空间坐标转换
坐标转换方法

坐标转换方法
坐标转换方法是一种用于将两套不同坐标系之间的地理位置转换的技术。
坐标转换方法实际上是一种空间变换方法。
它基于把空间变换为
一元、二元或三元空间,使用一些数学方法来进行,然后将转换后的
坐标转换成另一种坐标系。
坐标转换方法的应用十分广泛,可以用于将涉及地理信息的点、线和
面从一个坐标系中转换到另一个坐标系中。
通常从一个大地坐标系
(如GPS或WGS84坐标系)转换到另一个坐标系(如国测局1954坐标系),以此来精确的定位要表示的地理位置。
为了能够正确实现坐标转换,需要一些转换参数,如基准线参数、经
纬度偏移量、旋转参数等。
这些参数可以通过经验或者理论计算获得,也可以从一些专业的坐标转换工具中获取。
同时,坐标转换方法也被用在其他领域,如图像处理、数据处理、建模、分析等,都能够获得良好的结果。
总之,坐标转换方法是一种用于地理位置转换的非常有用的方法,在
地图应用、图像处理、数据处理等领域十分重要。
只要有正确的转换
参数,就可以实现精确的坐标转换,为地理位置的表达和分析提供了
极大的便利。
n维空间极坐标变换

n维空间极坐标变换
n维空间中,极坐标变换是一种转换坐标系的方法。
它将点的坐标从笛卡尔坐标系转换到极坐标系,使得点在新的坐标系中的表示更加简单。
在二维空间中,极坐标变换将点的坐标从直角坐标系(x, y)转换为极坐标系(r, θ),其中r表示点到原点的距离,θ表示点与x轴正半轴的夹角。
在n维空间中,极坐标变换将点的坐标从笛卡尔坐标系(x1,
x2, ..., xn)转换为极坐标系(r, θ1, θ2, ..., θn-1),其中r 表示点到原点的距离,θ1表示点与x1轴正半轴的夹角,θ2表示点在x1x2平面上的投影与x1正半轴的夹角,以此类推,θn-1表示点在x1x2...xn-1平面上的投影与x1x2...xn-2平面的交线与x1轴正半轴的夹角。
极坐标变换的优点是可以将复杂的几何形状简化为简单的形式,有利于进行数学分析和计算。
在物理学、工程学、计算机图形学等领域中,极坐标变换被广泛应用。
- 1 -。
大地坐标及直角空间坐标转换计算公式

大地坐标与直角空间坐标转换计算公式一、参心大地坐标与参心空间直角坐标转换1名词解释:A :参心空间直角坐标系:a) 以参心0为坐标原点;b) Z 轴与参考椭球的短轴(旋转轴)相重合;c) X 轴与起始子午面和赤道的交线重合;d) Y 轴在赤道面上与X 轴垂直.构成右手直角坐标系0-XYZ ;e) 地面点P 的点位用(X.Y.Z )表示;B :参心大地坐标系:a) 以参考椭球的中心为坐标原点.椭球的短轴与参考椭球旋转轴重合;b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ;c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度L ;d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ;e) 地面点的点位用(B.L.H )表示。
2 参心大地坐标转换为参心空间直角坐标:⎪⎭⎪⎬⎫+-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2公式中.N 为椭球面卯酉圈的曲率半径.e 为椭球的第一偏心率.a 、b 椭球的长短半径.f 椭球扁率.W 为第一辅助系数ab a e 22-= 或 ff e 1*2-= Wa N B W e =-=22sin *1( XX80椭球参数:长半轴a=6378140±5(m )短半轴b=6356755.2882m扁 率α=1/298.2573 参心空间直角坐标转换参心大地坐标 []N BY X H H e N Y X H N Z B XY L -+=+-++==cos ))1(**)()(*arctan()arctan(22222 二 高斯投影及高斯直角坐标系1、高斯投影概述高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关.与方向无关;3. 离中央子午线越远变形越大为控制投影后的长度变形.采用分带投影的方法。
空间大地坐标系与平面直角坐标系转换公式

空间大地坐标系与平面直角坐标系转换公式空间大地坐标系和平面直角坐标系是两种不同的坐标系统,用于描述地球上的点的位置。
在进行空间大地坐标系与平面直角坐标系之间的转换时,需要考虑到地球的椭球体形状和投影方式。
下面将详细介绍空间大地坐标系与平面直角坐标系的转换方法。
1.空间大地坐标系经度:经度是指地球上特定点与本初子午线之间的角度差,用度、分、秒的形式表示。
纬度:纬度是指地球上特定点距离赤道的角度,用度、分、秒的形式表示。
大地高:大地高是指地球表面特定点到参考椭球体上其中一参考面的高度差,可分为正高和负高。
2.平面直角坐标系平面直角坐标系是以地球上一些基准点为原点建立的二维坐标系。
在平面直角坐标系下,点的位置通常用东方向坐标值X和北方向坐标值Y来表示。
3.空间大地坐标系到平面直角坐标系的转换公式3.1平面直角投影平面直角投影是将地球表面上的点投影到一个水平的平面上。
其转换公式为:X = k₀ + R * cosL * sin(λ - λ₀)Y = k₀ + R * (cosφ₀ * sinL - sinφ₀ * cosL * cos(λ - λ₀))其中,X和Y为平面直角坐标系下的坐标值,L为参考点与待转换点的经度差,λ为待转换点的经度,φ₀为参考点的纬度,λ₀为参考点的经度,k₀为常数,R为参考点到地心的距离。
3.2高斯投影高斯投影是将地球上的点投影到一个平面上,使得该平面上的距离尽可能与大地距离一致。
其转换公式为:X = X₀ + N * cosB * (λ - L₀)Y = Y₀ + N * (tanB * cos(λ - L₀) - sinB * (B - B₀))其中,X和Y为平面直角坐标系下的坐标值,X₀和Y₀为参考点的平面坐标,N为法向子午线长度,B为待转换点的纬度,λ为待转换点的经度,L₀为参考点的经度,B₀为参考点的纬度。
4.平面直角坐标系到空间大地坐标系的转换公式平面直角坐标系到空间大地坐标系的转换公式为空间大地坐标系到平面直角坐标系的逆运算,可以通过解方程组或迭代法来进行计算。
空间大地坐标系及平面直角坐标系转换公式

§2.3.1 坐标系的分类正如前面所提及的,所谓坐标系指的是描述空间位置的表达形式,即采用什么方法来表示空间位置。
人们为了描述空间位置,采用了多种方法,从而也产生了不同的坐标系,如直角坐标系、极坐标系等。
在测量中常用的坐标系有以下几种:一、空间直角坐标系空间直角坐标系的坐标系原点位于参考椭球的中心,Z 轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈90°夹角。
某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。
空间直角坐标系可用图2-3来表示:图2-3 空间直角坐标系二、空间大地坐标系空间大地坐标系是采用大地经、纬度和大地高来描述空间位置的。
纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高是空间点沿参考椭球的法线方向到参考椭球面的距离。
空间大地坐标系可用图2-4来表示:图2-4空间大地坐标系三、平面直角坐标系平面直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间大地坐标通过某种数学变换映射到平面上,这种变换又称为投影变换。
投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等。
在我XX 用的是高斯-克吕格投影也称为高斯投影。
UTM 投影和高斯投影都是横轴墨卡托投影的特例,只是投影的个别参数不同而已。
高斯投影是一种横轴、椭圆柱面、等角投影。
从几何意义上讲,是一种横轴椭圆柱正切投影。
如图左侧所示,设想有一个椭圆柱面横套在椭球外面,并与某一子午线相切〔此子午线称为中央子午线或轴子午线〕,椭球轴的中心轴CC ’通过椭球中心而与地轴垂直。
高斯投影满足以下两个条件:1、 它是正形投影;2、 中央子午线投影后应为x 轴,且长度保持不变。
将中央子午线东西各一定经差〔一般为6度或3度〕X 围内的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯平面直角坐标系,如以下图2-5右侧所示。
空间直角坐标系与大地坐标系转换程序doc

空间直角坐标系与大地坐标系转换程序.doc本文将介绍一种实现空间直角坐标系与大地坐标系转换的程序实现方法。
在编写程序时,需要使用一些数学库和函数,比如C++标准库中的cmath和iostream 等。
首先,我们需要了解空间直角坐标系和大明坐标系之间的转换公式。
假设空间直角坐标系为(x, y, z),大地坐标系为(L, B, H),则它们之间的转换公式为:x = cosLcosBsinHy = cosLsinBsinHz = sinLsinH其中,L为经度,B为纬度,H为高程。
根据上述公式,我们可以编写一个C++程序来实现空间直角坐标系与大地坐标系之间的转换。
程序实现如下:#include <iostream>#include <cmath>using namespace std;void transform() {double x, y, z;double L, B, H;cout << "Enter x, y, and z coordinates: ";cin >> x >> y >> z;cout << "Enter L and B coordinates: ";cin >> L >> B;H = acos(z / sqrt(x * x + y * y + z * z));cout << "The converted coordinates are: " << x << " " << y << " " << H << endl;}int main() {transform();return 0;}在上述程序中,我们首先定义了变量x、y、z、L、B和H,分别代表空间直角坐标系和大明坐标系的坐标值。
空间大地坐标系与平面直角坐标系转换公式

§2.3.1 坐标系的分类之相礼和热创作正如后面所提及的,所谓坐标系指的是描绘空间地位的表达方式,即采取什么方法来暗示空间地位.人们为了描绘空间地位,采取了多种方法,从而也发生了分歧的坐标系,如直角坐标系、极坐标系等.在丈量中经常运用的坐标系有以下几种:一、空间直角坐标系空间直角坐标系的坐标系原点位于参考椭球的中心,Z 轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈90°夹角.某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来暗示.空间直角坐标系可用图2-3来暗示:图2-3 空间直角坐标系二、空间大地坐标系空间大地坐标系是采取大地经、纬度和大地高来描绘空间地位的.纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高是空间点沿参考椭球的法线方向到参考椭球面的距离.空间大地坐标系可用图2-4来暗示:图2-4空间大地坐标系三、立体直角坐标系立体直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间大地坐标经过某种数学变换映射到立体上,这种变换又称为投影变换.投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等.在我国采取的是高斯-克吕格投影也称为高斯投影.UTM投影和高斯投影都是横轴墨卡托投影的特例,只是投影的个别参数分歧而已.高斯投影是一种横轴、椭圆柱面、等角投影.从几何意义上讲,是一种横轴椭圆柱正切投影.如图左侧所示,想象有一个椭圆柱面横套在椭球里面,并与某一子午线相切(此子午线称为地方子午线或轴子午线),椭球轴的中心轴CC’经过椭球中心而与地轴垂直.高斯投影满足以下两个条件:1、它是正形投影;2、地方子午线投影后应为x轴,且长度坚持不变.将地方子午线东西各肯定经差(一样平常为6度或3度)范围内的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯立体直角坐标系,如下图2-5右侧所示.图2-5 高斯投影x 方向指北,y 方向指东.可见,高斯投影存在长度变形,为使其在测图和用图时影响很小,应相隔肯定的地区,另立地方子午线,采纳分带投影的法子.我国国家丈量规定采取六度带和三度带两种分带方法.六度带和三度带与地方子午线存在如下关系:366-N L =中; n L 33=中其中,N 、n 分别为6度带和3度带的带号.另外,为了防止y 出现负号,规定y 值以为地加上500000m ;又为了区别分歧投影带,后面还要冠以带号,如第20号六度带中,y=-200.25m ,则成果表中写为y 假定=20499799.75m.x 值在北半球总显正值,就无需改变其观测值了.1、空间直角坐标系与空间大地坐标系间的转换图2-6暗示了空间直角坐标系与空间大地坐标系之间的关系.图2-6 地球空间直角坐标系与大地坐标系在相反的基准下空间大地坐标系向空间直角坐标系的转换公式为:⎪⎭⎪⎬⎫+-=+=+=B H e N Z L B H N Y L B H N X sin ])1([sin cos )(cos cos )(2 (2-1)式中,W aN =,a 为椭球的长半轴,N 为椭球的卯酉圈曲率半径 a =6378.137km2222a b a e -=,e 为椭球的第一偏爱率,b 为椭球的短半轴 在相反的基准下空间直角坐标系向空间大地坐标系的转换公式为⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫-Φ=⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+Φ=N B R H X Y arctg L W B Z ae tg arctg B cos cos sin 12(2-2) 式中2、空间坐标系与立体直角坐标系间的转换空间坐标系与立体直角坐标系间的转换采取的是投影变换的方法.在我国一样平常采取的是高斯投影.由于高斯投影和UTM 投影都是横轴墨卡托的特例,因此,高斯投影和UTM 投影都可以套用横轴墨卡托投影的投影公式.横轴墨卡托投影的投影的正反算公式可拜见有关材料,它们的区别在于轴子午线投影到立体上后,其长度的系数,对于高斯投影,系数为1,对于UTM 投影,其系数为.3、变动高程回化面的影响用户在建立地方独立坐标系时,偶然变动高程回化面,这将发生一个新椭球,这就必须计算新常数,新椭球常数按下列方法和步调进行:1) 新椭球是在国家坐标系的参考椭球上扩大构成的,它的扁率应与国家坐标系参考椭球的扁率相称,即a a ='. 2) 计算该坐标系地方地区的新椭球均匀曲率半径和新椭球长半轴.新椭球均匀曲率半径为:m mm m m m H B e e a H W a W e a H MN H R R +--=+-=+=+=22232sin 11)1('(2.10) 式中m H ───该地区均匀大地高;m B ───该地区的均匀纬度.新椭球的长半轴按下式计算:2221sin 1''e B e R a m--=(2.11)将新的椭球参数代入,就可以进行投影的正反计算了.二、坐标零碎的转换方法分歧坐标零碎的转换本质上是分歧基准间的转换,分歧基准间的转换方法有很多,其中最为经常运用的有布尔沙模型,又称为七参数转换法.七参数转换法是:设两空间直角坐标系间有七个转换参数:3 个平移参数()z y x ∆∆∆、3 个旋转参数()z y x εεε和 1 个尺度参数k .比方,由空间直角坐标系A 转换到空间直角坐标系B 可采取上面的公式:§2.3.4 GPS 丈量中经常运用的坐标零碎一、世界大地坐标系WGS-84WGS-84 坐标系是如今GPS 所采取的坐标零碎,GPS 所发布的星历参数和历书参数等都是基于此坐标零碎的.WGS-84 坐标零碎的全称是World Geodical System-84 (世界大地坐标系-84), 它是一个地心肠固坐标零碎.WGS-84 坐标零碎由美国国防部制图局建立,于1987 年取代了当时GPS 所采取的坐标零碎WGS-72 坐标零碎而成为如今GPS 所运用的坐标零碎.WGS-84 坐标系的坐标原点位于地球的质心,Z 轴指向BIH1984.0 定义的协议地球极方向,X 轴指向BIH1984.0 的启始子午面和赤道的交点,Y 轴与X 轴和Z 轴构成右手系.WGS-84 系所采取椭球参数为见表2.1.二、1954 年北京坐标系1954 年北京坐标系是我国如今广泛采取的大地丈量坐标系.该坐标系源自于原苏联采取过的1942 年普尔科夫坐标系.该坐标系采取的参考椭球是克拉索夫斯基椭球.该椭球的参数见表2.1.遗憾的是该椭球并未根据当时我国的地理观测材料进行重新定位,而是由前苏联西伯利亚地区的一等锁经我国的东北地区传算过来的,该坐标系的高程异常是从前苏联1955 年大地水准面重新平差的结果为起算值,按我国地理水准路线推算出来的,而高程又是以1956 年青岛验潮站的黄海均匀海水面为基准.由于当时条件的限定1954 年北京坐标系存在着很多缺陷次要表示在以下几个方面:1. 克拉索夫斯基椭球参数同当代精确的椭球参数的差别较大,而且不包含暗示地球物理特性的参数,因此给理论和实践工作带来了许多方便.2. 椭球定向不非常明白,椭球的短半轴既不指向国际通用的CIO 极,也不指向如今我国运用的JYD极.参考椭球面与我国大地水准面呈西高东低的零碎性倾斜,东部高程异常达60余米,最大达67 米.3. 该坐标零碎的大地点坐标是经过局部分区平差得到的.因此天下的地理大地操纵点实践上不克不及构成一个团体,区与区之间有较大的隙距,如在有的接合部中同一点在分歧区的坐标值相差1-2 米,分歧分区的尺度差别也很大,而且坐标传递是从东北到东南和东北,后一区是从前一区的最弱部作为坐标起算点,因此一等锁具有分明的坐标积存偏差.三、1980 年西安大地坐标系1978 年我国决定重新对天下地理大地网实施团体平差,而且建立新的国家大地坐标零碎.团体平差在新大地坐标零碎中进行,这个坐标零碎就是1980 年西安大地坐标零碎.1980 年西安大地坐标零碎所采取的地球椭球参数的四个几何和物理参数采取了IAG 1975 年的引荐值,见表2.1中的西安80.椭球的短轴平行于地球的自转轴(由地球质心指向1968.0 JYD 地极原点方向),起始子午面平行于格林尼治均匀地理子午面,椭球面同似大地水准面在我国境内符合最好,高程零碎以1956 年黄海均匀海水面为高程起算基准.四、几种经常运用的坐标零碎的几何和物理参数下表列出了几种经常运用的坐标零碎的几何和物理参数,用户必要时可以查阅:表 2.1 GPS 丈量中经常运用的坐标零碎的几何和物理参数§2.4 GPS高程零碎在丈量中经常运用的高程零碎有大地高零碎、正高零碎和正常高零碎.§2.4.1 大地高零碎大地高零碎是以参考椭球面为基准面的高程零碎,某点的大地高是该点到经过该点的参考椭球的法线与参考椭球面的交点间的距离.大地高也称为椭球高.大地高一样平常用符号H 暗示.大地高是一个纯几何量,不具有物理意义,同一个点在分歧的基准下具有分歧的大地高.通常,GPS接收机单点定位得到的高程为WGS-84下的大地高.§2.4.2 正高零碎正高零碎是以大地水准面为基准面的高程零碎,某点的正高是该点到经过该点的铅垂线与大地水准面的交点之间的距离.正高用符号 H g暗示.§2.4.3 正常高正常高零碎是以似大地水准面为基准的高程零碎,某点的正常高是该点到经过该点的铅垂线与似大地水准面的交点之间的距离,正常高用 H γ 暗示.§2.4.4高程零碎之间的转换关系大地水准面到参考椭球面的距离称为大地水准面差距,记为 h g ,大地高与正高之间的关系可以暗示为:正 高:g g h H H -=似大地水准面到参考椭球面的距离,称为高程异常,记为ζ.大地高与正常高之间的关系可以暗示为:正常高:ζγ-=H H高程之间的互相关系可以用下图2-7来暗示:图2-7 高程零碎间的互相关系。
空间大地坐标系与平面直角坐标系转换公式

§坐标系的分类正如前方所说起的 ,所谓坐标系指的是描绘空间地点的表达形式 ,即采纳什么方法来表示空间地点。
人们为了描绘空间地点,采纳了多种方法,进而也产生了不一样的坐标系,如直角坐标系、极坐标系等。
在丈量中常用的坐标系有以下几种:一、空间直角坐标系空间直角坐标系的坐标系原点位于参照椭球的中心,Z 轴指向参照椭球的北极,X 轴指向开端子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈 90°夹角。
某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。
空间直角坐标系可用图2-3来表示:图 2-3 空间直角坐标系二、空间大地坐标系空间大地坐标系是采纳大地经、纬度和大地高来描绘空间地点的。
纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参照椭球的自转轴所在的面与参照椭球的开端子午面的夹角;大地高是空间点沿参照椭球的法线方向到参照椭球面的距离。
空间大地坐标系可用图2-4 来表示:图 2-4 空间大地坐标系三、平面直角坐标系平面直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间大地坐标经过某种数学变换映照到平面上,这类变换又称为投影变换。
投影变换的方法有好多,如横轴墨卡托投影、 UTM 投影、兰勃特投影等。
在我国采纳的是高斯-克吕格投影也称为高斯投影。
UTM 投影和高斯投影都是横轴墨卡托投影的特例,不过投影的个别参数不一样而已。
高斯投影是一种横轴、椭圆柱面、等角投影。
从几何意义上讲,是一种横轴椭圆柱正切投影。
如图左边所示,假想有一个椭圆柱面横套在椭球外面,并与某一子午线相切(此子午线称为中央子午线或轴子午线),椭球轴的中心轴CC’经过椭球中心而与地轴垂直。
高斯投影知足以下两个条件:1、它是正形投影;2、中央子午线投影后应为x 轴,且长度保持不变。
将中央子午线东西各必定经差(一般为 6 度或 3 度)范围内的地域投影到椭圆柱面上,再将此柱面沿某一棱线睁开,便组成了高斯平面直角坐标系,以以下图2-5右边所示。
由大地坐标向空间直角坐标的转换的原理

由大地坐标向空间直角坐标的转换的原理
大地坐标与空间直角坐标之间的转换原理是通过地理测量学中的大地坐标系统和空间直角坐标系统之间的数学关系来实现的。
在大地测量中,我们使用经度、纬度和大地高来描述地球表面上的点。
大地测量学中使用的经度是指一个点相对于地球自转轴的角度。
经度的起始点被定义为本初子午线,通常选择通过伦敦的经线作为本初子午线。
经度可取值范围为-180度到+180度。
纬度是指一个点相对于地球赤道面的角度。
纬度的起始点被定义为赤道,赤道的纬度为0度,北纬为正,南纬为负。
大地高是指一个点相对于地球平均海平面的高度。
空间直角坐标系统是使用直角坐标系来描述地球上的点。
在空间直角坐标系中,我们使用三个正交坐标轴来确定一个点的位置,分别是X轴、Y轴和Z轴。
通常,以经度0度、纬度0度、大地高0米的点作为原点。
要将大地坐标转换为空间直角坐标,我们需要进行以下计算:
1. 根据给定的经度和纬度,计算该点的地球半径R。
地球半径通常可以通过现有的地球模型来进行计算或查询相关资料获取。
2. 然后,通过以下公式计算该点相对于X轴、Y轴和Z轴的直角坐标值:
X = (R + H) * cos(纬度) * cos(经度)
H为大地高,e为地球的离心率。
地球的离心率是指地球形状的椭圆度,其数值在0-1之间,可以根据现有的地球模型进行计算。
计算得到的X、Y、Z值即为该点在空间直角坐标系中的坐标值。
通过以上的计算过程,我们可以将大地坐标转换为空间直角坐标。
这种转换过程在地理测量、导航定位等领域有着广泛的应用。
空间大地坐标系与平面直角坐标系转换公式

§2. 3.1坐标系的分类正如前面所提及的,所谓坐标系指的是描述空间位置的表达形式,即釆用什么方法来表示空间位置。
人们为了描述空间位置,采用了多种方法,从而也产生了不同的坐标系,如直角坐标系、极坐标系等。
在测量中常用的坐标系有以下几种:一、空间直角坐标系空间直角坐标系的坐标系原点位于参考椭球的中心,Z轴指向参考椭球的北极,X轴指向超始子午面与赤道的交点,丫轴位于赤道面上且按右手系与X 轴呈90°夹角。
某点在空间中的坐标可用该点在此坐标系的各■个坐标轴上的投影来表示。
空间直角坐标系可用图2-3 来表TJT :图2-3空间直角坐标系二.空间大地坐标系空间大地坐标系是釆用大地经.纬皮和大地离来描述空间位置的。
纬度是空间的点与参考椭球面的法线与赤道面的夹角:经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地离是空间点沿参考椭球的法线方向到参考描球面的距离。
空间大地坐标系可用图2-4来表示:三.平面直角坐标系平面直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间大地坐标通过某种数学变换映射到平面上,这种变换又称为投影变换。
投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等。
在我国釆用的是离斯一克吕格投影也称为商斯投影。
UTM 投影和离斯投影都是横轴墨卡托投影的特例,只是投影的个别参数不同而已。
鬲斯投影是一种横轴.椭圆柱面、等角投影。
从几何意艾上讲,是一种横轴椭圆柱正切投影。
如图左侧所示,设想有一个椭圆柱面横套在椭球外面,并与某一子午线相切(此子午线称为中央子午线或轴子午线),椭球轴的中心轴CC'通过椭球中心而与地轴垂直。
爲斯投影满足以下两个条件:1、它是正形投影;2、中央子午线投影后应为x轴,且长度保持不变。
将中央子午线东西各一定经差(一般为6度或3度)范国内的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯平面直角坐标系,如下S 2-5右侧所示。
空间直角坐标系转换参数计算

空间直角坐标转换参数计算
当需要将不同基准(参考椭球)的坐标相互转换时,例如54椭球的坐标转换为WGS-84椭球坐标、或在RTK测量中计算坐标转换参数时,可以利用GS P的空间直角坐标转换功能。
平面坐标平移旋转参见这里
利用GSP可以
•
通过计算两个空间直角坐标系间的转换参数,也可以直接利用转换参数进行坐标转换。
•
•
转换参数计算可以选用布尔莎模型或莫洛金斯基模型,
•
•
可以选用计算出3个平移、3个旋转和1个尺度的7参数或计算3个旋转和1个尺度的4参数模型。
利用3个及以上公共点时,采用最小二乘平差方法按等权方式计算转换参数,同时计算出单位权中误差,及每个转换点的转换误差。
4参数计算,是以第一个点为基准,计算到其他点的坐标增量,然后再计算旋转参数与尺度参数。
布尔莎模型与莫洛金斯基模型转换参数中仅平移参数不同(因旋转中心不同),当然由于计算原因可能出现旋转和尺度参数有微小差异。
莫洛金斯基模型的转换中心采用网的重心。
•
计算时,首先导入或输入公共点的两套空间直角坐标和需要转换的其他点的坐标,公共点的点数需要2个以上,然后在表格中选择公共点为采样点,选择转换参数个数和模型,单击“转换”按钮,GSP将首先计算出转换参数,然后利用转换参数计算转换坐标,并将公共点的转换坐标残差计算出来。
当有转换参数时,可以将转换参数先输入,并选择“使用下列参数转换坐标”
选项,单击“转换”按钮,即可完成坐标的转换工作。
空间数据坐标转换方案

求得pointZ 即为△X
此方法实质是散点拟合法,核心在于利用不规 则三角网的特性,用插值求解算法得出各三角 形中包含要素的特征值。
§ 七参数转换方法
七参数是两空间直角坐标系之间的转换参 数,包括3个平移参数,3个旋转参数和1个尺度 参数。不同坐标系的转换模型很多,常用的有 布尔沙模型(B模型)和莫洛坚斯基模型(M模 型)。工程中常用来求取一定区域内不同椭球 体之间的转换参数。
0
B Z
YB
B Z
0
B X
Байду номын сангаас
B Y
B X
X1i
Y1i
0 Z1i 旋转参数
开始
控制点样本
配置坐标填写方 式、投影参数等
输入该组控制点 样本的两套坐标
求取七参数
计算结果中误差是 否
否满足要求
是
该区域的一套 七参数
加密控制点样本 或再细划分区域
54x,80x
54y,80y
56z,85z
△X=80x-54x
△Y=80y-54y
△Z=85z-56z
用控制点构建三角网 T1,以△X为特征值。
用控制点构建三角网 T2,以△Y为特征值。
用控制点构建三角网 T3,以△Z为特征值。
其他专业数据点要素层M (54xm,54ym,56zm)
求取M中每个点在T1中 的特征值△Xm
在投影面上,中央子午线和赤道的投影都是 直线,并且以中央子午线和赤道的交点O做为坐标 原点,以中央子午线的投影为纵坐标轴,以赤道 的投影为横坐标轴,这样便构成了高斯平面直角 坐标系。
大地坐标系与空间直角坐标系的相互转换python

大地坐标系与空间直角坐标系的相互转换Python在地理信息系统(GIS)中,常常需要将大地坐标系(地理坐标系)与空间直角坐标系(笛卡尔坐标系)进行相互转换。
大地坐标系使用经纬度来表示地球表面上的任意点,而空间直角坐标系使用直角坐标来表示点在三维空间中的位置。
Python提供了一些库和工具,可以方便地进行这种转换。
大地坐标系与空间直角坐标系的基本概念大地坐标系(地理坐标系)大地坐标系是一种用经纬度来表示地球表面上任意点的坐标系。
经度表示点相对于本初子午线的位置(东经为正、西经为负),纬度表示点相对于赤道的位置(北纬为正、南纬为负)。
空间直角坐标系(笛卡尔坐标系)空间直角坐标系是一种使用直角坐标来表示点在三维空间中的位置的坐标系。
在空间直角坐标系中,每个点的位置由其相对于三个互相垂直的坐标轴的坐标值确定。
大地坐标系与空间直角坐标系的转换大地坐标系与空间直角坐标系之间的转换涉及到各种地球椭球参数和数学公式。
幸运的是,Python的一些库和工具已经实现了这些转换,使得我们可以很方便地进行转换操作。
Geopy库Geopy是一个Python库,提供了许多地理坐标系之间相互转换的功能。
使用Geopy,我们可以方便地进行大地坐标系到空间直角坐标系的转换。
首先,我们需要安装Geopy库。
可以使用pip命令来进行安装:pip install geopy接着,我们可以使用以下代码将大地坐标系的经纬度转换为空间直角坐标系的三维坐标:```python from geopy import Point from geopy.distance import distance定义大地坐标系的经纬度latitude = 40.7128 longitude = -74.0060将经纬度转换为空间直角坐标系的三维坐标point = Point(latitude, longitude) x, y, z = point.to_cartesian() print(f。
坐标系变换方法

坐标系变换方法引言:坐标系变换是数学中重要的概念,它在不同学科领域的应用十分广泛。
坐标系变换方法可以帮助我们在解决问题时更好地描述和分析空间中的物体运动、变形以及其他相关性质。
本文将介绍坐标系变换的概念、常见的坐标系以及不同坐标系之间的转化方法。
另外,我们还会探讨一些拓展应用,以增强我们对坐标系变换方法的理解。
正文:一、坐标系的概念坐标系是指用于确定物体在空间中位置和方向的基准系统。
我们常见的三维坐标系是笛卡尔坐标系,也称为直角坐标系,它由三条相互垂直的坐标轴组成,分别用x、y和z表示。
在笛卡尔坐标系中,任何一个点的位置都可以通过该点在各坐标轴上的投影来确定。
除了笛卡尔坐标系,我们还常用极坐标系和球坐标系来描述特定问题。
极坐标系通过极径和极角来定位一个点,常用于描述环形问题。
球坐标系则基于球体的半径、极角和方位角来定位一个点,常用于描述天体运动和物体在球面上的运动。
二、坐标系的转化方法当我们需要在不同坐标系下描述同一个物体的运动或性质时,就需要进行坐标系的转化。
以下介绍几种常见的坐标系转化方法:1. 平移变换:平移变换是指将坐标系沿着某个方向移动一段距离。
例如,在笛卡尔坐标系中,将整个坐标系沿着x轴正方向平移d个单位,可以通过将所有坐标点的x坐标加上d来实现。
2. 旋转变换:旋转变换是指将坐标系绕着某个点或轴旋转一定角度。
在笛卡尔坐标系中,可以通过将点(x, y)绕原点逆时针旋转θ角度得到新的坐标(x',y')。
其中,旋转变换可以通过矩阵运算进行计算。
3. 缩放变换:缩放变换是指将坐标系中的所有点沿着坐标轴方向进行放大或缩小。
在笛卡尔坐标系中,可以通过将点(x, y)的坐标分别乘以经过缩放的因子s来实现。
以上是常见的坐标系变换方法,它们可以在解决具体问题时灵活运用。
三、拓展应用除了将几何问题转换到不同坐标系来求解,坐标系变换方法还有一些有趣的拓展应用。
1. 图像处理:在图像处理中,常用的坐标系转换方法包括旋转、平移和缩放变换。
空间大地坐标系与平面直角坐标系转换公式

§2.3.1 坐标系的分类之阳早格格创做正如前里所提及的,所谓坐标系指的是形貌空间位子的表白形式,即采与什么要领去表示空间位子.人们为了形貌空间位子,采与了多种要领,进而也爆收了分歧的坐标系,如直角坐标系、极坐标系等.正在丈量中时常使用的坐标系有以下几种:一、空间直角坐标系空间直角坐标系的坐标系本面位于参照椭球的核心,Z 轴指背参照椭球的北极,X 轴指背起初子午里与赤道的接面,Y 轴位于赤道里上且按左脚系与X 轴呈90°夹角.某面正在空间中的坐标可用该面正在此坐标系的各个坐标轴上的投影去表示.空间直角坐标系可用图2-3去表示:图2-3 空间直角坐标系二、空间天里坐标系空间天里坐标系是采与天里经、纬度战天里下去形貌空间位子的.纬度是空间的面与参照椭球里的法线与赤道里的夹角;经度是空间中的面与参照椭球的自转轴天圆的里与参照椭球的起初子午里的夹角;天里下是空间面沿参照椭球的法线目标到参照椭球里的距离.空间天里坐标系可用图2-4去表示:图2-4空间天里坐标系三、仄里直角坐标系仄里直角坐标系是利用投影变更,将空间坐标空间直角坐标或者空间天里坐标通过某种数教变更映射到仄里上,那种变更又称为投影变更.投影变更的要领有很多,如横轴朱卡托投影、UTM 投影、兰勃特投影等.正在我国采与的是下斯-克吕格投影也称为下斯投影.UTM投影战下斯投影皆是横轴朱卡托投影的惯例,不过投影的各别参数分歧而已.下斯投影是一种横轴、椭圆柱里、等角投影.从几许意思上道,是一种横轴椭圆柱正切投影.如图左侧所示,设念有一个椭圆柱里横套正在椭球表里,并与某一子午线相切(此子午线称为中央子午线或者轴子午线),椭球轴的核心轴CC’通过椭球核心而与天轴笔直.下斯投影谦脚以下二个条件:1、它是正形投影;2、中央子午线投影后应为x轴,且少度脆持没有变.将中央子午线物品各一定经好(普遍为6度或者3度)范畴内的天区投影到椭圆柱里上,再将此柱里沿某一棱线展开,便形成了下斯仄里直角坐标系,如下图2-5左侧所示.图2-5 下斯投影x 目标指北,y 目标指东.可睹,下斯投影存留少度变形,为使其正在测图战用图时做用很小,应相隔一定的天区,另坐中央子午线,采与分戴投影的办法.我国国家丈量确定采与六度戴战三度戴二种分戴要领.六度戴战三度戴与中央子午线存留如下闭系:366 N L =中; n L 33=中其中,N 、n 分别为6度戴战3度戴的戴号.其余,为了预防y 出现背号,确定y 值认为天加上500000m ;又为了辨别分歧投影戴,前里还要冠以戴号,如第20号六度戴中,y=-200.25m ,则成果表中写为y 假定=20499799.75m.x 值正在北半球总隐正值,便无需改变其瞅测值了.1、空间直角坐标系与空间天里坐标系间的变更图2-6表示了空间直角坐标系与空间天里坐标系之间的闭系.图2-6 天球空间直角坐标系与天里坐标系正在相共的基准下空间天里坐标系背空间直角坐标系的变更公式为:⎪⎭⎪⎬⎫+-=+=+=B H e N Z L B H N Y L B H N X sin ])1([sin cos )(cos cos )(2 (2-1)式中,W aN =,a 为椭球的少半轴,N 为椭球的卯酉圈直率半径 a =6378.137km2222a b a e -=,e 为椭球的第一偏偏心率,b 为椭球的短半轴 正在相共的基准下空间直角坐标系背空间天里坐标系的变更公式为⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫-Φ=⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+Φ=N B R H X Y arctg L W B Z ae tg arctg B cos cos sin 12(2-2) 式中2、空间坐标系与仄里直角坐标系间的变更空间坐标系与仄里直角坐标系间的变更采与的是投影变更的要领.正在我国普遍采与的是下斯投影.果为下斯投影战UTM 投影皆是横轴朱卡托的惯例,果此,下斯投影战UTM 投影皆不妨套用横轴朱卡托投影的投影公式.横轴朱卡托投影的投影的正反算公式可拜睹有闭资料,它们的辨别正在于轴子午线投影到仄里上后,其少度的系数,对付于下斯投影,系数为1,对付于UTM 投影,其系数为.3、变动下程归化里的做用用户正在修坐场合独力坐标系时,偶我变动下程归化里,那将爆收一个新椭球,那便必须估计新常数,新椭球常数按下列要领战步调举止:1) 新椭球是正在国家坐标系的参照椭球上夸大产死的,它的扁率应与国家坐标系参照椭球的扁率相等,即a a ='. 2) 估计该坐标系中央天区的新椭球仄衡直率半径战新椭球少半轴.新椭球仄衡直率半径为:m mm m m m H B e e a H W a W e a H MN H R R +--=+-=+=+=22232sin 11)1('(2.10) 式中m H ───该天区仄衡天里下;m B ───该天区的仄衡纬度.新椭球的少半轴按下式估计:2221sin 1''e B e R a m--=(2.11)将新的椭球参数代进,便不妨举止投影的正反估计了.二、坐标系统的变更要领分歧坐标系统的变更真量上是分歧基准间的变更,分歧基准间的变更要领有很多,其中最为时常使用的有布我沙模型,又称为七参数变更法.七参数变更法是:设二空间直角坐标系间有七个变更参数:3 个仄移参数()z y x ∆∆∆、3 个转动参数()z y x εεε战 1 个尺度参数k .比圆,由空间直角坐标系A 变更到空间直角坐标系B 可采与底下的公式:§2.3.4 GPS 丈量中时常使用的坐标系统一、天下天里坐标系WGS-84WGS-84 坐标系是暂时GPS 所采与的坐标系统,GPS 所颁布的星历参数战历书籍参数等皆是鉴于此坐标系统的.WGS-84 坐标系统的齐称是World Geodical System-84 (天下天里坐标系-84), 它是一个天心底固坐标系统.WGS-84 坐标系统由好国国防部造图局修坐,于1987 年与代了当时GPS 所采与的坐标系统WGS-72 坐标系统而成为当前GPS 所使用的坐标系统.WGS-84 坐标系的坐标本面位于天球的量心,Z 轴指背BIH1984.0 定义的协议天球极目标,X 轴指背BIH1984.0 的开初子午里战赤道的接面,Y 轴与X 轴战Z 轴形成左脚系.WGS-84 系所采与椭球参数为睹表2.1.二、1954 年北京坐标系1954 年北京坐标系是我国暂时广大采与的天里丈量坐标系.该坐标系源自于本苏联采与过的1942 年普我科妇坐标系.该坐标系采与的参照椭球是克推索妇斯基椭球.该椭球的参数睹表2.1.遗憾的是该椭球并已依据当时我国的天文瞅测资料举止沉新定位,而是由前苏联西伯利亚天区的一等锁经我国的东北天区传算过去的,该坐标系的下程非常十分是往日苏联1955 年天里程度里沉新仄好的截止为起算值,按我国天文程度门路推算出去的,而下程又是以1956 年青岛验潮站的黄海仄衡海火里为基准.由于当时条件的节造1954 年北京坐标系存留着很多缺面主要表示正在以下几个圆里:1. 克推索妇斯基椭球参数共新颖透彻的椭球参数的好别较大,而且没有包罗表示天球物理个性的参数,果而给表里战本量处事戴去了许多便当.2. 椭球定背没有格中透彻,椭球的短半轴既没有指背国际通用的CIO 极,也没有指背暂时我国使用的JYD极.参照椭球里与我国天里程度里呈西下东矮的系统性倾斜,东部下程非常十分达60余米,最大达67 米.3. 该坐标系统的天里面坐标是通过局部分区仄好得到的.果此世界的天文天里统造面本量上没有克没有及产死一个完齐,区与区之间有较大的隙距,如正在有的接合部中共一面正在分歧区的坐标值出进1-2 米,分歧分区的尺度好别也很大,而且坐标传播是从东北到西北战西北,后一区是往日一区的最强部动做坐标起算面,果而一等锁具备明隐的坐标聚集缺面.三、1980 年西安天里坐标系1978 年我国决断沉新对付世界天文天里网真止完齐仄好,而且修坐新的国家天里坐标系统.完齐仄好正在新天里坐标系统中举止,那个坐标系统便是1980 年西安天里坐标系统.1980 年西安天里坐标系统所采与的天球椭球参数的四个几许战物理参数采与了IAG 1975 年的推荐值,睹表2.1中的西安80.椭球的短轴仄止于天球的自转轴(由天球量心指背1968.0 JYD 天极本面目标),起初子午里仄止于格林僧治仄衡天文子午里,椭球里共似天里程度里正在我国境内切合最佳,下程系统以1956 年黄海仄衡海火里为下程起算基准.四、几种时常使用的坐标系统的几许战物理参数下表列出了几种时常使用的坐标系统的几许战物理参数,用户需要时不妨查阅:表 2.1 GPS 丈量中时常使用的坐标系统的几许战物理参数§2.4 GPS下程系统正在丈量中时常使用的下程系统有天里下系统、正下系统战仄常下系统.§2.4.1 天里下系统天里下系统是以参照椭球里为基准里的下程系统,某面的天里下是该面到通过该面的参照椭球的法线与参照椭球里的接面间的距离.天里下也称为椭球下.天里下普遍用标记H 表示.天里下是一个杂几许量,没有具备物理意思,共一个面正在分歧的基准下具备分歧的天里下.常常,GPS接支机单面定位得到的下程为WGS-84下的天里下.§2.4.2 正下系统正下系统是以天里程度里为基准里的下程系统,某面的正下是该面到通过该面的铅垂线与天里程度里的接面之间的距离.正下用标记 H g 表示.§2.4.3 仄常下仄常下系统是以似天里程度里为基准的下程系统,某面的仄常下是该面到通过该面的铅垂线与似天里程度里的接面之间的距离,仄常下用 H γ 表示.§2.4.4下程系统之间的变更闭系天里程度里到参照椭球里的距离称为天里程度里好同,记为 h g ,天里下与正下之间的闭系不妨表示为:正 下:g g h H H -=似天里程度里到参照椭球里的距离,称为下程非常十分,记为ζ.天里下与仄常下之间的闭系不妨表示为:仄常下:ζγ-=H H下程之间的相互闭系不妨用下图2-7去表示:图2-7 下程系统间的相互闭系。
空间大地坐标系与平面直角坐标系转换公式

§2.3.1 坐标系的分类正如前面所提及的,所谓坐标系指的是描述空间位置的表达形式,即采用什么方法来表示空间位置。
人们为了描述空间位置,采用了多种方法,从而也产生了不同的坐标系,如直角坐标系、极坐标系等。
在测量中常用的坐标系有以下几种:一、空间直角坐标系空间直角坐标系的坐标系原点位于参考椭球的中心,Z 轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈90°夹角。
某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。
空间直角坐标系可用图2-3来表示:图2-3 空间直角坐标系二、空间大地坐标系空间大地坐标系是采用大地经、纬度和大地高来描述空间位置的。
纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高是空间点沿参考椭球的法线方向到参考椭球面的距离。
空间大地坐标系可用图2-4来表示:图2-4空间大地坐标系三、平面直角坐标系平面直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间大地坐标通过某种数学变换映射到平面上,这种变换又称为投影变换。
投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等。
在我国采用的是高斯-克吕格投影也称为高斯投影。
UTM 投影和高斯投影都是横轴墨卡托投影的特例,只是投影的个别参数不同而已。
高斯投影是一种横轴、椭圆柱面、等角投影。
从几何意义上讲,是一种横轴椭圆柱正切投影。
如图左侧所示,设想有一个椭圆柱面横套在椭球外面,并与某一子午线相切(此子午线称为中央子午线或轴子午线),椭球轴的中心轴CC ’通过椭球中心而与地轴垂直。
高斯投影满足以下两个条件:1、 它是正形投影;2、 中央子午线投影后应为x 轴,且长度保持不变。
将中央子午线东西各一定经差(一般为6度或3度)范围内的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯平面直角坐标系,如下图2-5右侧所示。
空间坐标变换公式

空间坐标变换公式
空间坐标变换公式是一种将一个坐标系中的点转换到另一个坐标系中的方法。
假设原坐标系是A,目标坐标系是B,则该变换公式可以表示为:
B = TA * A + TB
其中B表示目标坐标系中的点,A表示原坐标系中的点,TA表示原坐标系到公共坐标系的旋转矩阵,TB表示公共坐标系到目标坐标系的旋转矩阵。
这个公式可以通过一系列的数学运算来实现坐标系之间的转换,常用的变换包括平移、旋转和缩放等操作。
这些操作可以根据实际应用需求进行灵活组合,从而实现不同坐标系间的变换。
通过空间坐标变换公式,我们可以方便地将点从一个坐标系转换到另一个坐标系中,从而实现不同坐标系下的数据分析、计算和可视化等工作。
这个公式在计算机科学、数学、物理学等领域中有着广泛的应用。
空间大地坐标系与平面直角坐标系转换公式

§2.3.1 坐标系的分类正如前面所提及的,所谓坐标系指的是描述空间位置的表达形式,即采用什么方法来表示空间位置。
人们为了描述空间位置,采用了多种方法,从而也产生了不同的坐标系,如直角坐标系、极坐标系等。
在测量中常用的坐标系有以下几种:一、空间直角坐标系空间直角坐标系的坐标系原点位于参考椭球的中心,Z 轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈90°夹角。
某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。
空间直角坐标系可用图2-3来表示:图2-3 空间直角坐标系二、空间大地坐标系空间大地坐标系是采用大地经、纬度和大地高来描述空间位置的。
纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高是空间点沿参考椭球的法线方向到参考椭球面的距离。
空间大地坐标系可用图2-4来表示:图2-4空间大地坐标系三、平面直角坐标系平面直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间大地坐标通过某种数学变换映射到平面上,这种变换又称为投影变换。
投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等。
在我国采用的是高斯-克吕格投影也称为高斯投影。
UTM 投影和高斯投影都是横轴墨卡托投影的特例,只是投影的个别参数不同而已。
高斯投影是一种横轴、椭圆柱面、等角投影。
从几何意义上讲,是一种横轴椭圆柱正切投影。
如图左侧所示,设想有一个椭圆柱面横套在椭球外面,并与某一子午线相切(此子午线称为中央子午线或轴子午线),椭球轴的中心轴CC ’通过椭球中心而与地轴垂直。
高斯投影满足以下两个条件:1、 它是正形投影;2、 中央子午线投影后应为x 轴,且长度保持不变。
将中央子午线东西各一定经差(一般为6度或3度)范围内的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯平面直角坐标系,如下图2-5右侧所示。
坐标转换之计算公式

坐标转换之计算公式、参心大地坐标与参心空间直角坐标转换1名词解释:A :参心空间直角坐标系:Y 轴在赤道面上与 X 轴垂直,构成右手直角坐标系 0-XYZ ;2参心大地坐标转换为参心空间直角坐标:X =(N +H )*cosB*cosL Y = ( N + H ) * cosB * sin L Z =[N*(1—e 2) +H]*sin B J公式中,N 为椭球面卯酉圈的曲率半径, e 为椭球的第一偏心率,a 、b 椭球的长短半径,f 椭球扁率,W 为第一辅助系数J a 2 -b 2亠 72* f -1 e = -------- 或 e = ----------a f3参心空间直角坐标转换参心大地坐标a) 以参心0为坐标原点;b) Z 轴与参考椭球的短轴(旋转轴)相重合; C ) X 轴与起始子午面和赤道的交线重合;d) e) 地面点P 的点位用(X ,Y ,Z )表示; B :参心大地坐标系:a) 以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合;b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度C) 大地经度L:以过地面点的椭球子午面与起始子午面之间的夹角为大地经度d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高 H ;e) 地面点的点位用(B ,L ,H )表示。
2 2-e * sin 2 BYL =arcta n㈠XB=arctan( _______J(X2+Y2)* N *(1-e2) + HcosB高斯投影及高斯直角坐标系1、高斯投影概述中^^子午«、Q高斯-克吕格投影的条件:1.是正形投影;2.中央子午线不变形高斯投影的性质: 1.投影后角度不变;2.长度比与点位有关,与方向无关3.离中央子午线越远变形越大为控制投影后的长度变形,采用分带投影的方法。
常用3度带或6度带分带,城市或工程控制网坐标可采用不按 3度带中央子午线的任意带。
2、高斯投影正算公式:N 2 N 3 2 ** 2 **4 4x=X+—sin B cos Bl + ——sin BcosB(5-t +9* +4") l2 24+ —sin Bcos5 B(61 —58t2 +t4)|6720y =N cosBl +W COS3B(1 —t2T2)|36唱cosTim58^53、高斯投影反算公式:2X 12 2〔 y1 (1+2t 2+口2)丄6(N f 丿1+-(5+2&2+2硏+6"2+时訂表1 BJ54与 WGS84基准参数榊球体氏却轴a 〔米)叙T 轴b (米】Kr<ssscivsky 〔北京 5^ 采ni)637S2456356863. 01881 ZiC- 75 (西城 8U f Hj 36J7S1 IG 6336755.肥 IG5 816378137O3.jG753 u1 12十丄(61+90t 2 +45t 4 丨- 360 "丿cosB f 参考椭球体 长半轴 短半轴 扁率BJ54基准参数 Krasovsky_1940 6378245 6356863.0188 298.3WGS84基准参数WGS 84 6378137 6356752.3142 298.257224附2高斯正反算参数pi =0.0174532925 探※0.0174532925199133 //n长半轴A二6378245.0;扁申f=l-0 298. 3; //54年北京坐标系参数长半轴泸6378140.0; M率匸1/29& 257: //80邙西安坐标系参数长半轴a=6378137m;f=l:298. 257223563. /9GS・8芒加杯系x=E|+ sin B CQS B-严+ —^sin B cos' 5(5 -『+ 9h + 4?/)严」2//2 2 计J '"+ —~- sin B cos' 5(61-58?+Z720Q"y = £gsB・r + -^^cos' B(1 一尸 + 〃2)严,p" 6Q"3 / + 12, "55(5 — 18尸 + 严+147/2 -587/2尸)严t = tanB,Tf = cos^ B2、高斯投影坐标反算公式:x.y^B. /满足以下三个条件:①左坐标轴投影后为中央子午线是投影的对称轴;②X坐标轴投彩后长度不变;③投影具有正形性质,即正形投影条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角度变形
11
地理空间数学基础
20பைடு நூலகம்7-03
胡 嘉 骢
BNUEP
地 理 信 息 系 统
地图投影:投影方法
地球
投影面
12
地理空间数学基础
2007-03
胡 嘉 骢
BNUEP
地 理 信 息 系 统
地图投影:投影方式
几何投影 构成方式 地图投影
方位投影 圆锥投影 圆柱投影
变形规律
直接建立在球体上的地理坐标,用 经度和纬度表达地理对象位置
投 影
建立在平面上的直角坐标系统,用 (x,y)表达地理对象位置
4
地理空间数学基础
2007-03
胡 嘉 骢
BNUEP
地 理 信 息 系 统
定位坐标系:高程系统
A hAB H ´A 任意水准面 HA HB H ´B
大地水准面
铅垂线
5
地理空间数学基础
地 理 信 息 系 统
地图投影:投影命名
不同类型地球投影命名规则为:投影面与地球自转 轴间的方位关系+投影变形性质+投影面与地球相 割(或相切)+投影构成方法。如正轴等角切圆柱 投影。
也可以用该投影发明者的名字命名,如横轴等角切 圆柱投影也称为高斯-克吕格投影。
15
地理空间数学基础
2007-03
胡 嘉 骢
BNUEP
地 理 信 息 系 统
地图投影:常见投影
高斯—克吕格投影
高斯投影示意图
高斯投影的中央经线和赤道为互相垂直的直线,其他经线均为凹向,并 对称于中央经线的曲线,其他纬线均是以赤道为对称轴的向两极弯曲的 曲线,经纬线成直角相交。高斯投影的变形特征是:在同一条经线上, 长度变形随纬度的降低而增大,在赤道处为最大;在同一条纬线上,长 度变形随经差的增加而增大,且增大速度较快。在6˚带范围内,长度最 大变形不超过0.14%。
17
地理空间数学基础
2007-03
胡 嘉 骢
BNUEP
地 理 信 息 系 统
地图投影:常见投影
横轴墨卡托投影-(UTM)
UTM投影是一种横割圆柱等角投影。美国编制世界各地军用地图和地球资 源卫星像片所采用的全球横轴墨卡托投影(UTM)是横轴墨卡托投影的一 种变型。UTM是国际比较通用的地图投影,主要用于全球自84˚N-80˚S之 间地区的制图。
16
地理空间数学基础
2007-03
胡 嘉 骢
BNUEP
地 理 信 息 系 统
地图投影:常见投影
高斯—克吕格投影
我国规定1:1万、1:2.5万、1:5万、1:10万、1:25万、1:50万比例尺地形 图,均采用高斯投影。1:2.5至1:50万比例尺地形图采用经差6˚分带, 1:1万比例尺地形图采用经差3˚分带。 高斯克吕格投影上,规定以中央经线为X轴,赤道为Y轴,两轴的交点为 坐标原点。X坐标值在赤道以北为正,以南为负;Y坐标值在中央经线以 东为正,以西为负。 我国在北半球,X坐标皆为正值。Y坐标在中央经线以西为负值,使用很 不方便。为了避免Y坐标出现负值,将各带的坐标纵轴西移500km,即将 所有Y值都加500km。由于采用了分带方法,各带的投影完全相同,某一 坐标值(x,y),在每一投影带中均有一个,在全球则有60个同样的坐 标值,不能确切表示该点的位置。因此,在Y值前,需冠以带号,这样的 坐标称为通用坐标。
x y
f1 ( , )
f 2 ( , )
当给定不同的具体条件时,将得到不同类型的投影方式
10
地理空间数学基础
2007-03
胡 嘉 骢
BNUEP
地 理 信 息 系 统
地图投影:投影变形
将不可展的地球椭球面展开成平面,并且不能有 Mercator Projection Mollweide Projection 断裂,则图形必将在某些地方被拉伸,某些地方 被压缩,故投影变形是不可避免的。
2007-03
胡 嘉 骢
BNUEP
地 理 信 息 系 统
定位坐标系:高程系统
黄海海面 1952-1979年平 均海水面为0米 水准原点 1985国家高 程基准, 72.2604米
6
地理空间数学基础
2007-03
胡 嘉 骢
BNUEP
地 理 信 息 系 统
地图投影
为什么要进行投影 地图投影实质 地图投影变形 地图投影方法 投影选择所考虑的因素 我国常用的地图投影方式
地理信息系统
——地理空间数学基础
主讲教师:胡嘉骢
不 动 产 学 院 2008-09
BNUEP
地 理 信 息 系 统
地球模型:三级近似
地球自然表面 水准面所包围的球体
极不规则,无法用数学表面进行描述 不规则性、动态性、不唯一性
大地水准面所包围的球体
不规则性、相对唯一性
标准数学曲面 1952:海福特椭球 1953:克拉索夫斯基椭球 1978:1975年国际椭球 1984:WGS-84
8
地理空间数学基础
2007-03
胡 嘉 骢
BNUEP
地 理 信 息 系 统
地图投影概念
地球
投影面
9
地理空间数学基础
2007-03
胡 嘉 骢
BNUEP
地 理 信 息 系 统
地图投影实质
建立地球椭球面上经纬线网和平面上相应经纬线网的数学基
础,也就是建立地球椭球面上的点的地理坐标(λ,φ)与 平面上对应点的平面坐标(x,y)之间的函数关系:
2007-03 胡 嘉 骢
旋转椭球体
2
地理空间数学基础
BNUEP
地 理 信 息 系 统
地球椭球
N b O λ P A a E
W
φ
固体地球表面
S 地球椭球体
x2 y2 z2 2 2 1 2 a a b
3
地理空间数学基础
2007-03
胡 嘉 骢
BNUEP
地 理 信 息 系 统
定位坐标系:平面系统
伪方位投影 伪圆锥投影 非几何投影 伪圆柱投影 多圆锥投影 等积投影 等角投影 任意投影
相对位置
13
相切投影 相割投影
2007-03 胡 嘉 骢
地理空间数学基础
BNUEP
地 理 信 息 系 统
地图投影:投影方式
正轴 圆 锥 横轴 斜轴
圆 柱
方 位
14
地理空间数学基础
2007-03
胡 嘉 骢
BNUEP
7
地理空间数学基础
2007-03
胡 嘉 骢
BNUEP
地 理 信 息 系 统
地图投影:为什么要进行投影?
将地球椭球面上的点映射到平面上的方法,称为地 图投影 地理坐标为球面坐标,不方便进行距离、方位、面 积等参数的量算 地球椭球体为不可展曲面
地图为平面,符合视觉心理,并易于进行距离、方 位、面积等量算和各种空间分析