接地与浮地技术(精华)

合集下载

浮地技术

浮地技术

1 浮地技术:是针对系统存在需要检测的对地浮动的差模信号问题(通常这些被测信号与系统信号参考地之间存在一些较高数值的共模信号)而采用的一类信号测量与处理技术。

目的:是要将浮动的信号转化或传输到以系统信号地为参考点的信号(既:“把天上的仙女转变成地上的凡人”)。

例如:系统中的两点(P1,P2), Vp1=1000V, Vp2=1001V,Vcom(共模电压)=1000V,Vdif(差模或差分电压)= +1V,P1定为浮动参考点.高压电源的输出电流转换成的电压信号是一个比较典型的案例。

常用“隔离放大器”与“仪器放大器(或减法比例器)”剔除共模信号。

而后者通常只能减去±10V以内的共模信号,但漂移较小。

前者先将Vdif转换成便于隔离传输的形式(如:光、占空比变化的脉冲信号等),再通过光接收器、脉冲变压器等将信号还原成原来的形式;温飘系数通常为:30-50uV/℃,于是在0-40℃的环境里,会有±0.6-1mV的温飘变化;零飘还是比较大的,相比:采用数字脉冲做传输方式的比模拟传输隔离信号方式的漂移要小;最高隔离电压可达到:1KV-2KV;典型供应商:ADI公司,通常价格较贵(几百元¥量级/个)。

通常,是将前端放大器的浮动电源的公共点与“低内阻”(很重要,不能忽略)浮动参考点相连接。

2 解决问题的思路:通常,解决漂移的思想是尽量从信号前端得到较高幅度的信号。

这样,尽管通过隔离传输产生了较大的漂移(可将这些漂移看作噪声干扰信号),较高的信噪比还是可以满足要求而漂移或可忽略不计。

例如:能用100KΩ的电阻(将0.6uA-114.7uA的电流转换成60mV-11.47V的电压信号),就不用1KΩ或10KΩ电阻。

3 新的建议:感谢技术的进步!现在有很多价廉物美的串行数字输出的A/D(如:TI-BB,ADI,NSC等公司),先在浮动点将Vdif数字化,再采用光耦(6N136/7等)隔离共模信号、传输数字信号到系统参考地后,或用串行D/A还原或显示或由单片机处理自由度就大多了。

电子设计中-电源地,信号地,大地等知识点总结

电子设计中-电源地,信号地,大地等知识点总结

电⼦设计中-电源地,信号地,⼤地等知识点总结设计中各种“地”——各种 GND 设计电源地,信号地,还有⼤地,这三种地有什么区别? 电源地主要是针对电源回路所⾛的路径⽽⾔的,⼀般来说电源地流过的电流较⼤,⽽信号地主要是针对两块芯⽚或者模块之间的通信信号的回流所流过的路径,⼀般来说信号地流过的电流很⼩,其实两者都是GND,之所以分开来说,是想让⼤家明⽩在布板时要清楚地了解电源及信号回流各⾃所流过的路径,然后在布板时考虑如何避免电源及信号共⽤回流路径,如果共⽤的话,有可能会导致电源地上⼤的电流会在信号地上产⽣⼀个电压差(可以解释为:导线是有的,只是很⼩的阻值,但如果所流过的电流较⼤时,也会在此导线上产⽣电位差,这也叫共阻抗⼲扰),使信号地的真实电位⾼于0V,如果信号地的电位较⼤时,有可能会使信号本来是⾼电平的,但却误判为低电平。

当然电源地本来就很不⼲净,这样做也避免由于⼲扰使信号误判。

所以两者地在时稍微注意⼀下就可以。

⼀般来说即使在⼀起也不会产⽣⼤的问题,因为的门限较⾼。

各种“地”—— 各种“GND”(1)GND,指的是接地端的简写。

代表地线或0 线。

电路图上和电路板上的GND(Ground)代表地线或0 线.GND 就是公共端的意思,也可以说是地,但这个地并不是真正意义上的地。

是出于应⽤⽽假设的⼀个地,对于电源来说,它就是⼀个电源的负极。

它与⼤地是不同的。

有时候需要将它与⼤地连接,有时候也不需要,视具体情况⽽定。

设备的信号接地,可能是以设备中的⼀点或⼀块⾦属来作为信号的接地参考点,它为设备中的所有信号提供了⼀个公共参考电位。

接地形式:有单点接地,多点接地,浮地和混合接地。

(1)单点接地是指整个电路系统中只有⼀个物理点被定义为接地参考点,其他各个需要接地的点都直接接到这⼀点上。

在低频电路中,布线和元件之间不会产⽣太⼤影响。

通常频率⼩于1MHz 的电路,采⽤⼀点接地。

(2)多点接地是指电⼦设备中各个接地点都直接接到距它最近的接地平⾯上(即设备的⾦属底板)。

“浮地”技术及其作用

“浮地”技术及其作用

“浮地”技术及其作用
这里说的浮地就是控制器不接大地
我想说明何时与如何接地:
1.干扰需要一定能量,当控制器彻底与大地隔离(浮地)时,工频干扰回路阻抗极大,流过控制器及其内部的干扰电流极小,不足以干扰控制器。

2.当控制器外壳与大地完好连接,由于控制器与大地等电位,工频干扰电流被控制器外壳接地点所旁路,无法进入控制器内部,从而也无法干扰。

3.当控制器外壳与大地处于上述两者之间时,就会有工频干扰。

4.如果控制器的使用可能存在安全问题时,外壳必须很好接地。

5.多个设备的理想接地是尽量一点接大地,以避免设备间地线干扰。

有时具体问题需具体分析。

如果几个设备互连,又无法良好接地,那么它们最好都浮地,其实这一点不太现实,在实际应用中,供电和驱动很可能用到工频电网,工频泄漏是必然的(假设绝缘阻抗100M欧,380VAC电压,就有5.373uA峰值漏电流流过控制器,在MOS器件的控制器中,有的器件本身工作电流只有0.1uA)。

所以,一般情况下,控制器外壳最好良好接地。

如果你的确能做到所有设备与工频隔离(浮地),如果,你的设备间没有较大的电流(这里可称信号地电流)或你的设备间信号地阻抗很小,那么,你的多个设备信号地可直接互连。

否则,你的设备间信号传递需要加隔离(如光电,变压器,机械,等)。

控制器内部电气或电子部分是否需要与外壳一点接地呢?当外壳与内部
电路间完全浮地时,由于它们间仍存在电容耦合效应,外壳与内部电路间仍将存在工频漏电流。

这时:
1.当你的电路要求还不是很高时,可以不管;。

信号接地的方式盘点(浮地-单点接地-多点接地)

信号接地的方式盘点(浮地-单点接地-多点接地)

信号接地的方式盘点(浮地/单点接地/多点接地)1.地的接法对于一个信号来说,它需要寻找一条最低阻抗的电流回流到地的途径,所以如何处理这个信号回流就变得非常的关键。

第一,根据公式可以知道,辐射强度是和回路面积成正比的,就是说回流需要走的路径越长,形成的环越大,它对外辐射的干扰也越大,所以,PCB布板的时候要尽可能减小电源回路和信号回路面积。

第二,对于一个高速信号来说,提供有好的信号回流可以保证它的信号质量,这是因为PCB上传输线的特性阻抗一般是以地层(或电源层)为参考来计算的,如果高速线附近有连续的地平面,这样这条线的阻抗就能保持连续,如果有段线附近没有了地参考,这样阻抗就会发生变化,不连续的阻抗从而会影响到信号的完整性。

所以,布线的时候要把高速线分配到靠近地平面的层,或者高速线旁边并行走一两条地线,起到屏蔽和就近提供回流的功能。

第三,为什么说布线的时候尽量不要跨电源分割,这也是因为信号跨越了不同电源层后,它的回流途径就会很长了,容易受到干扰。

当然,不是严格要求不能跨越电源分割,对于低速的信号是可以的,因为产生的干扰相比信号可以不予关心。

对于高速信号就要认真检查,尽量不要跨越,可以通过调整电源部分的走线。

许多电磁干扰问题是由地线产生的,因为地线电位是整个电路工作的基准电位,如果地线设计不当,地线电位就不稳,就会导致电路故障。

地线设计的目的是要保证地线电位尽量稳定,从而消除干扰现象。

信号接地方式一般有三种:浮地、单点接地、多点接地。

1.1 浮地目的:使电路或设备与公共地线可能引起环流的公共导线隔离起来,浮地还使不同电位的电路之间配合变得容易。

缺点:容易出现静电积累引起强烈的静电放电。

折衷方案:接入泄放电阻。

1.2 单点接地单点接地:所有电路的地线接到公共地线的同一点,进一步可分为串联单点接地和并联单点接地。

在大功率和小功率电路混合的系统中,切忌使用,因为大功率电路中的地线电流。

关于接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地

关于接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地
2、有些 IC 既有 VDD 引脚又有 VCC 引脚,说明这种器件自身带有电压转换功 能。
3、在场效应管(或 COMS 器件)中,VDD 为漏极,VSS 为源极,VDD 和 VSS 指的是元件引脚,而不表示供电电压。
VDD:电源电压(单极器件);电源电压(4000 系列数字电 路);漏极电压(场 效应管)
它是绿色
安全地线或接到大地的意思。一个比较通用的定义是“接地是电流返回其源 的低阻抗通道”。注意要求是”低阻抗”和“通路”。
Q3:常见ND,FG-保护地或机壳;BGND 或 DC-RETURN-直流-48V(+24V)电源(电 池)回流;GND-工作地;DGND-数字地;
------------------------
几种接地符号
第 1 个我用做电源正或数字电路 VCC,不用作地. 第 2 个我用作数字地或数字模拟公共地. 第 3 个用作模拟地. 第 4 个当然是机箱外壳或外壳接大地了.
Q8:单板的接口器件如何接地?
Answer:有些单板会有对外的输入输出接口,比如串口连接器,网口 RJ45 连接器等等,如果对它们的接地设计得不好也会影响到正常工作,例如网口互连
有误码,丢包等,并且会成为对外的电磁干扰源,把板内的噪声向外发送。 一般来说会单独分割出一块独立的接口地,与信号地的连接采用细的走线连接,
(6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。 以上这些地线处理是系统设计、安装、调试中的一个重要问题。下面就接地
问题提出一些看法: (1)控制系统宜采用一点接地。一般情况下,高频电路应就近多点接地,低 频电路应一点接地。在低频电路中,布线和元件间的电感并不是什么大问题,然 而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不 适用于高频,因为高频时,地线上具有电感因而增加了地线阻抗,同时各地线之 间又产生电感耦合。一般来说,频率在 1MHz 以下,可用一点接地;高于 10MHz 时,采用多点接地;在 1~10MHz 之间可用一点接地,也可用多点接地。 (2)交流地与信号地不能共用。由于在一段电源地线的两点间会有数 mV 甚至几 V 电压,对低电平信号电路来说,这是一个非常重要的干扰,因此必须加

接地与浮地技术(精华)

接地与浮地技术(精华)

接地与浮地技术分析“接地”有设备内部的信号接地和设备接大地,两者概念不同,目的也不同。

“地”的经典定义是“作为电路或系统基准的等电位点或平面”。

一:信号“地”又称参考“地”,就是零电位的参考点,也是构成电路信号回路的公共端。

(1)直流地:直流电路“地”,零电位参考点。

(2)交流地:交流电的零线。

应与地线区别开。

(3)功率地:大电流网络器件、功放器件的零电位参考点。

(4)模拟地:放大器、采样保持器、A/D转换器和比较器的零电位参考点。

(5)数字地:也叫逻辑地,是数字电路的零电位参考点。

(6) “热地”:开关电源无需使用工频变压器,其开关电路的“地”和市电电网有关,即所谓的“热地”,它是带电的。

(7) “冷地”:由于开关电源的高频变压器将输入、输出端隔离;又由于其反馈电路常用光电耦合器,既能传送反馈信号,又将双方的“地”隔离;所以输出端的地称之为“冷地”,它不带电。

信号接地设备的信号接地,可能是以设备中的一点或一块金属来作为信号的接地参考点,它为设备中的所有信号提供了一个公共参考电位。

有单点接地,多点接地,浮地和混合接地。

(这里主要介绍浮地)单点接地是指整个电路系统中只有一个物理点被定义为接地参考点,其他各个需要接地的点都直接接到这一点上。

在低频电路中,布线和元件之间不会产生太大影响。

通常频率小于1MHz的电路,采用一点接地。

多点接地是指电子设备中各个接地点都直接接到距它最近的接地平面上(即设备的金属底板)。

在高频电路中,寄生电容和电感的影响较大。

通常频率大于10MHz的电路,常采用多点接地。

浮地,即该电路的地与大地无导体连接。

『虚地:没有接地,却和地等电位的点。

』其优点是该电路不受大地电性能的影响。

浮地可使功率地(强电地)和信号地(弱电地)之间的隔离电阻很大,所以能阻止共地阻抗电路性耦合产生的电磁干扰。

其缺点是该电路易受寄生电容的影响,而使该电路的地电位变动和增加了对模拟电路的感应干扰。

一个折衷方案是在浮地与公共地之间跨接一个阻值很大的泄放电阻,用以释放所积累的电荷。

接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地

接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地

接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。

控制系统中,大致有以下几种地线:(1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。

(2)模拟地:是各种模拟量信号的零电位。

(3)信号地:通常为传感器的地。

(4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。

(5)直流地:直流供电电源的地。

(6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。

以上这些地线处理是系统设计、安装、调试中的一个重要问题。

下面就接地问题提出一些看法:(1)控制系统宜采用一点接地。

一般情况下,高频电路应就近多点接地,低频电路应一点接地。

在低频电路中,布线和元件间的电感并不是什么大问题,然而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不适用于高频,因为高频时,地线上具有电感因而增加了地线阻抗,同时各地线之间又产生电感耦合。

一般来说,频率在1MHz以下,可用一点接地;高于10MHz时,采用多点接地;在1~10MHz之间可用一点接地,也可用多点接地。

(2)交流地与信号地不能共用。

由于在一段电源地线的两点间会有数mV甚至几V电压,对低电平信号电路来说,这是一个非常重要的干扰,因此必须加以隔离和防止。

(3)浮地与接地的比较。

全机浮空即系统各个部分与大地浮置起来,这种方法简单,但整个系统与大地绝缘电阻不能小于50MΩ。

这种方法具有一定的抗干扰能力,但一旦绝缘下降就会带来干扰。

还有一种方法,就是将机壳接地,其余部分浮空。

这种方法抗干扰能力强,安全可靠,但实现起来比较复杂。

(4)模拟地。

模拟地的接法十分重要。

为了提高抗共模干扰能力,对于模拟信号可采用屏蔽浮技术。

对于具体模拟量信号的接地处理要严格按照操作手册上的要求设计。

(5)屏蔽地。

在控制系统中为了减少信号中电容耦合噪声、准确检测和控制,对信号采用屏蔽措施是十分必要的。

根据屏蔽目的不同,屏蔽地的接法也不一样。

电子设计中-电源地,信号地,大地等知识点总结

电子设计中-电源地,信号地,大地等知识点总结

电⼦设计中-电源地,信号地,⼤地等知识点总结设计中各种“地”——各种 GND 设计电源地,信号地,还有⼤地,这三种地有什么区别? 电源地主要是针对电源回路所⾛的路径⽽⾔的,⼀般来说电源地流过的电流较⼤,⽽信号地主要是针对两块芯⽚或者模块之间的通信信号的回流所流过的路径,⼀般来说信号地流过的电流很⼩,其实两者都是GND,之所以分开来说,是想让⼤家明⽩在布板时要清楚地了解电源及信号回流各⾃所流过的路径,然后在布板时考虑如何避免电源及信号共⽤回流路径,如果共⽤的话,有可能会导致电源地上⼤的电流会在信号地上产⽣⼀个电压差(可以解释为:导线是有的,只是很⼩的阻值,但如果所流过的电流较⼤时,也会在此导线上产⽣电位差,这也叫共阻抗⼲扰),使信号地的真实电位⾼于0V,如果信号地的电位较⼤时,有可能会使信号本来是⾼电平的,但却误判为低电平。

当然电源地本来就很不⼲净,这样做也避免由于⼲扰使信号误判。

所以两者地在时稍微注意⼀下就可以。

⼀般来说即使在⼀起也不会产⽣⼤的问题,因为的门限较⾼。

各种“地”—— 各种“GND”(1)GND,指的是接地端的简写。

代表地线或0 线。

电路图上和电路板上的GND(Ground)代表地线或0 线.GND 就是公共端的意思,也可以说是地,但这个地并不是真正意义上的地。

是出于应⽤⽽假设的⼀个地,对于电源来说,它就是⼀个电源的负极。

它与⼤地是不同的。

有时候需要将它与⼤地连接,有时候也不需要,视具体情况⽽定。

设备的信号接地,可能是以设备中的⼀点或⼀块⾦属来作为信号的接地参考点,它为设备中的所有信号提供了⼀个公共参考电位。

接地形式:有单点接地,多点接地,浮地和混合接地。

(1)单点接地是指整个电路系统中只有⼀个物理点被定义为接地参考点,其他各个需要接地的点都直接接到这⼀点上。

在低频电路中,布线和元件之间不会产⽣太⼤影响。

通常频率⼩于1MHz 的电路,采⽤⼀点接地。

(2)多点接地是指电⼦设备中各个接地点都直接接到距它最近的接地平⾯上(即设备的⾦属底板)。

电源地,信号地,大地,这三种地有什么区别?-基础电子

电源地,信号地,大地,这三种地有什么区别?-基础电子

电源地,信号地,大地,这三种地有什么区别?-基础电子电源地主要是针对电源回路电流所走的路径而言的,一般来说电源地流过的电流较大,而信号地主要是针对两块芯片或者模块之间的通信信号的回流所流过的路径,一般来说信号地流过的电流很小,其实两者都是GND,之所以分开来说,是想让大家明白在布PCB 板时要清楚地了解电源及信号回流各自所流过的路径,然后在布板时考虑如何避免电源及信号共用回流路径,如果共用的话,有可能会导致电源地上大的电流会在信号地上产生一个电压差(可以解释为:导线是有阻抗的,只是很小的阻值,但如果所流过的电流较大时,也会在此导线上产生电位差,这也叫共阻抗干扰),使信号地的真实电位高于0V,如果信号地的电位较大时,有可能会使信号本来是高电平的,但却误判为低电平。

当然电源地本来就很不干净,这样做也避免由于干扰使信号误判。

所以将两者地在布线时稍微注意一下,就可以。

一般来说即使在一起也不会产生大的问题,因为数字电路的门限较高。

各种“地”—— 各种“GND”GND,指的是电线接地端的简写。

代表地线或0 线。

电路图上和电路板上的GND(Ground)代表地线或0 线.GND 就是公共端的意思,也可以说是地,但这个地并不是真正意义上的地。

是出于应用而假设的一个地,对于电源来说,它就是一个电源的负极。

它与大地是不同的。

有时候需要将它与大地连接,有时候也不需要,视具体情况而定。

设备的信号接地,可能是以设备中的一点或一块金属来作为信号的接地参考点,它为设备中的所有信号提供了一个公共参考电位。

有单点接地,多点接地,浮地和混合接地。

单点接地是指整个电路系统中只有一个物理点被定义为接地参考点,其他各个需要接地的点都直接接到这一点上。

在低频电路中,布线和元件之间不会产生太大影响。

通常频率小于1MHz 的电路,采用一点接地。

多点接地是指电子设备中各个接地点都直接接到距它近的接地平面上(即设备的金属底板)。

在高频电路中,寄生电容和电感的影响较大。

什么是接地与浮地

什么是接地与浮地

什么是接地与浮地1、保护性接地防电击接地:防电击接地属于安全(Safety)范畴,它是为了防止电气设备绝缘损坏或产生漏电流时使平时不带电的外露导电部分带电而导致电击,将设备的外露导电部分接地,称为防电击接地。

这种接地还可以限制线路涌流或低压线路及设备由于高压窜人而引起的高电压;当产生电器故障时,有利于过电流保护装置动作而切断电源。

这种接地,也是狭义的“保护接地”,有时叫“PGND”;防雷接地:将雷电或浪涌导入大地,防止大电流使人身受到电击或财产受到破坏;防静电接地:将静电荷引人大地,防止由于静电积聚对人体和设备造成危害。

特别是目前电子设备中集成电路用得很多,而集成电路容易受静电作用而产生故障, 接地后可防止集成电路的损坏。

注意:此防静电接地并非EMC意义上的防ESD(静电放电)接地,ESD现象是一个瞬态过程,而防静电接地是为了防止电荷的累积避免发生ESD现象;防电蚀接地:地下埋设金属体作为牺牲阳极或阳极,防止电缆、金属管道等受到电蚀;EMC接地:为防止、屏蔽、抑制外来电磁干扰对电子设备的影响,避免干扰电流流过电路板或产品内部的EMI电流流过产品中的等效发射天线,通过接地手段引导这些电流的流向,最终通过测试。

2、功能性接地功率接地:为了保证电力系统正常运行,防止系统振荡,保证继电保护的可靠性,在交直流电力系统的适当地方进行接地,交流一般为中性点,在电子设备系统中,则称除电子设备系统以外的交直流接地为功率地; 逻辑接地:为了确保稳定的参考电位,将电子设备中所有或局部电路的参考点作为“逻辑地”或“0V”地,规定这一点的电压为OV,电路中其他各点的电压高低都是以这一参考点为基准的,电路图中所标出的各点电压数据都是相对于地线的大小。

一般采用金属底板或PCB中的平面作为逻辑地。

本书中将数字电路的逻辑接地称为“工作地”或“GND”,将其他模拟信号系统的逻辑地称为“模拟工作地“或“AGNDR屏蔽接地:将干扰源引入大地,抑制外来电磁干扰对电子设备的影响,也可减少电子设备产生的干扰影响其他电子设备。

浮地技术及其作用

浮地技术及其作用

“浮地”技术及其作用这里说的“浮地”就是控制器不接大地1.干扰需要一定能量,当控制器彻底与大地隔离(浮地)时,工频干扰回路阻抗极大,流过控制器及其内部的干扰电流极小,不足以干扰控制器。

2.当控制器外壳与大地完好连接,由于控制器与大地等电位,工频干扰电流被控制器外壳接地点所旁路,无法进入控制器内部,从而也无法干扰。

3.当控制器外壳与大地处于上述两者之间时,就会有工频干扰。

4.如果控制器的使用可能存在安全问题时,外壳必须很好接地。

4.如果控制器的使用可能存在安全问题时,外壳必须很好接地。

4.如果控制器的使用可能存在安全问题时,外壳必须很好接地。

5.多个设备的理想接地是尽量一点接大地,以避免设备间地线干扰。

有时具体问题需具体分析。

如果几个设备互连,又无法良好接地,那么它们最好都浮地,其实这一点不太现实,在实际应用中,供电和驱动很可能用到工频电网,工频泄漏是必然的(假设绝缘阻抗100M欧,380VAC电压,就有5.373uA峰值漏电流流过控制器,在MOS器件的控制器中,有的器件本身工作电流只有0.1uA)。

所以,一般情况下,控制器外壳最好良好接地。

如果你的确能做到所有设备与工频隔离(浮地),如果,你的设备间没有较大的电流(这里可称信号地电流)或你的设备间信号地阻抗很小,那么,你的多个设备信号地可直接互连。

否则,你的设备间信号传递需要加隔离(如光电,变压器,机械,等)。

控制器内部电气或电子部分是否需要与外壳一点接地呢?当外壳与内部电路间完全浮地时,由于它们间仍存在电容耦合效应,外壳与内部电路间仍将存在工频漏电流。

这时:1.当你的电路要求还不是很高时,可以不管;3.为防止内部电路与外壳一点连接时,内部输出万一碰外壳而造成短路(如电源设备),内部电路与外壳间用容量足够大的电容相连,这样,对工频干扰来说,内部与外壳间是等电位的,对直流输出来说,是隔离的。

地浮就是"对地浮置",悬浮接地,是为了克服共模干扰(CMR)的措施。

一种浮地的接法

一种浮地的接法

一种浮地的接法浮地接法是一种广泛应用于电子设备中的接地方式,主要用于解决设备之间的信号干扰和电磁兼容问题。

本文将详细介绍浮地接法的原理、优点、缺点以及在实际应用中的注意事项。

一、浮地接法原理浮地接法,顾名思义,是将电路的某一部分与地面隔离,使其处于浮动状态。

在浮地接法中,电路的输入端和输出端都不直接连接到地面,而是通过一个高阻抗电阻或变压器与地面隔离。

这样,电路的输入端和输出端之间就形成了一个悬浮的电压差,从而实现了电路的浮地。

二、浮地接法的优点1. 降低干扰:浮地接法可以有效地降低电路之间的干扰。

由于电路的输入端和输出端都与地面隔离,因此,当一个电路产生干扰时,这个干扰信号不会通过地面传播到另一个电路,从而降低了干扰。

2. 提高抗干扰能力:浮地接法可以提高电路的抗干扰能力。

由于电路的输入端和输出端都与地面隔离,因此,即使电路受到外部干扰,也可以通过调整电路内部的参数来抵消这个干扰,从而提高了电路的抗干扰能力。

3. 简化布线:浮地接法可以简化电路的布线。

由于电路的输入端和输出端都与地面隔离,因此,可以在电路的不同部分之间使用同一根导线进行连接,从而简化了布线。

4. 提高安全性:浮地接法可以提高电路的安全性。

由于电路的输入端和输出端都与地面隔离,因此,当电路出现故障时,电流不会流回地面,从而避免了触电事故的发生。

三、浮地接法的缺点1. 需要额外的隔离元件:浮地接法需要使用高阻抗电阻或变压器等隔离元件来实现电路的浮地,这会增加电路的成本和复杂性。

2. 对地电流的限制:由于电路的输入端和输出端都与地面隔离,因此,电路的对地电流受到限制。

这可能会导致电路在某些情况下无法正常工作。

3. 可能导致共模噪声:浮地接法可能导致共模噪声的产生。

由于电路的输入端和输出端都与地面隔离,因此,当两个电路之间的电压差较大时,可能会产生共模噪声。

四、浮地接法在实际应用中的注意事项1. 选择合适的隔离元件:在实际应用中,需要根据电路的具体需求选择合适的隔离元件。

机电一体化 电气设备的接地及浮地毕业设计

机电一体化   电气设备的接地及浮地毕业设计

一、电气设备的接地及浮地的简介1.1 电气设备接地简介1.1.1 电气设备接地的概念电气设备的某个部分与大地之间作良好的电气连接称为接地。

与大地直接接触的金属导体或金属导体组称为接地组,联接电气设备应接地部分与接地体的金属导体称为接地线;接地体和接地线通称为接地装置。

电气设备接地的目的主要是保护人身和设备的安全,所有电气设备应按规定进行可靠接地。

1.1.2 接地的分类1.为了保证人身安全,避免发生人体触电事故,将电气设备的金属外壳与接地装置连接起来的方式称为保护接地。

当人体触及外壳已带电的电气设备时,由于接地体的接触电阻远小于人体电阻,绝大部分电流从接地装置上流入大地,只有小部分流入人体造成伤害。

2.为了保证电气设备在正常和事故情况下可靠的工作而进行的接地称为工作接地,如中性点直接接地和间接接地防雷接地都是工作接地。

3.接地电阻应接地的电气设备通过接地装置和大地之间的电阻称为接地电阻,它包含五部分:a、电器设备和接地的接触电阻b、接地线本身的电阻c、接地体本身的电阻d、接地体和大地的电阻e、大地的电阻不同的电气设备对接地电阻有不同的要求:a、大地短路电流系统R<0.5Wb、容量在100KV以上的变压器或发电机R<4Wc、阀型避雷针R<5Wd、独立避雷针、小接地电流系统、容量在100KVA及以下的变压器或发电机、高低压设备共用的接地均R<10We、低压线路金属杆、水泥杆的接地电阻R<30W1.1.3 装设接地设备的要求1.接地线一般用长40mm,直径为4mm的镀锌扁钢。

2.接地体用镀锌钢管或角钢。

3.接地体顶端距地面0.5~0.8mm以避开冻土层。

4.接地体要距建筑物1.5m,与独立的避雷针接地距离大于3m。

5.接地线与接地体的连接要使用搭接焊。

1.2 浮地的简介这里所说的“浮地”是指控制器不接大地。

我想说明何时与如何接地:(1)、干扰需要一定能量,当控制器彻底与大地隔离(浮地)时,工频干扰回路阻抗极大,流过控制器及其内部的干扰电流极小,不足以干扰控制器。

单点接地和多点接地

单点接地和多点接地

有三种基本的信号接地方式:浮地、单点接地、多点接地。

1 浮地目的:使电路或设备与公共地线可能引起环流的公共导线隔离起来,浮地还使不同电位的电路之间配合变得容易。

缺点:容易出现静电积累引起强烈的静电放电。

折衷方案:接入泄放电阻。

2 单点接地方式:线路中只有一个物理点被定义为接地参考点,凡需要接地均接于此。

缺点:不适宜用于高频场合。

3 多点接地方式:凡需要接地的点都直接连到距它最近的接地平面上,以便使接地线长度为最短。

缺点:维护较麻烦。

4 混合接地按需要选用单点及多点接地。

PCB中的大面积敷铜接地其实就是多点接地所以单面Pcb也可以实现多点接地多层PCB大多为高速电路地层的增加可以有效提高PCB的电磁兼容性是提高信号抗干扰的基本手段,同样由于电源层和底层和不同信号层的相互隔离减轻了PCB的布通率也增加了信号间的干扰。

在大功率和小功率电路混合的系统中,切忌使用,因为大功率电路中的地线电流会影响小功率电路的正常工作。

另外,最敏感的电路要放在A点,这点电位是最稳定的。

解决这个问题的方法是并联单点接地。

但是,并联单点接地需要较多的导线,实践中可以采用串联、并联混合接地。

}将电路按照特性分组,相互之间不易发生干扰的电路放在同一组,相互之间容易发生干扰的电路放在不同的组。

每个组内采用串联单点接地,获得最简单的地线结构,不同组的接地采用并联单点接地,避免相互之间干扰。

这个方法的关键:绝不要使功率相差很大的电路或噪声电平相差很大的电路共用一段地线。

这些不同的地仅能在通过一点连接起来。

为了减小地线电感,在高频电路和数字电路中经常使用多点接地。

在多点接地系统中,每个电路就近接到低阻抗的地线面上,如机箱。

电路的接地线要尽量短,以减小电感。

在频率很高的系统中,通常接地线要控制在几毫米的范围内。

多点接地时容易产生公共阻抗耦合问题。

在低频的场合,通过单点接地可以解决这个问题。

但在高频时,只能通过减小地线阻抗(减小公共阻抗)来解决。

电路设计中各种“地”——各种 GND 设计

电路设计中各种“地”——各种 GND 设计

电路设计中各种“地”——各种GND 设计电源地,信号地,还有大地,这三种地有什么区别?电源地主要是针对电源回路电流所走的路径而言的,一般来说电源地流过的电流较大,而信号地主要是针对两块芯片或者模块之间的通信信号的回流所流过的路径,一般来说信号地流过的电流很小,其实两者都是GND,之所以分开来说,是想让大家明白在布PCB 板时要清楚地了解电源及信号回流各自所流过的路径,然后在布板时考虑如何避免电源及信号共用回流路径,如果共用的话,有可能会导致电源地上大的电流会在信号地上产生一个电压差(可以解释为:导线是有阻抗的,只是很小的阻值,但如果所流过的电流较大时,也会在此导线上产生电位差,这也叫共阻抗干扰),使信号地的真实电位高于0V,如果信号地的电位较大时,有可能会使信号本来是高电平的,但却误判为低电平。

当然电源地本来就很不干净,这样做也避免由于干扰使信号误判。

所以将两者地在布线时稍微注意一下,就可以。

一般来说即使在一起也不会产生大的问题,因为数字电路的门限较高。

各种“地”——各种“GND”GND,指的是电线接地端的简写。

代表地线或0 线。

电路图上和电路板上的GND(Ground)代表地线或0 线.GND 就是公共端的意思,也可以说是地,但这个地并不是真正意义上的地。

是出于应用而假设的一个地,对于电源来说,它就是一个电源的负极。

它与大地是不同的。

有时候需要将它与大地连接,有时候也不需要,视具体情况而定。

设备的信号接地,可能是以设备中的一点或一块金属来作为信号的接地参考点,它为设备中的所有信号提供了一个公共参考电位。

有单点接地,多点接地,浮地和混合接地。

单点接地是指整个电路系统中只有一个物理点被定义为接地参考点,其他各个需要接地的点都直接接到这一点上。

在低频电路中,布线和元件之间不会产生太大影响。

通常频率小于1MHz 的电路,采用一点接地。

多点接地是指电子设备中各个接地点都直接接到距它最近的接地平面上(即设备的金属底板)。

浮地与接地技术

浮地与接地技术

浮地与接地技术一:信号“地”又称参考“地”,就是零电位的参考点,也是构成电路信号回路的公共端。

(1) 直流地:直流电路“地”,零电位参考点。

(2) 交流地:交流电的零线。

应与地线区别开。

(3) 功率地:大电流网络器件、功放器件的零电位参考点。

(4) 模拟地:放大器、采样保持器、A/D转换器和比较器的零电位参考点。

(5) 数字地:也叫逻辑地,是数字电路的零电位参考点。

(6) “热地”:开关电源无需使用工频变压器,其开关电路的“地”和市电电网有关,即所谓的“热地”,它是带电的。

(7) “冷地”:由于开关电源的高频变压器将输入、输出端隔离;又由于其反馈电路常用光电耦合器,既能传送反馈信号,又将双方的“地”隔离;所以输出端的地称之为“冷地”,它不带电。

信号接地设备的信号接地,可能是以设备中的一点或一块金属来作为信号的接地参考点,它为设备中的所有信号提供了一个公共参考电位。

有单点接地,多点接地,浮地和混合接地。

(这里主要介绍浮地)单点接地是指整个电路系统中只有一个物理点被定义为接地参考点,其他各个需要接地的点都直接接到这一点上。

在低频电路中,布线和元件之间不会产生太大影响。

通常频率小于1MHz的电路,采用一点接地。

多点接地是指电子设备中各个接地点都直接接到距它最近的接地平面上(即设备的金属底板)。

在高频电路中,寄生电容和电感的影响较大。

通常频率大于10MHz的电路,常采用多点接地。

浮地,即该电路的地与大地无导体连接。

『虚地:没有接地,却和地等电位的点。

』其优点是该电路不受大地电性能的影响。

浮地可使功率地(强电地)和信号地(弱电地)之间的隔离电阻很大,所以能阻止共地阻抗电路性耦合产生的电磁干扰。

其缺点是该电路易受寄生电容的影响,而使该电路的地电位变动和增加了对模拟电路的感应干扰。

一个折衷方案是在浮地与公共地之间跨接一个阻值很大的泄放电阻,用以释放所积累的电荷。

注意控制释放电阻的阻抗,太低的电阻会影响设备泄漏电流的合格性。

系统接地 三种方式

系统接地 三种方式

系统接地三种方式:
1、浮地方式各电子装置的系统地连接,但与大地绝缘,即悬浮方式,适用于机电
控制、无模数转换、低增益低速的小型控制设备;
2、共地方式系统地直接接大地,适用于大规模或高速电控装置;
3、电容接地方式系统地通过数微法电容接大地,适用于系统地与大地可能有直流
或低频电位差的设备。

屏蔽接地八种方式:
1、低频信号电缆采用一端接地,一般在控制装置侧接地;
2、高频敏感信号电缆,屏蔽层两端接地;
3、热电偶传感器电缆,在被测装置侧接地;
4、双重屏蔽电缆,外屏蔽层接屏蔽地,内屏蔽层接系统地;
5、交流进线电缆,屏蔽层接保护地;
6、进线滤波器外壳接保护地;
7、电源变压器的屏蔽层接保护地,如有二次屏蔽层则接系统地或屏蔽地;
8、晶闸管脉冲变压器的屏蔽层接保护地,如有二次屏蔽层泽杰晶闸管阴极。

电控装置及成套设备的接地系统采用的接地方式:
1、浮地系统系统地线悬浮,保护与屏蔽地线接大地,适用于机电控制装置及小型
低速控制装置;
2、共地系统系统地、保护地、屏蔽地共接于装置的同一个接地端子,适用于独立
的小型高速控制装置。

3、接地母线系统将每一个装置的三种地线分别接到设备的接地母线,各个接地母
线分别接大地或一起接地,适用于大型设备、组合装置及强弱电混合的独立装置。

各种地与浮地

各种地与浮地
一:信号“地”又称参考“地”,就是零电位的参考点,也是构成电路信号回路的公 共端 。 (1) 直流地:直流电路“地”,零电位参考点。 (2) 交流地:交流电的零线。应与地线区别开。 (3) 功率地:大电流网络器件、功放器件的零电位参考点。 (4) 模拟地:放大器、采样保持器、A/D转换器和比较器的零电位参考点。 (5) 数字地:也叫逻辑地,是数字电路的零电位参考点。 (6) “热地”:开关电源无需使用工频变压器,其开关电路的“地”和市电电网有 关,即所谓的“热地”,它是带电的 。 (7) “冷地”:由于开关电源的高频变压器将输入、输出端隔离;又由于其反馈电路 常用光电耦合器,既能传送反馈信号,又将双方的“地”隔离;所以输出端的地称之为“冷 地”,它不带电。
信号接地
设备的信号接地,可能是以设备中的一点或一块金属来作为信号的接地参考点,它为 设备中的所有信号提供了一个公共参考电位。
有单点接地,多点接地,浮地和混合接地。(这里主要介绍浮地) 单点接地是指整个电路系统中只有一个物理点被定义为接地参考点,其他各个需要接 地的点都直接接到这一点上。在低频电路中,布线和元件之间不会产生太大影响。通常频率 小于1MHz的电路,采用一点接地。 多点接地是指电子设备中各个接地点都直接接到距它最近的接地平面上(即设备的金属 底板)。在高频电路中,寄生电容和电感的影响较大。通常频率大于10MHz的电路,常采用 多点接地。 浮地,即该电路的地与大地无导体连接。『虚地:没有接地,却和地等电位的点。』 其优点是该电路不受大地电性能的影响。浮地可使功率地(强电地)和信号地(弱电 地)之间的隔离电阻很大,所以能阻止共地阻抗电路性耦合产生的电磁干扰。 其缺点是该电路易受寄生电容的影响,而使该电路的地电位变动和增加了对模拟电路 的感应干扰。 一个折衷方案是在浮地与公共地之间跨接一个阻值很大的泄放电阻,用以释放所积累 的电荷。注意控制释放电阻的阻抗,太低的电阻会影响设备泄漏电流的合格性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

接地与浮地技术分析“接地”有设备内部的信号接地和设备接大地,两者概念不同,目的也不同。

“地”的经典定义是“作为电路或系统基准的等电位点或平面”。

一:信号“地”又称参考“地”,就是零电位的参考点,也是构成电路信号回路的公共端。

(1) 直流地:直流电路“地”,零电位参考点。

(2) 交流地:交流电的零线。

应与地线区别开。

(3) 功率地:大电流网络器件、功放器件的零电位参考点。

(4) 模拟地:放大器、采样保持器、A/D转换器和比较器的零电位参考点。

(5) 数字地:也叫逻辑地,是数字电路的零电位参考点。

(6) “热地”:开关电源无需使用工频变压器,其开关电路的“地”和市电电网有关,即所谓的“热地”,它是带电的。

(7) “冷地”:由于开关电源的高频变压器将输入、输出端隔离;又由于其反馈电路常用光电耦合器,既能传送反馈信号,又将双方的“地”隔离;所以输出端的地称之为“冷地”,它不带电。

信号接地 :设备的信号接地,可能是以设备中的一点或一块金属来作为信号的接地参考点,它为设备中的所有信号提供了一个公共参考电位。

有单点接地,多点接地,浮地和混合接地。

(这里主要介绍浮地)单点接地是指整个电路系统中只有一个物理点被定义为接地参考点,其他各个需要接地的点都直接接到这一点上。

在低频电路中,布线和元件之间不会产生太大影响。

通常频率小于1MHz的电路,采用一点接地。

多点接地是指电子设备中各个接地点都直接接到距它最近的接地平面上(即设备的金属底板)。

在高频电路中,寄生电容和电感的影响较大。

通常频率大于10MHz的电路,常采用多点接地。

浮地,即该电路的地与大地无导体连接。

『虚地:没有接地,却和地等电位的点。

』其优点是该电路不受大地电性能的影响。

浮地可使功率地(强电地)和信号地(弱电地)之间的隔离电阻很大,所以能阻止共地阻抗电路性耦合产生的电磁干扰。

其缺点是该电路易受寄生电容的影响,而使该电路的地电位变动和增加了对模拟电路的感应干扰。

一个折衷方案是在浮地与公共地之间跨接一个阻值很大的泄放电阻,用以释放所积累的电荷。

注意控制释放电阻的阻抗,太低的电阻会影响设备泄漏电流的合格性。

1:浮地技术的应用a交流电源地与直流电源地分开一般交流电源的零线是接地的。

但由于存在接地电阻和其上流过的电流,导致电源的零线电位并非为大地的零电位。

另外,交流电源的零线上往往存在很多干扰,如果交流电源地与直流电源地不分开,将对直流电源和后续的直流电路正常工作产生影响。

因此,采用把交流电源地与直流电源地分开的浮地技术,可以隔离来自交流电源地线的干扰。

b 放大器的浮地技术对于放大器而言,特别是微小输入信号和高增益的放大器,在输入端的任何微小的干扰信号都可能导致工作异常。

因此,采用放大器的浮地技术,可以阻断干扰信号的进入,提高放大器的电磁兼容能力。

c 浮地技术的注意事项1)尽量提高浮地系统的对地绝缘电阻,从而有利于降低进入浮地系统之中的共模干扰电流。

2)注意浮地系统对地存在的寄生电容,高频干扰信号通过寄生电容仍然可能耦合到浮地系统之中。

3)浮地技术必须与屏蔽、隔离等电磁兼容性技术相互结合应用,才能收到更好的预期效果。

4)采用浮地技术时,应当注意静电和电压反击对设备和人身的危害。

2:混合接地混合接地使接地系统在低频和高频时呈现不同的特性,这在宽带敏感电路中是必要的。

电容对低频和直流有较高的阻抗,因此能够避免两模块之间的地环路形成。

当将直流地和射频地分开时,将每个子系统的直流地通过10~100nF的电容器接到射频地上,这两种地应在一点有低阻抗连接起来,连接点应选在最高翻转速度(di/dt)信号存在的点。

二:设备接大地在工程实践中,除认真考虑设备内部的信号接地外,通常还将设备的信号地,机壳与大地连在一起,以大地作为设备的接地参考点。

设备接大地的目的是1)保护地,保护接地就是将设备正常运行时不带电的金属外壳(或构架)和接地装置之间作良好的电气连接。

为了保护人员安全而设置的一种接线方式。

保护“地”线一端接用电器外壳,另一端与大地作可靠连接。

2)防静电接地,泄放机箱上所积累的电荷,避免电荷积累使机箱电位升高,造成电路工作的不稳定。

3)屏蔽地,避免设备在外界电磁环境的作用下使设备对大地的电位发生变化,造成设备工作的不稳定。

此外还有防雷接地和音响中的音频专用地等等。

Q1:为什么要接地?Answer:接地技术的引入最初是为了防止电力或电子等设备遭雷击而采取的保护性措施,目的是把雷电产生的雷击电流通过避雷针引入到大地,从而起到保护建筑物的作用。

同时,接地也是保护人身安全的一种有效手段,当某种原因引起的相线(如电线绝缘不良,线路老化等)和设备外壳碰触时,设备的外壳就会有危险电压产生,由此生成的故障电流就会流经PE线到大地,从而起到保护作用。

随着电子通信和其它数字领域的发展,在接地系统中只考虑防雷和安全已远远不能满足要求了。

比如在通信系统中,大量设备之间信号的互连要求各设备都要有一个基准‘地’作为信号的参考地。

而且随着电子设备的复杂化,信号频率越来越高,因此,在接地设计中,信号之间的互扰等电磁兼容问题必须给予特别关注,否则,接地不当就会严重影响系统运行的可靠性和稳定性。

最近,高速信号的信号回流技术中也引入了“地”的概念。

Q2:接地的定义Answer: 在现代接地概念中、对于线路工程师来说,该术语的含义通常是‘线路电压的参考点’;对于系统设计师来说,它常常是机柜或机架;对电气工程师来说,它是绿色安全地线或接到大地的意思。

一个比较通用的定义是“接地是电流返回其源的低阻抗通道”。

注意要求是”低阻抗”和“通路”。

Q3:常见的接地符号Answer: PE,PGND,FG-保护地或机壳;BGND或DC-RETURN-直流-48V(+24V)电源(电池)回流;GND-工作地;DGND-数字地;AGND-模拟地;LGND-防雷保护地Q4:合适的接地方式Answer: 接地有多种方式,有单点接地(指整个电路系统中只有一个物理点被定义为接地参考点,其他各个需要接地的点都直接接到这一点上),多点接地以及混合类型的接地。

而单点接地又分为串联单点接地和并联单点接地。

一般来说,单点接地用于简单电路,不同功能模块之间接地区分,以及低频(f<1MHz)电子线路。

当设计高频(f>10MHz)电路时就要采用多点接地了或者多层板(完整的地平面层)。

Q5:信号回流和跨分割的介绍Answer:对于一个电子信号来说,它需要寻找一条最低阻抗的电流回流到地的途径,所以如何处理这个信号回流就变得非常的关键。

第一,根据公式可以知道,辐射强度是和回路面积成正比的,就是说回流需要走的路径越长,形成的环越大,它对外辐射的干扰也越大,所以,PCB布板的时候要尽可能减小电源回路和信号回路面积。

第二,对于一个高速信号来说,提供有好的信号回流可以保证它的信号质量,这是因为PCB上传输线的特性阻抗一般是以地层(或电源层)为参考来计算的,如果高速线附近有连续的地平面,这样这条线的阻抗就能保持连续,如果有段线附近没有了地参考,这样阻抗就会发生变化,不连续的阻抗从而会影响到信号的完整性。

所以,布线的时候要把高速线分配到靠近地平面的层,或者高速线旁边并行走一两条地线,起到屏蔽和就近提供回流的功能。

第三,为什么说布线的时候尽量不要跨电源分割,这也是因为信号跨越了不同电源层后,它的回流途径就会很长了,容易受到干扰。

当然,不是严格要求不能跨越电源分割,对于低速的信号是可以的,因为产生的干扰相比信号可以不予关心。

对于高速信号就要认真检查,尽量不要跨越,可以通过调整电源部分的走线。

(这是针对多层板多个电源供应情况说的)Q6:为什么要将模拟地和数字地分开,如何分开?Answer:模拟信号和数字信号都要回流到地,因为数字信号变化速度快,从而在数字地上引起的噪声就会很大,而模拟信号是需要一个干净的地参考工作的。

如果模拟地和数字地混在一起,噪声就会影响到模拟信号。

一般来说,模拟地和数字地要分开处理,然后通过细的走线连在一起,或者单点接在一起。

总的思想是尽量阻隔数字地上的噪声窜到模拟地上。

当然这也不是非常严格的要求模拟地和数字地必须分开,如果模拟部分附近的数字地还是很干净的话可以合在一起。

Q7:单板上的信号如何接地?Answer:对于一般器件来说,就近接地是最好的,采用了拥有完整地平面的多层板设计后,对于一般信号的接地就非常容易了,基本原则是保证走线的连续性,减少过孔数量;靠近地平面或者电源平面,等等。

Q8:单板的接口器件如何接地?Answer:有些单板会有对外的输入输出接口,比如串口连接器,网口RJ45连接器等等,如果对它们的接地设计得不好也会影响到正常工作,例如网口互连有误码,丢包等,并且会成为对外的电磁干扰源,把板内的噪声向外发送。

一般来说会单独分割出一块独立的接口地,与信号地的连接采用细的走线连接,可以串上0欧姆或者小阻值的电阻。

细的走线可以用来阻隔信号地上噪音过到接口地上来。

同样的,对接口地和接口电源的滤波也要认真考虑。

Q9:带屏蔽层的电缆线的屏蔽层如何接地?Answer:屏蔽电缆的屏蔽层都要接到单板的接口地上而不是信号地上,这是因为信号地上有各种的噪声,如果屏蔽层接到了信号地上,噪声电压会驱动共模电流沿屏蔽层向外干扰,所以设计不好的电缆线一般都是电磁干扰的最大噪声输出源。

当然前提是接口地也要非常的干净。

Q10:PCB的信号地和机壳的系统地,最后要接到一起,然后接入大地?Answer:PCB的信号地和机壳的系统地,最后要接到一起,然后通过电源线的地线接入大地一:信号“地”又称参考“地”,就是零电位的参考点,也是构成电路信号回路的公共端。

(1) 直流地:直流电路“地”,零电位参考点。

(2) 交流地:交流电的零线。

应与地线区别开。

(3) 功率地:大电流网络器件、功放器件的零电位参考点。

(4) 模拟地:放大器、采样保持器、A/D转换器和比较器的零电位参考点。

(5) 数字地:也叫逻辑地,是数字电路的零电位参考点。

(6) “热地”:开关电源无需使用工频变压器,其开关电路的“地”和市电电网有关,即所谓的“热地”,它是带电的。

(7) “冷地”:由于开关电源的高频变压器将输入、输出端隔离;又由于其反馈电路常用光电耦合器,既能传送反馈信号,又将双方的“地”隔离;所以输出端的地称之为“冷地”,它不带电。

信号接地设备的信号接地,可能是以设备中的一点或一块金属来作为信号的接地参考点,它为设备中的所有信号提供了一个公共参考电位。

有单点接地,多点接地,浮地和混合接地。

(这里主要介绍浮地)单点接地是指整个电路系统中只有一个物理点被定义为接地参考点,其他各个需要接地的点都直接接到这一点上。

在低频电路中,布线和元件之间不会产生太大影响。

相关文档
最新文档