模电第二章半导体二极管优秀课件

合集下载

第2章演示PPT课件

第2章演示PPT课件

.
2
第2章 半导体二极管及其应用电路
2.1.2 二极管的伏安特性
- U (BR) C
- 3 0 IR C′
iV / m A

B′ 15
B
10
5 O A′
0 .2 -5
A 0 .4 0 .6 0 .8

uV / V
D
D′
( A )
.
3
第2章 半导体二极管及其应用电路
1.正向特性 二极管并不是只要处于正偏时它就导通。只有当正向电
V1


C RL uO
V2

(a)
uO
充电
a
放电 充电 放电
b
0
V1、V3 导通
四个V 均截止
V2 V4
导通
四个V 均截止
V1 V3
导通tBiblioteka (b).15
第2章 半导体二极管及其应用电路
(1)加入滤波电容后,输出电压的直流成份提高了,脉动成份降低了。
即滤波电容不仅是输出电压增大,而且使其变得平化。
.
5
第2章 半导体二极管及其应用电路
2.1.3 二极管的主要参数
1.最大整流电流IF
是指管子长期运行时,允许通过的最大正向平均电流。使用时 正向平均电流不能超过此值,否则会烧坏二极管。
2.最大反向工作电压URM 最大反向工作电压URM 是指二极管正常工作时,所承受的最高
反向电压(峰值)。通常手册上给出的最高反向工作电压是击穿电 压的一半左右。
.
4
第2章 半导体二极管及其应用电路
3.反向击穿特性 二极管反向电压加到一定数值时,反向电流急剧增大
,这种现象称为反向击穿,此时对应的电压称为反向击穿 电压,用UBR表示,即CD(C′D′)段。

《模拟电子技术》课件第2章半导体二极管及其基本电路

《模拟电子技术》课件第2章半导体二极管及其基本电路
成为本自由征电半子导(体带负电), 同时的共价导键电中机留理下一个空
位,称为空穴(带正电)。
+4
+4
+4
+4 空穴
&;4
4
自由电子
空穴:共价键中的空位。
空穴的移动:相邻共价
+4
键中的价电子依次充填
空穴来实现。 +4
电子空穴对:由热激发
而产生的自由电子和空
+4
穴对。
§1.1 半导体的基本知识
P型半导体——掺入三价杂质元素(如硼)的 半导体。【Positive】
1. P型半导体
三、杂质半导体
掺入三价元素(如硼)
Si
Si
BS–i
Si
空穴
掺杂后空穴数 目大量增加,空穴导电 成为这种半导体的主要 导电方式,称为空穴半 导体或 P型半导体。
接受一个 电子变为 负离子
硼原子
空穴:多子(多数载流子)
26
三、二极管的主要参数: (1) 最大整流电流IF
§3.3 二极管
二极二管极长管期反连向续电工流作急时, 允许剧通增过加二时极对管应的的最反大 整流向电电流压的值平称均为值反。向
击穿电压VBR。
(2) 反向击穿电压VBR和最大反向工为作安全电计压,V在R实M际工作
(3) 反向电流IR (4) 极间电容Cj
当vI = 6 sinωt (V)时,分别对于理想模型和恒压降模型绘出相应
的输出电压vO的波形。
R
+a.理想模型 D
当AVI=0V时 +
D截止
当VI=4V时
D导通
当VI=6V时
D导通
vI
VREF

第二章 半导体二极管及其应用电路 《模拟电子技术基础》课件

第二章 半导体二极管及其应用电路 《模拟电子技术基础》课件
基本处于截止状态,这种情况就 称为PN结反向阻断。
PN结的上述“正向导通,反 响阻断”作用,说明PN结具有单 向导电性。
2020/7/4
11
2.1.4 PN结的反向击穿
PN结处于反向偏置时,在一定的电压范围内,流过PN结 的电流很小,但电压超过某一数值时,反向电流急剧增加,这 种现象称为PN结反向击穿。
2. P型半导体
在四价晶体中掺入微量的三价元素,这种杂质半导体中, 空穴浓度远大于自由电子浓度,空穴为多子,自由电子为少子。 这种半导体的导电主要依靠空穴,称其为P型半导体(P-type semiconductor)或空穴型半导体。
2020/7/4
7
需要指出的是:
不论是N型还是P型半导体,整个晶体仍然呈中性。
2020/7/4
图2-3
6
2.1.2 杂质半导体
1. N型半导体
在四价元素晶体中掺入微量的五价元素,这种掺杂所产生的 自由电子浓度远大于本征激发所产生的电子—空穴对的浓度。电 子为多子,空穴为少子。这种半导体的导电主要依靠电子,称其 为N型半导体(N-type semiconductor)或电子型半导体。
2020/7/4
12
2.2 半导体二极管
2.2.1 二极管的结构与类型
将PN结加上相应的电极引线和管壳,就成为半导体二极 管。按结构分,二极管有点接触型和面接触型、平面型等 。
1. 点接触型二极管
特点是PN结面积小,不能通过较大电流,但高频性能好。
2. 面接触型二极管
结面积较大,故可允许通过较大电流,但其工作频率低。
4. 温度对特性的影响
图2-10
2020/7/4
由于半导体的导电性能与 温度有关,所以二极管的特性 对温度很敏感,温度升高时二 极管正向特性曲线向左移动, 反向特性曲线向下移动,如图 2-10所示。

模拟电子技术基础 第2章半导体二极管及其基本电路 PPT课件

模拟电子技术基础 第2章半导体二极管及其基本电路 PPT课件

上页 下页
rd
3.4 二极管基本电路
• 限幅电路
– 下图所示电路是一种简单的双向限幅电路,R 为限流电阻。
图3.3.9 限幅电路 电子技术基础精品课程——模拟电子技术基础
上页 下页
rd
3.4 二极管基本电路
• 限幅电路 – 设二极管为恒压降模型。 点击观看Pspice仿真
当输入信号vi小于二极管
的导通电压(0.7v)时,
二极管截止,vo ≈ vi ; 当 vi值超过0.7v后,二
极管导通。二极管导通后, 其伏安特性类似于恒压特
性,所以其两端电压vo被
限制在±0.7v附近。该电 路常作为限幅保护电路。
图3.3.9 限幅电路(b)
电子技术基础精品课程——模拟电子技术基础
上页 下页
rd
3.4 二极管基本电路
• 常用的双色发光二极管有2EF系列和TB系列,常用的三色 发光二极管有2EF302、2EF312、2EF322等型号。
电子技术基础精品课程——模拟电子技术基础
上页 下页
发光二极管
• 普通发光二极管的检测 • 用万用表检测。利用具有×10kΩ挡的指针式万用表可以大致判断发光
二极管的好坏。正常时,二极管正向电阻阻值为几十至200kΩ,反向电 阻的值为∝。如果正向电阻值为0或为∞,反向电阻值很小或为0,则 易损坏。种检测方法,不能实地看到发光管的发光情况,因为×10kΩ 挡不能向LED提供较大正向电流。

— 1. 最大整流电流IF•IF是指二极管长期运行时允许通过的最大正向平均电流。其值与
PN结面积以及外部散热条件有关。在规定的散热条件下,二极管正向平
均电流若超过此值,则将因结温升高而烧坏。

模电课件第二章二极管

模电课件第二章二极管
多子浓度——与温度无关
注: 对于杂质半导体,多子的浓度愈高,少子的浓度就越低。
可以认为,多子的浓度约等于所掺杂质原子的浓度,因而它受 温度的影响很小;而少子是本征半导体激发形成的,所以尽管 其浓度很低,却对温度非常敏感,这将影响半导体器件的性能。
2.2 PN结的形成及特性 一、PN结的形成 ( P.32—33)
10 10
3、折线模型
考虑到正向特性的斜率 ,即考虑二极管导通后的等效电阻 rD :如图,
当vD = Vth时,iD = 0;而当vD = 0.7V时,iD约为1mA。
个特电性二阻 为极:rD串管联正,向电偏阻置上时的,电其压管为压:降IVD×D不rD是,恒rD定=的(,0.7可—视0.为5)它/1由m门A 坎≈20电0Ω压。V其th和V—一
2)T增加 至T=300K时,有少量的电子空穴 对(空位).
3.两种载流子(仅两种)
1)电子:共价键中的价电子挣脱原子核的束缚成为自由电子,T增 加,自由电子增加.
2)空穴:价电子成为自由电子后,共价键中就留下一个空位,称空穴. 因为原子中性破坏,显示出 a).带正电
b).可以“移动”:(空穴移动并非本身移动,而是对于电子补充而相对 移动)既有空穴的原子吸引相邻原子中的价电子补充这个空穴,于是出 现另一个空穴.再由相邻价电子补充,继续下去,好象空穴在运动.)电子 与空穴运动方向相反,空穴运相当于正电荷运动.
P
N
符号:
分类: 按材料可分为硅二极管(3CP系列)和锗二极管(2AP系列) 按结构工艺分为点接触型、面接触型 和平面型三种。
(1) 点接触型二极管
PN结面积小,结电容小, 用于检波和变频等高频电路。
正 极引 线
金 属触 丝

《模拟电子技术基础》第2章 半导体二极管及其基本应用电路

《模拟电子技术基础》第2章 半导体二极管及其基本应用电路
稳压管的最大工作电流 IZmax = PZmax/UZ。稳压二极管2CW52的 PZmax=0.25W。 (4) 动态电阻rZ
稳压管工作在稳压区时,稳压管两端电压的变化量与其电流
变化量之比,即rZ =UZ /IZ。 rZ 越小,稳压管的稳压性能越好。一般rZ 从几欧至几十欧。
稳压二极管2CW52的rZ <70Ω。
6
正向
4
3
+
uD _
-50 UBR 反向
Si
2
1
-25 O
2
0.4 Uth 0.8
-10
死区
Ge -20
iD /
uD/ V
(b)特性曲线 图2.4.3 二极管的伏安特性曲线
uD
伏安特性方程: iD IS(eUT 1)
UT
kT q
2.3 半导体二极管
2.3.2 二极管的伏安特性 1. 正向特性
I / mA Ge Si R
+4
+4
+4
共价键
价电子
+4
+4
+4
+4
+4
+4
图2.2.2 四价元素的共价键结构
2.1.1 本征半导体
当温度0K时,半导体中无自由电子;当温度大于0K或受到 光照时,有些价电子挣脱共价键的束缚,成为自由电子。这种现 象称为本征激发(也称为热激发)。本征激发产生电子-空穴对。
自由电子在运动过程中如果与空穴相遇就会填补空穴,称为 复合。在一定温度下,本征激发和复合达到动态平衡。
导体。
+4
+4
+4
自由电子
+4

模电课件第二章二极管及其放大电路

模电课件第二章二极管及其放大电路
模电课件第二章二极管及 其放大电路
CATALOGUE
目 录
• 二极管的基本知识 • 二极管电路分析 • 二极管放大电路 • 二极管电路的调试与故障排除 • 二极管的发展趋势与展望
01
CATALOGUE
二极管的基本知识
二极管的种类
硅二极管
硅二极管是最常用的二 极管类型,具有较低的 导通电压和较高的稳定
应用场景
共基放大电路在高频信号处理、振 荡器等领域应用较广。
04
CATALOGUE
二极管电路的调试与故障排除
调试方法
静态工作点的调试
通过调节偏置电阻,观察二极管的工作状态 ,确保其处于合适的静态工作点。
反馈电路的调试
检查反馈电路的元件参数,调整反馈电阻和 电容,使电路达到最佳的放大效果。
输入和输出信号的调整
正向偏置和反向偏置
当二极管的正极电压高于负极电压时 ,称为正向偏置;当二极管的负极电 压高于正极电压时,称为反向偏置。
二极管的应用
01
02
03
04
整流电路
利用二极管的单向导通性实现 交流电的整流,将交流电转换
为直流电通断控制。
稳压电路
利用齐纳二极管的反向击穿特 性实现电路的稳压。
信号放大
利用二极管的非线性特性实现 信号的放大和失真效果。
02
CATALOGUE
二极管电路分析
整流电路
整流电路
利用二极管的单向导电性,将交流电转换为直流电的电路 。
单相半波整流电路
只利用半个周期的交流电进行整流,输出电压平均值为输 入电压的一半。
单相全波整流电路
利用两个二极管交替导通和截止,将交流电转换为直流电 ,输出电压平均值为输入电压的0.9倍。

模电02二极管及其基本电路PPT课件

模电02二极管及其基本电路PPT课件
使其正向电流为0.5mA,应加多大的电压?设n=1。 解: 由题意可知IS = 1nA, n=1。将参数代入PN结的
V- I 特性表达式
得到:
第15页/共17页
二、 PN结的单向导电性
3.2 PN结
4. PN结的电容效应
• 扩散电容CD(正偏) • 势垒电容CB (反偏)
第16页/共17页
感谢您的观看!
形成内电场ε0 (N →P)
促使少子漂移阻止多子扩散
扩散
=
漂移(动态平衡)
稳定的空间电荷区称为PN结
第10页/共17页
3.2 PN结
二、 PN结的单向导电性
1.PN结加正向电压(正偏)
EF
ε0
内电场:ε0 →ε0-EF
多子扩散 >> 少子漂移
扩散电流 >> 漂移电流
IF
外电路:流入P区的ຫໍສະໝຸດ 流IF二、杂质半导体硼(3价)
本征半导体(4价) 磷(5价)
P型(空穴)半导体
N型(电子)半导体
正离子 负离子 空穴 自由电子
多子:空穴 少子:自由电子 多子:自由电子 少子:空穴
均匀分布负离子
均匀分布正离子
第7页/共17页
3.1 半导体
复习
二、杂质半导体
硼(3价)
本征半导体(4价) 磷(5价)
P型(空穴)半导体
3.1 半导体
一、本征半导体
定义:化学成分纯净、物理结构完整(单晶体形态)。
1. 原子结构:以Si,Ge为例
Si
G
e
4价元素,4个价电子。
第3页/共17页
一、本征半导体
2.共价键
3.1 半导体
共价键结构平面示意图

模电课件第二章二极管及其放大电路共32页

模电课件第二章二极管及其放大电路共32页
15.11.2019
限幅电路
例4 一限幅电路如图所示,R=1kΩ,VREF=3V,二极管为硅二 极管。分别用理想模型和恒压降模型: (1)求解vI=0V、4V、6V时相应的输出电压vO之值; (2)绘出当vI=6sinωt(V)相应的输出电压波形
15.11.2019
开关电路
例5 二极管电路如图所示,利用二极管理想模型求解:当 vI1和vI2为0V或5V 时,求vI1和vI2的值不同组合情 况下,输出电压vo的值。
VCC
开关电路习惯画法
开关电路理想模型
15.11.2019
低电压稳压电路
例6 低电压稳压电路如图所示,利用二极管的正向压降特性, 合理选取电路参数,对于硅二极管可以获得输出电压vO(=VD) 近似等于0.7V,若采用几只二极管串联,则可获得1V以上的 输出电压。
15.11.2019
小信号工作情况分析
15.11.2019
整流电路
例2 二极管基本电路如图所示,已知vs为正弦波。试利用二 极管理想模型,定性地绘出vo的波形。
半波整流电路
15.11.2019
静态工作情况分析
例3 设简单硅二极管基本电路及习惯画法如图所示,R=10kΩ。 对于下列两种情况,求电路的ID和VD的值:
(1)VDD=10V; (2) VDD=1V
15.11.2019
conduction band (mobile) electrons :束缚电子 donor and acceptor impurities:杂质半导体 peak inverse voltage:峰值反向电压 avalanche diode:雪崩二极管 zener diode:齐纳二极管 Light-emitting diode:发光二极管 Photodiode:光电二极管 Silicon controlled rectifier:可控硅 Tunnel diode:隧道二极管 Schottky diode:肖特基二极管 Varicap diode:变容二极管 Radio demodulation:解调、检波 Power conversion:能量变换 Over-voltage protection:过压保护 Logic gates:逻辑门 Ionising radiation detectors: Current steering:

模电第二章半导体二极管

模电第二章半导体二极管
3
2.1.2 本征半导体
现代电子学中,用的最多的半导体是硅和 锗,它们的最外层电子(价电子)都是四个。
Ge
Si
4
通过一定的工艺过程,可以将半导体 制成晶体。
完全纯净的、结构完整的半导体晶体, 称为本征半导体。
在硅和锗晶体中,原子按四角形系统组成 晶体点阵,每个原子都处在正四面体的中心, 而四个其它原子位于四面体的顶点,每个原子 与其相临的原子之间形成共价键,共用一对价 电子。
这样所产生的电容就是扩散电容CD。
43
CB在正向和反向偏置时均不能忽略。而 反向偏置时,载流子很少,扩散电容可忽略。
PN结高频小信号时的等效电路: rd
势垒电容和扩散电 容的综合效应
44
2.4.1 二极管V- I 特性的建模
1. 理想模型
2. 恒压降模型
3. 折线模型
45
2.4.1 二极管V- I 特性的建模
以上均是二极管的直流参数,二极管的应用是 主要利用它的单向导电性包括整流、限幅、保护等。
40
(4)微变电阻 rD
iD
ID
Q
iD
vD
rD是二极管特性曲线工 作点Q附近电压的变化
与电流的变化之比:
VD
vD 显然,rD是对Q附近的
微小变化量的电阻。
41
(5)二极管的极间电容
二极管的两极之间有电容,此电容由两 部分组成:势垒电容CB和扩散电容CD。
思都是: P区加正、N区加负电压。
PN结加上反向电压、反向偏置的意 思都是: P区加负、N区加正电压。
27
PN结正向偏置
空间电荷区变薄
P
-+
N
+
-+

模电课件2半导体二极管

模电课件2半导体二极管

3.开关电路
利用二极管的 单向导电性可 作为电子开关
例3:求vI1和vI2
不同值组合时
解:
的v0值(二极管 为理想模型)。
vI1 vI2
二极管工作状态
D1
D2
v0
0V 0V 导通 导通
0V
0V 5V 导通 截止
0V
5V 0V 截止 导通
0V
5V 5V 截止 截止
5V
例4:判别二极管是导通还是截止。
+ vi(t)

C
R 1K E 1.5V
解: +
I DQ
1.5 VD 1K
0.9mA
VD

R直
0.6 0.9
0.67(k)
r交
VT IQ
26 0.9
28.89()
例11:二极管限幅电路:已知电路的输入波形为 v i ,二
极管的VD 为0.6伏,试画出其输出波形。
解: Vi> 3.6V时,二极管导通,vo=3.6V。 Vi< 3.6V时,二极管截止, vo=Vi。
例6:求(1).vI=0V,vI=4V, vI=6V 时,输出v0的值。
(2). Vi=6sinωt V 时,
输出v0的波形。
解:(1) . vI=0V时,D截止。v0 = vI
实际模型
vo
vI=4V时,D导通。
VREF Vth (vI VREF
vI=6V时,D导通。
Vth )
rD (rD
PN结的单向导电性
(1) PN结加正向电压
外加的正向电压,方 向与PN结内电场方向相反, 削弱了内电场。于是,内 电场对多子扩散运动的阻 碍减弱,扩散电流加大。 扩散电流远大于漂移电流, 可忽略漂移电流的影响, PN结呈现低阻性。P区的 电位高于N区的电位,称 为加正向电压,简称正偏。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P型半导体
硅或锗 +少量硼 P型半导体
在硅或锗晶体中掺入少量的三价元素,如 硼(或铟),晶体点阵中的某些半导体原子被 杂质取代,硼原子的最外层有三个价电子,与 相临的半导体原子形成共价键时,产生一个空 穴。这个空穴可能吸引束缚电子来填补,使得 硼原子成为不能移动的带负电的离子。由于硼 原子接受电子,所以称为受主原子。
在常温下,由于热激发,使一些价电子 获得足够的能量而脱离共价键的束缚,成 为自由电子,同时共价键上留下一个空位, 称为空穴。
本征半导体的导电机理
空穴
+4
+4
+4
+4
自由电子 束缚电子
本征半导体的导电机理
+4
+4
+4
+4
在其它力的作用下, 空穴吸引临近的电子 来填补,这样的结果 相当于空穴的迁移, 而空穴的迁移相当于 正电荷的移动,因此 可以认为空穴是载流 子。
模电第二章半导体二极管
§2.1 半导体的基本知识
2.1.1 导体、半导体和绝缘体
自然界中很容易导电的物质称为导体,金 属一般都是导体。
有的物质几乎不导电,称为绝缘体,如橡 皮、陶瓷、塑料和石英。
另有一类物质的导电特性处于导体和绝缘体 之间,称为半导体,如锗、硅、砷化镓和一些 硫化物、氧化物等。
半导体的导电机理不同于其它物质,所 以它具有不同于其它物质的特点。比如:
+ +++++ + +++++ + +++++ + +++++
P型区
空间电 N型区 荷区
请注意
1、空间电荷区中没有载流子。
2、空间电荷区中内电场阻碍P中的空穴、 N中的电子(都是多子)向对方运动 (扩散运动)。
PN结处载流子的运动
漂移运动
P型半导 体
---- - - ---- - -
---- - -
---- - -
N型半导 内电场E 体 + +++++ + +++++ + +++++ + +++++
空间电荷区
扩散运动
PN结处载流子的运动
漂移运动
P型半导 体
---- - - ---- - -
---- - -
P型半导体
空穴 硼原子
+4
+4
+3
+4
总结
1、N型半导体中电子是多子,其中大部分是掺杂提 供的电子,本征半导体中受激产生的电子只占少 数。 N型半导体中空穴是少子,少子的迁移也能 形成电流,由于数量的关系,起导电作用的主要
是多子。近似认为多子与杂质浓度相等。
2、P型半导体中空穴是多子,电子是少子。
杂质半导体的示意表示法
---- - - ---- - - ---- - - ---- - -
P型半导体
+ +++++ + +++++ + +++++ + +++++
N型半导体
§2.2 PN结的形成及特性
2.2.1 PN 结的形成
在同一片半导体基片上,分别制造P型 半导体和N型半导体,经过载流子的扩散, 在它们的交界面处就形成了PN结。
---- - -
---- - -
N型半导 内电场E 体 + +++++ + +++++ + +++++ + +++++
所以扩散和漂 移这一对相反 的运动最终达 到平衡,相当 于两个区之间 没有电荷运动, 空间电荷区的 厚度固定不变。
扩散运动
电位V
V0
---- - - ---- - - ---- - - ---- - -
N型半导体
磷原子
+4
+4
多余电子
+5
+4
N型半导体
N型半导体中的载流子是什么?
1、由施主原子提供的电子,浓度与施主原子相同。
2、本征半导体中成对产生的电子和空穴。 3、掺杂浓度远大于本征半导体中载流子浓度, 所以,自由电子浓度远大于空穴浓度。自由电 子称为多数载流子(多子),空穴称为少数载 流子(少子)。
在硅和锗晶体中,原子按四角形系统组成 晶体点阵,每个原子都处在正四面体的中心, 而四个其它原子位于四面体的顶点,每个原子 与其相临的原子之间形成共价键,共用一对价 电子。
硅和锗的晶体结构
硅和锗的共价键结构
+4表示除 去价电子 后的原子
+4
+4ቤተ መጻሕፍቲ ባይዱ
+4
+4
共价键共 用电子对
形成共价键后,每个原子的最外层电 子是八个,构成稳定结构。
本征半导体的导电机理
本征半导体中存在数量相等的两种载流 子,即自由电子和空穴。
本征半导体的导电能力取决于载流子的 浓度。
温度越高,载流子的浓度越高。因此本 征半导体的导电能力越强,温度是影响半导 体性能的一个重要的外部因素,这是半导体 的一大特点。
2.1.3 杂质半导体
在本征半导体中掺入某些微量的杂质, 就会使半导体的导电性能发生显著变化。
+4
+4
+4
+4
共价键有很强的结合力, 使原子规则排列,形成晶体。
共价键中的两个电子被紧紧束缚在共价键 中,称为束缚电子,常温下束缚电子很难脱 离共价键成为自由电子,因此本征半导体中 的自由电子很少,所以本征半导体的导电能 力很弱。
本征半导体的导电机理
在绝对0度(T=0K)和没有外界激发时, 价电子完全被共价键束缚着,本征半导体中 没有可以运动的带电粒子(即载流子),它 的导电能力为0,相当于绝缘体。
当受外界热和光的作用时,它的导 电能力明显变化。
往纯净的半导体中掺入某些杂质, 会使它的导电能力明显改变。
2.1.2 本征半导体
现代电子学中,用的最多的半导体是硅和 锗,它们的最外层电子(价电子)都是四个。
Ge
Si
通过一定的工艺过程,可以将半导体 制成晶体。
完全纯净的、结构完整的半导体晶体, 称为本征半导体。
---- - -
N型半导 内电场E 体
+ +++++ + + 内移+ 电运+场 动越越+ 强强+,,就而使漂漂移 + + 使+ 空+间电+ 荷+区变薄。
+ +++++
扩散的结果是使空间电 荷区逐渐加宽,空间电 荷区越宽。
扩散运动
PN结处载流子的运动
漂移运动
P型半导 体
---- - - ---- - -
其原因是掺杂半导体的某种载流子浓度 大大增加。
使自由电子浓度大大增加的杂质半导体 称为N型半导体(电子半导体),使空穴浓 度大大增加的杂质半导体称为P型半导体 (空穴半导体)。
N型半导体
硅或锗 +少量磷 N型半导体
在硅或锗晶体中掺入少量的五价元素磷 (或锑),晶体点阵中的某些半导体原子被 杂质取代,磷原子的最外层有五个价电子, 其中四个与相临的半导体原子形成共价键, 必定多出一个电子,这个电子几乎不受束缚, 很容易被激发而成为自由电子,这样磷原子 就成了不能移动的带正电的离子。每个磷原 子给出一个电子,称为施主原子。
相关文档
最新文档