第4讲 二次根式
【名师面对面】2015中考数学总复习 第1章 第4讲 二次根式及其运算课件
4.已知 x=2- 3,y=2+ 3,求 x2-xy+y2 的值.
∵x=2- 3,y=2+ 3,∴x+y=(2- 3)+(2+ 3)=4, xy=(2- 3)×(2+ 3)=1,∴x2-xy+y2=(x+y)2-3xy= 42-3=13
二次根式综合计算与化简问题,一般先化简再代入 求值,最后的结果要化为分母不含根号的数或者是 最简二次根式;也可以利用所给条件整体考虑.
原式=a2+6a,当 a= 2-1 时,原式=4 2-3
二次根式的概念和性质
1.(2014· 武汉)若 x-3在实数范围内有意义,则 x 的取值范 围是( C ) A.x>0 有意义( A ) A.-2 B.1 C .2 D.3 【解析】第1题根据二次根式有意义的条件得出关于x的不等 式;第2题二次根式的被开方数是非负数,可以逐个代入, 也可以先判断x的取值范围. B.x>3 C.x≥3 D.x≤3
利用二次根式有意义的条件求字母的取值范围时,
首先考虑被开方数为非负数,其次还要考虑其他
限制条件,如分母不等于0等,往往转化为不等式 (组)解决.
二次根式的简单计算
1.(2014· 孝感)下列二次根式中,不能与 2合并的是( C ) A. 1 2 B. 8 C. 12 D. 18
2.(2014· 济宁)如果 ab>0,a+b<0,那么下面各式:
第4讲 二次根式及其运算
1.了解二次根式、最简二次根式的概念.
2.了解二次根式加、减、乘、除运算法则,会
用它们进行有关实数的简单四则运算.
二次根式的知识点是新课标的基本考查内容之一,常常以
填空题、选择题形式出现. 1.二次根式的基本运算要求熟练掌握,二次根式的运算以 整式的运算为基础,其法则、公式都与整式类似,特别是二 次根式的加减,没有提出同类二次根式的概念,完全参照合
第四讲:数的开方及二次根式
数的开方与二次根式知识点:平方根、立方根、算术平方根、二次根式、二次根式性质、最简二次根式、 同类二次根式、二次根式运算、分母有理化教学目标:1.理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根;会求实数的平方根、算术平方根和立方根;2.了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式;掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;3.掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。
教学重难点:1.平方根、算术平方根、立方根的概念(有关试题在试题中出现的频率很高,习题类型多为选择题或填空题);2.最简二次根式、同类二次根式概念(有关习题经常出现在选择题中);3.二次根式的计算或化简求值(有关问题在中考题中出现的频率非常高,在选择题和中档解答题中出现的较多)。
教学过程:1、知识要点:考点1 平方根、算术平方根与立方根:若)0(2≥=a a x ,则x 叫做a 的平方根,记作a ±;正数a 的正的平方根叫做a 的算术平方根,0的算术平方根是0。
当0≥a 时,a 的算术平方根记作a 。
注意:1、非负数是指正数或0,常见的非负数有:(1)绝对值:0≥a ;(2)实数的平方:02≥a ;(3) 算术平方根:)0(0≥≥a a 。
2、如果a 、b 、 c 是实数,且满足02=++c b a , 则有0=a,0=b ,0=c考点2 二次根式的有关概念:1、二次根式:式子)0(≥a a 叫做二次根式(注意被开方数只能是正数或0); 二次根式a 定义中的“a ≥0”是定义的一个重要组成部分,不可以省略,因为负数没有平方根,所以当a<0时,没有意义.在具体问题中,一旦出现了二次根式a ,就意味着a ≥0,这通常作为一个重要的隐含条件来应用;被开方数a 既可以是具体的数,也可以是单项式或多项式,如:3、ab (ab ≥0)、3+x (x ≥-3)都是二次根式.2、最简二次根式:被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式;最简二次根式,满足两个条件:①被开方数不含分母;②被开方数中不含开得尽方的因数或因式.3、同类二次根式:①化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式; ②二次根式的性质: )0()(2≥=a a a ⎩⎨⎧<-≥==)0()0(||2a a a a a a )0;0(≥≥⋅=b a b a ab )0;0(>≥=b a ba b a 考点3 二次根式的运算:1、二次根式的加减:二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并;2、二次根式的乘法: 二次根式相乘,等于各个因式的被开方数的积的算术平方根,即 ).0,0(≥≥=⋅b a ab b a(二次根式的和相乘,可参照多项式的乘法进行;两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个二次根式互为有理化因式);3、二次根式的除法:二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分);把分母的根号化去,叫做分母有理化。
第4讲 二次根式(第1课时 定义与性质)(8类热点题型讲练)(原卷版)--初中数学北师大版8年级上册
是
.
【变式 1】(2023 春·吉林·八年级统考期中)若式子 5 a 在实数范围内有意义,则实数 a 的取值范围
是
.
x
【变式 2】(2023 春·江苏·八年级期末)使得 x 2 有意义的 x 的取值范围是
.
题型 02 求二次根式的值
【典例 1】(2023 春·浙江温州·八年级校考期中)当 a 1时,二次根式 7 a 的值是
A.2
B. 2
C. 2
D. 2
5.(2023·全国·八年级假期作业)已知 3n 是正整数,则自然数 n 的最小值为( )
A. 0
B. 2
C. 3
D.12
6.(2023 春·海南省直辖县级单位·八年级统考期中)如图, a , b , c 在数轴上的位置如图所示,化简
a2 b (b c)2 的结果是( )
.
2
【变式 1】(2023 春·江苏·八年级期末)计算: 2
; (2)2
.
【变式 2】(2023 春·河南信阳·八年级校考阶段练习)化简: (2 5)2
.
题型 05 二次根式的乘法
【典例 1】(2023 春·山东东营·八年级统考期末)计算 8 12 的结果是 . 【变式 1】(2023 春·山西吕梁·八年级统考期末)计算 12 3 的结果是
2
2
2 21 2 1 2
∴ 3 2 2 (1 2)2 1 2 ; 请你仿照上面的方法,化简下列各式: (1) 5 2 6 ; (2) 7 4 3
A. a 2b c
B. a c
C. a 2b c
D. a c
二、填空题
2
7.(2023 春·福建厦门·八年级统考期末)计算:(1) 3 =
二次根式及其性质课件
1 •下列式子一定是二次根式的是( C )
知1-练
2 •(中考·武汉)若代数式 C
•则x的取值范围是( )
在实数范围内有意义,
•A.x≥-2 B.x>-2 C.x≥2 D.x≤2
知识点 2 二次根式的性质
知2-导
做一做
(1)计算下列各式,你能得到什么猜想?
4 9 ____, 4 9 _____; 4 _____, 4 _____;
•
的根指数为2,所以
是二次根式.
• (7)是.理由:因为|x|≥0,且 根式.
的根指数为2,所以
是二次
总结
知1-讲
二次根式是在初始的外在情势上定义的,不能从化 简结果上判断,如 是二次根式. 像 (a≥0)这样的式子只能称为含有二次根式 的式子,不能称为二次根式.
知1-讲
• 例2 当x取怎样的数时,下列各式在实数范围内有意 义?
知识点 1 二次根式的定义
知1-讲
形如 a (a≥0)的式子叫做二次根式. 其中a为整式或分式,a叫做被开方式. 特点:①都是形如 a 的式子,
②a都是非负数.
例1 判断下列各式是否为二次根式,并说明理由.
知1-讲
导引: 判断一个式子是不是二次根式,实质是看它是否具备二次根
式定义的条件,紧扣定义进行辨认.
知3-练
1 (中考·淮安)下列式子为最简二次根式的是( A )
2 在下列根式中,不是最简二次根式的是( D )
1. 当a≥0时, 2. 当a≥0时, •3.
完成教材P43,习题T1-T4
谢谢!
知2-讲
知识点
商的算术平方根再探索 (1)商的算术平方根的性质的实质是逆用二次根式的除法
二次根式 基础知识详解+基本典型例题解析
【基本典型例题】(2) 类型一、二次根式的乘除
1. 计算:(1)(2014 秋•闵行区校级期中) ×(﹣2 )÷
.
(2)(2014 春·高安市期中) a 8a 2 a 2 1 2a 2a a
【答案与解析】 解:(1) ×(﹣2 )÷
举一反三: 【变式】下列式子中二次根式的个数有( ).
(1)
1 ;(2) 3
3 ;(3)
x2 1 ;(4)3 8 ;(5)
( 1)2 ;(6) 1 x( x 1 ) 3
A.2 B.3 C.4 D.5 【答案】B.
2. (2016•贵港)式子
在实数范围内有意义,则 x 的取值范围是( )
= ×(﹣2 )×
=﹣
=﹣
=﹣ .
(2)原式= a 8a2 a2 1 2a 2a a
2 2a2 a2 2 2a 2a 2a a
2
2a2
2a a2
2a a
4 2.
【总结升华】根据二次根式的乘除法则灵活运算,注意最终结果要化简.
举一反三:
【变式】 2
a2 b2 6x2
即原式= a b c a c b b c a = a b c
【总结升华】重点考查二次根式的性质:
的同时,复习了
三角形三边的性质.
二、二次根式的乘除基础知识讲解+基本典型例题解析
【学习目标】 1、 掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的 乘除运算. 2、 了解最简二次根式的概念,能运用二次根式的有关性质进行化简.
.
第4讲二次根式及其运算(讲义)(原卷版)-2024年浙江中考数学一轮复习
第一单元 数与式第4讲 二次根式及其运算1.了解二次根式和最简二次根式的概念,知道二次根式a 中被开方数a 为非负数并且a 也是非负数.2.了解二次根式(根号下仅限于数)的加、减、乘、除运算法则并掌握二次根式的性质.3.能根据二次根式的运算法则及性质进行二次根式的加、减、乘、除和综合运算.1.二次根式的有关概念:(1)二次根式:式子 叫做二次根式.(2)最简二次根式需满足两个条件:①被开方数 .②被开方数中 的因数或因式.(3)二次根式有意义的条件:被开方数非负2.二次根式的性质:(1)(a )2= (a ≥0).(2)a 2= =⎩⎪⎨⎪⎧a (a >0),0(a =0),-a (a <0).(3)ab = (a ≥0,b ≥0).(4)ab=(a≥0,b>0).二次根式的双重非负性是指它的被开方数与结果均为非负数.3.二次根式的运算:(1)二次根式加减法的实质是合并同类二次根式.(2)二次根式的乘法:a·b=(a≥0,b≥0).(3)二次根式的除法:ab=(a≥0,b>0).运算结果中的二次根式,一般都要化成最简二次根式或整式.■考点一二次根式的相关概念►◇典例1:(2023•恩阳区模拟)若代数式有意义,则实数x的取值范围是.【变式训练】1.(2023•婺城区一模)在二次根式中,字母x的取值范围是.2.(2023•慈溪市模拟)若分式有意义,则x的取值范围是()A.x>2 B.x≤2 C.x=2 D.x≠2■考点二二次根式的性质►◇典例2:(2022•河北)下列正确的是()A.=2+3 B.=2×3 C.=32D.=0.7【变式训练】1.(2022•桂林)化简的结果是()A.2B.3 C.2D.22.(2022•内蒙古)实数a在数轴上的对应位置如图所示,则+1+|a﹣1|的化简结果是()A.1 B.2 C.2a D.1﹣2a■考点三二次根式的运算►◇典例3:(2021•西宁)计算:(+3)(﹣3)﹣(﹣1)2.【变式训练】1.(2023•娄星区校级一模)下列各式计算正确的是()A.B.C.D.2.(2022•青岛)计算(﹣)×的结果是()深度讲练A .B.1 C .D.33.(2022•甘肃)计算:×﹣.4.(2023•兰州模拟)计算:.■考点四二次根式的化简求值及应用►◇典例4:(2020•金华二模)先化简,再求值:(a +)(a ﹣)﹣a(a﹣2),其中a =+1.【变式训练】1.(2022•瑞安市校级三模)当时,代数式(a﹣1)2﹣2a+2的值为.真题演练1.(2023•金华)要使有意义,则x的值可以是()A.0 B.﹣1 C.﹣2 D.22.(2021•杭州)下列计算正确的是()A.=2 B.=﹣2 C.=±2 D.=±2 3.(2022•湖北)下列各式计算正确的是()A.B.C.D.4.(2021•金华模拟)代数式在实数范围内有意义时,x的取值范围为()A.x>﹣1 B.x≥﹣1 C.x≥﹣1且x≠0 D.x≠05.(2023•萧山区一模)已知,则实数a的值为()A.9 B.3 C.D.±36.(2023•南湖区一模)下列各式中,正确的是()A.(﹣3)2=9 B.(﹣2)3=﹣6 C.D.7.(2021•丽水模拟)若方程组,设x+y=a2,x﹣y=b2,则代数式的值为()A.B.C.D.8.(2022•杭州)计算:=;(﹣2)2=.9.(2022•萧山区一模)计算:=.10.(2023•青山区模拟)计算:﹣3=.11.(2023•杭州)计算:=.12.(2023•浙江模拟)若最简根式与是同类二次根式,则m=.13.(2023•龙游县一模)已知:a=()﹣1+(﹣)0,b=(+)(﹣),则=.14.(2023•临汾模拟)计算:=.15.(2023•萧山区一模)婷婷对“化简:”的解答过程如下:解:原式=2×3=(2×3)×()2=6×2=12.试问婷婷的解答过程是否正确?若正确,请再写出一种解答过程;若有错误,请写出正确的解答过程.16.(2021•永嘉县校级模拟)计算:﹣+3+.17.(2023•舟山二模)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a=,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+6=(m+n)2,且a、m、n均为正整数,求a的值.18.(2023•张家界)阅读下面材料:将边长分别为a,a+,a+2,a+3的正方形面积分别记为S1,S2,S3,S4.则S2﹣S1=(a+)2﹣a2=[(a+)+a]•[(a+)﹣a]=(2a+)•=b+2a例如:当a=1,b=3时,S2﹣S1=3+2根据以上材料解答下列问题:(1)当a=1,b=3时,S3﹣S2=,S4﹣S3=;(2)当a=1,b=3时,把边长为a+n的正方形面积记作S n+1,其中n是正整数,从(1)中的计算结果,你能猜出S n+1﹣S n等于多少吗?并证明你的猜想;(3)当a=1,b=3时,令t1=S2﹣S1,t2=S3﹣S2,t3=S4﹣S3,…,t n=S n+1﹣S n,且T=t1+t2+t3+…+t50,求T的值.。
二次根式的化简与应用核心考点讲与练八年级数学下学期考试满分全攻略
第04讲二次根式的化简与应用(核心考点讲与练)一.二次根式的化简求值二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.二.二次根式的应用把二次根式的运算与现实生活相联系,体现了所学知识之间的联系,感受所学知识的整体性,不断丰富解决问题的策略,提高解决问题的能力.二次根式的应用主要是在解决实际问题的过程中用到有关二次根式的概念、性质和运算的方法.一.二次根式的化简求值(共10小题)1.(2020秋•会宁县期末)已知a=+2,b=﹣2,则a2+b2的值为()A.4B.14C.D.14+4【分析】根据二次根式的混合运算法则分别求出a+b,ab,根据完全平方公式把原式变形,代入计算即可.【解答】解:∵a=+2,b=﹣2,∴a+b=(+2)+(﹣2)=2,ab=(+2)(﹣2)=﹣1,∴a2+b2=(a+b)2﹣2ab=(2)2﹣2×(﹣1)=14,故选:B.【点评】本题考查的是二次根式的化简求值,掌握二次根式的混合运算法则是解题的关键.2.(2021春•杭州期末)若a=+1,b=﹣1,则a2﹣ab+b2=5.【分析】根据配方法以及二次根式的运算法则即可求出答案.【解答】解:∵a=+1,b=﹣1,∴a+b=+1+﹣1=2,ab=(+1)(﹣1)=2﹣1=1,∴原式=a2+2ab+b2﹣3ab=(a+b)2﹣3ab=(2)2﹣3×1=8﹣3=5.故答案为:5.【点评】本题考查二次根式的运算,解题的关键是熟练运用完全平方公式以及二次根式的运算法则,本题属于基础题型.3.(2021春•奉化区校级期末)已知x﹣2=,则代数式(x+1)2﹣6(x+1)+9的值为2.【分析】利用完全平方公式得到原式=(x﹣2)2,然后利用整体代入的方法计算.【解答】解:(x+1)2﹣6(x+1)+9=[(x+1)﹣3]2=(x﹣2)2,因为x﹣2=,所以原式=()2=2.故答案为2.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.4.(2021春•永嘉县校级期中)若|a﹣2|+b2+4b+4+=0,则=2.【分析】利用非负数的性质得到a﹣2=0,b+2=0,c﹣=0,解得a=2,b=﹣2,c=,然后根据二次根式的性质和二次根式的乘法法则计算.【解答】解:根据题意得|a﹣2|+(b+2)2+=0,∴a﹣2=0,b+2=0,c﹣=0,解得a=2,b=﹣2,c=,所以原式=××=2×=2×1=2.故答案为2.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.5.(2021秋•西湖区校级期末)已知:y=++5,化简并求的值.【分析】根据二次根式有意义的条件得到x=4,则y=5,再利用约分得到原式=+,然后通分得到原式=,最后把x、y的值代入计算即可.【解答】解:∵x﹣4≥0且4﹣x≥0,∴x=4,∴y=5,∴原式=+====﹣4.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.也考查了二次根式有意义的条件.也考查了根式有意义的条件.6.(2021春•上城区校级期中)已知a=,b=,求ab的值为1.【分析】a=,b=易得ab=1即可.【解答】解:a=,b=,∴ab=()()=3﹣2=1.故答案为:1.【点评】本题考查了二次根式的化简求值,根据二次根式的乘法可得ab的值.7.(2021•余杭区模拟)已知x=2+,则代数式(7﹣4)x2+(2﹣)x﹣的值为2﹣.【分析】将x=2+代入代数式(7﹣4)x2+(2﹣)x﹣,先利用完全平方公式和平方差公式化简计算,再进行实数的混合运算即可得出答案.【解答】解:∵x=2+,∴(7﹣4)x2+(2﹣)x﹣=(7﹣4)(2+)2+(2﹣)(2+)﹣=(7﹣4)(7+4)+(4﹣3)﹣=49﹣48+1﹣=2﹣.故答案为:2﹣.【点评】本题考查了二次根式的化简求值,熟练掌握完全平方公式和平方差公式及二次根式的混合运算法则是解题的关键.8.(2021春•永嘉县校级期末)已知a+b=3,ab=2,则的值为.【分析】根据a+b=3,ab=2,可以判断出a>0,b>0,将所求数字化简,然后a+b=3,ab=2代入即可解答本题.【解答】解:===,∵a+b=3,ab=2,∴a>0,b>0,∴原式===,故答案为:.【点评】本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.9.(2021春•永嘉县校级期末)已知x=,其中a是正整数,那么所有使得x为整数的a的取值之和为14.【分析】首先利用二次根式有意义的条件得到a≤178;然后<50,列举出满足条件的a的整数值,求和即可.【解答】解:①根据题意知,50﹣≥0.解得a≤178.因为a是正整数,且使得x为正整数,所以是正整数.当a=178时,<50,则在1、2、3、…、178中,满足14的倍数,即14n(n是正整数),同时又能整开方的数,只有14,即和为14.②故答案是:14.【点评】本题主要考查了二次根式的化简求值,二次根式有意义的条件,此题的难点是根据二次根式有意义的条件求得a的取值范围,结合条件确定a的取值.10.(2021春•永嘉县校级期末)已知x=+1,y=﹣1,则x2﹣5xy+y2+6=7.【分析】根据已知条件先求出x﹣y和xy的值,再把要求的式子变形为(x﹣y)2﹣3xy+6,然后代值计算即可.【解答】解:∵x=+1,y=﹣1,∴x﹣y=+1﹣(﹣1)=2,xy=1,∴x2﹣5xy+y2+6=(x﹣y)2﹣3xy+6=22﹣3+6=7;故答案为:7.【点评】此题考查了二次根式的化简求值,用到的知识点是完全平方公式和平方差公式,关键是对要求的式子进行变形.二.二次根式的应用(共8小题)11.(2021春•鄢陵县期末)方程的解为()A.B.C.D.【分析】两边同时除以后即可求得方程的解.【解答】解:方程两边同时除以得:x=====,故选:B.【点评】考查了二次根式的应用,解题的关键是能够进行分母有理化,难度不大.12.(2020秋•奉化区校级期末)已知max表示取三个数中最大的那个数,例如:当x=9时,max=81.当max时,则x 的值为()A.B.C.D.【分析】直接利用已知分别分析得出符合题意的答案.【解答】解:当max时,①=,解得:x=,此时>x>x2,符合题意;②x2=,解得:x=;此时>x>x2,不合题意;③x=,>x>x2,不合题意;故只有x=时,max.故选:C.【点评】此题主要考查了新定义,正确理解题意分类讨论是解题关键.13.(2021春•锡山区期末)如图,从一个大正方形中裁去面积为8cm2和18cm2的两个小正方形,则留下的阴影部分面积和为24cm2.【分析】直接利用正方形的性质得出两个小正方形的边长,进而得出大正方形的边长,即可得出答案.【解答】解:∵两个小正方形面积为8cm2和18cm2,∴大正方形边长为:+=2+3=5(cm),∴大正方形面积为(5)2=50(cm2),∴留下的阴影部分面积和为:50﹣8﹣18=24(cm2).故答案为:24cm2.【点评】此题主要考查了二次根式的应用,正确得出大正方形的边长是解题关键.14.(2021春•余姚市期末)如图,矩形内两个相邻正方形的面积分别为9和3,则阴影部分的面积为()A.8﹣3B.9﹣3C.3﹣3D.3﹣2【分析】根据有理数的乘方求出两个正方形的面积,然后根据阴影部分的面积的和为一个矩形的面积列式计算即可得解.【解答】解:∵两个相邻的正方形,面积分别为3和9,∴两个正方形的边长分别为,3,∴阴影部分的面积=×(3﹣)=3﹣3.故选:C.【点评】本题考查了有理数的乘方,正方形的性质,是基础题,熟记概念并求出两个正方形的边长是解题的关键.15.(2021春•盂县月考)阅读与计算:古希腊的几何学家海伦,在他的著作《度量》一书中,给出了下面一个公式:如果一个三角形的三边长分别为a,b,c,记p=(a+b+c),则三角形的面积为:S△ABC=(海伦公式),若△ABC中,BC=4,AC=5,AB=6,请利用上面公式求出△ABC的面积.【分析】先求出p,再代入海伦公式中计算即可.【解答】解:∵BC=4,AC=5,AB=6,∴p=(4+5+6)=,∴S====.【点评】本题考查了二次根式的应用,关键是读懂题意,理解公式的意思.16.(2021春•天河区校级月考)若矩形的长a=,宽b=.(1)求矩形的面积和周长;(2)求a2+b2﹣20+2ab的值.【分析】(1)直接利用二次根式的混合运算法则分别计算得出答案;(2)直接利用完全平方公式结合二次根式的混合运算法则计算得出答案.【解答】解:(1)∵矩形的长a=,宽b=.∴矩形的面积为:(+)(﹣)=6﹣5=1;矩形的周长为:2(++﹣)=4;(2)a2+b2﹣20+2ab=(a+b)2﹣20=(++﹣)2﹣20=(2)2﹣20=24﹣20=4.【点评】此题主要考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.17.(2021春•永嘉县校级期末)解方程:,得x=.【分析】去分母、移项,据此求出方程的解是多少即可.【解答】解:去分母得:3x+=4x,移项得:x=,故答案为:.【点评】此题主要考查了解一元一次方程的方法和二次根式的乘法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.18.(2021春•乌苏市期末)矩形相邻两边长分别为,,则它的周长是6,面积是4.【分析】利用矩形的周长和面积计算公式列式计算即可.【解答】解:矩形的周长是2×(+)=2×(+2)=6,矩形的面积是×=4.故答案为:6,4.【点评】此题考查二次根式的实际运用,掌握矩形的周长和面积计算方法是解决问题的关键.分层提分题组A 基础过关练一.选择题(共6小题)1.(2019春•诸暨市月考)将一组数据,,3,2,,…,3,按下面的方法进行排列:,,3,2,;3,,2,3,;…若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大的数的位置记为()A.(5,2)B.(5,3)C.(6,2)D.(6,5)【分析】根据题意可以得到每行五个数,且根号里面的数都是3的倍数,从而可以得到3所在的位置.【解答】解:由题意可得,每五个数为一行,3=,90÷3=30,30÷5=6,故3位于第六行第五个数,位置记为(6,5),故选:D.【点评】本题考查的是二次根式的性质,掌握二次根式的性质、正确找出规律是解题的关键.2.(2020•越城区模拟)已知a=+,b=﹣,那么a、b的关系为()A.a+b=B.a﹣b=0C.ab=1D.=2【分析】利用a、b的值分别计算出它们的和、差和积,然后对各选项进行判断.【解答】解:∵a=+,b=﹣,∴a+b=2,a﹣b=2,ab=3﹣2=1,==(+)2=5+2.故选:C.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.3.(2020春•温州期中)若x=2﹣,则代数式x2﹣4x+7的值为()A.7B.6C.﹣6D.﹣7【分析】先移项得到x﹣2=﹣,两边平方得到x2﹣4x=﹣1,然后利用整体代入的方法计算.【解答】解:∵x=2﹣,∴x﹣2=﹣,∴(x﹣2)2=3,∴x2﹣4x+4=3,即x2﹣4x=﹣1,∴x2﹣4x+7=﹣1+7=6.故选:B.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.4.(2020春•鹿城区校级期中)已知a=3﹣,b=2+,则代数式(a2﹣6a+9)(b2﹣4b+4)的值是()A.20B.16C.8D.4【分析】先将(a2﹣6a+9)(b2﹣4b+4)变形为[(a﹣3)(b﹣2)]2,再将a=3﹣,b=2+,代入求值即可.【解答】解:(a2﹣6a+9)(b2﹣4b+4)=(a﹣3)2(b﹣2)2=[(a﹣3)(b﹣2)]2当a=3﹣,b=2+时,原式=[(3﹣﹣3)(2+﹣2)]2=(﹣2)2=4.故选:D.【点评】本题考查了整式的化简求值,熟练运用完全平方公式是解题的关键.5.(2019秋•镇海区期末)已知直角三角形的两条直角边的长分别为和,则这个直角三角形的面积为()A.16B.8C.163D.【分析】直接利用二次根式的乘法运算法则计算得出答案.【解答】解:∵直角三角形的两条直角边的长分别为:和,∴这个直角三角形的面积为:.故选:D.【点评】此题主要考查了二次根式的应用,正确化简二次根式是解题关键.6.(2019春•椒江区校级期中)如图,长方形内有两个相邻的正方形,面积分别为3和9,那么图中阴影部分的面积为()A.B.C.D.【分析】设两个正方形的边长是x、y(x<y),得出方程x2=3,y2=9,求出x=,y=3,代入阴影部分的面积是(y﹣x)x求出即可.【解答】解:设两个正方形的边长是x、y(x<y),则x2=3,y2=9,x=,y=3,则阴影部分的面积是(y﹣x)x=(3﹣)×=3﹣3,故选:B.【点评】本题考查了算术平方根性质的应用,主要考查学生的计算能力.二.填空题(共4小题)7.(2019春•天台县期末)已知x=+1,y=﹣1,则x2﹣y2=.【分析】先分解因式,再代入比较简便.【解答】解:x2﹣y2=(x+y)(x﹣y)=2×2=4.【点评】注意分解因式在代数式求值中的作用.8.(2019春•西湖区期末)已知a=﹣2,则+a=0.【分析】根据二次根式的性质即可求出答案.【解答】解:当a=﹣2时,原式=|a|+a=﹣a+a=0;故答案为:0【点评】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.9.(2019春•温州期中)当x=﹣时,二次根式的值是2.【分析】把x=﹣代入已知二次根式,通过开平方求得答案.【解答】解:把x=﹣代入中,得==2,故答案为:2.【点评】本题考查了二次根式的化简求值.此题利用代入法求得二次根式的值.10.(2020秋•奉化区校级期中)如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为3﹣3.【分析】设两个正方形的边长是x、y(x<y),得出方程x2=4,y2=9,求出x=2,y=3,代入阴影部分的面积是(y﹣x)x求出即可.【解答】解:设两个正方形的边长是x、y(x<y),则x2=3,y2=9,x=,y=3,则阴影部分的面积是(y﹣x)x=(3﹣)×=3﹣3,故答案为:3﹣3.【点评】本题考查了算术平方根性质的应用,主要考查学生的计算能力.三.解答题(共3小题)11.(2020春•越城区校级月考)点P(x,y)是平面直角坐标系中的一点,点A(1,0)为x轴上的一点.(1)用二次根式表示点P与点A的距离;(2)当x=4,y=时,连接OP、PA,求PA+PO;(3)若点P位于第二象限,且满足函数表达式y=x+1,求+的值.【分析】(1)利用两点间的距离公式进行解答;(2)利用两点间的距离公式求得OP、PA,然后求PA+PO;(3)把y=x+1代入所求的代数式进行解答.【解答】解:(1)点P与点A的距离:;(2)∵x=4,y=,P(x,y),A(1,0),∴P(4,),∴PA==2,PO==3,则PA+PO=2+3;(3)∵点P位于第二象限,∴x<0,y>0,又∵y=x+1,∴+=|x|+|y|=﹣x+y=﹣x+x+1=1.即+的值是1.【点评】本题考查了二次根式的应用.熟记两点间的距离公式是解题的难点.12.(2019春•临海市期末)计算:(1)+|﹣|;(2)已知x=+1,求代数式x2﹣2x+3的值.【分析】(1)根据二次根式的性质、绝对值的性质计算即可;(2)根据完全平方公式把原式变形,代入计算,得到答案.【解答】解:(1)+|﹣|=2+=3;(2)当x=+1时,x2﹣2x+3=x2﹣2x+1+2=(x﹣1)2+2=5+2=7.【点评】本题考查的是二次根式的化简求值,掌握二次根式的性质、合并同类二次根式的法则是解题的关键.13.(2019秋•二道区期末)有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.(1)求剩余木料的面积.(2)如果木工想从剩余的木料中截出长为1.5dm,宽为1dm的长方形木条,最多能截出2块这样的木条.【分析】(1)根据二次根式的性质分别求出两个正方形的边长,结合图形计算得到答案;(2)求出3和范围,根据题意解答.【解答】解:(1)∵两个正方形的面积分别为18dm2和32dm2,∴这两个正方形的边长分别为3dm和4dm,∴剩余木料的面积为(4﹣3)×3=6(dm2);(2)4<3<4.5,1<<2,∴从剩余的木料中截出长为1.5dm,宽为1dm的长方形木条,最多能截出2块这样的木条,故答案为:2.【点评】本题考查的是二次根式的应用,掌握二次根式的性质、无理数的估算是解题的关键.题组B 能力提升练一.选择题(共3小题)1.(2020春•铁东区期中)如图,从一个大正方形中裁去面积为16cm2和24cm2的两个小正方形,则余下的面积为()A.16cm2B.40 cm2C.8cm2D.(2+4)cm2【分析】根据已知部分面积求得相应正方形的边长,从而得到大正方形的边长,易得大正方形的面积,利用分割法求得余下部分的面积.【解答】解:从一个大正方形中裁去面积为16cm2和24cm2的两个小正方形,大正方形的边长是+=4+2,留下部分(即阴影部分)的面积是(4+2)2﹣16﹣24=16+16+24﹣16﹣24=16(cm2).故选:A.【点评】此题主要考查了二次根式的应用,正确求出阴影部分面积是解题关键.2.(2019秋•永嘉县期中)把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为cm,宽为4cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是()A.4cm B.16cm C.2(+4)cm D.4(﹣4)cm 【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:设小长方形卡片的长为x,宽为y,根据题意得:x+2y=,则图②中两块阴影部分周长和是2+2(4﹣2y)+2(4﹣x)=2+4×4﹣4y﹣2x=2+16﹣2(x+2y)=2+16﹣2=16(cm).故选:B.【点评】本题主要考查了二次根式的应用,整式的加减运算,在解题时要根据题意结合图形得出答案是解题的关键.3.(2013•宁波自主招生)设等式在实数范围内成立,其中a、x、y是三个不同的实数,则的值是()A.3B.C.2D.【分析】根据根号下的数要是非负数,得到a(x﹣a)≥0,a(y﹣a)≥0,x﹣a≥0,a﹣y≥0,推出a≥0,a≤0,得到a=0,代入即可求出y=﹣x,把y=﹣x代入原式即可求出答案.【解答】解:由于根号下的数要是非负数,∴a(x﹣a)≥0,a(y﹣a)≥0,x﹣a≥0,a﹣y≥0,a(x﹣a)≥0和x﹣a≥0可以得到a≥0,a(y﹣a)≥0和a﹣y≥0可以得到a≤0,∴a只能等于0,将a=0代入等式得﹣=0,∴x=﹣y,即:y=﹣x,由于x,y,a是三个不同的实数,∴x>0,y<0.将x=﹣y代入原式得:原式==.故选:B.【点评】本题主要考查对二次根式的化简,算术平方根的非负性,分式的加减、乘除等知识点的理解和掌握,根据算术平方根的非负性求出a、x、y的值和代入求分式的值是解此题的关键.二.填空题(共6小题)4.(2021春•永嘉县校级期中)若,则=6.【分析】对变形,得,因为各项均为非负数,故可求得x、y、z的值,代入中即可.【解答】解:根据题意,,即,得x=2,y=6,z=3;所以.【点评】本题考查的是非负数的性质及二次根式的化简和求值.5.(2020春•萧山区期末)已知x=+1,则代数式x2﹣2x+1的值为2.【分析】根据x的值和完全平方差公式可以解答本题.【解答】解:∵x=+1,∴x2﹣2x+1=(x﹣1)2=(+1﹣1)2=()2=2,故答案为:2.【点评】本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.6.(2020•浙江自主招生)设a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣ac﹣bc=15.【分析】将a﹣b=2+和b﹣c=2﹣相加,得到a﹣c=4,再将a2+b2+c2﹣ab﹣ac﹣bc转化成关于a﹣b,b﹣c,a﹣c的完全平方的形式,再将a﹣b=2+,b﹣c=2﹣和a﹣c=4整体代入即可.【解答】解:∵a﹣b=2+,b﹣c=2﹣,两式相加得,a﹣c=4,原式=a2+b2+c2﹣ab﹣bc﹣ac======15.【点评】此题考查了对完全平方公式及整体代入的掌握情况,有一定的综合性,但难度不大.7.(2019秋•锦江区校级期中)若,则m=3,n=2.【分析】将已知的等式的左边被开方数中的5变形为2+3,根据平方根的定义将2变为,3变为,同时将2化为2••,符合完全平方公式的特点,利用完全平方公式变形后,再利用二次根式的化简公式=|a|化简后,根据大于,利用绝对值的代数意义化简,与等式右边比较,即可求出m与n的值.【解答】解:∵>,即﹣>0,∴====|﹣|=﹣,又∵=﹣,则m=3,n=2.故答案为:3;2【点评】此题考查了二次根式的化简求值,涉及的知识有:平方根的定义,二次根式的化简公式,完全平方公式,以及绝对值的代数意义,其技巧性较强,灵活变换等式左边的被开方数是解本题的关键.8.(2018春•绍兴期中)求当a=1+,b=时,代数式2a2+b2﹣4a+2的值为12.【分析】原式配方变形后,将已知等式代入计算即可求出值.【解答】解:原式=2(a2﹣2a+1)+b2=2(a﹣1)2+b2,当a=1+,b=时,原式=10+2=12,故答案为:12【点评】此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.9.(2018春•台州期中)若a=3﹣,则a2﹣6a+9的值为7.【分析】将a的值代入a2﹣6a+9=(a﹣3)2计算可得.【解答】解:当a=3﹣时,a2﹣6a+9=(a﹣3)2=(3﹣﹣3)2=(﹣)2=7,故答案为:7.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握完全平方公式和二次根数的运算顺序及运算法则.三.解答题(共6小题)10.(2021秋•鄞州区月考)已知a=.(1)求a2﹣4a+4的值;(2)化简并求值:.【分析】(1)先将a化简,然后通过配方法将原式化简,最后代入a求值.(2)将原式先化简,然后代入a的值求解.【解答】解:(1)a===2﹣,a2﹣4a+4=(a﹣2)2,将a=2﹣代入(a﹣2)2得(﹣)2=3.(2),=﹣=(a﹣1)﹣,∵a=2﹣,∴a﹣1=1﹣<0,∴原式=a﹣1+=2﹣﹣1+2+=3.【点评】本题考查分式的化简求值,解题关键是熟练掌握因式分解与分式化简的方法,掌握分母有理化的方法.11.(2021•仙桃校级模拟)(1)计算:.(2)已知x2=2x+15,求代数式的值.【分析】(1)根据算术平方根、负整数指数幂、绝对值可以解答本题;(2)根据完全平方公式可以将所求式子化简,然后根据x2=2x+15,可以得到x的值,然后代入化简后的式子即可解答本题.【解答】解:(1)=2+9﹣2=9;(2)=x2+2x+2﹣(x2﹣2x+2)=x2+2x+2﹣x2+2x﹣2=4x,由x2=2x+15,可得x1=﹣3,x2=5,当x=﹣3时,原式=﹣12;当x=5时,原式=20.【点评】本题考查二次根式的化简求值、负整数指数幂、绝对值,解答本题的关键是明确它们各自的计算方法.12.(2020秋•镇海区期末)计算:(1)×;(2)已知|﹣a|+=0,求a2﹣2+2+b2的值.【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据|﹣a|+=0,可以得到a、b的值,然后将所求式子变形,再将a、b的值代入即可解答本题.【解答】解:(1)×=4÷﹣+2=4﹣+2=4+;(2)∵|﹣a|+=0,∴﹣a=0,b﹣2=0,∴a=,b=2,∴a2﹣2+2+b2=(a﹣)2+b2=(﹣)2+22=02+4=0+4=4.【点评】本题考查二次根式的化简求值、非负数的性质,解答本题的关键是明确二次根式混合运算的计算方法.13.(2020春•长岭县期末)已知x=2﹣,y=2+,求x2+xy+y2的值.【分析】先分别求出x+y,xy的值,再根据完全平方公式进行变形,最后代入求出即可,【解答】解:∵x=2﹣,y=2+,∴x+y=4,xy=4﹣3=1,∴x2+xy+y2=(x+y)2﹣xy=42﹣1=15.【点评】本题考查了二次根式的性质和完全平方公式的应用,主要考查学生的计算能力.14.(2019春•西湖区校级期中)(1)计算()+;(2)已知x=,y=2,求3x2﹣2xy+3y2的值.【分析】(1)先化简各二次根式,再计算乘法,最后计算加减可得;(2)先计算出x+y和xy的值,再代入原式=3(x+y)2﹣8xy计算可得.【解答】解:(1)原式=×(﹣2)+6(+)=﹣6+6(+)=﹣6+6+6=7;(2)∵x=,y=2,∴x+y=2,xy=﹣1.∴3x2﹣2xy+3y2=3(x2+2xy+y2﹣2xy)﹣2xy=3(x+y)2﹣8xy=3×(2)2﹣8×(﹣1)=44.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.15.如图,某校自行车棚的人字架棚顶为等腰三角形ABC,点D是边AB的中点,中柱CD=2,AB=2,求△ABC的周长及面积.【分析】根据点D为AB的中点,三角形ABC为等腰三角形,可得CD⊥AB,并且求出AD和BD的长度,在Rt△ACD中求出AC的长度,同理可求出BC的长度,继而以求得△ABC的周长及面积.【解答】解:在等腰三角形ABC中,∵点D是边AB的中点,∴CD⊥AB,AD=BD=,在Rt△ACD中,∵AD=,CD=2,∴AC==3,同理可得,BC=3,则△ABC的周长为3+3+2=8,面积为×2×2=6.【点评】本题考查了二次根式的应用以及勾股定理的应用,解答本题的关键是得出CD为三角形ABC的高,并且运用勾股定理求出等腰三角形的腰长,难度一般.。
精选-中考数学一轮复习第一单元数与式第4讲二次根式课件
(2)除法: ba = ba (a >0,b ≥0).
最新
精选中小学课件
12
学法提点 二次根式的运算首先要注意运算顺序,其次要掌握好运算法则,最后运算结果一 定要化成最简二次根式或整式,另外进行二次根式的加减运算时,切忌将原式的 被开方数直接加减.
最新
精选中小学课件
24
2.(2016·山西,16(1),5分)计算:(-3)2-
1 5
1
- ×8 +(2-2)0.
解析 原式=9-5- 16+1=9-5-4+1=1.
最新
精选中小学课件
25
3.(2015·山西,18,6分)阅读与计算:请阅读以下材料,并完成相应的任务. 斐波那契(约1170—1250)是意大利数学家,他研究了一列数,这 列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的 一列数称为数列).后来人们在研究它的过程中,发现了许多意 想不到的结果.在实际生活中,很多花朵(如梅花、飞燕草、万 寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有 很多有趣的性质,在实际生活中也有广泛的应用.
最新
精选中小学课件
3
3.同类二次根式 几个二次根式化成⑤最简二次根式后,如果被开方数⑥相同,那么这几个二次 根式叫做同类二次根式.
最新
精选中小学课件
4
1.(2018·曲靖)下列二次根式中能与2 3 合并的是 ( B )
A. 8 C. 18
B. 1 3
D. 9
最新
精选中小学课件
5
2.(2018·湖州)二次根式 x 3 中字母x的取值范围是x≥3.
最新
二次根式知识点总结大全
第二十一章二次根式【知识要点1.二次根式:式子a(a≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a)2=a(a≥0);(2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就能够用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也能够将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.a≥0,b≥0);=b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质例1下列各式1其中是二次根式的是_________(填序号).a(a>0)==aa2a-(a<0)0 (a=0);例2、求下列二次根式中字母的取值范围(1)x x --+315;(2)22)-(x 例3、 在根式1) 222;2);3);4)275x a b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)例4、已知:的值。
求代数式22,211881-+-+++-+-=x y y x x y y x x x y例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( )A. a>bB. a<bC. a≥bD. a≤b2、二次根式的化简与计算例1. 将根号外的a 移到根号内,得 ( )A. ;B. -;C. -;D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()b a b b a a b ++++,其中a=512+,b=512-. 例5、如图,实数a 、b 在数轴上的位置,化简 :222()a b a b ---3、在实数范围内分解因式例. 在实数范围内分解因式。
2024年中考数学一轮专题课件:第4讲+二次根式
知识点5 二次根式的运算
例5 (2023·大连中考)下列计算正确的是( D )
A. 2 0 = 2
B.2 3 + 3 3 = 5 6
C. 8 = 4 2
D. 3 2 3 − 2 = 6 − 2 3
思路分析 根据零指数幂、二次根式的加法、二次根式的性质以及二次根
式的混合运算法则逐一判断。
易混淆点 二次根式的两个性质
性质1: a 2 = a a ≥ 0 ;
性质2:
a2 =∣ a ∣=
a a≥0 , −a a < 0 。
区别:(1)运算顺序不同: a 2先开方再平方, a2先平方再开方;
(2)取值范围不同: a 2中a为非负数时有意义, a2中a为任意实数都
有意义;(3)结果不同: a2的结果要根据a的取值情况进行分类讨论。
1.二次根式的加减:先将二次根式化为最简二次根式,再将被开方数
相同的二次根式合并;
2.二次根式的乘法: a ⋅ b = ab a ≥ 0, b ≥ 0 ;
3.二次根式的除法: a =
b
a b
a ≥ 0, b > 0
。
知识点4 二次根式的估算(夹逼法)
二次根式估算的一般步骤: (1)对二次根式进行平方,如 7 2 = 7; (2)找出与平方后所得数字相邻的两个开平方能开得尽的整数,如 4 < 7 < 9; (3)对以上两个整数求算术平方根,如 4 = 2, 9 = 3; (4)确定这个二次根式值的范围,如2 < 7 < 3。
6.(2023·绥化中考)若式子
x+5有意义,则x的取值范围是__x__≥__−_5_且__x__
x
_≠__0__。
2019年宜宾中考总复习精练第1章数与式第4讲二次根式(含答案)
第四讲 二次根式1.(2019潍坊中考)若代数式x -2x -1有意义,则实数x 的取值范围是( B )A .x ≥1B .x ≥2C .x >1D .x >22.(2019淮安中考) 下列式子为最简二次根式的是( A ) A. 5 B.12 C.a 2D.1a3.(2019十堰中考)下列运算正确的是( C ) A.2+3= 6 B .22×32=6 2 C.8÷2=2 D .32-2=3 4.计算48-913的结果是( B ) A .- 3 B. 3 C .-113 3 D.11335.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( C ) A .9 B .±3 C .3 D. 5 6.若x -1+(y +2)2=0,则(x +y)2 018等于( B )A .-1B .1C .32 018 D .-32 0187.(2019徐州中考改编)使x -6有意义的x 的最小整数是__6__.8.计算:(1)(2019长春中考)2×3=;(2)(2019衡阳中考)8-2=.9.已知x 1=3+2,x 2=3-2,则x 21+x 22=__10__.10.已知a(a -3)<0,则|a -3|+a 2=. 11.若20n 是整数,则正整数n 的最小值为__5__.12.将2,3,6按下列方式排列,若规定(m ,n)表示第m 排从左向右第n 个数,则(5,4)与(15,7)表示的两数之积是.13.(2019滨州中考改编)计算: 33+(3-3)0-|-12|-2-1-cos60°.解:原式=3+1-23-12-12=- 3.14.设a =19-1,且a 在两个相邻的整数之间,则这两个整数是( C )A.1和2 B.2和3 C.3和4 D.4和515.若反比例函数y=a-2 018x的图象与正比例函数y=(a-2 016)x的图象没有公共点,则化简(a-2 018)2+(a-2 016)2的结果为( C )A.-2 B.2a-4 034C.2 D.4 03416.将一组数3,6,3,23,15,…,310,按下面的方式进行排列:3,6,3,23,15,32,21,26,33…若23的位置记为(1,4),26的位置记为(2,3),则这组数中最大的有理数的位置记为( C )A.(5,2) B.(5,5) C.(6,2) D.(6,5)17.已知a,b为有理数,m,n分别表示5-7的整数部分和小数部分,且amn+bn2=1,则 2a+b=__2.5__.18.若y=x-4+4-x2-2,则(x+y)y=__14__.19.计算:(2-3)2 017(2+3)2 018-2|-32|-(-2)0.解:原式=[(2-3)(2+3)]2 017(2+3)-2×32-1=(2+3)-3-1=2+3-3-1=1.20.解方程:x+2x-1+x-2x-1=x-1.解:方程两边同时平方,得2x+2x2-(2x-1)2=x2-2x+1,变形,得2x+2x2-4x+4=x2-2x+1,2x+2(x-2)2=x2-2x+1,2x+2|x-2|=x2-2x+1,∵x-1≥0,即x≥1.∴①当1≤x<2时,原方程化简为:2x+2(2-x)=x2-2x+1,即x2-2x-3=0,解得x1=-1,x2=3(都不符合题意,舍去),②当x≥2时,原方程化简为:2x+2(x-2)=x2-2x+1,即x2-6x+5=0,解得x1=1,x2=5(x=1不符合题意,舍去),综上,原方程的解为x=5.2019-2020学年数学中考模拟试卷一、选择题1.如图,AB ∥ED ,CD=BF ,若△ABC ≌△EDF ,则还需要补充的条件可以是( )A.AC=EFB.BC=DFC.AB=DED.∠B=∠E2.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:则下列关于这组数据的说法,正确的是( ) A .众数是2.3 B .平均数是2.4 C .中位数是2.5D .方差是0.013.如图,OA 在x 轴上,OB 在y 轴上,OA =4,OB =3,点C 在边OA 上,AC =1,⊙P 的圆心P 在线段BC 上,且⊙P 与边AB ,AO 都相切.若反比例函数y =kx(k≠0)的图象经过圆心P ,则k 的值是( )A.54-B.53-C.52-D.﹣24.在平面直角坐标系中,点P(3,-5)关于原点对称的点的坐标是( ) A .(3,5)B .(3,-5)C .(-3,-5)D .(-3,5)5.下列计算正确的是( ) A .224a a a += B .()2326a a =C .()23533a aa -=-gD .623422a a a ÷=6.国家统计局统计资料显示,2018年第一季度我国国内生产总值为31355.55亿元,用科学记数法表示为( )元.(用四舍五入法保留3个有效数字) A .831355.510⨯B .133.1410⨯C .123.1410⨯D .123.1310⨯7.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:则关于这些同学的每天锻炼时间,下列说法错误的是( ) A .众数是60B .平均数是21C .抽查了10个同学D .中位数是508.某同学做了四道题:①3m+4n=7mn ;②(﹣2a 2)3=﹣8a 6;③6x 6÷2x 2=3x 3;④y 3•xy 2=xy 5,其中正确的题号是( ) A .②④B .①③C .①②D .③④9.如图,平面上有两个全等的正八边形ABCDEFGH 、A′B′C′D′E′F′G′H′,若点B 与点B′重合,点H 与点H′重合,则∠ABA′的度数为( )A.15°B.30°C.45°D.60°10.如图,ABCDEF 为⊙O 的内接正六边形,AB =m ,则图中阴影部分的面积是( )A .6πm 2B m 2C .3π⎛- ⎝⎭m 2D .6π⎛- ⎝⎭m 211.如图,已知在△ABC 中,∠BAC >90°,点D 为BC 的中点,点E 在AC 上,将△CDE 沿DE 折叠,使得点C 恰好落在BA 的延长线上的点F 处,连结AD ,则下列结论不一定正确的是( )A.AE=EFB.AB=2DEC.△ADF 和△ADE 的面积相等D.△ADE 和△FDE 的面积相等12.下列计算正确的是( ) A .(a 2b )2=a 2b 2 B .a 6÷a 2=a 3C .(3xy 2)2=6x 2y 4D .(﹣m )7÷(﹣m )2=﹣m 5二、填空题13.如图,在3×3的方格中(共有9个小格),每个小方格都是边长为1的正方形,O、B、C是格点,则扇形OBC的面积等于___(结果保留π)14.如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BEA的度数是_____度.15.分解因式:ab4-4ab3+4ab2=______________。
中考数学第一轮复习(第4讲--数的开方与二次根式)
【例题1】 (2012·浙江宁波)下列计算正确的是( ). A.a6÷a2=a3 B.(a3)2=a5
解析 根据同底数幂的除法,幂的乘方,算术平方根,立方根运算
法则逐一计算作出判断:
A.a6÷a2=a6-2=a4≠a3,故本选项错误; B.(a3)2=a3×2=a6≠a5,故本选项错误;
第三十五 ,共44 。
【预测1】 下列计算:
答案 C
第三十六 ,共44 。
【预测2】 下列运算正确的是
( ).
答案 C
第三十七 ,共44 。
易 错防 范
第三十八 ,共44 。
数的开方、二次根式常见错误
第三十九 ,共44 。
【典型例题】
第四十 ,共44 。
第四十一 ,共44 。
第二十八 ,共44 。
A.a≠0
C.a>-2或a≠0
B.a>-2且a≠0 D.a≥-2且a≠0
答案 D
第二十九 ,共44 。
【预测3】 下列二次根式中,最简二次根式是( ).
答案 B
第三十 ,共44 。
答案 C
第三十一 ,共44 。
解析 考查二次根式和绝对值等非负数的性质,由已知得,x= -3,y=2 013,所以x+y=-3+2 013=2 010.
(3)混合运算:与实数的混合运算顺序相同.
状元笔记 (1)加减运算:需先化简,再合并;
(2)乘除运算:可先乘除,后化简.
第十四 ,共44 。
对 接中 考
第十五 ,共44 。
对接点一:平方根、立方根及算数平方根
常考角度
1. 平方根、算术平方根与立方根的概念; 2. 求一个数的平方根、算术平方根与立方根.
初二-第4讲-二次根式的化简与计算
估算一、专题精讲题型一、估算无理数在哪两个整数之间例1.(1)判断×之值会介于下列哪两个整数之间?()A.22、23 B.23、24 C.24、25 D.25、26考点:估算无理数的大小.分析:先算出与的积,再根据所得的值估算出在哪两个整数之间,即可得出答案.解答:解:∵×=,又∵24<25,∴×之值会介于24与25之间,故选C.点评:本题考查了估算无理数大小,掌握的大约值是解题的关键,是一道基础题.(2)如果m=,那么m的取值范围是()A.0<m<1 B.1<m<2 C.2<m<3 D.3<m<4考点:估算无理数的大小.分析:先估算出在2与3之间,再根据m=,即可得出m的取值范围.解答:解:∵2<3,m=,∴m的取值范围是1<m<2;故选B.点评:此题考查了估算无理数的大小,解题关键是确定无理数的整数部分,是一到基础题.变式训练1.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间解答:解:∵2=<=3,∴3<<4,故选B.2.若n=﹣6,则估计n的值所在范围,下列最接近的是()A.4<n<5 B.3<n<4 C.2<n<3 D.1<n<2解答:解:∵49<59<64,∴7<<8,∴7﹣6<﹣6<8﹣6,即1<n<2.故选D.题型二、按要求估算例2.(1)估算下列各数的大小.(1)(误差小于0.1);(2)(误差小于1).考点:估算无理数的大小.分析:(1)(2)借助“夹逼法”先将其范围确定在两个整数之间,再通过取中点的方法逐渐逼近要求的数值,当其范围符合要求的误差时,取范围的中点数值,即可得到答案. 解答:解:(1)∵有62=36,6.52=42.25,72=49, ∴估计在6.5到7之间,6.62=43.56,6.72=44.89;∴≈6.65;(2)∵43=64,53=125, ∴4.53=91.125,4.43=85.184,∴≈4.45.点评:此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.变式训练1、估算下列数的大小.(1)(误差小于0.1) ; (2)(误差小于1). 解答:(1) ∵3.6<<3.7,∴≈3.6或3.7(只要是3.6与3.7之间的数都可以). (2) ∵9<<10,∴≈9或10(只要是9与10之间的数都可以).题型三、用估算比较两个数大小例3.(1)通过估算,比较下面各数的大小. (1)与 ; (2)与3.85. 解答: (1)∵<2,∴-1<1,即<. (2)∵3.85=14.8225,∴>3.85.变式训练1.(2010•杭州二模)估计大小关系是﹣1________ 0.5. 解答:解:∵0.5=﹣1,<3.∴﹣1<0.5.题型四、用估算法求解实际问题的近似解例4.(1)某小区有一块长为8米、宽为4米的长方形草坪,计划在草坪面积不减少的情况 下,把它改造成一个正方形,如果改造后的正方形草坪的边长为x 米.求正方形的边长(估 算到0.1)考点:算术平方根;估算无理数的大小.分析:根据面积相等列出关系式,解得x ,进即可得到正方形的边长.13.6380013.613.63800380031212153331212215解答:解:根据题意得:x2=8×4=32 x≈5.6.答:正方形的边长约为5.6米.点评:本题主要考查长方形、正方形的面积,根据面积相等得到方程是解题的关键.变式训练1.能否用面积为400cm2的正方形纸片裁出面积为300cm2且长、宽之比为3:2的长方形纸片?说明理由.(友情提示:不能对裁出的长方形进行拼接)解答:答:不能.理由:设长方形纸片的长为3xcm,宽为2xcm.依题意,得3x•2x=300,6x2=300,x2=50,∴x=或x=﹣(舍去),∴长方形纸片的长为,∵50>49,∴>7,∴3>21,∴长方形纸片的长应该大于21cm,又∵已知正方形纸片的边长大只有20cm,∴不能用这块正方形纸片裁出符合要求的长方形纸片.题型五、表示一个无理数的小数部分例5.(1)(2010•巫山县模拟)已知,m、n分别是的整数部分和小数部分,那么,2m﹣n的值是()A.B.C.D.考点:估算无理数的大小.专题:探究型.分析:先估算出的值,进而可得出m、n的值,再代入2m﹣n进行计算即可.解答:解:∵≈1.732,∴6﹣的整数部分为4,小数部分为6﹣﹣4,即n=2﹣,∴2m﹣n=8﹣2+=6+.故选B.点评:本题考查的是估算无理数的大小,熟记≈1.732是解答此题的关键.(2)(1)已知数M的平方根是a+5及﹣3a+11,求M.(2)已知5+与5﹣的小数部分分别是a、b,求3a+2b的值.考点:估算无理数的大小;平方根.专题:探究型.分析:(1)由于M的平方根是a+5及﹣3a+11,所以这两个数互为相反数,据此可求出a的值,进而得出数M;(2)先估算出的取值范围,再得出a、b的值,代入所求代数式进行计算即可.解答:解:(1)∵M的平方根是a+5及﹣3a+11,∴a+5=3a﹣11,解得a=8,∴a+5=8+5=13,∴M=132=169;(2)∵3<<4,∴5+的小数部分是﹣3;5﹣的小数部分是,4﹣,∴a=﹣3,b=4﹣,∴3a+2b=3(﹣3)+2(4﹣)=﹣1.点评:本题考查的是估算无理数的大小及平方根的定义,在解答(2)时要先估算出的大小,再进行计算.变式训练1.(2013•吴江市模拟)3+的整数部分是a ,3﹣的小数部分是b ,则a+b 等于__________.解答:解:∵1<<2,∴4<3+<5, ∴3+的整数部分a=4; ∵1<<2, ∴﹣2<﹣<﹣1, ∴1<3﹣<2,设3﹣的整数部分为m ,则m=1, ∴3﹣的小数部分b=3﹣﹣m=2﹣, ∴a+b=4+2﹣=6﹣.故答案为6﹣.2.设x 是的整数部分,y 是的小数部分,化简|x ﹣y ﹣3|. 解答:解:∵<<, ∴5<<6, ∴x=5,y=﹣5, ∴|x ﹣y ﹣3|=|5﹣(﹣5)﹣3|=|7﹣|=7﹣.二次根式的化简及计算一、专题精讲题型一:二次根式的概念例1.(1)下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x ≥0,y•≥0). 分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.解:二次根式有:、(x>0)、、-、(x ≥0,y ≥0);不是二次根式的有:、、、. 例2.当x 是多少时,在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,•才能有意义.解:由3x-1≥0,得:x ≥2331xx 04221x y+x y +2x 02x y +331x421x y+31x -31x -13A . 3到4之间B . 4到5之间C . 5到6之间D . 6到7之间解答:解:∵正方形的面积为28,∴它的边长为, 而5<<6. 故选C .2、(宝坻区二模)估算的值在( ) A .在4和5之间 B .在5和6之间 C .在6和7之间 D .在7和8之间 解答:解:∵<<, ∴2<<3,∴5+2<5+<5+3, 即7<5+<8, 故选:D .3、通过估算比较大小: _________.解答:解:∵2<<3, ∴0<﹣2<1, ∴<.4.化简:=-2)3(π 。
【2014中考复习方案】(江西专版)中考数学复习权威课件:4二次根式
式子中含有分式,分母不等于零;有二次根式,被开方数 大于或等于零.所以应把这两个条件结合起来考虑.由题意知:
2x+1≥0, 1 解得x≥- ,且x≠1.故选A. 2 x-1≠0,
赣考解读 考点聚焦 赣考探究
解析
第4讲┃二次根式
求自变量的取值范围通常可以转化为解不等式(组) 的问题:
间,先把 7 平方,因为4<7<9,所以2 < 7<3
赣考解读
考点聚焦
赣考探究
第4讲┃二次根式
赣 考 探 究
探究一 求未知数的取值范围
例1 是( A ) 1 A.x≥- ,且x≠1 2 1 C.x≥- 2 B.x≠1 1 D.x>- ,且x≠1 2 [2013· 娄底] 使式子 2x+1 有意义的x的取值范围 x-1
赣考解读 考点聚焦 赣考探究
第4讲┃二次根式
变式题 [2013· 凉山州] 若实数x、y满足|x-4|+ y-8 =0,则以x、 y的值为边长的等腰三角形的周长为________ 20 .
所给代数式的形式
整式 一切实数 使分母不为零的一切实数,注意不能随意 约分,同时注意“或”和“且”的含义
自变量的取值范围
分式 偶次根式
被开方数应满足大于或等于0的条件
零次幂或负整数指数 底数不为零 幂
复合形式
赣考解读
列不等式组,兼顾所有式子同时有意义
考点聚焦 赣考探究
第4讲┃二次根式
探究二 二次根式的性质
赣考解读 考点聚焦 赣考探究
第4讲┃二次根式
考点2 二次根式的有关概念及性质
1.下列二次根式中,最简二次根式是( C ) 1 A. B. 0.5 5 C. 5 D. 50 2.对任意实数a,则下列等式一定成立的是( D ) A. a=a B. a2=-a C. a2=± a 3.若
七年级新目标人教版数学第一单元
第2讲┃ 整式与因式分解
7.下列计算结果正确的是( C ) A.-2x2y3²2xy=-2x3y4 B.3x2y-5xy2=-2x2y C.28x4y2÷7x3y=4xy D.(-3a-2)(3a-2)=9a2-4 8.若a+b=5,ab=3,则a2+b2=________. 19 9.先化简,再求值:[(x-y)2+(x+y)(x-y)]÷ x,其中x= 1 -1,y= . 2
有效数字
第1讲┃ 实数及其运算
5.2012年6月16日18点37分神舟九号飞船发射成索到与之相关的结果约4350000个,这个数用科
4.35³106 学记数法表示为____________.
6.一种细菌的半径约为0.00004549米,将0.00004549保留
第2讲┃ 整式与因式分解
字母 相同字母 所含________相同,并且________的指数也相同的项 同类项 叫做同类项,几个常数项也是同类项 去括号与添括号时要特别注意的是如果括号前边是 改变 “-”号,各项要________符号 整式的 相加 合并同类项:同类项的系数________,相同字母及其 加减 不变 字母的指数________ 整式的加减,先去括号,然后合并多项式中的同类项
第2讲┃ 整式与因式分解
┃考向互动探究与方法归纳┃
┃典型分析┃
例 我国宋朝数学家杨辉在他的著作《详解九章算法》中 提出“杨辉三角”(如图2-1),此图揭示了(a+b)n(n为非负整数)展 开式的项数及各项系数的有关规律. 例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它 有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它 有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+ 3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8;
第4讲-数的开方及二次根式
数的开方及二次根式
┃考点自主梳理与热身反馈 ┃ 考点1 平方根与立方根
(B C. 8 C.2 D.±8 ( B ) D.- 2 )
1. 16 的平方根是 A. 4 B.±4 2.4 的算术平方根是 1 A.±2 B. 2 1 1 2 3. 的立方根是 ________ . 8
第4讲┃ 数的开方及二次根式
3x- 9 3 = . ( x+ 3)( x- 3) x+ 3 3 3 10 当 x= 10- 3 时,原式= = . 10 10- 3+ 3
第4讲┃ 数的开方及二次根式
[中考点金] 此类分式与二次根式综合计算与化简问题,一般先 化简再代入求值.最后的结果要化为分母没有根号的数 或者是最简二次根式.
x- y+ 3= 0, x=- 1, 由题意知, 解得 2x+ y= 0, y= 2,
所以 x+y=1.故答案选 C.
第4讲┃ 数的开方及二次根式
[中考点金]
常见的非负数有 a2, b, c ,一般根据 “若几个非负
数的和等于零,那么这几个数都为零”来解答.
第4讲┃ 数的开方及二次根式
【归纳总结】 整式 最简二次 被开方数是____________ , 被开方数不 能开得尽方 根式 含 ________________ 的因数或因式
二次 根式相 几个二次根式化为最简二次根式后, 关概念 同类二次 如果被开方数 ________ 相同 ,则这几个二 根式 次根式叫作同类二次根式
第4讲┃ 数的开方及二次根式
变式题
[2013· 孝感 ]
x 先化简,再求值: 1- ÷ x + 1
x2- 1 ,其中 x= 2sin45°+ 1. x2+ 2x+ 1
第4讲 二次根式(含答案点拨)
第4讲 二次根式的加减乘除运算以及混合运算.考查形知识梳理 一、二次根式 1.概念形如________的式子叫做二次根式. 2.二次根式有意义的条件要使二次根式a 有意义,则a ≥0. 二、二次根式的性质 1.(a )2=a (______).2.a 2=|a |=⎩⎪⎨⎪⎧(a ≥0), (a <0).3.ab =______(a ≥0,b ≥0).4.a b=______(a ≥0,b >0).三、最简二次根式、同类二次根式 1.概念我们把满足被开方数不含分母,被开方数中不含能开得尽方的______或______的二次根式,叫做最简二次根式.2.同类二次根式的概念几个二次根式化成________________以后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.四、二次根式的运算 1.二次根式的加减法合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式.2.二次根式的乘除法(1)二次根式的乘法:a ·b =____(a ≥0,b ≥0).(2)二次根式的除法:ab=____(a ≥0,b >0).自主测试1.使3x -1有意义的x 的取值范围是( )A .x >13B .x >-13C .x ≥13D .x ≥-132.已知y =2x -5+5-2x -3,则2xy 的值为( )A .-15B .15C .-152D .1523.下列二次根式中,与3是同类二次根式的是( )A .18B .27C .23D .324.下列运算正确的是( )A .25=±5B .43-27=1C .18÷2=9D .24·32=65.估计11的值( )A .在2到3之间B .在3到4之间C .在4到5之间D .在5到6之间6.化简:27-12+43.考点一、二次根式有意义的条件【例1】若使x +12-x有意义,则x 的取值范围是________.解析:x +1与2-x 都是二次根式的被开方数,都要大于等于零.又因2-x 不能为零,可得不等式组⎩⎪⎨⎪⎧x +1≥0,2-x >0,解得-1≤x <2.答案:-1≤x <2方法总结 利用二次根式有意义的条件求字母的取值范围时,首先考虑被开方数为非负数,其次还要考虑其他限制条件,如分母不等于零,最后解不等式(组).触类旁通1 要使式子a +2a有意义,则a 的取值范围为__________.考点二、二次根式的性质【例2】把二次根式a -1a化简后,结果正确的是( )A .-aB .--aC .-aD .a解析:要使a -1a 有意义,必须-1a>0,即a <0.所以a -1a =a -a a 2=a -a-a=--a .答案:B方法总结 如果题目中对根号内的字母给出了取值范围,那么应在这个范围内对根式进行化简,如果题目中没有给出明确的取值范围,那么应注意对题目条件的挖掘,把隐含在题目条件中所限定的取值范围显现出来,在允许的取值范围内进行化简.触类旁通2 如果(2a -1)2=1-2a ,则( )A .a <12B .a ≤12C .a >12D .a ≥12考点三、最简二次根式与同类二次根式【例3】(1)下列二次根式中,最简二次根式是( )A .2x 2B .b 2+1C .4aD .1x(2)在下列二次根式中,与a 是同类二次根式的是( ) A .2a B .3a 2 C .a 3 D .a 4解析:(1)A 选项中的被开方数中含开得尽方的因式,C 选项中的被开方数中含开得尽方的因数,D 选项中的被开方数中含有分母,故B 选项正确;(2)将各选项中能化简的二次根式分别化简后,可得出3a 2=3|a |,a 3=a a ,a 4=a 2,结合同类二次根式的概念,可得出a 3与a 是同类二次根式.答案:(1)B (2)C方法总结 1.最简二次根式的判断方法: 最简二次根式必须同时满足如下条件:(1)被开方数的因数是整数,因式是整式(分母中不应含有根号);(2)被开方数中不含开方开得尽的因数或因式,即被开方数的因数或因式的指数都为1. 2.判断同类二次根式的步骤:先把所有的二次根式化成最简二次根式;再根据被开方数是否相同来加以判断.要注意同类二次根式与根号外的因式无关.触类旁通3 若最简二次根式a +b3a 与a +2b 是同类二次根式,则ab =__________. 考点四、二次根式的运算【例4】计算:(50-8)÷ 2.解:原式=(52-22)÷2=32÷2=3.方法总结 1.二次根式加减法运算的步骤:(1)将每个二次根式化成最简二次根式;(2)找出其中的同类二次根式;(3)合并同类二次根式.2.二次根式乘除法运算的步骤:先利用法则将被开方数化为积(或商)的二次根式,再化简;最后结果要化为最简二次根式或整式或分式.1.(2012湖南株洲)要使二次根式2x -4有意义,那么x 的取值范围是( ) A .x >2 B .x <2 C .x ≥2 D .x ≤22.(2012浙江义乌)一个正方形的面积是15,估计它的边长大小在( ) A .2与3之间 B .3与4之间 C .4与5之间 D .5与6之间3.(2012浙江杭州)已知m =⎝⎛⎭⎫-33×(-221),则有( )A .5<m <6B .4<m <5C .-5<m <-4D .-6<m <-54.(2012广东)若x ,y 为实数,且满足|x -3|+y +3=0,则⎝⎛⎭⎫x y 2 012的值是__________. 5.(2012四川德阳)有下列计算:①(m 2)3=m 6,②4a 2-4a +1=2a -1,③m 6÷m 2=m 3,④27×50÷6=15,⑤212-23+348=143,其中正确的运算有__________.(填序号)1.下列各式计算正确的是( )A .2+3= 5B .2+2=2 2C .32-2=2 2D .12-102=6- 52.估计8×12+3的运算结果在( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间3.若a <1,化简(a -1)2-1等于( ) A .a -2 B .2-a C .a D .-a4.已知实数a 满足|2 011-a |+a -2 012=a ,则a -2 0112的值是( )A .2 011B .2 010C .2 012D .2 0095.计算212-613+8的结果是( )A .32-2 3B .5- 2C .5- 3D .2 26.若x +1+(y -2 012)2=0,则x y =__________.7.当-1<x <3时,化简:(x -3)2+x 2+2x +1=__________.8.如果代数式4x -3有意义,则x 的取值范围是________.9.计算:(-3)0+12×3=__________.10.计算:⎝⎛⎭⎫13-1-23-(π-2)0+|-1|.11.计算:(3+2)(3-2)-|1-2|.12.计算:(-3)0-27+|1-2|+13+2.参考答案导学必备知识 自主测试1.C 由题意得3x -1≥0,所以x ≥13.2.A 由题意得2x -5≥0且5-2x ≥0,解得x =52,此时y =-3,所以2xy =2×52×(-3)=-15.3.B 18=32,27=33,23=63,32=62.4.D 25=5,43-27=43-33=3,18÷2=9=3,24·32=24×32=36=6.5.B 因为3=9,4=16,9<11<16,所以11在3到4之间.6.解:原式=33-23+233=⎝⎛⎭⎫3-2+233=533. 探究考点方法触类旁通1.a ≥-2且a ≠0 由题意,得⎩⎪⎨⎪⎧a +2≥0,a ≠0,解得a ≥-2且a ≠0.触类旁通2.B 因为二次根式具有非负性,所以1-2a ≥0,解得a ≤12,故选B.触类旁通3.1 由题意,得⎩⎪⎨⎪⎧ a +b =2,3a =a +2b ,解得⎩⎪⎨⎪⎧a =1,b =1.∴ab =1.品鉴经典考题1.C 因为二次根式有意义,则2x -4≥0,所以x ≥2.2.B 因为面积是15,则边长为15,则边长大小在3与4之间.3.A m =⎝⎛⎭⎫-33×(-221)=233×21=23×37=27=28,∵25<28<36,∴5<28<6,即5<m <6,故选A.4.1 由题意得x -3=0,y +3=0,则x =3,y =-3,所以⎝⎛⎭⎫x y 2 012=(-1)2 012=1. 5.①④⑤ ②4a 2-4a +1=(2a -1)2=|2a -1|,③m 6÷m 2=m 6-2=m 4,这两个运算是错误的.研习预测试题 1.C A 项中2与3不是同类二次根式,B 项中2与2不是同类二次根式,C 项中32-2=(3-1)2=22,D 项中原式=124-104=3-52=3-102.2.C 原式=2+3,1<3<2,所以3<2+3<4. 3.D (a -1)2-1=|a -1|-1=1-a -1=-a .4.C 由算术平方根的意义知,a ≥2 012,则2 011-a <0, ∴a -2 011+a -2 012=a .∴a -2 012=2 011. ∴a -2 012=2 0112, ∴a -2 0112=2 012.5.A 原式=2×22-6×33+22=2-23+22=32-2 3.6.1 因为由题意得x +1=0,y -2 012=0,所以x =-1,y =2 012,所以x y =(-1)2 012=1.7.4 原式=(x -3)2+(x +1)2=|x -3|+|x +1|=3-x +x +1=4. 8.x >39.解:原式=1+23×3=1+6=7. 10.解:原式=3-23-1+1=- 3.11.解:原式=(3)2-(2)2-(2-1)=3-2-2+1=2- 2. 12.解:原式=1-33+2-1+3-2=-2 3.。
第四讲:二次根式
a b ab
(a≥0,b≥0)
二次根式相乘,把被开方数相乘,根指数不变。
a、b必须都是非负数!
a b
a b
a 0, b 0
两个二次根式相除,等于把被开 方数相除,作为商的被开方数
a a
2
2 先平方,后开方
2.从取值范围来看,
2
a≥0பைடு நூலகம்
a取任何实数
3.从运算结果来看:
a
2
a (a≥ 0)
=a
a
2
=∣a ∣ =
-a (a≤0)
二次根式的加减法
二次根式加减时,先将二次根式化 为最简二次根式,再把被开方数相同的 二次根式进行合并。 注意:对被开方数相同的二次根式 进行合并,实质是对被开方数相同的二 次根式的系数进行合并。
第四 二次根式
二次根式
在形式上含有二次根号
a的特点
,表示 a 的算术平方根。
被开方数 a≥0,即必须是非负数。
a 可以是数,也可以是式。
既可表示开方运算,也可表示运算的结果。
1.被开方数不含分母 2.被开方数不含能开得尽方的因 数或因式
1:从运算顺序来看,
a
a
2
先开方,后平方
二次根式及其运算知识讲义(解析版)
专题01 二次根式及其运算知识讲义【相关概念】二次根式:a≥0)的式子叫做二次根式.a为被开方数,a可以是数字或代数式.代数式:含有字母的数学表达式称为代数式.整式、分式均为代数式.最简二次根式:1、被开方数中不含能开得尽方的因数或因式;2、被开方数的因数是整数,因式是整式.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.【二次根式运算】乘法=a≥0,b≥0)除法=(a≥0,b >0)加(减)法先把各根式化成最简根式,再合并同类根式分母有理化====【二次根式性质】,a≥0非负数:|a|,a 2n()()00a a a a ≥⎧=⎨-≤⎩2a =【二次根式应用】因式的内移和外移:(1)负号不能移到根号下;(2)根号下的负号不能移到根号外.【题型一】二次根式有意义条件例1. (2020·m 能取的最小整数值是()A .m = 0B .m = 1C .m = 2D .m = 3【答案】B.3m -1≥0,解得:m≥13, 所以,m 能取的最小整数值是1.故答案为:B .例2. (2020·=-,那么x 的取值范围是_______. 【答案】-3≤x≤0.【解析】解:∵233x x +-∴x≤0,且x+3≥0,解得:-3≤x≤0,故答案为:-3≤x≤0.例3.(2019·=x 的取值范围是______. 【答案】x≥2.=∴x≥0,x−2≥0,∴x≥2.故答案为:x≥2.【题型二】同类二次根式例4. (2020·是同类二次根式,那么满足条件的m 中最小正整数是________.【答案】4.【解析】解:当5m+8=7时,m=-15,不合题意,,即5m+8=28时,m=4,是同类二次根式,那么m 的最小正整数是4,故答案为:4.例5. mn =_________.【答案】10.∴n=2,2m-5=5,∴m=5,n=2∴mn=10故答案为:10.例6. mn=________.【答案】21.∴1221343nm m-=⎧⎨-=-⎩,解得,73mn=⎧⎨=⎩,∴mn=21故答案为:21.【题型三】变式考查例7. (2020·浙江宁波市期中)我们把形如b(a,b为最简二次根式)32是()A型无理数B C型无理数D型无理数【答案】B.【解析】解:2故答案为:B.例8. (1n所有可能的值;(2是整数,求正整数n的最小值.【答案】(1)自然数n 的值为2、9、14、17、18;(2)正整数n 的最小值为6.【解析】解:(1是整数,∴18-n=0或1或4或9或16,解得:n=18或17或14或9或2,则自然数n 的值为2,9,14,17,18;(2=是整数,n 为正整数,∴正整数n 的最小值为6.例9.(2020·21x =-,则x=__________. 【答案】12或1.21x =-,∴2x-1=0或2x-1=1,解得:x=12或x=1. 故答案为12或1. 【题型四】二次根式运算例10.(2020·周长为( )A .B .C .D .无法确定【答案】A.若,,则周长为若,∴,此三角形不存在,∴个三角形的周长为故答案为:A .例11)2211-.)2211--1313=--+-=例12.(2020·福建省泉州月考)已知1x =,x 的整数部分为a ,小数部分为b ,求a b的值..【解析】解:∵3,∴+1<4,故a=3,-2,∴)3232274a b ====-. 例13.(2020·广东佛山市月考)先阅读,再解答:由222=-= 可以看出,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式,在进行二次根式计算时,利用有理化因式,有时可以化去分母中的根号,例如:==,请完成下列问题:1的有理化因式是;(2)= .(直接写结果)>或<)(4)利用你发现的规律计算下列式子的值:)1+【答案】(1+1;(2);(3)<;(4)2017.【解析】解:(1+1;(2333==+;(3=>(4)原式=)120181+=)11=2018-1=2017.例14. 若a,b都是正整数,且a<b是可以合并的二次根式,是否存在a,b,=a,b的值;若不存在,请说明理由.【答案】当a=3,b=48;当a=12,b=27.,m、n为正整数,m<n,∴m=1,n=4或m=2,n=3故a=3,b=48或a=12,b=27.例15.(2019·辽宁大连市期中)[观察]请你观察下列式子的特点,并直接写出结果:11112=+-=;11123=+-=;11134=+-=;……[发现]根据你的阅读回答下列问题:(1)请根据上面式子的规律填空:=(n为正整数);(2)请证明(1) 中你所发现的规律.[应用]请直接写出下面式子的结果:11n++=.【答案】[观察]32,76,1312;[发现](1)1111n n+-+或221n nn n+++;(2)证明见解析;[应用]221n nn++.【解析】[观察]32,76,1312,[发现](1)1111n n+-+或221n nn n+++(2)左边=====∵n 为正整数,∴()11111011n n n n +-=+>++ ∴左边=右边[应用11n +++111111111111223341n n =+-++-++-+++-+…… 1111n n =⨯+-+ 1n n n =++ 22=1n n n ++. 【题型五】化简求值例16. (2021·江苏南通市期末)化简2+的结果是( ) A .152x -B .1-C .27x -D .1 【答案】A.【解析】解:∵二次根式被开方数为非负数,∴7-x≥0,则x≤7∴x-8<0,原式=7-x+8-x=15-2x故答案为:A .例17.(2020·浙江杭州期中)实数a ,b 在数轴上的位置如图,||a b -的结果为( )A .2aB .2a -C .2bD .2b -【答案】B.【解析】解:由题意得:a >b ,|a |<|b |,a >0,b <0,∴a -b >0,a +b <0,∴原式=-a -b -a +b =-2a ,故答案为:B .例18.若数轴上表示数x 的点在原点的左边,则化简3x + ) A .4x - B .4x C .2x - D .2x【答案】C.【解析】解:∵数x 的点在原点的左边,∴x <0,∴原式=|3x +|x ||=|3x -x |=|2x |=-2x .故答案为:C .例19.(2020·温州月考)下列四个式子中,与(a -的值相等的是() AB .CD .【答案】D.【解析】解:由题意得:2021-a>0,得:a<2021,∴a-2021<0,∴原式=(2021a --== 故答案为:D . 例20.下列给出的四个命题:①若a b = ,则a a b b =;②若a 2﹣5a+5=01a =- ;③(1a -=其中是真命题是【答案】②.【解析】解:①当a=-1,b=1时,命题不成立,是假命题,②a 2=5a-5,∴5a-5≥0,即a≥1,,是真命题;③(a -==,是假命题, 故答案为:②.【题型六】阅读材料例21.(2021·北京延庆区期末)我们规定用(a ,b )表示一对数对.给出如下定义:记m=,n = a > 0,b > 0),将(m ,n )与(n ,m )称为数对(a ,b )的一对“对称数对”.例如:(4,1)的一对“对称数对”为(12,1)和(1,12); (1)数对(9,3)的一对“对称数对”是 ;(2)若数对(3,y )的一对“对称数对”相同,则y 的值为 ;(3)若数对(x ,2)的一个“对称数对”,1),则x 的值为 ;(4)若数对(a ,b )的一个“对称数对”,,求ab 的值.【答案】(1)1(3与1)3, ;(2)13;(3)1 ;(4)16或6.【解析】解:(1)由题意得13=,∴数对(9,3)的一对“对称数对”是1(3与1)3,;(2)由题意得,∴数对(3,y )的一对“对称数对”为⎝与⎭, ∵数对(3,y )的一对“对称数对”相同,= ∴y=13;(3)∵数对(x ,2)的一对“对称数对”是与而数对(x ,2)的一个“对称数对”,1), 1=, ∴x=1;(4)∵数对(a ,b)的一对“对称数对”是与,而数对(a ,b)的一个“对称数对”是,==1,183a b == ∴11863ab =⨯=;==1,318a b ==, ∴113186ab =⨯=,综上所述,16ab =或6ab =. 例22. 阅读理解:二次根式的除法,要化去分母中的根号,需将分子、分母同乘以一个恰当的二次根式..11==. 类比应用:(1= ; (29++=+ . 拓展延伸:的矩形叫黄金矩形.如图①,已知黄金矩形ABCD 的宽AB =1. (1)黄金矩形ABCD 的长BC = ;(2)如图②,将图①中的黄金矩形裁剪掉一个以AB 为边的正方形ABEF ,得到新的矩形DCEF ,猜想矩形DCEF 是否为黄金矩形,并证明你的结论;(3)在图②中,连结AE ,则点D 到线段AE 的距离为 .【答案】类比应用:(1);(2)2;拓展延伸:(1)12;(2)矩形DCEF为黄金矩形,理由见解析;(3【解析】解:类比应用:(1)根据题意可得:== (2)根据题意可得:9++(9+++19-+-1=2;拓展延伸:(1的矩形叫黄金矩形, 若黄金矩形ABCD 的宽AB =1,则黄金矩形ABCD 的长BC; (2)矩形DCEF 为黄金矩形,理由是:由裁剪可知:AB=AF=BE=EF=CD=1,根据黄金矩形的性质可得:AD=BC=1=∴FD=EC=AD-AF=112-=12,∴DF EF =11122÷=,故矩形DCEF 为黄金矩形;(3)连接AE ,DE ,过D 作DG ⊥AE 于点G ,∵AB=EF=1,,∴=在△AED 中,S △AED =1122AD EF AE DG ⨯⨯=⨯⨯,即AD EF AE DG ⨯=⨯1DG =,解得∴点D 到线段AE 的距离为4+. 例23. (2019·四川月考)阅读下列材料,然后回答问题.一样的式子,其实我们还可以将其进一步化简:====1以上这种化简的步骤叫做分母有理化.②学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知 a +b =2,ab = -3 ,求 a 2 + b 2 .我们可以把a +b 和ab 看成是一个整体,令 x =a +b , y = ab ,则 a 2 + b 2 = (a + b)2 - 2ab = x 2- 2y = 4+ 6=10.这样,我们不用求出a ,b ,就可以得到最后的结果.(1...+(2)已知 m 是正整数, ab且 2a 2+ 1823ab + 2b 2 = 2019 .求 m . (31=【答案】(1)12;(2)2;(3)9. 【解析】解:(1)原式12019+2222=+++2019++== (2)∵ab∴=2(2m+1),=1∵2a 2+ 1823ab + 2b 2 = 2019∴2(a 2+b 2)+1823=2019∴a 2+b 2=98∴4(2m+1)2=100∴m=2或m=-3∵m是正整数∴m=2.(31=,得:21=20=2281=-+=0≥≥.例24.(2020·湖南怀化市期末)同学们,我们以前学过完全平方公式222)2(a ab b a b ±+=±,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的非负数(以及0)都可以看作是一个数的平方,如23=,25=,下面我们观察:)2221211213=-⨯=-=-23211)-=-=,∴231)-=1= 求:(1;(2(3=,则m 、n 与a 、b 的关系是什么?并说明理由.【答案】(11;(21;(3)m+n=a ,mn=b ,理由见解析.【解析】解:(11;(21==;(3)m+n =a ,mn =b.=∴2a =+,∴,∴m+n =a ,mn =b.例25.(2020·安徽安庆市)阅读理解题,下面我们观察:2221)211213=-⨯=-=-反之23211)-=-=,所以231)-=1= 完成下列各题:(1)在实数范围内因式分解:(2(3.【答案】(1)2(1+;(21;(3【解析】解:(1)22231(1+=+=+(21==(3==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4讲 二次根式
知识点1 二次根式有意义的条件
1.若二次根式a -2有意义,则a 的取值范围是a ≥2.
知识点2 最简二次根式与同类二次根式 2.下列根式中是最简二次根式的是(B )
A .
23
B . 3
C .9
D .12
3.下列二次根式中,与3是同类二次根式的是(B )
A .18
B .
13
C .24
D .0.3
知识点3 二次根式的性质 4.化简:(1)22=2;(2)(-23)2=23
;
(3)(3)2=3;(4)(- 6.5)2=6.5.
知识点4 二次根式的运算 5.计算:
(1)18-8;
解:原式=32-22= 2. (2)27×83
÷12
; 解:原式=
27×8
3
×2=144=12.
(3)(3-7)(3+7)+2(2-2). 解:原式=9-7+22-2=2 2.
重难点1二次根式有意义的条件
(2017·日照)式子
a+1
a-2
有意义,则实数a的取值范围是(C)
A.a≥-1 B.a≠2 C.a≥-1且a≠2 D.a>2 【变式训练1】(2017·衡阳)要使x-1有意义,则x的取值范围是(B)
A.x<1 B.x≥1 C.x≤-1 D.x<-1
【变式训练2】(2017·呼和浩特)使式子
1
1-2x
有意义的x的取值范围为x<
1
2.
方法指导对于二次根式,被开方数必须大于等于零;若是由分式、根式组成的复合代数式,则需同时满足被开方数大于等于零和分母不等于零这两个条件.
易错提示忽略分母不能为零.
重难点2二次根式的运算
(2017·呼和浩特)计算:|2-5|-2×(1
8-
10
2)+
3
2.
【思路点拨】先把各二次根式化成最简二次根式,然后根据运算顺序进行计算.
【自主解答】原式=5-2-1
2+5+
3
2
=25-1.
【变式训练3】(2017·黄冈)计算27-6-1
3的结果是
83
3-6.
【变式训练4】(2017·青岛)计算:(24+1
6)×6=13.
易错提示二次根式的运算结果可以是数或整式,也可以是最简二次根式,若运算结果不是最简二次根式,则必须化为最简二次根式.
1.(2017·益阳)下列各式化简后的结果为32的是(C)
A. 6
B.12
C.18
D.36
2.(2016·桂林)计算35-25的结果是(A)
A. 5 B.2 5 C.3 5 D.6
3.(2017·十堰)下列运算正确的是(C)
A.2+3= 5 B.22×32=6 2
C.8÷2=2 D.32-2=3
4.(2017·连云港)关于8的叙述正确的是(D)
A.在数轴上不存在表示8的点
B.8=2+ 6
C .8=±2 2
D .与8最接近的整数是3
5.(2017·济宁)若2x -1+1-2x +1在实数范围内有意义,则x 满足的条件是(C )
A .x ≥1
2
B .x ≤1
2
C .x =1
2
D .x ≠1
2
6.(2017·滨州)下列计算:(1)(2)2=2;(2)(-2)2=2;(3)(-23)2=12;(4)(2+3)(2-3)=-1,其中结果正确的个数为(D )
A .1
B .2
C .3
D .4
7.计算:
(1)(2017·衡阳)8-2=2; (2)(2017·南京)12+8×6=63; (3)(2017·天津)(4+7)(4-7)=9; (4)(2016·青岛)32-8
2
=2.
8.计算:
(1)1
2
12-(31
3
+2); 解:原式=3-(3+2) =3-3- 2 =- 2. (2)48÷3-
1
2
×12+24. 解:原式=16-6+24 =4-6+2 6 =4+ 6.
9.(2016·自贡)若a -1+b 2-4b +4=0,则ab 的值等于(D )
A .-2
B .0
C .1
D .2
10.(2017·枣庄)实数a ,b 在数轴上对应点的位置如图所示,化简|a|+(a -b )2的结果是(A )
A .-2a +b
B .2a -b
C .-b
D .b
11.(人教八下教材P 16“阅读与思考”变式题)(2017·泸州)已知三角形的三边长分别为a ,b ,c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron ,约公元50年)给出求其面积的海伦公式S =p (p -a )(p -b )(p -c ),其中p =a +b +c
2;我国南宋时期数学家秦九韶(约1202~1261)曾提出利用三角形的
三边求其面积的秦九韶公式S =
1
2
a 2
b 2-(
a 2+
b 2-
c 22
)2
,若一个三角形的三边长分别为2,3,4,则其面积是(B )
A .3158
B .3154
C .3152
D .
152。