超临界流体萃取的基本流程

合集下载

超临界萃取技术

超临界萃取技术

1.超临界流体萃取的简介超临界流体萃取(Supercritical fluidextraction,简称SFE)是用超临界条件下的流体作为萃取剂,由液体或固体中萃取出所需成分(或有害成分)的一种分离方法。

超临界流体(Supercritical fluid,简称SCF)是指操作温度超过临界温度和压力超过监界压力状态的流体。

在此状态下的流体,具有接近于液体的密度和类似于液体的溶解能力,同时还具有类似于气体的高扩散性、低粘度、低表面张力等特性。

因此SCF具有良好的溶剂特性,很多固体或液体物质都能被其溶解。

常用的SCF有二氧化碳、乙烯、乙烷、丙烯、丙烷和氨等.其中以二氧化碳最为常用。

由于SCF在溶解能力、传递能力和溶剂回收等方面具有特殊的优点.而且所用溶剂多为无毒气体.避免了常用有机溶剂的污染问题。

早在100多年前,人们就观察到临界流体的特殊溶解性能,但在相当长时间内局限于实验室研究及石油化工方面的小型应用。

直到20世纪70年代以后才真正进入发展高潮。

1978年召开了首届专题讨论会,1979年首台工业装置投入运行,标志着超临界萃取技术开始进入工业应用。

超临界萃取之所以受到青睐,是由于它与传统额液-液萃取或浸取相比,有以下优点:①萃取率高;②产品质量高;③萃取剂易于回收;④选择性好。

1.超临界萃取的基本原理1.1.超临界流体特性所谓超临界流体(SCF),是指一类压强高于临界压强Pc,温度高于临界温度Tc,的流体,这种流体既不是液体,也不是气体,是一类特殊的流体。

超临界流体的物性较为特殊。

表1将超临界流体的这些物性与气体、液体的表1超临界流体的物性及与普通流体物性的比较相应值作了比较。

从表中可以看出:①超临界流体的密度接近于液体密度,而比气体密度高得多。

另一方面.超临界流体是可压缩的,但其压缩性比气体小得多;②超临界流体的扩散系数与气体的扩散系数相比要小得多,但比液体的扩散系数又高得多;③超临界流体的粘度接近于气体的粘度,而比液体粘度低得多。

超临界萃取实验报告

超临界萃取实验报告

超临界萃取实验报告超临界萃取实验报告摘要:本实验旨在研究超临界萃取技术在提取天然产物中的应用。

通过使用超临界CO2作为溶剂,对某种天然植物中的有效成分进行提取,并对提取效果进行评估。

实验结果表明,超临界萃取技术在提取天然产物中具有高效、环保等优势,对于制备高纯度的天然成分具有重要意义。

引言:超临界萃取是一种基于超临界流体的提取技术,其在分离纯化天然产物中具有广泛应用。

超临界流体是指在临界温度和临界压力下,气体和液体的性质同时存在的状态。

超临界CO2是最常用的超临界流体之一,由于其低毒性、无残留、易回收等特点,成为了天然产物提取的理想溶剂。

实验方法:1. 准备样品:选择某种天然植物作为样品,将其研磨成细粉。

2. 超临界萃取装置:使用超临界萃取设备,将CO2加压至超临界状态。

3. 萃取过程:将样品放入超临界萃取器中,以一定温度和压力下进行萃取。

4. 分离回收:通过减压和降温,将提取物和溶剂分离,并回收溶剂。

实验结果:通过超临界萃取技术,我们成功地从天然植物中提取出目标成分,并对提取物进行了分析。

实验结果显示,超临界CO2对于提取目标成分具有较高的选择性和提取效率。

此外,由于超临界CO2的低温性质,提取物中的热敏性成分得到了有效保护,保持了其活性和稳定性。

讨论:超临界萃取技术相比传统的有机溶剂提取具有许多优势。

首先,超临界CO2是一种无毒、无污染的溶剂,对环境友好。

其次,超临界CO2易于回收,可以循环利用,降低了成本。

此外,超临界CO2的温度和压力可以调节,适用于不同成分的提取。

因此,超临界萃取技术在制备高纯度的天然产物中具有广阔的应用前景。

结论:本实验通过超临界萃取技术成功地提取出了天然植物中的目标成分,并对其进行了分析。

实验结果表明,超临界CO2具有高效、环保等优点,适用于提取天然产物中的有效成分。

超临界萃取技术在制备高纯度的天然产物中具有重要意义,对于开发天然药物、食品添加剂等具有广泛的应用前景。

超临界流体萃取

超临界流体萃取
44
7.3.4 在化工方面的应用
在美国超临界技术还用来制备液体燃料。 以甲苯为萃取剂,在Pc=100atm,Tc=400~ 440℃条件下进行萃取,在SCF溶剂分子的扩散 作用下,促进煤有机质发生深度的热分解,能使 三分之一的有机质转化为液体产物。此外,从 煤炭中还可以萃取硫等化工产品。美国最近研 制成功用超临界二氧化碳既作反应剂又作萃取 剂的新型乙酸制造工艺。俄罗斯、德国还把 SFE法用于油料脱沥青技术。
47
8.2 SFE-SFC联用
SFE-SFC直接联用在大分子分析中较 具优势,在环境有机污染物和其它方面 也很有发展前途。
48
8.3 SFE-HPLC、SFE-TLC联用
SFE-HPLC具有高选择性、高灵敏度、 自动化程度高等特点。
29
七、超临界流体萃取技术的应用
7.1
超临界CO2萃取技术在中药开
发方面的应用
7.2 超临界流体技术在其他方面的应用
30
7.1超临界CO2萃取技术在中药开发方面的应用
在超临界流体技术中,超临界流体萃取技术 与天然药物现代化关系密切。SFE对非极性和中 等极性成分的萃取,可克服传统的萃取方法中因 回收溶剂而致样品损失和对环境的污染,尤其适 用于对温热不稳定的挥发性化合物提取;对于极 性偏大的化合物,可采用加入极性的夹带剂如乙 醇、甲醇等,改变其萃取范围提高抽提率。因此 其在中草药的提取方面具有着广泛的应用。
好,廉价易得等优点。
12
2.2 超临界流体萃取
溶质在SCF中的溶解度大致可认为随SCF的密度 增大而增大。
SCF的密度随流体压力和温度的改变而发生十分 明显的变化。
在较高压力下,使溶质溶解于SCF中,然后使 SCF溶液的压力降低,或温度升高,这时溶解 于SCF中的溶质就会因SCF的密度下降,溶解 度降低而析出。

超临界萃取技术

超临界萃取技术

超 临 界 流 体 萃 取 的 应 用
医药工业 化学工业
中草药提取 酶,纤维素精制
金属离子萃取 烃类分离 共沸物分离 高分子化合物分离 植物油脂萃取
食品工业
酒花萃取 植物色素提取 天然香料萃取 化妆品原料提取精制
化妆品香料
压缩机
萃取釜
制冷MVC-760L
二氧化碳循环泵

超临界萃取技术的应用
应 用 范 围
还有其他辅助设备,如阀门,流量计等。
4.超临界流体萃取的方法
热 交 换 器
萃 取 釜
分 离 釜
CO2
热交换器 压缩机或泵 过滤器 超临界 CO 2 萃取的基本流程
三种超临界流体萃取流程示意图
4. 超临界流体萃取的方法
(2)影响工艺流程的因素: 萃取过程系统的组成各不相同,在设计工 艺流程时,仍有一些共同的因素要考虑 原料的性质、 萃取条件 萃取操作方式 分离操作方式 溶剂的回收和处理等。
一、概 述
(Super fluid extraction,简称SFE)
原理:
是利用超临界流体(SCF),即温度和压 力略超过或靠近超临界温度(Tc)和临界 压力(Pc),介于气体和液体之间的流体 作为萃取剂,从固体或液体中萃取出某种 高沸点和热敏性成分,以达到分离和纯化 目的的一种分离技术。
超临界流体萃取过程:
超临界流体萃取技术
(Super fluid extraction,简称SFE)
超临界流体萃取(supercriticl fluid
extraction)也叫流体萃取、气体萃取 或蒸馏萃取 作为一种分离过程,是基于一种溶剂 对固体或液体的萃取能力和选择性, 在超临界状态下较之在常温常压下可 得到极大的提高。

超临界流体萃取过程

超临界流体萃取过程

是近 20 年来迅速发展起来的一种新型的萃取分离技术。
是利用超临界流体 (Supercritical fluid, 简称 SCF) 作为萃取 剂,该流体具有气体和液体之间的性质,且对许多物质均具 有很强的溶解能力,分离速率远比液体萃取剂萃取快,可以 实现高效的分离过程。目前, 超临界流体萃取已形成了一
③、离心萃取器 离心萃取器是利用离心力的作用使两相快速混合、快速 分离的萃取设备。可按两相接触方式分为逐级接触式和微分 接触式两类。 A、转筒式离心萃取器 转筒式离心萃取器是一种单级
接触式设备 , 如图所示。重液和轻液由设备底部的三通管同 时进入混合室,在搅拌桨的作用下,两相充分混合进行传 质,然 后一起进入高速旋转的转鼓。转鼓中混合液在离心力的作用 下,重相被甩向转鼓外缘,轻相被挤向转鼓的中心部位。两相 分别经顶部的轻、重相堰流至相应的收集室 , 并经各自的排 出口排出。转筒式离心萃取器结构简单,效率高,易于控制,运 行可靠。
卢威式离心萃取 器的优点 : 可以靠离
心力的作用处理密
度差小或易产生乳
化现象的物系 ; 设备
结构紧凑 , 占地面积 小 ; 效率较高。缺点
是 : 动能消耗大 , 设备
费用也较高。
C、波德式离心萃取器 波德式离心萃取器又称为离心薄膜萃取器, 简称POD 离心萃取器,是一种微分接触式萃取设备。主要由一水平 空心轴和一随轴高速旋转的圆柱形转鼓以及固定外壳组 成。转鼓由一多孔的长带卷绕而成,其转速一般为
塔、转盘塔等。
②、物系的性质 A、对密度差较大、界面张力较小的物系,可选用无外加能 量的设备;对界面张力较大或粘度较大的物系 ,可选用有外加能 量的设备;对密度差很小,界面张力小,易于乳化的物系,可选用离 心萃取设备。 B、对有较强腐蚀性的物系,可选用结构简单的填料塔、脉 冲填料塔;对于放射性元素的提取,可选用混合澄清器、脉冲塔。 C 、对含有固体悬浮物或易生成沉淀的物系 , 容易堵塞 , 需 要定期清洗 , 可选用混合澄清器、转盘塔,也可考虑选用往复 筛板塔、脉冲塔,因为这些设备具有一定的自洗能力。 对稳定 性差、要求在设备内停留时间短的物系,可选用离心萃取器;对 要求停留时间较长的物系,可选用混合澄清器。

超临界流体萃取技术

超临界流体萃取技术

2.1超临界流体的基本性质
2.1超临界流体的基本性质
表一 一些浸出溶剂的沸点与临界特性表
溶剂 乙烯 二氧化碳 乙烷
沸点/℃
临界温度Tc/℃
临界压力Pc/MPa
临界密度ρc/(ɡ/cm2)
-103.9 -78.5 -88.0 -44.7
9.2 31.0 32.2 91.8
5.03 7.38 4.88 4.62
流量 计 分 萃 高压 泵
二 氧 化 碳 气 瓶
解 析 釜
解 析 釜 离 柱
取 釜
冷箱 贮 罐
夹 带 剂 罐
高压 泵
4.超临界流体萃取的特点
(1)具有广泛的适应性
由于超临界状态流体溶解度特异增高的现象 是普遍存在。因而理论上超临界流体萃取技术可 作为一种通用高效的分离技术而应用。
( 2 ) 萃 取 效 率 高 , 过 程 易 于 调 节 超临界流体兼具有气体和液体特性,因而超 临界流体既有液体的溶解能力,又有气体良好的 流动和传递性能。并且在临界点附近,压力和温 度的少量变化有可能显著改变流体溶解能力,控 制分离过程
吸附法
3.2基本工艺流程
超临界流体萃取的工艺流程一般是由萃取( CO2 溶 解组分)和分离( CO2 和组分的分离)两步组成。 包括高压泵及流体系统、萃取系统和收集系统三 个部分。
超临界流体萃取的基本流程
萃 取 釜
分 离 釜
热 交 换 器
CO2
热交换器 压缩机 高压泵 过滤器
超临界流体萃取的流程
3.1超临界流体萃取的典型流程
解析方法(一)
压力高,投资大,能 耗高,操作简单,常 温萃取
等温法
3.1超临界流体萃取的典型流程 能耗相对较少,对热 敏 性 物 质 有 影 响

超临界流体萃取

超临界流体萃取

1.2与其他分离方法的联系 a 蒸馏-物质在流动的气体中,利用蒸汽压不同进行蒸发分
离。
b. 液-液萃取-利用溶质在不同溶液中溶解度不同。 c. 超临界流体萃取-利用SCF,依靠被萃物在不同蒸 汽压下所具有不同化学亲和力和溶解力(蒸汽压-相 分离作用。
1.3 发展史
①1896年 英国 Hanny等通过实验发现金属卤化物可被超 临界乙醇和四氯化碳溶解,但当P降低,金属卤化物又重 新析出。 ②20世纪50年代 Todd等理论上提出SCF萃取分离的可能 性。 ③1978年 一系列SFE有关的学术会议 ④中国 1981年刚刚起步
根据分离对象和分离目的来选择极性或非极性溶剂
2.5夹带剂的使用
(1)单一组分的超临界溶剂缺点包括:
①某些物质在纯超临界流体中溶解度很低,如超临界CO2 只能有效地萃取亲脂性物质,不适合糖、氨基酸等极性 物质 ②选择性不高,导致分离效果不好;
③溶质溶解度对温度、压力的变化不够敏感,使溶质与 超临界流体分离时耗费的能量增加。
P1V 1 P 2V 2 T1 T2
2.2 基本原理
(1)原理:
利用超临界流体在临界区附近,温度和压力微小的变 化,而引起流体密度大的变化,而非挥发性溶质在超 临界流体中溶解度大致和流体的密度成正比。保持T恒 定,增大P,流体密度增大,溶质溶解度增大,萃取能 力增强;降低P,流体密度减小,溶质溶解度降低,萃 取剂与溶质分离。从而能很好的固体或液体中萃取出 某种高沸点或热敏性成分
第八节 超临界流体萃取
1.概述 2.超临界流体萃取的理论基础
3.超临界流体萃取的基本过程
4.超临界流体萃取的应用
5.超临界流体萃取的优缺点
1. 超临界流体萃取-概述
1.1定义

超临界流体萃取

超临界流体萃取

第三章超临界流体萃取定义:即用超临界流体作为萃取剂的萃取过程一、超临界流体指处于临界温度Tc和临界压力Pc之上的流体(它不是气体也不是液体)。

超临界C02(研究最多、应用最广)1、临界压力(7.39 MPa)适中;2、临界温度(31.1 ℃)接近室温;3、便宜易得;4、无毒、惰性,是理想的绿色溶剂;5、极易从萃取产物中分离出来。

典型应用:咖啡因、植物油脂、天然香料与药物的萃取。

超临界流体的特性(1)密度、粘度和扩散系数的特点密度比气体大得多,与液体接近,使其对溶质有较大的溶解度。

粘度接近气体,比液体小得多。

扩散系数介于气体和液体之间,是气体的几百分之一, 是液体的几百倍。

与液体相比,超临界流体粘度小、扩散系数大使其传质速率大大高于液体。

(2)溶解特性在临界点附近,压力和温度的变化可引起超临界流体密度急剧变化, 相应地使溶质在超临界流体中的溶解度发生急剧变化,因而可利用压力与温度的改变来实现萃取和分离。

有机物在超临界流体中溶解度的变化:低于临界压力时,几乎不溶解;高于临界压力时,溶解度随压力急剧增加。

二、超临界流体萃取原理流体在临界区附近,压力和温度的微小变化,会引起流体的密度大幅度变化,而非挥发性溶质在超临界流体中的溶解度大致上和流体的密度成正比。

利用流体在超临界状态下对物质有特殊增加的溶解度,而在低于临界状态下基本不溶解的特性. (1)超临界流体萃取过程一般分两步(以超临界C02为例)(2)超临界流体萃取特点① 高压下进行,设备及工艺技术要求高, 投资比较大。

② 可以在接近室温下完成(对超临界C02而言),特别适用于热敏性天然产物的分离。

③ 分离工艺流程简单,主要由萃取器和分离器二部分组成,而且萃取和分离通过改变温度和压力即可实现。

④ 超临界流体循环使用,无需溶剂回收设备,不产生二次污染。

⑤ 被萃取物中基本无萃取剂残留。

(1)萃取原料装入萃取釜,超临界C02从釜底进入,与被萃取物料充分接触,选择性溶解出被萃取物。

超临界萃取工艺流程图及操作

超临界萃取工艺流程图及操作

超临界萃取实验1.超临界萃取工艺流程图2.实验步骤2.1开机前的准备工作(1) 首先检查电源、三相四线是否完好无缺。

(AC380V/50HZ)(2) 冷冻机及储罐的冷却水源是否畅通,冷箱内为30%的乙二醇+70%的水溶液。

(3) CO2气瓶压力保证在5~6MPa的气压,且食品级净重大于等于22kg。

(4) 检查管路接头以及各连接部位是否牢靠。

(5) 将每个热箱内加入冷水,不宜太满,离箱盖2公分左右。

(6) 萃取原料装入料筒,原料不应装太满。

离过滤网2~3公分左右。

(7) 将料筒装入萃取缸,盖好压环及上堵头。

(8) 如果萃取液体物料需加入夹带剂时,将液料放入携带剂罐,可用泵压入萃取缸内。

2.2开机操作顺序(1) 先开电源开关,三相电源指示灯都亮,则说明电源已接通,再启动电源的(绿色)按钮。

(2) 接通制冷开关,同时接通水循环开关。

(3) 开始加温,先将萃取缸、分离Ⅰ、分离Ⅱ、精馏柱的加热开关接通,将各自控温仪调整到各自所需的设定温度。

如果精馏柱参加整机循环需打开与精馏柱相应的加热开关。

(4) 在冷冻机温度降到0℃左右,且萃取缸、分离Ⅰ、分离Ⅱ、温度接近设定的要求后,进行下列操作。

如萃取缸40℃,分离Ⅰ50℃,分离Ⅱ35℃,其中萃取缸与分离Ⅰ温度小于等于75℃,分离Ⅱ温度不变。

(5) 开始制冷的同时将CO2气瓶通过阀门2进入净化器、冷盘管和贮罐,CO2进行液化,液态CO2通过泵、混合气、净化器进入萃取缸(萃取缸已装样品且关闭上堵头),等压力平衡后,打开放空阀门4,慢慢放掉残留空气以降低部分压力后,关闭放空阀。

(6) 加压力:先将电极点拨到需要的压力(上限),启动泵Ⅰ绿色按钮,打开变频器上的RUN,如果反转时,按一下触摸开关FWD/PEV。

当压力加到接近设定压力(提前1MPa左右),开始打开萃取缸后面的节流阀门,具体怎么调节,根据下面不同流向:①萃取缸→分离器Ⅰ→分离Ⅱ→回路从阀门3进萃取缸,阀门5、7进入分离Ⅰ,阀门9、10进入分离Ⅱ,阀门13、12、1回路循环;调节阀门7控制萃取缸压力,调节阀门10控制分离Ⅰ压力,调节阀门12控制分离Ⅱ压力。

萃取的工艺类型

萃取的工艺类型

萃取的工艺类型萃取是一种常见的化学分离技术,它可以通过溶剂的选择性提取出需要的化合物。

萃取工艺类型包括固液萃取、液液萃取、超临界流体萃取和固相微萃取等多种类型。

下面将详细介绍这些类型的工艺流程。

一、固液萃取固液萃取是指将需要提取的物质溶解在适当的溶剂中,然后通过与另一个不相溶的固体(如活性炭)接触,使目标物质从溶液中被吸附到固体上。

其主要流程包括:1.样品制备:将待测样品加入适当量的溶剂中,并进行均匀搅拌。

2.吸附:将活性炭等固体吸附剂加入上述混合物中,并进行充分搅拌。

3.过滤:用滤纸或滤膜过滤掉含有吸附剂和目标物质的混合物,得到含有目标物质的吸附剂。

4.洗脱:用适当量的洗脱剂(如乙醇或水)洗脱吸附剂,将目标物质从吸附剂上提取出来。

二、液液萃取液液萃取是指将需要提取的物质从一个溶液中转移到另一个不相溶的溶剂中。

其主要流程包括:1.样品制备:将待测样品加入适当量的有机溶剂中,并进行均匀搅拌。

2.萃取:加入另一种不相容的有机溶剂,并进行充分混合,使目标物质从水相转移到有机相。

3.分离:通过离心或沉淀法将两种相分离,得到含有目标物质的有机相。

4.洗涤:用适当量的洗脱剂(如水)洗涤有机相,去除杂质。

5.浓缩:用旋转蒸发器等方法浓缩目标物质,得到纯化后的产物。

三、超临界流体萃取超临界流体萃取是指利用高压和高温下的超临界流体(如二氧化碳)对样品进行萃取。

其主要流程包括:1.样品制备:将待测样品加入适当量的溶剂中,并进行均匀搅拌。

2.萃取:将样品混合液加入超临界二氧化碳中,并进行充分混合,使目标物质从溶液中萃取出来。

3.分离:通过减压法将二氧化碳和目标物质分离,得到含有目标物质的萃取液。

4.洗涤:用适当量的洗脱剂(如水)洗涤萃取液,去除杂质。

5.浓缩:用旋转蒸发器等方法浓缩目标物质,得到纯化后的产物。

四、固相微萃取固相微萃取是指利用固相材料(如吸附树脂)对样品进行富集和分离。

其主要流程包括:1.样品制备:将待测样品加入适当量的溶剂中,并进行均匀搅拌。

第7章-超临界流体萃取

第7章-超临界流体萃取
若两条原则基本符合,效果就较理想,若符 合程度降低,效果就会递减。
超临界流体的选择是超临界流体萃取的主 要关键。 应按照分离对象与目的不同,选定超 临界流体萃取中使用的溶剂,它可以分为非极 性和极性溶剂两类。
下表给出了一些常用超临界萃取剂的临界 温度和临界压力,表中最后几种萃取剂为极性 剂,由于极性和氢健的缘故,它们具有较高的 临界温度和临界压力。
的化合物。对于极性较大的化合物,常须用极性较大的流体(如NH3、 N20等),因为它们具有一定极性,对极性组分溶解性能好。但是SFNH3化学活性较高,易腐蚀泵封口,而N20有毒且易爆,另外底烃类 物质因可燃易爆,也不如C02那样使用广泛。
CO2改性方法:
若采用CO2萃取极性物质,就需将其改性,常 用改性方法有两种: 1.流体改性:向CO2中加入少量极性溶剂(改性 剂),增加混合流体的极性。 2. 基体改性:直接将改性剂加到样品基体中。 当被萃取物与样品基体较强地结合在一起时, 这种方法更为有效。
二氧化碳是超临界流体技术中最常用的溶剂,有许多优点:
1.CO2临界温度为31.1℃,临界压力为7.2MPa,临界条件 容易达到。适合于萃取热不稳定的化合物。
2. CO2化学性质不活波,无色无味无毒,安全性好。 3.价格便宜,纯度高,容易获得。
但是,由于CO2是非极性的流体,只适合于萃取低极性和非极性
现用超临界纯溶剂的相图来表明临界点及其 相平衡行为。下图为以纯二氧化碳的密度为第 三参数的压力-温度图。
超临界流体:
处于临界温度和 临界压力之上的物质 状态。
临界温度Tc:是通过增加 压力使气体变为液体 的最高温度;
临界压力Pc:是通过增加 温度使液体变为气体 的最高压力。
超临界萃取的实际操作范围以及通过调节压力或温度改变 溶剂密度从而改变溶剂萃取能力的操作条件,可以用二氧化 碳的对比压力-对比密度图加以说明. 超临界萃取和超临界色谱的实际操作区域为图中黄色区域,在 这一区域里,超临界流体具有极大的可压缩性。溶剂密度可

超临界流体萃取技术学习课件PPT

超临界流体萃取技术学习课件PPT
操作难度大
超临界流体萃取技术需要在高压条件下进行,操 作难度较大,需要专业人员进行操作和维护。
3
对某些物质的提取效果不佳
对于一些极性较大或分子量较小的物质,超临界 流体萃取技术的提取效果可能不佳,需要结合其 他分离技术进行优化。
解决方案与改进方向
01
02
03
降低成本
通过研发更高效的超临界 流体萃取设备和技术,降 低设备投资和维护成本, 提高经济效益。
资源回收利用
详细描述
超临界流体萃取技术可以实 现资源的回收利用,如从废 弃物中提取有价值的组分, 如油脂、溶剂等。该技术能 够降低废弃物的处理成本, 同时实现资源的可持续利用。
05 超临界流体萃取技术的未 来发展展望
技术发展趋势
高效能
随着科技的不断进步,超临界流 体萃取技术将进一步提高萃取效 率和分离纯度,实现更高效的生
产。
环保化
随着环保意识的增强,超临界流体 萃取技术将更加注重环保,减少对 环境的负面影响,实现绿色生产。
智能化
随着人工智能和自动化技术的发展, 超临界流体萃取技术将实现智能化 控制,提高生产过程的自动化水平。
技术在各领域的应用前景
医药领域
超临界流体萃取技术在医药领 域的应用将更加广泛,如天然 产物的提取、分离和纯化等。
03 总结词
有效成分提取
04
详细描述
超临界流体萃取技术能够有效地 提取食品中的有效成分,如从鱼 鳞中提取胶原蛋白、从水果中提 取果胶等。该技术能够提高有效 成分的提取率和纯度,为食品加 工提供新的工艺手段。
环境治理
总结词
污染物去除
详细描述
总结词
超临界流体萃取技术也可应 用于环境治理领域,如去除 土壤、水体中的有害污染物。 该技术能够有效地分离和去 除污染物,实现环境净化, 为环境保护提供有力支持。

超临界流体萃取技术

超临界流体萃取技术

二. 超临界流体的性质

常见的超临界流体有:二氧化碳,乙烷, 丙烷等。书上P239表9-2列出了一些可供使 用的超临界流体的临界性质。
三. 超临界流体的性质
1. 超临界流体具有传递性质 2. 超临界流体对固体或液体具有溶解能力 物质在超临界流体中的溶解度c与超临界流 体密度ρ之间的关系可表示为: lnc=mlnρ+ K 式中:c为物质在超临界流体中的溶解度; ρ为超临界流体密度;m为系数,为正值;K 为常数,与萃取剂,溶质的化学性质有关。
(一)超临界CO2流体萃取基本过程(见图)
(二)影响超临界CO2流体萃取的因素
影响因素:被萃取物质性质,超临界 流体所处状态等。 1. 物质性质的影响 有机化合物相对分子质量大小和分子 极性是主要影响因素。
2. 萃取压力的影响 (1)一般随着压力升高,溶解度增加,尤其 是临界点附近变化较大。 (2)超临界流体的溶解度和压力关系可以用 溶解度和密度关系表示。 见P246图9-7.
二. 固体物料的超临界CO2流体萃取系统
(一)萃取系统构成 1. 普通的间歇式萃取系统 2. 半连续式萃取系统 3. 连续式萃取系统 (二)固料萃取釜 1. 萃取釜的要求
①具有快速开关盖装置。 ②抗疲劳性能好。 ③温度控制容易。 ④结构紧凑,成本低。 2. 萃取釜的规模 3. 萃取釜的快开装置 快开装置主要有以下形式: (1)单螺栓式结构 (2)多层螺旋卡口锁结构 (3)卡箍式结构 (4)碶块式结构
第二节 超临界流体萃取技术原理
一.超临界流体的基本概念
1. 超临界流体:, supercritical fluid 简 称SCF或SF;如果流体被加热或被压缩至高于 临界点时,则该流体称为超临界流体。超临 界点时的流体密度称为超临界密度(ρc)。 其倒数称为超临界比容(vc)。

超临界流体萃取

超临界流体萃取

7.污水处理(超临界水氧化SCWO) 超临界水(临界温度647.3K,压力22.05MPa)与普通
水有截然不同的性质: ①像一种非极性有机溶剂,可与非极性物质,如烃类和 其它有机物互溶,而无机物特别是盐类在超临界水中的 离解系数和溶解度极低。 ②超临界水可与空气、氮气、氧气、和CO2等气体互溶。 ③有机物自发氧化,在小于一分钟的反应停留时间内, 使99.99%以上的有机物被氧化为CO2、H2O、N2,杂质也 被氧化。
小麦胚芽油的分离与提纯
1.简介 小麦胚芽是小麦制粉时的副制品,品小麦的1~2%;
胚芽中余油8-14%。小麦胚芽油富含维生素E、亚 油酸、廿八磺醇及谷维酸等。
小麦胚芽油用于保健营养品、食品、化妆品。
2.工艺流程
小麦胚芽 弱处理
脱脂胚芽
溶剂萃取 胚芽粗油
胚芽精油 (产品)
管制胶丸
干燥分装
产品 小麦胚芽油胶丸或天然VE 胶丸,0.8元/克
二、超临界流体的物理性质 1.超临界流体的密度与液体相近,粘度接近于普通 气体,扩散系数是液体的近百倍,既不是普通液体, 也不是通常状态下的气体,而是一种特殊的流体。
比液体具有扩散速度大,比气体有较大的溶解能 力。在临界压力处,流体密度发生突变。
2. 超临界流体的溶解能力 SF溶解物质的能力与溶质的化学性质和SF的性质有关。 溶质的化学性质与溶剂愈相似,溶解能力愈强。 SF的溶解能力与其密度有关,而密度又与温度、压力 有关。 普劳斯尼兹Prausnite 方程:
2.萃取特点(优点) ①可在适中的条件下进行,不会破坏萃取物结构和改变萃 取物性质,可用于食品、香料、生理活性物质的分离; ②对高沸点,高性物质溶解能力强,可用于煤的液化、石 油化工、超临界色谱; ③影响超临界流体溶解能力的因素,如温度、压力和组成 等容易改变,有利于选择性萃取; ④抽提后的溶液易透过等温降压、升温、吸附等物理方法 进行分离; ⑤SF大多使用CO2、无毒、不残留,可生产高质量产品, 可循环使用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超临界流体萃取的基本流程超临界流体萃取的基本流程包括以下步骤:
1.超临界流体的形成。

2.溶质在超临界流体中的扩散传质(萃取过程)。

3.溶质与流体的分离。

具体来说,超临界流体萃取工艺设备主要有萃取釜、分离釜、压缩机和换热器,并可组成以下3种典型的工艺流程:
●变压萃取:流程操作通常在等温下进行,萃取后含溶质的超临界
流体经膨胀阀减压后,因溶解度降低而析出溶质。

●变温萃取:流程操作在等压下进行,并通过加热升温的方法使溶
质与萃取剂分离开来。

●吸附萃取:流程在分离釜中放置适当的吸附剂,利用吸附剂吸附
萃取相中的溶质,从而将溶质与萃取剂分离开来。

以上是超临界流体萃取的基本流程和具体的工艺流程,希望对你有帮助。

相关文档
最新文档