广东省揭阳市惠来县第一中学上册运动和力的关系综合测试卷(word含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、第四章运动和力的关系易错题培优(难)
1.如图所示,四个质量、形状相同的斜面体放在粗糙的水平面上,将四个质量相同的物块放在斜面顶端,因物块与斜面的摩擦力不同,四个物块运动情况不同.A物块放上后匀加速下滑,B物块获一初速度后匀速下滑,C物块获一初速度后匀减速下滑,D物块放上后静止在斜面上.若在上述四种情况下斜面体均保持静止且对地面的压力依次为F1、F2、F3、F4,则它们的大小关系是()
A.F1=F2=F3=F4B.F1>F2>F3>F4C.F1<F2=F4<F3D.F1=F3<F2<F4
【答案】C
【解析】
试题分析:当物体系统中存在超重现象时,系统所受的支持力大于总重力,相反,存在失重现象时,系统所受的支持力小于总重力.若系统的合力为零时,系统所受的支持力等于总重力,
解:设物体和斜面的总重力为G.
第一个物体匀加速下滑,加速度沿斜面向下,具有竖直向下的分加速度,存在失重现象,则F1<G;
第二个物体匀速下滑,合力为零,斜面保持静止状态,合力也为零,则系统的合力也为零,故F2=G.
第三个物体匀减速下滑,加速度沿斜面向上,具有竖直向上的分加速度,存在超重现象,则F3>G;
第四个物体静止在斜面上,合力为零,斜面保持静止状态,合力也为零,则系统的合力也为零,故F4=G.故有F1<F2=F4<F3.故C正确,ABD错误.
故选C
【点评】本题运用超重和失重的观点分析加速度不同物体动力学问题,比较简便.通过分解加速度,根据牛顿第二定律研究.
2.如图所示,将质量为2m的长木板静止地放在光滑水平面上,一质量为m的小铅块(可视为质点)以水平初速v0由木板A端滑上木板,铅块滑至木板的B端时恰好与木板相对静止。
已知铅块在滑动过程中所受摩擦力始终不变。
若将木板分成长度与质量均相等的两段后,紧挨着静止放在此水平面上,让小铅块仍以相同的初速v0由左端滑上木板,则小铅块将()
A.滑过B端后飞离木板
B.仍能滑到B端与木板保持相对静止
C .在滑到B 端前就与木板保持相对静止
D .以上三答案均有可能 【答案】C 【解析】 【分析】 【详解】
在第一次在小铅块运动过程中,小铅块与木板之间的摩擦力使整个木板一直加速,第二次小铅块先使整个木板加速,运动到B 部分上后A 部分停止加速,只有B 部分加速,加速度大于第一次的对应过程,故第二次小铅块与B 木板将更早达到速度相等,所以小铅块还没有运动到B 的右端,两者速度相同。
故选C 。
考点:牛顿第二定律。
3.A 、B 两物体用两根轻质细线分别悬挂在天花板上,两细线与水平方向夹角分别为60°和45°,A 、B 间拴接的轻质弹簧恰好处于水平状态,则下列判断正确的是( )
A .A 、
B 的质量之比为1︰3
B .A 、B 所受弹簧弹力大小之比为3︰2
C .快速撤去弹簧的瞬间,A 、B 的瞬时加速度大小之比为1︰2
D .悬挂A 、B 的细线上拉力大小之比为1︰2 【答案】C 【解析】 【分析】 【详解】
A .对A
B 两个物体进行受力分析,如图所示,设弹簧弹力为F 。
对物体A
A tan 60m g
F
对物体B
B tan 45m g
F
=
解得
A B m m 故A 错误;
B .同一根弹簧弹力相等,故B 错误;
C .快速撤去弹簧的瞬间,两个物体都将以悬点为圆心做圆周运动,合力为切线方向。
对物体A
A A A sin 30m g m a =
对物体B
sin 45B B B m g m a =
联立解得
A B a a = 故C 正确;
D .对物体A ,细线拉力
A cos60F
T =
对物体B ,细线拉力
cos 45
B F
T =
解得
A B T T = 故D 错误。
故选C 。
【点睛】
快速撤去弹簧瞬间,细线的拉力发生突变,故分析时应注意不能认为合外力的大小等于原弹簧的弹力。
4.如图,在倾角为37θ︒=的角锥体表面上对称地放着可视为质点的A 、B 两个物体,用一轻质绳跨过固定在顶部的光滑的定滑轮连接在一起,开始时绳子绷直但无张力。
已知A 、B 两个物体的质量分别为m 和2m ,它们与竖直轴的距离均为r =1m ,两物体与角锥体表面的动摩擦因数为0.8,认为最大静摩擦力等于滑动摩擦力,重力加速度为g =10m/s 2,某时刻起,圆锥体绕竖直轴缓慢加速转动,加速转动过程中A 、B 两物体始终与角锥体保持相对静止,则下列说法正确的是( )
A .绳子没有张力之前,
B 物体受到的静摩擦力在增加 B .绳子即将有张力时,转动的角速度15
rad/s ω=
C .在A 、B 滑动前A 所受的静摩擦力一直在增加
D .在A 、B 即将滑动时,转动的角速度25
ω= 【答案】AB 【解析】 【分析】 【详解】
A .绳子没有张力之前,对
B 物体进行受力分析后正交分解,根据牛顿第二定律可得 水平方向
2cos sin 2f N m r θθω-=
竖直方向有
sin cos 2f N mg θθ+=
由以上两式可得,随着ω的增大,f 增大,N 减小,选项A 正确; B .对B 物体分析其将要发生滑动瞬间的临界状态时的受力可得 水平方向有
21cos sin 2N N m r μθθω-=
竖直方向有
sin cos 2N N mg μθθ+=
代入数据解得
15
ω=
选项B 正确;
C .在ω逐渐增大的过程中,A 物体先有向外滑动的趋势,后有向内滑动的趋势,其所受静摩擦力先沿斜面向上增大,后沿斜面向上减小,再改为沿斜面向下增大,选项C 错误;
D .ω增大到AB 整体将要滑动时,B 有向下滑动趋势,A 有向上滑动趋势,对A 物体 水平方向有
()22cos sin A A T N N m r μθθω--=
竖直方向有
()sin cos A A T N N mg μθθ-+=
对B 物体 水平方向有
()22cos sin 2B B T N N m r μθθω+-=
竖直方向有
()sin cos 2B B T N N mg μθθ++=
联立以上四式解得
2165
rad/s 28
ω=
选项D 错误。
故选AB 。
5.如图所示,一劲度系数为k 的轻质弹簧,上端固定,下端连着一质量为m 的物块A ,A 放在托盘B 上,B 的质量也为m 。
初始时在竖直向上的力F 作用下系统静止,弹簧处于自然长度。
现改变竖直向上的力F 的大小,使A 匀加速下降。
已知重力加速度为g ,A 的加速度为a =0.25g ,空气阻力不计,弹簧始终在弹性限度内,则在A 匀加速下降的过程中,以下说法正确的是( )
A .
B 对A 的支持力可能为0.85mg B .弹簧的最大形变量为
0.75mg
k
C .力F 对B 的作用力可能为0.9mg
D .力F 对B 的作用力最小值为0.65mg 【答案】BC 【解析】 【分析】 【详解】
AB .设物块和托盘间的压力为零时弹簧的伸长量为x m ,以A 为研究对象,根据牛顿第二定律得
0.25m mg kx ma m g -==⨯
解得
0.75m mg
x k
=
在此之前,以A 为研究对象,根据牛顿第二定律得
0.25N mg F kx
a g m
--=
=
可得
0.75N F mg kx =-
所以B 对A 的支持力不可能为0.85mg ,选项A 错误,B 正确; CD .以AB 整体为研究对象,根据牛顿第二定律得
20.252mg F kx
a g m
--=
=
可得
1.5F mg kx =-
力F 对B 的作用力范围为
0.75 1.5mg F mg ≤≤
选项C 正确,D 错误。
故选BC 。
6.如图所示,A 、B 、C 三个物体静止叠放在水平桌面上,物体A 的质量为2m ,B 和C 的质量都是m ,A 、B 间的动摩擦因数为μ,B 、C 间的动摩擦因数为4
μ
,B 和地面间的动摩
擦因数为
8
μ
.设最大静摩擦力等于滑动摩擦力,重力加速度为g .现对A 施加一水平向右的拉力F ,则下列判断正确的是
A .若A 、
B 、
C 三个物体始终相对静止,则力F 不能超过3
2
μmg B .当力F =μmg 时,A 、B 间的摩擦力为
3
4
mg μ C .无论力F 为何值,B 的加速度不会超过
34
μg D .当力F >
7
2
μmg 时,B 相对A 滑动 【答案】AB 【解析】 【分析】 【详解】
A.A 与B 间的最大静摩擦力大小为:2μmg,C 与B 间的最大静摩擦力大小为:
4
mg
μ,B 与
地面间的最大静摩擦力大小为:
8
μ
(2m+m+m )=
2
mg
μ;要使A ,B ,C 都始终相对静止,
三者一起向右加速,对整体有:F-2
mg
μ=4ma ,假设C 恰好与B 相对不滑动,对C
有:
4
mg
μ=ma ,联立解得:a=
4g μ,F=3
μ2
mg ;设此时A 与B 间的摩擦力为f ,对A 有:F-f=2ma ,解得f=μmg 2μ<mg ,表明C 达到临界时A 还没有,故要使三者始终保持相对静止,则力F 不能超过
3
2
μmg ,故A 正确. B.当力F =μmg 时,由整体表达式F-2
mg
μ=4ma 可得:a=1μ8
g ,代入A 的表达式可
得:f=
3
μ4
mg,故B 正确. C.当F 较大时,A,C 都会相对B 滑动,B 的加速度就得到最大,对B 有:2μmg -
4
mg
μ-
2
mg
μ=ma B ,解得a B =
5
μ4
g ,故C 错误. D.当A 恰好相对B 滑动时,C 早已相对B 滑动,对A 、B 整体分析有:F-
2
mg
μ-
4
mg
μ=3ma 1,对A 有:F-2μmg=2ma 1,解得F=
92μmg ,故当拉力F>9
2
μmg 时,B 相对A 滑动,D 错误.胡选:A 、B.
7.如图所示,A 、B 两个物体的质量分别为m 1、m 2,两物体之间用轻质弹性细线连接,两物体与水平面的动摩擦因数相等。
现对B 物体施加一水平向右的拉力F ,使A 、B 一起向右做匀加速运动。
下列说法正确的是( )
A .若某时刻撒去F ,则撤去F 的瞬间,A 、
B 的加速度保持不变 B .若F 保持不变,水平面改为光滑的,则弹性细线的拉力大小不变
C .若将F 增大一倍,则两物体的加速度将增大一倍
D .若F 逐渐减小,A 、B 依然做加速运动,则在F 减小的过程中,弹性细线上的拉力与F 的比值不变 【答案】BD 【解析】 【分析】 【详解】
A .有F 作用时,
B 物体水平方向受F 、弹性细绳的拉力和地面对B 的滑动摩擦力作用,撤去F 后,B 物体受弹性细绳的拉力和地面对B 的滑动摩擦力作用,故B 物体的受力情况发
生变化,所以B 物体的加速度变化,故A 错误; B .有F 作用时,水平面粗糙,由牛顿第二定律,得
()()1212F m g m g m m a μ-+=+
11=F m g m a μ-绳
联立解得
1
12
=
m F F m m +绳
若F 保持不变,水平面改为光滑的,由牛顿第二定律,得
()12F m m a =+
1=F m a 绳
联立解得
1
12
=
m F F m m +绳
可知弹性细线的拉力大小不变,故B 正确; C .有F 作用时,水平面粗糙,由牛顿第二定律,得
()()1212F m g m g m m a μ-+=+
若将F 增大一倍,滑动摩擦力不变,故两物体的加速度不会增大一倍,C 错误; D .有F 作用时,水平面粗糙,由牛顿第二定律,得
()()1212F m g m g m m a μ-+=+
11=F m g m a μ-绳
联立解得
1
12
=
m F F m m +绳
可知,F 减小,弹性绳上的拉力与F 的比值不变,故D 正确。
故选BD 。
8.如图所示,滑块1m 放置在足够长的木板2m 的右端,木板置于水平地面上,滑块与板间动摩擦因数为1μ,木板与地面间动摩擦因数为2μ,原来均静止。
零时刻用一水平恒力向右拉木板,使滑块与木板发生相对运动,某时刻撤去该力。
滑动摩擦力等于最大静摩擦力,则从零时刻起,二者的速度一时间图象可能为( )
A .
B .
C .
D .
【答案】AD 【解析】 【详解】
零时刻用一水平恒力向右拉木板,使滑块与木板发生相对运动,滑块m 1和木板m 2均做匀加速直线运动,对滑块m 1
1111m g m a μ=
加速度为
11a g μ=
撤去外力后,木板m 2做匀减速直线运动,此时滑块m 1的速度小于m 2,所以滑块m 1继续做匀加速运动,当而者速度相等时:
AB .如果12μμ>,滑块m 1和木板m 2将保持相对静止,在地面摩擦力作用下一起做匀减速运动。
由牛顿第二定律
212122()()m m g m m a μ+=+
加速度变为
22a g μ=
即滑块的加速度变小,故A 正确,B 错误。
CD .如果12μμ< ,两物体将发生相对滑动,由牛顿第二定律,此时滑块m 1的加速度大小是1g μ,即滑块的加速度大小不变,故D 正确,C 错误。
故选AD 。
9.如图所示,光滑水平面上放置M 、N 、P 、Q 四个木块,其中M 、P 质量均为m ,N 、Q 质量均为2m ,M 、P 之间用一轻质弹簧相连.现用水平拉力F 拉N ,使四个木块以同一加速度a 向右运动,则在突然撤去F 的瞬间,下列说法正确的是:
A .N 的加速度大小仍为a
B .PQ 间的摩擦力不变
C .MN 间的摩擦力变小
D .M 、P 的加速度大小变为2
a 【答案】ABC 【解析】 【分析】 【详解】
ACD .撤去F 前,对PQ 整体分析,知弹簧的弹力
=3F ma 弹
隔离对M 分析
=f F ma -弹
计算得出4f ma = 对整体分析
6F ma =
撤去F 后,对MN 整体分析
3F a a m
弹'=
=
方向向左。
隔离对N 分析
2f ma '=
知MN 间的摩擦力发生变化.N 的加速度大小不变,方向改变,故AC 正确,D 错误; B .撤去F 的瞬间,弹簧的弹力不变,对PQ 整体分析,加速度不变,隔离对P 分析,PQ 间的摩擦力不变,所以B 选项是正确的。
故选ABC 。
10.如图所示,物体A 和B 的质量均为m ,分别与跨过定滑轮的轻绳连接(不计绳与轮、滑轮与轴之间的摩擦),用水平变力F 拉物体A 沿水平方向向右做匀速直线运动。
则( )
A .物体
B 做匀加速直线运动 B .物体B 处于超重状态
C .物体B 的加速度逐渐增大
D .物体B 的加速度逐渐减小
【答案】BD 【解析】 【分析】 【详解】
ACD .设绳子与水平方向夹角为α,A 、B 两物体沿着绳子方向的速度相等
cos B A v v α=
随着A 向右运动,α逐渐减小,因此B 的速度逐渐增大,B 做加速运动,当A 运动到绳子方向与水平方向夹角很小时,B 的速度接近A 的速度,但不会超过A 的速度,因此B 做加速度减小的加速运动,最终加速度趋近于零,AC 错误,D 正确;
B .由于B 做加速运动,合力向上,因此处于超重状态,B 正确。
故选BD 。
11.质量为m 的光滑圆柱体A 放在质量也为m 的光滑“ V ”型槽B 上,如图,α=60°,另有质量为M 的物体C 通过跨过定滑轮的不可伸长的细绳与B 相连,现将C 自由释放,则下列说法正确的是( )
A .当M= m 时,A 和
B 保持相对静止,共同加速度为0.5g
B .当M=2m 时,A 和B 保持相对静止,共同加速度为0.5g
C .当M=6m 时,A 和B 保持相对静止,共同加速度为0.75g
D .当M=5m 时,A 和B 之间的恰好发生相对滑动
【答案】B
【解析】
【分析】
【详解】
D.当A 和B 之间的恰好发生相对滑动时,对A 受力分析如图
根据牛顿运动定律有:cot 60mg ma ︒=
解得3cot 603
a g g =︒= B 与C 为绳子连接体,具有共同的运动情况,此时对于B 和C 有:
(2)Mg M m a =+
所以323M a g g M m ==+,即323
M M m =+ 解得23 2.3733
M m m =≈- 选项D 错误;
C.当 2.37M m >,A 和B 将发生相对滑动,选项C 错误;
A. 当 2.37M m <,A 和B 保持相对静止。
若A 和B 保持相对静止,则有
(2)Mg M m a =+
解得2M a g M m
=+ 所以当M= m 时,A 和B 保持相对静止,共同加速度为13a g =
,选项A 错误; B. 当M=2m 时,A 和B 保持相对静止,共同加速度为10.52
a g g =
=,选项B 正确。
故选B 。
12.如图所示,两个皮带轮顺时针转动,带动水平传送带以恒定的速率v 运行。
现使一个质量为m 的物体(可视为质点)沿与水平传送带等高的光滑水平面以初速度v 0(v 0<v )从传送带左端滑上传送带。
若从物体滑上传送带开始计时,t 0时刻物体的速度达到v ,2t 0时刻物体到达传送带最右端。
下列说法正确的是( )
A .水平传送带的运行速率变为2v ,物体加速运动时间就会变为原来的二倍
B .00~t 时间内,物体受到滑动摩擦力的作用,00~2t t 时间内物体受静摩擦力作用
C .如果使皮带逆时针转动,其它条件不变,物体到达最右端的时间可能与原来相同
D .物体的初速度越大,其它条件不变,物体到达右端的时间一定越短
【答案】D
【解析】
【分析】
【详解】
A .物体加速运动的时间即为与传送带达到共同速度的时间,根据匀变速运动速度公式有
0v v at =+
当速度变为2v 时,时间并不等于2t ,选项A 错误;
B .00~t 时间内,物体物体速度小于传送带速度,受到滑动摩擦力的作用;00~2t t 时间内物体与传送带具有相同的速度,不受摩擦力作用,选项B 错误;
C .如果使皮带逆时针转动,其它条件不变,物体要经历先减速再加速的运动,到达最右端
的时间不可能与原来相同,选项C错误;
D.物体的初速度越大,其它条件不变,与传送带达到共同速度的时间越少,物体到达右端的时间一定越短,选项D正确。
故选D。
13.如图,用橡皮筋将一小球悬挂在小车的架子上,系统处于平衡状态.现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定的偏离竖直方向某一角度(橡皮筋在弹性限度内).与稳定在竖直位置时相比,小球高度
A.一定升高B.一定降低
C.保持不变D.升高或降低由橡皮筋的劲度系数决定【答案】A
【解析】
【分析】
【详解】
试题分析:设L0为橡皮筋的原长,k为橡皮筋的劲度系数,小车静止时,对小球受力分析得:T1=mg,
弹簧的伸长x1=,即小球与悬挂点的距离为L1=L0+,当小车的加速度稳定在一定值时,对小球进行受力分析如图,得:T2cosα=mg,T2sinα=ma,所以:T2=,弹簧的伸长:x2==,则小球与悬挂点的竖直方向的距离为:L2=(L0+)cosα=L0cosα+<L0+=L1,所以L1>L2,即小球在竖直方向上到悬挂点的距离减小,
所以小球一定升高,故A正确,BCD错误.
故选A.
14.如图所示,表面光滑的斜面体固定在匀速上升的升降机上,质量相等的A、B两物体用一轻质弹簧连接着,B的上端用一平行斜面的细线拴接在斜面上的固定装置上,斜面的倾角为30°,当升降机突然处于完全失重状态,则A、B两物体的瞬时加速度大小和方向说
法正确的是( )
A .12
A a g =,方向沿斜面向下;
B a g =,方向沿斜面向下 B .0A a =,0B a =
C .0A a =;B a g =,方向沿斜面向下
D .32
A a g =,方向垂直斜面向右下方;
B a g =方向竖直向下 【答案】D
【解析】
【分析】
【详解】
当升降机处于完全失重状态时,物体和斜面之间的作用力变为0,弹簧弹力不发生变化,故A 物体只受重力和弹簧弹力,两者合力与原来的支持力大小相等方向相反,故其加速度为
cos 32
A mg θa g m =
= 方向垂直斜面斜向右下方; B 物体受到重力弹簧弹力和细线拉力作用,完全失重的瞬间,细线拉力变为和弹簧向下拉力相等,两者合力为0,故B 物体的加速度为
a g =
方向竖直向下;
由以上分析可知A 、B 、C 错误,D 正确;
故选D 。
15.如图所示,将小砝码置于水平桌面上的薄纸板上,用向右的水平拉力 F 将纸板迅速抽出,砝码最后停在桌面上。
若增加 F 的大小,则砝码( )
A .与纸板之间的摩擦力增大
B .在纸板上运动的时间减小
C .相对于桌面运动的距离增大
D .相对于桌面运动的距离不变
【答案】B
【解析】
【分析】
【详解】
A .砝码对纸板的压力不变,大小等于砝码的重力大小,由f =μN 知砝码与纸板之间的摩擦力不变,故A 错误;
B .增加F 的大小,纸板的加速度增大,而砝码的加速度不变,所以砝码在纸板上运动的时间减小,故B 正确;
CD .设砝码在纸板上运动时的加速度大小为a 1,在桌面上运动时的加速度为a 2;则砝码相对于桌面运动的距离为
22
12
22v v s a a =+ 由
v =a 1t 1
知a 1不变,砝码在纸板上运动的时间t 1减小,则砝码离开纸板时的速度v 减小,由上知砝码相对于桌面运动的距离s 减小,故CD 错误。
故选B 。