知数y 消去,可得方程(6)12a x +=,由原方程无解可得60a +=,由此即可解得a 的值. 【详解】把方程21x y -=两边同时乘以3,再与方程39ax y +=相加,消去y 得: 693ax x +=+,即(6)12a x +=, ∵原方程无解, ∴60a +=, 解得6a =-. 故选B. 【点睛】本题考查了二元一次方程组解的问题,明白“关于某一个未知数的一元一次方程无解,则这个未知数的系数为0”是解答本题的关键.4.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( )A .3B .5C .7D .9【答案】B 【解析】 【分析】把两个方程相加可得3x+3y=15,进而可得答案. 【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.5.重庆育才中学2019年“见字如面读陶分享会” 隆重举行,初一年级得到了一定数量的入场券,如果每个班10张,则多出15张,如果每个班12张,则差5张券,假设初一年级共有x个班,分配到的入场券有y张,列出方程组为()A.1051215x yx y+=⎧⎨-=⎩B.1051215x yx y-=⎧⎨+=⎩C.1051215x yx y=-⎧⎨+=⎩D.1051215x yx y-=⎧⎨=+⎩【答案】A【解析】【分析】假设初一班级共有x个班,分配到的入场券有y张,根据“如果每个班10张,则多出5张券;如果每个班12张,则差15张券”列出方程组.【详解】设初一班级共有x个班,分配到的入场券有y张,则1051215x yx y+=⎧⎨-=⎩.故选:A.【点睛】此题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.6.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有120张白铁皮,设用x张制盒身,y张制盒底,得方程组 ( )A.1204010x yy x+=⎧⎨=⎩B.1201040x yy x+=⎧⎨=⎩C.1204020x yy x+=⎧⎨=⎩D.1202040x yy x+=⎧⎨=⎩【答案】C【解析】【分析】首先根据题意可以得出以下两个等量关系:①制作盒身的白铁皮张数+制作盒底的白铁皮的张数=120,②盒身的个数×2=盒底的个数,据此进一步列出方程组即可.【详解】∵一共有120张白铁皮,其中x张制作盒身,y张制作盒底,∴120x y +=,又∵每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒, ∴4020y x =, ∴可列方程组为:1204020x y y x+=⎧⎨=⎩,故选:C. 【点睛】本题主要考查了二元一次方程组的实际应用,根据题意正确找出相应的等量关系是解题关键.7.如果230x y z +-=,且20x y z -+=,那么xy的值为( ) A .15B .15-C .13D .13-【答案】D 【解析】 【分析】将题目中的两个方程相加,即可求得3x +y =0的值,根据x 与y 的关系代入即可求出x y的值. 【详解】解:2x +3y −z =0 ① ,x −2y +z =0 ② , ①+②,得 3x +y =0,解得,1=-3x y ,故选D . 【点睛】本题主要考查解三元一次方程组,解答本题的关键是明确题意,求出所求式子的值.8.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩,给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是() A .①② B .①③C .②③D .①②③【答案】D 【解析】 【分析】①将5k =代入方程组可得3563510x y x y +=⎧⎨+=⎩,解方程组即可作出判断;②将10k =代入方程组可得35631010x y x y +=⎧⎨+=⎩求得方程组的解后,再将解代入61516x y +=即可作出判断;③解356310x y x ky +=⎧⎨+=⎩得20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩,根据k 为整数即可作出判断.【详解】解:①当5k =时,关于x 、y 的二元一次方程组为:3563510x y x y +=⎧⎨+=⎩,此时方程组无解,故本说法正确;②当10k =时,关于x 、y 的二元一次方程组为:35631010x y x y +=⎧⎨+=⎩,解得2345x y ⎧=⎪⎪⎨⎪=⎪⎩,将其代入61516x y +=,能使其左右两边相等,故本说法正确;③解356310x y x ky +=⎧⎨+=⎩得20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩,因为k 为整数而x 、y 不能都为整数,故本说法正确. 故选:D 【点睛】此题考查了二元一次方程(组)的解、解二元一次方程组等,方程组的解即为能使方程组中两方程同时成立的未知数的值.9.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套,现有120张白铁皮,设用x 张制盒身,y 张制盒底,得方程组( )A .1204016x y y x +=⎧⎨=⎩B .1204332x y y x +=⎧⎨=⎩C .12040210x y y x +=⎧⎨=⨯⎩D .以上都不对【答案】C 【解析】 【分析】根据题意可知,本题中的等量关系是(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,从而列方程组. 【详解】解:根据题意,盒身的个数×2=盒底的个数,可得;2×10x =40y ; 制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,可得x +y =120, 故可得方程组12040210x y y x +=⎧⎨=⨯⎩.故选:C . 【点睛】本题考查了根据实际问题抽象二元一次方程组的知识,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.10.如果方程组4x y mx y m +=⎧⎨-=⎩的解是二元一次方程3x ﹣5y ﹣30=0的一个解,那么m 的值为( ) A .7 B .6C .3D .2【答案】D 【解析】 【分析】理解清楚题意,运用三元一次方程组的知识,把x ,y 用含m 的代数式表示出来,代入方程3x-5y-30=0求得a 的值. 【详解】()()142x y m x y m ⎧+⎪⎨-⎪⎩== (1)+(2)得x=52m , 代入(1)得y=-32m ,把x ,y 代入方程3x-5y-30=0得:3×52m +5×32m -30=0,解得m=2; 故选D . 【点睛】本题的实质是解三元一次方程组,用加减法或代入法来解答.11.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.11910813x yy x x y=⎧⎨+-+=⎩()()B.108 91311y x x y x y+=+⎧⎨+=⎩C.91181013x yx y y x ()()=⎧⎨+-+=⎩D.91110813 x yy x x y=⎧⎨+-+=⎩()()【答案】D【解析】【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【详解】设每枚黄金重x两,每枚白银重y两,由题意得:91110813x yy x x y=⎧⎨+-+=⎩()(),故选:D.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.12.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,若每人出8钱,则多了3钱;若每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为()A.8374x yx y-=⎧⎨+=⎩B.8374x yx y+=⎧⎨-=⎩C.8374y xy x-=⎧⎨-=⎩D.8374x yx y-=⎧⎨-=⎩【答案】A【解析】【分析】设有x人,物品价值y钱,根据题意相等关系:①8×人数﹣3=物品价值,②7×人数+4=物品价值,可列方程组.【详解】设有x 人,物品价值y 钱,由题意,得83 74x y x y -=⎧⎨+=⎩, 故选A.13.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( )A .104937466x y x y +=⎧⎨+=⎩B .103749466x y x y +=⎧⎨+=⎩C .466493710x y x y +=⎧⎨+=⎩D .466374910x y x y +=⎧⎨+=⎩【答案】A 【解析】 【分析】设49座客车x 辆,37座客车y 辆,根据49座和37座两种客车共10辆,及10辆车共坐466人,且刚好坐满,即可列出方程组. 【详解】解:设49座客车x 辆,37座客车y 辆, 根据题意得 :104937466x y x y +=⎧⎨+=⎩故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.14.方程5x +2y =-9与下列方程构成的方程组的解为212x y =-⎧⎪⎨=⎪⎩的是( )A .x +2y =1B .3x +2y =-8C .5x +4y =-3D .3x -4y =-8【答案】D 【解析】试题分析:将x 与y 的值代入各项检验即可得到结果. 解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x ﹣4y=﹣8.故选D .点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.15.幼儿园阿姨分别给甲、乙两个小朋友若干颗糖果,她们数了一下,甲说“把你的一半给我,我就有14颗糖果”,乙说:“那把你的一半给我,我就有16颗糖果.”那么原来甲小朋友有糖果( )颗. A .6 B .8C .10D .12【答案】B 【解析】 【分析】设原来甲小朋友有x 颗,乙小朋友有y 颗,根据描述建立二元一次方程组求解. 【详解】设原来甲小朋友有x 颗,乙小朋友有y 颗,由题意得:11421162x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩解得812x y =⎧⎨=⎩∴甲小朋友原来有8颗 故选B . 【点睛】本题考查二元一次方程组的应用,题目较简单,根据描述建立方程是解题的关键.16.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( ) A .4种 B .3种C .2种D .1种【答案】B 【解析】【分析】设购买篮球x 个,排球y 个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x 、y 的方程,由x 、y 均为非负整数即可得. 【详解】设购买篮球x 个,排球y 个, 根据题意可得120x+90y=1200, 则y=4043x-, ∵x 、y 均为正整数,∴x=1、y=12或x=4、y=8或x=7、y=4,所以购买资金恰好用尽的情况下,购买方案有3种, 故选B .【点睛】本题考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.17.如果21x y =-⎧⎨=⎩是二元一次方程mx+y=3的一个解,则m 的值是( )A .-2B .2C .-1D .1 【答案】C 【解析】 【分析】把x 与y 的值代入方程计算即可求出m 的值. 【详解】把21x y =-⎧⎨=⎩代入方程得:-2m+1=3,解得:m=-1, 故选:C .18.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩【答案】B 【解析】 【分析】根据路程=时间乘以速度得到方程351.26060x y +=,再根据总时间是16分钟即可列出方程组. 【详解】∵她去学校共用了16分钟, ∴x+y=16,∵小颖家离学校1200米, ∴351.26060x y +=,∴351.2606016x y x y ⎧+=⎪⎨⎪+=⎩, 故选:B.【点睛】此题考查二元一次方程组的实际应用,正确理解题意列出方程组,注意时间单位,这是解题中容易出现错误的地方.19.如果方程组45x by ax =⎧⎨+=⎩的解与方程组32y bx ay =⎧⎨+=⎩的解相同,则a+b 的值为( ) A .﹣1B .1C .2D .0【答案】B【解析】【分析】 把43x y ==⎧⎨⎩代入方程组25bx ay by ax +⎧⎨+⎩==,得到一个关于a ,b 的方程组,将方程组的两个方程左右两边分别相加,整理即可得出a+b 的值.【详解】把43x y ==⎧⎨⎩代入方程组25bx ay by ax +⎧⎨+⎩==, 得:432345b a b a =①=②+⎧⎨+⎩, ①+②,得:7(a+b )=7,则a+b=1.故选B .【点睛】此题主要考查了二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.理解定义是关键.20.如图,将长方形ABCD 的一角折叠,折痕为AE ,∠BAD 比∠BAE 大18°.设∠BAE 和∠BAD 的度数分别为x ,y ,那么x ,y 所适合的一个方程组是( )A .1890y x y x -=⎧⎨+=⎩B .18290y x y x -=⎧⎨+=⎩C .182y x y x -=⎧⎨=⎩D .18290x y y x -=⎧⎨+=⎩【答案】B【解析】【分析】首先根据题意可得等量关系:①∠BAD-∠BAE大18°;②∠BAD+2∠BAE=90°,根据等量关系列出方程组即可.【详解】解:设∠BAE和∠BAD的度数分别为x°和y°,依题意可列方程组:18290 y xy x-=⎧⎨+=⎩故选:B.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.4 二元一次方程组的应用(二)A 组1.小明到商店购买“五四青年节”活动奖品,购买20支铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元,设每支铅笔x 元,每本笔记本y 元,则可列方程组(B )A. ⎩⎪⎨⎪⎧20x +30y =11010x +5y =85B. ⎩⎪⎨⎪⎧20x +10y =110,30x +5y =85C. ⎩⎪⎨⎪⎧20x +5y =110,30x +10y =85D. ⎩⎪⎨⎪⎧5x +20y =110,10x +30y =85(第2题)2.如图为某商店的宣传单,小胜到此店同时购买了一件标价为x 元的衣服和一条标价为y 元的裤子,共节省500元,则根据题意所列方程正确的是(A )A. 0.6x +0.4y +100=500B. 0.6x +0.4y -100=500C. 0.4x +0.6y +100=500D. 0.4x +0.6y -100=5003.某船在河中航行,已知顺流速度是14 km/h ,逆流速度是8 km/h ,则该船在静水中的速度是__11__km/h ,水流速度是__3__km/h.4.甲、乙两个施工队在某铁路上施工,甲队每天比乙队多铺设100 m 钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x (m),乙队每天铺设y (m).(1)根据题意列出二元一次方程组.(2)求甲、乙两个施工队每天各铺设多少米. 【解】 (1)由题意可列方程组⎩⎪⎨⎪⎧x -y =100,5x =6y . (2)解方程组⎩⎪⎨⎪⎧x -y =100,5x =6y ,得⎩⎪⎨⎪⎧x =600,y =500.答:甲施工队每天铺设600 m ,乙施工队每天铺设500 m.5.某地发生强烈地震,给当地人民造成巨大的经济损失,某校积极组织捐款支援灾区,七年级(1)班55名同学共捐款274元,捐款情况如下表:捐款(元) 1 2510人数67表中捐款2元和5元的人数不小心被墨水污染,已看不清楚,请你帮助确定表中数据,并说明理由.【解】 设捐款2元和5元的学生分别为x 人,y 人,根据题意,得⎩⎪⎨⎪⎧x +y =55-6-7,2x +5y =274-6×1-7×10,解得⎩⎪⎨⎪⎧x =4,y =38. 答:捐款2元的有4人,捐款5元的有38人.6.P 表示n 边形对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P 与n 的关系式是P =n (n -1)24(n 2-an +b )(其中a, b 是常数,n ≥4).(1)填空:通过画图可得:四边形中,P =__1__(填数字); 五边形中,P =__5__(填数字).(2)请根据四边形和五边形对角线的交点个数,结合关系式,求a 和b 的值. (注:本题中的多边形均指凸多边形.) 【解】 (1)如解图所示.,(第6题解))四边形中,P =1;五边形中,P =5. (2)由(1),得 ⎩⎪⎨⎪⎧4(4-1)24(42-4a +b )=1,5(5-1)24(52-5a +b )=5,整理,得⎩⎪⎨⎪⎧4a -b =14,5a -b =19, 解得⎩⎪⎨⎪⎧a =5,b =6.7.某商场新购进一批A ,B 两种品牌的饮料共320箱,其中A 品牌饮料比B 品牌饮料多80箱,此两种饮料每箱的进价和售价如下表所示:品牌 A B进价(元/箱) 55 35 售价(元/箱)6340(1)销售一箱A 品牌饮料获得的利润是多少元?(注:利润=售价-进价.) (2)该商场新购进A ,B 两种品牌的饮料各多少箱? 【解】 (1)63-55=8(元).答:销售一箱A 品牌饮料获得的利润是8元. (2)设购进A 品牌饮料x 箱,B 品牌饮料y 箱, 根据题意,得⎩⎪⎨⎪⎧x +y =320,x -y =80, 解得⎩⎪⎨⎪⎧x =200,y =120.答:购进A 品牌饮料200箱,B 品牌饮料120箱.B 组8.苏州地处太湖之滨,有着丰富的水产养殖资源.水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息:①每亩水面的年租金为500元.②每亩水面可在年初混合投放4 kg 蟹苗和20 kg 虾苗.③每千克蟹苗的价格为75元,其饲养费用为525元,当年可获1400元收益. ④每千克虾苗的价格为15元,其饲养费用为85元,当年可获160元收益. (1)若租用水面n 亩,则年租金共需500n 元.(2)水产养殖的成本包括水面年租金、苗种费用和饲养费用,求每亩水面蟹、虾混合养殖的年利润(利润=收益-成本).(3)李大爷现有资金25000元,他准备再向银行贷款不超过25000元,用于蟹虾混合养殖,已知银行贷款的年利率为10%,试问李大爷应该租多少亩水面,并向银行贷款多少元,可使年利润达到36600元?【解】 (2)4×(75+525)+20×(15+85)+500=4900(元), (1400×4+160×20)-4900=3900(元).答:每亩水面蟹、虾混合养殖的年利润为3900元.(3)设李大爷向银行贷款x 元,租y 亩水面,根据题意,得⎩⎪⎨⎪⎧4900y =25000+x ,3900y -10%x =36600,解得⎩⎪⎨⎪⎧x =24000,y =10. 经检验,这组解满足方程组,并且符合题意.答:李大爷应该租10亩水面,并向银行贷款24000元.9.某市的出租车是这样收费的:起步价所包含的路程为0~1.5 km ,超过1.5 km 的部分按每千米另收费.小刘说:“我乘出租车从市政府到汽车站走了4.5 km ,付车费10.5元.” 小李说:“我乘出租车从市政府到火车站走了6.5 km ,付车费14.5元.” (1)出租车的起步价是多少元?超过1.5 km 后每千米收费多少元? (2)小张乘出租车从市政府到高铁站走了5.5 km ,应付车费多少元?【解】 (1)设出租车的起步价是x 元,超过1.5 km 后每千米收费y 元,由题意,得⎩⎪⎨⎪⎧x +(4.5-1.5)y =10.5,x +(6.5-1.5)y =14.5,解得⎩⎪⎨⎪⎧x =4.5,y =2.答:出租车的起步价是4.5元,超过1.5 km 后每千米收费2元.(2)4.5+(5.5-1.5)×2=12.5(元).答:小张乘出租车从市政府到高铁站走了5.5 km ,应付车费12.5元.10.某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元.为了减少环境污染,市场推出一种叫“CNG”的改烧汽油为天然气的装置,每辆车改装价格为4000元.公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费用占剩下未改装车辆每天燃料费用的320,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费用占剩下未改装车辆每天燃料费用的25.(1)公司两次共改装了多少辆出租车?改装后,每辆出租车平均每天的燃料费用比改装前每天的燃料费用下降了百分之几?(2)若公司一次性将全部出租车改装,则多少天后就可以从节省的燃料费用中收回成本?【解】 (1)设第一次改装x 辆出租车,改装后每辆出租车每天消耗的天然气费用为y 元,则⎩⎪⎨⎪⎧xy =(100-x )×80×320,2xy =(100-2x )×80×25,解得⎩⎪⎨⎪⎧x =20,y =48.∴20×2=40(辆),80-4880×100%=40%.答:公司两次共改装了40辆车,燃料费用下降了40%. (2)设x 天后收回成本,由题意,得100×48x +4000×100=100×80x , 解得x =125.答:125天后就可以收回成本.数学乐园11.某商贸公司有A ,B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(立方米/件)质量(吨/件)A 型商品 0.8 0.5B 型商品21(1)已知一批商品有A ,B 两种型号,体积一共是20 m 3,质量一共是10.5 t ,求A ,B 两种型号的商品各有几件?(2)物流公司现有可供使用的货车每辆额定载重3.5 t ,容积为6 m 3,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元; ②按吨收费:每吨货物运输到目的地收费200元.要将(1)中的商品一次或分批运输到目的地,该商贸公司应如何选择运送方式才能使运费最少,最少运费是多少元?【解】 (1)设A 型商品有x 件,B 型商品有y 件,由题意,得⎩⎪⎨⎪⎧0.8x +2y =20,0.5x +y =10.5,解得⎩⎪⎨⎪⎧x =5,y =8.答:A 型商品有5件,B 型商品有8件.(2)①按车收费:10.5÷3.5=3(辆),20÷6=313(辆),故需要4辆车.4×600=2400(元).②按吨收费:200×10.5=2100(元).③结合收费:先用3辆车运送18 m 3,按车收费付费3×600=1800(元),剩余1件B 型商品.再按吨收费运送1件B 型商品,付费200×1=200(元),共需付1800+200=2000(元). ∵2400>2100>2000,∴先按车收费用3辆车运送18 m 3,再按吨收费运送1件B 型商品时运费最少,为2000元.【感谢您的阅览,下载后可自由编辑和修改,关注我 每天更新】。

相关文档
最新文档