【精选】七年级数学上册 代数式专题练习(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学代数式解答题压轴题精选(难)

1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.

(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:

方法①:________ 方法②:________

请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________

(2)根据(1)中的等式,解决如下问题:

①已知:,求的值;

②己知:,求的值.

【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2

(2)解:①把代入

∴,

②原式可化为:

【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .

方法②:草坪的面积= ;

等式为:

故答案为:,;

【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和

的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.

2.任何一个整数N,可以用一个的多项式来表示:

N= .

例如:325=3×102+2×10+5.

一个正两位数的个位数字是x,十位数字y.

(1)列式表示这个两位数;

(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除.

(3)已知是一个正三位数.小明猜想:“ 与的差一定是9的倍数。”请你帮助小明说明理由.

(4)在一次游戏中,小明算出、、、与等5个数和是3470,请你求出这个正三位数.

【答案】(1)解:10y+x

(2)解:根据题意得:10y+x+10x+y=11(x+y),则所得的数与原数的和能被11整除(3)解:∵ - =100a+10b+c-(100b+10c+a)=99a-90b-9c =9(11a-10b-c),∴

与的差一定是9的倍数

(4)解:∵ + + + + + =3470+ ∴222(a+b+c)=222×15+140+ ∵100<<1000,∴3570<222(a+b+c)<4470,∴16<a+b+c≤20.尝试发现只有a+b+c=19,此时 =748成立,这个三位数为748.

【解析】【分析】(1)由已知一个正两位数的个位数字是x,十位数字y ,因此这个两位数是:十位上的数字×10+个位数的数字。

(2)根据题意将新的两位数和原两位数相加,再化简,即可得出结果。

(3)分别表示出两个三位数,再求出它们的差,就可得出它们的差是否为9的倍数。(4)根据题意求出a+b+c的取值范围,再代入数据进行验证即可。

3.先阅读下面文字,然后按要求解题.

例:1+2+3+…+100=?如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.

因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.

解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)= =5050.

(1)补全例题解题过程;

(2)计算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).

【答案】(1)解:101×50

(2)解:原式=50×(2a+99b)=100a+4950b.

【解析】【分析】(1)根据算式可得共有50个101,据此解答即可.

(2)仿照(1)利用加法的交换律和结合律进行计算即可.

4.根据数轴和绝对值的知识回答下列问题

(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│表示。

例如,数轴上4和1两点之间的距离是________.数轴上-3和2两点之间的距离是________.(2)数轴上表示数a的点位于-4与2之间,则│a+4│+│a-2│的值为________.

(3)当a为何值时,│a+5│+│a-1│+│a-4│有最小值?最小值为多少?

【答案】(1)3;5

(2)6

(3)解:①a≤1时,原式=1-a+2-a+3-a+4-a=10-4a,则a=1时有最小值6;

②1≤a≤2时,原式=a-1+2-a+3-a+4-a=8-2a,则a=2时有最小值4

③2≤a≤3时,原式=a-1+a-2+3-a+4-a=4

④3≤a≤4时,原式=a-1+a-2+a-3+4-a=2a-2;则a=3时有最小值4

⑤a≥4时,原式=a-1+a-2+a-3+a-4=4a-10;则a=4时有最小值6

综上所述,当a=2或3时,原式有最小值4.

故答案为:(1)3;5;(2)6;(3)当a=2或3时,原式有最小值4.

【解析】【解答】(1)解:数轴上表示1和4的两点之间的距离是3;表示-3和2的两点之间的距离是5

( 2 )解:根据题意得:-4<a<2,即a+4>0,a-2<0

则原式=a+4+2-a=6.

【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值即可直接算出答案;

(2)根据数轴上所表示的数的特点得出-4<a<2,进而根据有理数的加减法法则得出a+4>0,a-2<0,然后根据绝对值的意义去绝对值符号,再合并同类项即可;

(3)分①a≤1时,②1≤a≤2时,③2≤a≤3时,④3≤a≤4时,⑤a≥4时,五种情况,根据绝对值的意义分别取绝对值符号,再合并同类项得出答案,再比大小即可.

5.某超市在十一长假期间对顾客实行优惠,规定如下:

一次性购物优惠办法

少于100元不予优惠

超过100元但低于500元超过100元部分给予九折优惠

超过500元超过500元部分给予八折优惠

________元:小明妈妈一次性购300元的衣服,她实际付款________元:如果他们两人合作付款,则能少付________元. (2)小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款________元(用含x的式子表示,写最简结果)

(3)如果小芳奶奶两次购物货款合计900元,第一次购物的货款为a元(200<a<

相关文档
最新文档