最新坐标系中的平行四边形

合集下载

专题07 特殊平行四边形综合的压轴真题训练(解析版)--2023 年中考数学压轴真题汇编

专题07  特殊平行四边形综合的压轴真题训练(解析版)--2023 年中考数学压轴真题汇编

挑战2023年中考数学选择、填空压轴真题汇编专题07特殊平行四边形综合的压轴真题训练一.平行四边形的性质1.(2022•日照)如图,在平面直角坐标系中,平行四边形OABC的顶点O在坐标原点,点E是对角线AC上一动点(不包含端点),过点E作EF∥BC,交AB于F,点P在线段EF上.若OA=4,OC=2,∠AOC=45°,EP=3PF,P点的横坐标为m,则m的取值范围是()A.4<m<3+B.3﹣<m<4C.2﹣<m<3D.4<m<4+【答案】A【解答】解:可得C(,),A(4,0),B(4+,),∴直线AB的解析式为:y=x﹣4,∴x=y+4,直线AC的解析式为:y=﹣,∴x=4+y﹣2y,∴点F的横坐标为:y+4,点E的横坐标为:4+y﹣2y,∴EF=(y+4)﹣(4+y﹣2y)=2,∵EP=3PF,∴PF=EF=y,∴点P的横坐标为:y+4﹣y,∵0<y<,∴4<y+4﹣y<3+,故答案为:A.2.(2022•无锡)如图,在▱ABCD中,AD=BD,∠ADC=105°,点E在AD 上,∠EBA=60°,则的值是()A.B.C.D.【答案】D【解答】解:如图,过点B作BH⊥AD于H,设∠ADB=x,∵四边形ABCD是平行四边形,∴BC∥AD,∠ADC=∠ABC=105°,∴∠CBD=∠ADB=x,∵AD=BD,∴∠DBA=∠DAB=,∴x+=105°,∴x=30°,∴∠ADB=30°,∠DAB=75°,∵BH⊥AD,∴BD=2BH,DH=BH,∵∠EBA=60°,∠DAB=75°,∴∠AEB=45°,∴EH=BH,∴DE=BH﹣BH=(﹣1)BH,∵AB===(﹣)BH=CD,∴=,故选:D.二.矩形的性质3.(2022•泰安)如图,四边形ABCD为矩形,AB=3,BC=4,点P是线段BC 上一动点,点M为线段AP上一点,∠ADM=∠BAP,则BM的最小值为()A.B.C.﹣D.﹣2【答案】D【解答】解:如图,取AD的中点O,连接OB,OM.∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC=4,∴∠BAP+∠DAM=90°,∵∠ADM=∠BAP,∴∠AMD=90°,∵AO=OD=2,∴OM=AD=2,∴点M在以O为圆心,2为半径的⊙O上,∵OB===,∴BM≥OB﹣OM=﹣2,∴BM的最小值为﹣2.故选:D.4.(2022•丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN.已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.AE=a,DE=b,且a>b.(1)若a,b是整数,则PQ的长是;(2)若代数式a2﹣2ab﹣b2的值为零,则的值是.【答案】a﹣b;3+2.【解答】解:(1)由图可知:PQ=a﹣b,故答案为:a﹣b;(2)∵a2﹣2ab﹣b2=0,∴a2﹣b2=2ab,(a﹣b)2=2b2,∴a=b+b(负值舍),∵四个矩形的面积都是5.AE=a,DE=b,∴EP=,EN=,则======3+2.故答案为:3+2.5.(2022•宿迁)如图,在矩形ABCD 中,AB =6,BC =8,点M 、N 分别是边AD 、BC 的中点,某一时刻,动点E 从点M 出发,沿MA 方向以每秒2个单位长度的速度向点A 匀速运动;同时,动点F 从点N 出发,沿NC 方向以每秒1个单位长度的速度向点C 匀速运动,其中一点运动到矩形顶点时,两点同时停止运动,连接EF ,过点B 作EF 的垂线,垂足为H .在这一运动过程中,点H 所经过的路径长是.【答案】π【解答】解:如图1中,连接MN 交EF 于点P ,连接BP .∵四边形ABCD 是矩形,AM =MD ,BN =CN ,∴四边形ABNM 是矩形,∴MN =AB =6,∵EM ∥NF ,∴△EPM ∽△FPN ,∴===2,∴PN=2,PM=4,∵BN=4,∴BP===2,∵BH⊥EF,∴∠BHP=90°,∴点H在BP为直径的⊙O上运动,当点E与A重合时,如图2中,连接OH,ON.点H的运动轨迹是.此时AM=4,NF=2,∴BF=AB=6,∵∠ABF=90°,BH⊥AF,∴BH平分∠ABF,∴∠HBN=45°,∴∠HON=2∠HBN=90°,∴点H的运动轨迹的长==π.故答案为:π.6.(2022•西宁)矩形ABCD中,AB=8,AD=7,点E在AB边上,AE=5.若点P是矩形ABCD边上一点,且与点A,E构成以AE为腰的等腰三角形,则等腰三角形AEP的底边长是.【答案】5或4【解答】解:如图所示,①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=5;②当P1E=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴P1B=,∴底边AP1=;综上所述:等腰三角形AEP1的底边长为5或4;故答案为:5或4.三.正方形的性质和判定7.(2022•泸州)如图,在边长为3的正方形ABCD中,点E是边AB上的点,且BE=2AE,过点E作DE的垂线交正方形外角∠CBG的平分线于点F,交边BC于点M,连接DF交边BC于点N,则MN的长为()A.B.C.D.1【答案】B【解答】解:作FH⊥BG交于点H,作FK⊥BC于点K,∵BF平分∠CBG,∠KBH=90°,∴四边形BHFK是正方形,∵DE⊥EF,∠EHF=90°,∴∠DEA+∠FEH=90°,∠EFH+∠FEH=90°,∴∠DEA=∠EFH,∵∠A=∠EHF=90°,∴△DAE∽△EHF,∴,∵正方形ABCD的边长为3,BE=2AE,∴AE=1,BE=2,设FH=a,则BH=a,∴,解得a=1;∵FK⊥CB,DC⊥CB,∴△DCN∽△FKN,∴,∵BC=3,BK=1,∴CK=2,设CN=b,则NK=2﹣b,∴,解得b=,即CN=,∵∠A=∠EBM,∠AED=∠BME,∴△ADE∽△BEM,∴,∴,解得BM=,∴MN=BC﹣CN﹣BM=3﹣﹣=,故选:B.8.(2022•泰州)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE为一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2、d3,则d1+d2+d3的最小值为()A.B.2C.2D.4【答案】C【解答】解:如图,连接AE,∵四边形DEFG是正方形,∴∠EDG=90°,EF=DE=DG,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∴∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴AE=CG,∴d1+d2+d3=EF+CF+AE,∴点A,E,F,C在同一条线上时,EF+CF+AE最小,即d1+d2+d3最小,连接AC,∴d1+d2+d3最小值为AC,在Rt△ABC中,AC=AB=2,∴d1+d2+d3最小=AC=2,故选:C.9.(2022•广西)如图,在正方形ABCD中,AB=4,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是.【答案】5+【解答】解:如图,过点E作EM⊥BC于M,作EN⊥CD于N,过点F作FP⊥AC于P,连接GH,∵将△EFH沿EF翻折得到△EFH′,∴△EGH'≌△EGH,∵四边形ABCD是正方形,∴AB=CD=BC=4,∠BCD=90°,∠ACD=∠ACB=45°,∴BD=BC=8,△CPF是等腰直角三角形,∵F是CD的中点,∴CF=CD=2,∴CP=PF=2,OB=BD=4,∵∠ACD=∠ACB,EM⊥BC,EN⊥CD,∴EM=EN,∠EMC=∠ENC=∠BCD=90°,∴∠MEN=90°,∵EF⊥BE,∴∠BEF=90°,∴∠BEM=∠FEN,∵∠BME=∠FNE,∴△BME≌△FNE(ASA),∴EB=EF,∵∠BEO+∠PEF=∠PEF+∠EFP=90°,∴∠BEO=∠EFP,∵∠BOE=∠EPF=90°,∴△BEO≌△EFP(AAS),∴OE=PF=2,OB=EP=4,∵tan∠OEG==,即=,∴OG=1,∴EG==,∵OB∥FP,∴∠OBH=∠PFH,∴tan∠OBH=tan∠PFH,∴=,∴==2,∴OH=2PH,∵OP=OC﹣PC=4﹣2=2,∴OH=×2=,在Rt△OGH中,由勾股定理得:GH==,∴△EGH′的周长=△EGH的周长=EH+EG+GH=2+++=5+.故答案为:5+.10.(2022•安徽)如图,四边形ABCD是正方形,点E在边AD上,△BEF是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F 作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:(1)∠FDG=°;(2)若DE=1,DF=2,则MN=.【答案】45°【解答】解:由题知,△BEF是以E为直角顶点的等腰直角三角形,∴∠AEB+∠GEF=90°,∵∠AEB+∠ABE=90°,∴∠GEF=∠ABE,在△ABE和△GEF中,,∴△ABE≌△GEF(AAS),∴EG=AB=AD,GF=AE,即DG+DE=AE+DE,∴DG=AE,∴DG=GF,即△DGF是等腰直角三角形,∴∠FDG=45°,故答案为:45°;(2)∵DE=1,DF=2,由(1)知,△DGF是等腰直角三角形,∴DG=GF=2,AB=AD=CD=ED+DG=2+1=3,延长GF交BC延长线于点H,∴CD∥GH,∴△EDM∽△EGF,∴,即,∴MD=,同理△BNC∽△BFH,∴,即,∴,∴NC=,∴MN=CD﹣MD﹣NC=3﹣﹣=,故答案为:.11.(2022•达州)如图,在边长为2的正方形ABCD中,点E,F分别为AD,CD边上的动点(不与端点重合),连接BE,BF,分别交对角线AC于点P,Q.点E,F在运动过程中,始终保持∠EBF=45°,连接EF,PF,PD.下列结论:①PB=PD;②∠EFD=2∠FBC;③PQ=P A+CQ;④△BPF为等腰直角三角形;⑤若过点B作BH⊥EF,垂足为H,连接DH,则DH的最小值为2﹣2,其中所有正确结论的序号是.【答案】①②④⑤【解答】解:如图,∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCP=45°,在△BCP和△DCP中,,∴△BCP≌△DCP(SAS),∴PB=PD,故①正确,∵∠PBQ=∠QCF=45°,∠PQB=∠FQC,∴△PQB∽△FQC,∴=,∠BPQ=∠CFQ,∴=,∵∠PQF=∠BQC,∴△PQF∽△BQC,∴∠QPF=∠QBC,∵∠QBC+∠CFQ=90°,∴∠BPF=∠BPQ+∠QPF=90°,∴∠PBF=∠PFB=45°,∴PB=PF,∴△BPF是等腰直角三角形,故④正确,∵∠EPF=∠EDF=90°,∴E,D,F,P四点共圆,∴∠PEF=∠PDF,∵PB=PD=PF,∴∠PDF=∠PFD,∵∠AEB+∠DEP=180°,∠DEP+∠DFP=180°,∴∠AEB=∠DFP,∴∠AEB=∠BEH,∵BH⊥EF,∴∠BAE=∠BHE=90°,∵BE=BE,∴△BEA≌△BEH(AAS),∴AB=BH=BC,∵∠BHF=∠BCF=90°,BF=BF,∴Rt△BFH≌Rt△BFC(HL),∴∠BFC=∠BFH,∵∠CBF+∠BFC=90°,∴2∠CBF+2∠CFB=180°,∵∠EFD+∠CFH=∠EFD+2∠CFB=180°,∴∠EFD=2∠CBF,故②正确,将△ABP绕点B顺时针旋转90°得到△BCT,连接QT,∴∠ABP=∠CBT,∴∠PBT=∠ABC=90°,∴∠PBQ=∠TBQ=45°,∵BQ=BQ,BP=BT,∴△BQP≌△BQT(SAS),∴PQ=QT,∵QT<CQ+CT=CQ+AP,∴PQ<AP+CQ,故③错误,连接BD,DH,∵BD=2,BH=AB=2,∴DH≥BD﹣BH=2﹣2,∴DH的最小值为2﹣2,故⑤正确,故答案为:①②④⑤.12.(2022•南通)如图,点O是正方形ABCD的中心,AB=3.Rt△BEF中,∠BEF=90°,EF过点D,BE,BF分别交AD,CD于点G,M,连接OE,OM,EM.若BG=DF,tan∠ABG=,则△OEM的周长为.【答案】3+3【解答】解:如图,连接BD,过点F作FH⊥CD于点H.∵四边形ABCD是正方形,∴AB=AD=3,∠A=∠ADC=90°,∵tan∠ABG==,∴AG=,DG=2,∴BG===2,∵∠BAG=∠DEG=90°,∠AGB=∠DGE,∴△BAG∽△DEG,∴==,∠ABG=∠EDG,∴==,∴DE=,EG=,∴BE=BG+EG=2+=,∵∠ADH=∠FHD=90°,∴AD∥FH,∴∠EDG=∠DFH,∴∠ABG=∠DFH,∵BG=DF=2,∠A=∠FHD=90°,∴△BAG≌△FHD(AAS),∴AB=FH,∵AB=BC,∴FH=BC,∵∠C=∠FHM=90°,∴FH∥CB,∴==1,∴FM=BM,∵EF=DE+DF=+2=,∴BF==4,∵∠BEF=90°,BM=MF,∴EM=BF=2,∵BO=OD,BM=MF,∴OM=DF=,∵OE=BD=×6=3,∴△OEM的周长=3++2=3+3,解法二:辅助线相同.证明△BAG≌△FHD,推出AB=HF=3,再证明△FHM≌△BCM,推出CM=HM=,求出BD,DF,BF,利用直角三角形斜边中线的性质,三角形中位线定理,可得结论.故答案为:3+3.13.(2022•攀枝花)如图,以△ABC的三边为边在BC上方分别作等边△ACD、△ABE、△BCF.且点A在△BCF内部.给出以下结论:①四边形ADFE是平行四边形;②当∠BAC=150°时,四边形ADFE是矩形;③当AB=AC 时,四边形ADFE是菱形;④当AB=AC,且∠BAC=150°时,四边形ADFE 是正方形.其中正确结论有(填上所有正确结论的序号).【答案】①②③④【解答】解:①∵△ABE、△CBF是等边三角形,∴BE=AB,BF=CB,∠EBA=∠FBC=60°;∴∠EBF=∠ABC=60°﹣∠ABF;∴△EFB≌△ACB(SAS);∴EF=AC=AD;同理由△CDF≌△CAB,得DF=AB=AE;由AE=DF,AD=EF即可得出四边形ADFE是平行四边形,故结论①正确;②当∠BAC=150°时,∠EAD=360°﹣∠BAE﹣∠BAC﹣∠CAD=360°﹣60°﹣150°﹣60°=90°,由①知四边形AEFD是平行四边形,∴平行四边形ADFE是矩形,故结论②正确;③由①知AB=AE,AC=AD,四边形AEFD是平行四边形,∴当AB=AC时,AE=AD,∴平行四边形AEFD是菱形,故结论③正确;④综合②③的结论知:当AB=AC,且∠BAC=150°时,四边形AEFD既是菱形,又是矩形,∴四边形AEFD是正方形,故结论④正确.故答案为:①②③④.四.菱形的性质14.(2022•丽水)如图,已知菱形ABCD的边长为4,E是BC的中点,AF平分∠EAD交CD于点F,FG∥AD交AE于点G.若cos B=,则FG的长是()A.3B.C.D.【答案】B【解答】解:方法一,如图,过点A作AH⊥BE于点H,过点F作FQ⊥AD于点Q,∵菱形ABCD的边长为4,∴AB=AD=BC=4,∵cos B==,∴BH=1,∴AH===,∵E是BC的中点,∴BE=CE=2,∴EH=BE﹣BH=1,∴AH是BE的垂直平分线,∴AE=AB=4,∵AF平分∠EAD,∴∠DAF=∠FAG,∵FG∥AD,∴∠DAF=∠AFG,∴∠F AG=∠AFG,∴GA=GF,设GA=GF=x,∵AE=CD=4,FG∥AD,∴DF=AG=x,cos D=cos B==,∴DQ=x,∴FQ===x,=S梯形CEGF+S梯形GFDA,∵S梯形CEAD∴×(2+4)×=(2+x)×(﹣x)+(x+4)×x,解得x=,则FG的长是.或者:∵AE=CD=4,FG∥AD,∴四边形AGFD的等腰梯形,∴GA=FD=GF,则x+x+x=4,解得x=,则FG的长是.方法二:如图,作AH垂直BC于H,延长AE和DC交于点M,∵菱形ABCD的边长为4,∴AB=AD=BC=4,∵cos B==,∴BH=1,∵E是BC的中点,∴BE=CE=2,∴EH=BE﹣BH=1,∴AH是BE的垂直平分线,∴AE=AB=4,所以AE=AB=EM=CM=4,设GF=x,则AG=x,GE=4﹣x,由GF∥BC,∴△MGF∽△MEC,∴=,解得x=.故选:B.15.(2022•甘肃)如图1,在菱形ABCD中,∠A=60°,动点P从点A出发,沿折线AD→DC→CB方向匀速运动,运动到点B停止.设点P的运动路程为x,△APB的面积为y,y与x的函数图象如图2所示,则AB的长为()A.B.2C.3D.4【答案】B【解答】解:在菱形ABCD中,∠A=60°,∴△ABD为等边三角形,设AB=a,由图2可知,△ABD的面积为3,∴△ABD的面积=a2=3,解得:a1=2,a2=﹣2(舍去),故选:B.。

【初二数学专题】平行四边形顶点坐标的确定(31型)

【初二数学专题】平行四边形顶点坐标的确定(31型)

【初二数学专题】平行四边形顶点坐标的确定(31型)姓名:__________指导:__________日期:__________小名老师说在平面直角坐标系中,已知任意三个不共线的点,要确定第四点的坐标,使这四个点能够构成平行四边形,这是平行四边形顶点坐标确定的最常见、最经典的一类问题,小名把它称为3+1型。

这类问题也是以后我们探究二次函数中平行四边形问题的基石,少侠们一定要掌握这类问题哦!下面和小名老师一起来探讨一下这类问题的解题思路和方法,以及配套公式.典例精讲例已知A(-1,0)、B(2,-1)、C(0,2),点D在平面直角坐标系内,且以点A、B、C、D为顶点的四边形是平行四边形,则满足条件的D点坐标是 .求解思路本题中没有规定平行四边形的顶点顺序,所以要注意进行分类讨论!分类讨论!!分类讨论!!!怎么分类呢?以哪一边为平行四边形的对角线来分类(即以哪两边为平行四边形的一组邻边来分类)分哪几类呢?分三类:(1)以BC边为对角线;(2)以AC边为对角线;(3)以AB边为对角线嘿嘿,根据上面的分析思路我们可以根据题意得出如下图形可知满足题意的点D有3个如图所示??求解方法解决此类问题的方法由很多,少侠们可以自己好好探究一下哦,今天小名老师主要给少侠们推荐一种运用中点坐标公式的方法求点坐标,如果学到手,以后解此类问题就很快.少侠们可以点下面的视频学习如何运用中点坐标公式求点的坐标哦!??针对训练如图所示,平面直角坐标系中,已知三点A(-1,0),B(2,0),C(0,1),若以A、B、C、D为顶点的四边形是平行四边形,则D点的坐标不可能是()A.(3,1)B.(-3,1)C.(1,3)D.(1,-1)答案C小结方法归纳:平行四边形顶点坐标公式:(简称:“对点法”)平面直角坐标系中,平行四边形两组相对顶点的横坐标之和相等,纵坐标之和也相等.专题小练在平面直角坐标系中,已知点A(1,3),B(2,-1),C(4,1),点D是该平面内y轴右侧的动点,若以点A、B、C、D为顶点的四边形恰好是平行四边形时,点D的坐标为 .。

平面直角坐标系平行四边形对角线公式

平面直角坐标系平行四边形对角线公式

平面直角坐标系平行四边形对角线公式(最新版)目录1.平行四边形对角线公式的背景和意义2.平行四边形对角线公式的推导过程3.平行四边形对角线公式的应用实例4.结论正文一、平行四边形对角线公式的背景和意义在平面直角坐标系中,平行四边形是一个基本的几何图形。

在解决一些与平行四边形相关的几何问题时,了解平行四边形对角线公式是非常有帮助的。

平行四边形对角线公式描述了平行四边形对角线的长度与两边长度之间的关系,具有重要的理论意义和实际应用价值。

二、平行四边形对角线公式的推导过程我们可以通过向量法来推导平行四边形对角线公式。

假设平行四边形的四个顶点分别为 A(x1, y1)、B(x2, y1)、C(x2, y2) 和 D(x1, y2),对角线 AC 和 BD 的长度分别为 a 和 b。

根据向量加法,向量 AC 可以表示为 (x2 - x1, y2 - y1),向量 BD 可以表示为 (x1 - x2, y2 - y1)。

那么,根据向量的模长公式,我们可以得到:|AC| = √[(x2 - x1) + (y2 - y1)]|BD| = √[(x1 - x2) + (y2 - y1)]通过平行四边形的性质,我们知道对角线互相平分,即 AC = BD。

将上述两个公式代入,我们可以得到:√[(x2 - x1) + (y2 - y1)] = √[(x1 - x2) + (y2 - y1)]整理后,我们可以得到平行四边形对角线公式:a = (x2 - x1) + (y2 - y1)b = (x1 - x2) + (y2 - y1)三、平行四边形对角线公式的应用实例假设一个平行四边形的边长为 3 和 4,我们需要求对角线的长度。

根据平行四边形对角线公式,我们可以得到:a = (4 - 3) + (y2 - y1) = 1 + (y2 - y1)b = (3 - 4) + (y2 - y1) = 1 + (y2 - y1)由于 a = b,我们可以得到:1 + (y2 - y1) = 1 + (y2 - y1)这个方程说明平行四边形的对角线长度相等。

坐标系中平行四边形顶点坐标规律

坐标系中平行四边形顶点坐标规律

坐标系中平行四边形顶点坐标规律亲爱的朋友们,大家好!今天我要和大家聊一聊一个很有趣的问题,那就是在坐标系中如何找到平行四边形的顶点。

这个问题听起来可能有点复杂,但其实只要我们掌握了一些基本的规律和方法,就能轻松解决。

那么,让我们一起来探索一下这个有趣的话题吧!我们要明确一点,那就是在坐标系中,平行四边形是由四个点组成的。

这四个点分别是平行四边形的四个顶点,它们分别位于不同的行和列上。

为了方便起见,我们可以将这四个点分别用字母A、B、C和D表示。

接下来,我们要分析的是这些点的坐标规律。

我们可以观察到,这四个点的横坐标都是相等的。

也就是说,无论我们在坐标系中选择哪个点作为参考,其他三个点的横坐标都是相同的。

这是因为平行四边形的对边平行,所以它们的横坐标是相等的。

然后,我们再来看看这四个点的纵坐标。

同样地,这四个点的纵坐标也是相等的。

这是因为平行四边形的对角线互相平分,所以我们可以将每个角平分到两条对角线上,这样每个角上的点的纵坐标就是相等的。

现在我们已经找到了这四个点的坐标规律:横坐标相等,纵坐标相等。

那么,我们应该如何根据这些规律来确定平行四边形的顶点呢?其实,这个问题的答案很简单。

我们只需要在坐标系中画出一个平行四边形,然后根据上述规律来确定它的顶点就可以了。

具体来说,我们可以先确定一个顶点,比如点A。

然后,我们可以观察它与另外三个顶点的关系,通过计算可以得出第三个顶点的位置。

同样地,我们可以依次计算出第四个顶点的位置。

通过这种方法,我们就可以准确地确定出平行四边形的所有顶点了。

这个过程虽然看起来有些繁琐,但是只要我们熟练掌握了坐标系的规律,就能够轻松地解决这类问题。

总的来说,找到平行四边形的顶点并不难,关键在于我们需要掌握一些基本的数学规律。

只要我们按照上述方法进行操作,就能够准确地找出平行四边形的顶点位置。

希望大家能够通过这篇文章的学习,提高自己的数学能力,更好地应对各种复杂的问题!。

2025年华师版八年级下册数学期末复习阶段拔尖专训6 一次函数中存在性问题

2025年华师版八年级下册数学期末复习阶段拔尖专训6 一次函数中存在性问题
又∵ ∠ + ∠ = 90∘ ,
∴ ∠ + ∠ = 90∘ .
∴ ∠ = 90∘ .∴ ⊥ .
(3)若点是直线上的一个动点,在
轴上是否存在另一个点,使以,,
,为顶点的四边形是平行四边形?若存
在,请直接写出点的坐标;若不存在,请
说明理由.
【解】存在.点的坐标为(−6,0)或(6,0)或(14,0).
5

2
+2
5
+
4
+ 1 = 6. ∴ =
4
.
5
4 8
5 5
∴ 点的坐标为( , ).
(3)如图②,若点为线段的
中点,点为直线上一点,点
为坐标系内一点,且以,,
,为顶点的四边形为矩形,请
直接写出所有符合条件的点的坐标.(提示:直角三角形斜
边的中线等于斜边的一半)
1 9
∵ ∠ = ∠ = 90∘ ,
∴ △≌△. ∴ = , = = 3.
设(, 0)(0 ≤ ≤ 6),则
= = ,∴ ( + 3, −). ∵ 点在
直线上,∴ − =
1
(
2
+ 3) − 3,解得
= 1. ∴ (1,0).设直线的函数表达式为
标为(6,0);当是平行四边形的对角线时,作(−6,0)关于
点的对称点,其坐标为(14,0),易知点的坐标为(14,0).
综上所述,点的坐标为(−6,0)或(6,0)或(14,0).
题型2 一次函数与矩形的存在性问题
3.如图①,在平面直角坐标系中,一次函数 = 2 + 4的图
象分别交轴,轴于,两点,将△绕点顺时针旋转

坐标系中的平行四边形共15页

坐标系中的平行四边形共15页
60、人民的幸福是至高无个的法。— —西塞 罗
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
坐标系中的平行四边形
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克

中点坐标公式在平行四边形存在性问题中的应用

中点坐标公式在平行四边形存在性问题中的应用

是 平行四边形若存在,求点P坐标,若不存在,
说明理由。
YC
A′
BO A
X
谢谢大家的参与!
的和相等
III) 知识应用:
热身训练
如图:点A(-2,3),B(1,2); 1以A,B为顶点的平行四边形有 个(试一试) 2当P,Q分别在x轴和y轴上,构成 个平行四边形,画图试一试。 3你能求出2中P,Q的坐标吗?
触摸中考
例:如图抛物线y=-
2 3
x2
+
16 3
x
的图象交x轴与点O,A,点B(0,6),
Y
PB
A
O
x1
x x2
X
x = x1 + x2 2
y = y1 + x2 2
2.平行四边形的性质;两组对边分别平行相等,对角线互相平分
II)知识探究
平行四边形ABCD,设A(x 1 ,y 1 ),Bx 2 ,y 2 )
,C(x 3 ,y 3 ),D(x 4 ,y 4 ),则其对角线交点Q
的坐标可以表示为Q(
中点坐标公式在平行四边形存在性问题中的应用平行四边形的面积公式平行四边形面积公式平行四边形对角线公式平行四边形的周长公式平行四边形公式平行四边形周长公式平行四边形的公式平行四边形法则公式平行四边形体积公式
中考高效复习小专题
坐标与几何——平行四边形存在性问题
实验中学 周金林
坐标与几何专题,其包涵知识覆盖面较广, 综合性较强,题意构思非常精巧,解题方法 灵活,对分析问题和解决问题的能力要求较高, 是近几年我市中考的“热点”,更是 难点。 存在性问题类型很多,今天这节课只研究
IV)知识总结
数形相结合 抓定点坐标,看动点特征。 设动点坐标,用中点公式。

坐标系中的平行四边形的知识

坐标系中的平行四边形的知识

坐标系中的平行四边形的知识平行四边形是几何学中一个常见的形状,它具有独特的性质和特点。

在坐标系中,平行四边形的性质可以通过坐标的运算和几何知识来得到详细描述。

平行四边形的定义平行四边形是一个具有两对边平行的四边形。

在坐标系中,平行四边形可以通过坐标点表示,其中相邻的两个点构成一条边,而相对的两个点之间的线段是平行的。

平行四边形的性质包括对角线互相平分、相对边平行等。

平行四边形的判定在坐标系中,可以通过坐标点的斜率来判定平行四边形。

如果四个点的斜率相等,则这四个点构成的四边形是平行四边形。

斜率的计算方法为两点之间纵坐标的差值除以横坐标的差值。

平行四边形的性质1.对角线互相平分:平行四边形的对角线互相平分,并且中点连线是平行四边形的对边之一。

2.相邻角互补:平行四边形的相邻内角互补,也就是说相邻角的和为180度。

3.临角相等:平行四边形的临角相等,也就是相对边之间的角相等。

4.相对边平行:平行四边形的相对边是平行的。

5.对角线长:对角线长相等。

平行四边形的性质应用平行四边形的性质在几何推导和解题中有着广泛的应用。

通过利用平行四边形的性质,可以简化几何问题的计算和分析。

在坐标系中,通过有效地利用平行四边形的知识,可以更快速地解决复杂的几何问题。

总结在坐标系中,平行四边形是一个重要的几何形状,具有多种性质和特点。

通过对平行四边形的定义、判定和性质进行深入了解,可以更好地应用几何知识解决问题。

平行四边形的知识不仅在数学领域有着重要意义,也可以延伸到其他学科和实际生活中,为我们提供更多的思维方式和解决问题的途径。

坐标系中平行四边形存在性问题探究教学设计

坐标系中平行四边形存在性问题探究教学设计

西安爱知中学第十一届校本教研备课组公开课教案年级初三备课组数学组姓名霍高峰坐标系中平行四边形存在性问题探究教学设计课堂练习:1、如图,二次函数x x y 31322—=的图象经过△AOB 的三个顶点,其中A(-1,m ),B(n,n ) . (1)求A 、B 的坐标;(2)在坐标平面上找点C ,使以A 、O 、B 、C 为顶点的四边形是平行四边形. ①这样的点C 有几个? ②能否将抛物线x x y 31322—=平移后经过A 、C 两点?若能,求出平移后经过A 、C 两点的一条..抛物线的解析式;若不能,说明理由.2、如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式;(3)点G 抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.xyBAO C《坐标系中平行四边形问题探究》教学反思一直以来,关于在坐标系中,特别在二次函数中讨论平行四边形存在性问题困扰自己,有时自己觉得非常简单的方法对于学生却如同天书一般困难,思考再三,根据平行四边形的图形特点,总结了利用表示坐标的方法解决平行四边形问题的方法。

坐标法不是探讨和论证线段的相等、三角形的全等……,而是用动态的观点看待几何图形——把平行四边形看成是由一条线段平移而成,用数的运算来描述图形的变化——用坐标表示平移,其本质是用几何变换去认识几何图形,用代数方法来解决几何问题,体现的是解析几何的思想、数形结合的思想、几何变换的思想.坐标法的思路:先由题目条件探索三点的坐标(若只有两个定点,可设一个动点的坐标).根据平行四边形的对角线互相平分这一特征,借助中点坐标公式,探索出平行四边形对角线端点坐标关系,顺利写出第四个顶点的坐标.最后根据题目的要求(动点在什么曲线上),判断平行四边形的存在性.坐标法的特点:①不会遗漏.坐标法回避了对复杂图形的相互关系的分析;②不需证明.坐标法直接写出第四个点的坐标,跨越了复杂的推理过程,回避了繁琐的证明;③不限条件.坐标法适用范围广,无论定点在什么位置、无论动点在哪几条曲线上、在什么曲线上,都可以探索,真正是以不变应万变.坐标法实际就是要用代数的方法研究几何问题,加强数形之间的联系,突出数形结合的思想.这启发我们在日常的教学活动中,要加强对新课程的研究,渗透新课程的理念,按照新课程的要求及时渗透数形结合的思想、几何变换的思想,引导学生从不同的角度思考问题,这样才能从教材简单的例、习题中获得解决问题的新方法、新思想,才能引导学生重视教材,同时培养学生探索的能力和创新的意识.从本节课学生的情况来看,学生对于这种方法接受容易,学习的兴趣也得到提升,在课堂中能够积极发言,探讨遇到的问题。

例谈求平行四边形顶点坐标方法[1]

例谈求平行四边形顶点坐标方法[1]

例谈求平行四边形顶点坐标的方法在平面直角坐标系中,求平行四边形是初中数学典型题型,通常的做法是,以一组对边为斜边,过两端点分别作出垂直于x轴和y轴的作直角边,构造出两个全等的直角三角形,得到对应直角边相等,从而转化为四边行对边顶点坐标差相等,解得未知顶点坐标。

例如:如图,在ABCD中,A 1 3(3,),4(6,)3B,10(4,)3C,求D点坐标。

解法:作AE⊥y轴,DE⊥x轴,交于点E,BF⊥y轴,CF⊥x轴,交于点F,易得Rt△ADE≌Rt△BCF ∴DE=CF,AE=BF 设D(X,Y)∴3-X=6-4,Y-13=10433,∴X=1 Y=73∴D(1,73)这一方法看似简单,但需要知道平行四边形的形状,再添四条辅助线,显得比较繁琐。

如果只知道三个顶点,在未确定平行四边形的形状或字母顺序情况下,则要分三种情况进行分类讨论,第四个顶点就有三个。

若求平行四边形顶点问题再与动点和函数相结合,作出平行四边行图形将比较难,在这种情况下,再构造直角三角形全等,就更为复杂困难了。

其实,解决平行四边形顶点坐标问题,由平移的性质来解决会更简便。

由平移的性质可知:在平移过程中,图形上每个点都沿相同的方向移动了相同的距离。

根据这一性质,我们可以利用图形变换与坐标变换关系写出变换后图形上点的坐标,而平行四边形可以看成由一条线段AB沿一定方向平移到CD,再连结AD,BC就形成了平行四边形ABCD(如图),所以A到D和B到C就有一致的平移变换方式,即向左右和向上下平移的距离相等,或得到对应顶点坐标差相等,就可以简便地解决顶点坐标问题。

请看下面例子,例1:已知:平行四边形三个顶点,A 1 3(3,),4(6,)3B,10(4,)3C,求点D的坐标。

分析:平行四边形没给出图形或字母顺序,所以要分三种情况分类(1)当BD为对角线时,由DC∥AB,可看成由AB沿BC方向平移得到ABCD,则A与D,B与D是平移变换后的对应点,因为点10(4,)3C,4(6,)3B,可知C点是由B点向左平移2个单位,向上平移2个单位得到,所以点A 1 3(3,)向左平移2个单位,向上平移2个单位得到7 (1,)3 D。

第十八章全国通用版中考数学:《平行四边形》与坐标系结合压轴题(二)—解析版

第十八章全国通用版中考数学:《平行四边形》与坐标系结合压轴题(二)—解析版

第十八章专题:《平行四边形》与坐标系结合压轴题(二)1.(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出2.(3)如图2,连接DE并延长交y轴于点F,求点F的坐标.3.由(2)有,CM=5,CE=4,ME=DM=3在Rt△CEM中,由射影定理得,CE2=CF×CM,∴16=CF×5,∴CF=3.2,∵ME×CE=CM×EF(直角三角形的面积的两种计算),∴EF=2.4,∴DF=CD-CF=4.8,BC+EF=6.4,∴E(4.8,6.4)4.已知正方形OABC在平面直角坐标系中,点A,C分别在x轴,y轴的正半轴上,等腰直角三角形OEF的直角顶点O在原点,E,F分别在OA,OC上,且OA=4,OE=2.将△OEF绕点O逆时针旋转,得△OE1F1,点E,F旋转后的对应点为E1,F1.(Ⅰ)①如图①,求E1F1的长;②如图②,连接CF1,AE1,求证△OAE1≌△OCF1;(Ⅱ)将△OEF绕点O逆时针旋转一周,当OE1∥CF1时,求点E1的坐标(直接写出结果即可).【解答】-).5.如图,在直角坐标系中,长方形ABCD(每个内角都是90°)的顶点的坐标分别是A(0,m),B(n,0),(m>n>0),点E在AD上,AE=AB,点F在y轴上,OF=OB,BF的延长线与DA 的延长线交于点M,EF与AB交于点N.(1)试求点E的坐标(用含m,n的式子表示);(2)求证:AM=AN;(3)若AB=CD=12cm,BC=20cm,动点P从B出发,以2cm/s的速度沿BC向C运动的同时,动点Q从C出发,以vcm/s的速度沿CD向D运动,是否存在这样的v值,使得△ABP与△PQC 全等?若存在,请求出v值;若不存在,请说明理由.【解答】(1)过E作EG⊥AO于G.∵∠EGA=∠EAB=∠AOB=90°,∴∠EAG+∠AEG=90°,∠EAG+∠BAO=90°,∴∠BAO=∠AEG,∵AE=AB,∴△EGA≌△AOB(AAS),∴EG=OA=m,AG=OB=n∴E(m,m+n).(2)∵OB=OF,∠BOF=90°,∴∠OFB=∠OBF=45°,∵△EGA≌△AOB,∴AG=OB=OF,∴OA=FG=EG,∴∠GFE=45°,∴∠EFB=90°,∴∠NAE=∠NFB=90°,∵∠ANE=∠FNB,∴∠AEN=∠ABM,∵∠EAN=∠BAM=90°,EA=BA,∴△EAN≌△BAM(ASA),∴AN=AM.(3)如图,∵△ABP与△PCQ全等,∠ABP=∠PCQ=90°∴有两种情形:①当AB=CD,PB=CP时,t=5(s),∴v=2.4,②当AB=PC,CQ=PB时,PB=20-12=8,∴t=4(s),∴v=2.。

平面直角坐标系下平行四边形存在性问题

平面直角坐标系下平行四边形存在性问题

平面直角坐标系下平行四边形存在性问题1、如图,将矩形OABC放置在平面直角坐标系中,OA=8,OC=12,直线与x轴交于点D,与y轴交于点E,把矩形沿直线DE翻折,点O恰好落在AB边上的点F处,M是直线DE上的一个动点,直线DF上是否存在点N,使以点C,D,M,N为顶点的四边形是平行四边形求符合题意的点N的坐标。

2、如图,在平面直角坐标系中,直线与交于点A,与x轴分别交于点B和点C,D是直线AC上一动点,E是直线AB上一动点.若以O,D,A,E为顶点的四边形是平行四边形,求符合题意的点E的坐标。

3、如图,直线与x轴、y轴分别交于A,B两点,直线BC与x轴交于点C,且∠ABC=60°,若点D在直线AB上运动,点E在直线BC上运动,且以O,B,D,E为顶点的四边形是平行四边形,求符合题意的点D的坐标。

4、如图,在平面直角坐标系中,矩形OABC的对角线AC=12,∠ACO=30°,把矩形沿直线DE翻折,使点C落在点A处,DE与AC相交于点F,若点M是直线DE上一动点,点N是直线AC上一动点,且以O,F,M,N为顶点的四边形是平行四边形,求符合题意的点N的坐标。

5、如图,直线分别交x轴、y轴于A,B两点,线段AB的垂直平分线交x轴于点C,交AB于点D.若在平面内存在点E,使得以点A,C,D,E为顶点的四边形是平行四边形,求符合题意的点E的坐标。

6、如图,在平面直角坐标系中,直线y=-x+4与x轴、y轴分别交于A,B两点,点P是直线AB上一动点,则在坐标平面内是否存在点Q,使得以O,A,P,Q为顶点的四边形是菱形(1)处理这样的问题,我们一般是转化为等腰三角形的存在性问题,那么此题我们转化为哪个等腰三角形的存在性问题( );符合题意的点P有( )个;符合题意的点Q的坐标为( )。

7、如图,在平面直角坐标系中,直线与x轴、y轴分别交于A,B两点,点P是y轴上一动点,则在坐标平面内是否存在点Q,使得以A,B,P,Q为顶点的四边形是菱形(1)处理这样的问题,我们一般是转化为等腰三角形的存在性问题,那么此题我们转化为哪个等腰三角形的存在性问题( )A.△ABQ B.△ABP C.△APQ D.△BPQ符合题意的点P有( )个;符合题意的点Q的坐标为( )。

在坐标系中求平行四边形公式

在坐标系中求平行四边形公式

在坐标系中求平行四边形公式
在数学中,平行四边形是一个具有两对平行边的四边形。

对于任意平行四边形,我们可以通过两个不同的方法来求解其面积和各个顶点坐标之间的关系。

下面将介绍这两种方法。

方法一:利用平行四边形的高度和底边长
假设我们有一个平行四边形,其底边长度为 \(a\),高度为 \(h\)。

通过几何知
识我们知道,平行四边形的面积可以表示为底边长乘以高度。

具体公式如下:\[ S = a \times h \]
其中,\(S\) 表示平行四边形的面积。

这个公式非常简单直观,只需要知道底
边长度和高度就可以轻松求解平行四边形的面积。

方法二:利用顶点坐标
假设我们有一个平行四边形,已知其四个顶点的坐标分别为 \(A(x_1, y_1)\)、
\(B(x_2, y_2)\)、\(C(x_3, y_3)\)、\(D(x_4, y_4)\)。

那么平行四边形的面积可以通
过以下公式求解:
\[ S = \frac{1}{2} \times |x_1y_2 + x_2y_3 + x_3y_4 + x_4y_1 - y_1x_2 - y_2x_3 -
y_3x_4 - y_4x_1| \]
这个公式通过计算顶点坐标的乘积和差值来求解平行四边形的面积,虽然看起
来有些复杂,但通过代入具体坐标就可以快速求解。

综上所述,我们可以通过底边长度和高度,或者通过顶点坐标,来求解平行四
边形的面积。

这些方法能够帮助我们更好地理解平行四边形的性质和计算方法。

最新初中数学函数之平面直角坐标系知识点总复习附答案解析(3)

最新初中数学函数之平面直角坐标系知识点总复习附答案解析(3)

最新初中数学函数之平面直角坐标系知识点总复习附答案解析(3)一、选择题1.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A.(1,1)B.(0,2)C.(20,)D.(﹣1,1)【答案】D【解析】分析:根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.详解:∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:2,由旋转得:OB=OB1=OB2=OB32,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(02),B2(-1,1),B3(20),…,发现是8次一循环,所以2018÷8=252 (2)∴点B2018的坐标为(-1,1)故选:D.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法2.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】分析:直接利用第二象限横纵坐标的关系得出a,b的符号,进而得出答案.详解:∵点A(a+1,b-2)在第二象限,∴a+1<0,b-2>0,解得:a<-1,b>2,则-a>1,1-b<-1,故点B(-a,1-b)在第四象限.故选D.点睛:此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.3.点P(a,b)在y轴右侧,若P到x轴的距离是2,到y轴的距离是3,则点P的坐标为()A.(﹣3,2)B.(﹣2,3)C.(3,2)或(3,﹣2)D.(2,3)或(2,﹣3)【答案】C【解析】【分析】根据点P在y轴右侧可知点P在第一象限或第四象限,结合点P到x轴的距离是2可知点P的纵坐标是2或2-,而再根据其到y轴的距离是3得出点P的横坐标是3,由此即可得出答案.【详解】∵点P在y轴右侧,∴点P在第一象限或第四象限,又∵点P到x轴的距离是2,到y轴的距离是3,∴点P的纵坐标是2或2-,横坐标是3,∴点P的坐标是(3,2)或(3,2-),故选:C.【点睛】本题主要考查了直角坐标系中各象限内点的坐标特征,熟练掌握相关概念是解题关键.4.如果点P(3x+9,12x﹣2)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.【答案】C 【解析】解:由点P(3x+9,1 2 x﹣2)在平面直角坐标系的第四象限内,得:3901202xx+⎧⎪⎨-⎪⎩><.解得:﹣3<x<4,在数轴上表示为:故选C.5.如图,在菱形ABCD中,点,B C在x轴上,点A的坐标为()0,23,分别以点,A B为圆心、大于12AB的长为半径作弧,两弧相交于点,E F.直线EF恰好经过点,D则点B的坐标为()A.()1,0B.)3,0C.()2,0D.()3,0【答案】C【解析】【分析】连接DB,如图,利用基本作图得到EF垂直平分AB,则DA=DB,再根据菱形的性质得到AD∥BC,AD=AB,则可判断△ADB为等边三角形,所以∠DAB=∠ABO=60°,然后计算出OB=2,从而得到B点坐标.【详解】解:连接DB,如图,由作法得EF垂直平分AB,∴DA=DB,∵四边形ABCD是菱形,∴AD∥BC,AD=AB,∴AD=AB=DB,∴△ADB 为等边三角形,∴∠DAB =60°,∴∠ABO =60°,∵A (0,23), ∴OA =23,∵∠ABO =60°,∠AOB =90°,∴∠BAO =30°,∴在Rt △AOB 中,AB =2OB ,∵OB 2+OA 2=AB 2,∴OB 2+()232=(2OB )2,∴OB =2(舍负),∴B (2,0).故选:C .【点睛】本题考查了作图基本作图:作已知线段的垂直平分线,也考查了线段垂直平分线的性质和菱形的性质以及30°的直角三角形的特殊性质.6.在平面直角坐标系中,若干个半径为2个单位长度,圆心角为60︒的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为2个单位长度/秒,点在弧线上的速度为23π个单位长度/秒,则2019秒时,点P 的坐标是( )A .()2019,0B .(3C .(2019,3-D .()2018,0【答案】C【解析】【分析】 如图,过半径OA 的端点A 作AB x ⊥轴于点B ,设第n 秒运动到点n P (n 为自然数),根据锐角三角函数和扇形的弧长公式求得414+34+442(41,3),(42,0),(43,3),(44,0)n n n n P n P n P n P n +++++-+,根据201945043=⨯+即可求解点P 的坐标.【详解】 如图,过半径OA 的端点A 作AB x ⊥轴于点B ,设第n 秒运动到点n P (n 为自然数)2,60OA AOB ︒=∠=Qsin 3cos 1AB OA AOB OB OA AOB ∴=⋅∠==⋅∠=,圆心角为60°的扇形的弧长为60221803ππ⨯= 12345(13),(2,0),(3,3)(4,0),3),,P P P P P ∴-L1244(413),n n P n P ++∴+4+34+4(42,0),(43,3),(44,0)n n n P n P n ++-+201945043=⨯+Q∴2019秒时,点P 的坐标为(2019,3-故答案为:C .【点睛】本题考查了坐标类的规律题,掌握各点坐标的规律是解题的关键.7.若点M 的坐标为2-a b |+1),则下列说法中正确的是 ( )A .点M 在x 轴正半轴上B .点M 在x 轴负半轴上C .点M 在y 轴正半轴上D .点M 在y 轴负半轴上【答案】C【解析】【分析】首先根据二次根式的定义及绝对值的性质分别判断出点M 的横、纵坐标的符号; 然后根据坐标轴上点的坐标特征进行分析即可作出判断.【详解】2a -有意义,则-a 2≥0,∴a =0.∵|b |≥0,∴|b |+1>0,∴点M 在y 轴的正半轴上.故选C.【点睛】本题考查的是点的坐标的知识,解题关键是熟练掌握坐标轴上点的坐标特征.8.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣5【答案】A【解析】分析:根据点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,得到4=|2a +2|,即可解答.详解:∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,∴4=|2a +2|,a +2≠3,解得:a =−3,故选A .点睛:考查点的坐标的相关知识;用到的知识点为:到x 轴和y 轴的距离相等的点的横纵坐标相等或互为相反数.9.如果点在第四象限,那么m 的取值范围是( ). A .B .C .D .【答案】D【解析】【分析】横坐标为正,纵坐标为负,在第四象限.【详解】解:∵点p (m ,1-2m )在第四象限,∴m >0,1-2m <0,解得:m >,故选D .【点睛】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m 的取值范围.10.平面直角坐标系中,点A(-3,2),()3,5B ,(),C x y ,若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,()3,4-B .2,()3,2C .2,()3,0D .3,()3,2【答案】D【解析】【分析】由AC ∥x 轴,A (-3,2),根据坐标的定义可求得y 值,根据线段BC 最小,确定BC ⊥AC ,垂足为点C ,进一步求得BC 的最小值和点C 的坐标.【详解】∵AC ∥x 轴,A (-3,2),(),C x y ,()3,5B ,∴y=2,当BC ⊥AC 于点C 时, 点B 到AC 的距离最短,即:BC 的最小值=5−2=3,∴此时点C 的坐标为(3,2).故选D .【点睛】本题主要考查平面直角坐标系中的点的坐标,根据题意,画出图形,掌握“直线外一点与直线上各个点的连线中,垂线段最短”,是解题的关键.11.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为( )A .(3,2)B .(﹣3,2)C .(3,﹣2)D .(﹣3,﹣2)【答案】C【解析】【分析】 先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【详解】解:如图,棋子“炮”的坐标为(3,﹣2).故选C .12.在平面直角坐标系中,以原点为中心,把点()2,3A 逆时针旋转180︒,得到点B ,则点B 的坐标为( )A .()2,3-B .()2,3--C .(2,3)-D .(3,2)--【答案】B【解析】【分析】根据中心对称的性质解决问题即可.【详解】由题意A ,B 关于O 中心对称,∵A (2,3),∴B (-2,-3),故选:B .【点睛】此题考查中心对称,坐标与图形的变化,解题的关键是熟练掌握基本知识,属于中考常考题型.13.如图,小手盖住的点的坐标可能为( )A .(-1,1)B .(-1,-1)C .(1,1)D .(1,-1)【答案】D【解析】【详解】 解:根据第四象限的坐标特征,易得小手盖住的点的横坐标为正,纵坐标为负,选项D 符合此特征,故选:D14.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0).根据这个规律探索可得,第100个点的坐标为( )A .(14,8)B .(13,0)C .(100,99)D .(15,14)【答案】A【解析】【详解】由图形可知:点的个数依次是1、2、3、4、5、…,且横坐标是偶数时,箭头朝上, ∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0),第100个点横坐标为14.∵在第14行点的走向为向上,∴纵坐标为从第92个点向上数8个点,即为8;∴第100个点的坐标为(14,8).故选A .【点睛】本题主要考查了根据图形的变化找规律的方法,首先要分析图形中每一列的点人个数的变化规律是,1,2,3,4,5,…,由此找出第100个点所在的列,再根据奇数列是从上往下依次增加1,偶数列是从下往上依次增加1,由此即可找到第100个点所对应的坐标.15.如图,在平面直角坐标系中.四边形OABC 是平行四边形,其中()()2,03,1,A B 、将ABCD Y 在x 轴上顺时针翻滚.如:第一次翻滚得到111,AB C O Y 第二次翻滚得到1122B AO C Y ,···则第五次翻滚后,C 点的对应点坐标为( )A .()622,2+B .()2,622+ C .()2,622- D .()622,2- 【答案】A【解析】【分析】ABCD Y 在x 轴上顺时针翻滚,四次一个循环,推出第五次翻滚后,点A 的坐标,再利用平移的性质求出C 的对应点坐标即可.【详解】连接AC ,过点C 作CH ⊥OA 于点H ,∵四边形OABC 是平行四边形,A(2,0)、B(3,1),∴C(1,1),∴∠COA=45°,OC=AB=2,∴OH= OC÷2=1,∴AH=2-1=1,∴OA=AH ,∴OC=AC ,∴∆OAC 是等腰直角三角形,∴AC ⊥OC ,∵ABCD Y 在x 轴上顺时针翻滚,四次一个循环,∴第五次翻滚后点,A 的坐标为(6+22,0),把点A 向上平移2个单位得到点C , ∴第五次翻滚后,C 点的对应点坐标为()622,2+.故选:A .【点睛】本题主要考查图形与坐标,涉及平行四边形的性质,等腰直角三角形的性质以及平移的性质,找到点的坐标的变化规律,是解的关键.16.在平面直角坐标系中.对于平面内任一点(m ,n ),规定以下两种变换: ①f (m ,n )=(m ,﹣n ),如f (2,1)=(2,﹣1);②g (m ,n )=(﹣m ,﹣n ),如g (2,1)=(﹣2,﹣1).按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(3,2)]等于()A.(3,2) B.(3.﹣2) C.(﹣3,2) D.(﹣3,﹣2)【答案】C【解析】【分析】根据f、g的规定进行计算即可得解.【详解】g[f(3,2)]=g(3,﹣2)=(﹣3,2).故选C.【点睛】本题考查了点的坐标,读懂题目信息,理解f、g的运算方法是解题的关键.Y的顶点O,A,C的坐标分别为(0,0),(4,0),(1,3),则顶点B 17.如图,若OABC的坐标为()A.(4,1)B.(5,3)C.(4,3)D.(5,4)【答案】B【解析】【分析】根据平行四边形的性质,以及点的平移性质,即可求出点B的坐标.【详解】解:∵四边形OABC是平行四边形,∴OC∥AB,OA∥BC,∴点B的纵坐标为3,∵点O向右平移1个单位,向上平移3个单位得到点C,∴点A向右平移1个单位,向上平移3个单位得到点B,∴点B的坐标为:(5,3);故选:B.【点睛】本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.18.在平面直角坐标系中,点P(1,-2)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点P(1,-2),横坐标大于0,纵坐标小于0,∴点P(1,-2)在第三象限,故选D.【点睛】本题考查了象限内点的坐标特征,关键是熟记平面直角坐标系中各个象限内点的坐标符号.19.如图所示在平面直角坐标系中,半径均为1个单位长度的半圆O 1、O 2、O 3,……,组成一条平滑的曲线,点P 从原点O出发沿这条曲线向右运动,速度为每秒2个单位长度,则第2019秒时,点P 的坐标是( )A .(2018,0)B .(2019,1)C .(2019,﹣1)D .(2020,0)【答案】C【解析】分析:计算点P 走一个半圆的时间,确定第2019秒点P 的位置.详解:点运动一个半圆用时为2ππ=2秒∵2019=1009×2+1∴2019秒时,P 在第1010个的半圆的中点处∴点P 坐标为(2019,-1)故选C .点睛:本题是平面直角坐标系下的规律探究题,解答时既要研究动点的位置规律,又要考虑坐标的象限符号.20.下列说法中,正确的是( )A .点P (3,2)到x 轴距离是3B .在平面直角坐标系中,点(2,﹣3)和点(﹣2,3)表示同一个点C .若y =0,则点M (x ,y )在y 轴上D .在平面直角坐标系中,第三象限内点的横坐标与纵坐标同号【答案】D【解析】【分析】根据点的坐标到坐标轴的距离、坐标轴上点的坐标特点及第三象限内点的坐标符号特点逐一判断可得.【详解】A、点P(3,2)到x轴距离是2,此选项错误;B、在平面直角坐标系中,点(2,﹣3)和点(﹣2,3)表示不同的点,此选项错误;C、若y=0,则点M(x,y)在x轴上,此选项错误;D、在平面直角坐标系中,第三象限内点的横坐标与纵坐标同为负号,此选项正确;故选D.【点睛】本题主要考查点的坐标,解题的关键是掌握点的坐标到坐标轴的距离、坐标轴上点的坐标特点及第三象限内点的坐标符号特点.。

平面直角坐标系平行四边形的对角坐标关系

平面直角坐标系平行四边形的对角坐标关系

平面直角坐标系平行四边形的对角坐标关系在平面直角坐标系中,有个家伙,叫做平行四边形。

哎,别看名字挺复杂,它其实就像一个四边形的兄弟,只不过是两组对边平行而已,听起来简单吧?它的对角线可是有点意思,尤其在坐标系里,咱们可以用坐标来理解它的妙处。

想象一下,你在平面直角坐标系上,画出一个平行四边形。

对角线连接了它的两个对角,哎,像是在打“飞镖”一样,目标明确,直指中心。

这个时候,大家都想知道,这对角线到底有什么秘密。

它们有个非常神奇的属性,那就是它们相交的点,正好是四边形的中心,也就是对角线的中点。

就像夫妻俩吵架,和好的时候,总得有个中间人来调和嘛。

再说这坐标关系。

假设你的平行四边形的四个点分别是A(x₁, y₁)、B(x₂, y₂)、C(x₃, y₃)、D(x₄, y₄)。

对角线AC和BD的交点坐标,嘿嘿,就是个简单的公式:((x₁ + x₃) / 2, (y₁ + y₃) / 2)。

这不是让你背数学公式,而是告诉你,找中点其实很简单。

就像是家里吃饭,大家一边吃一边聊天,聊着聊着就发现,其实都是一家的,别有一番滋味。

有意思的是,这样的关系在生活中也随处可见。

比如说,你和朋友约好一起去看电影,结果临时一个缺席了。

你坐在电影院的中间,目光四下游移,发现你对面的朋友正好和你视线相对,这就像是平行四边形的对角关系,彼此对立,却又有着无形的连接。

就是这种感觉,让人觉得很有意思,数学和生活,原来是如此紧密的结合在一起。

说到这里,大家可能会想,这些坐标、对角线,究竟有什么用呢?哈哈,其实我们生活中有很多地方都在用到这种关系。

比如说建筑设计,工程师们可不会光凭感觉来建造建筑,他们需要计算每一个角度、每一个边,确保结构的稳固。

而这个过程中,平行四边形的对角坐标关系就是他们的重要工具。

想想看,光是想象一下,房子要是歪歪斜斜,那可就尴尬了。

而在我们的日常生活中,平行四边形的对角坐标关系也在默默无闻地影响着我们。

比如说,大家在城市中移动的时候,走直线最方便,平行四边形的概念就像是指引我们走向目标的隐形导航。

【最新版】八年级数学下册课件:18.1.1平行四边形的性质

【最新版】八年级数学下册课件:18.1.1平行四边形的性质
同前面易得AB=CD=EF
两条平行线间的距离相等.
巩固练习
18.1 平行四边形/
4.如图,AB∥CD,BC⊥AB,若AB=4cm,S△ABC=12cm2, 求△ABD中AB边上的高.
解:∵S△ABC
= =
1 2
AB•BC,
1 2
×4
×BC=12cm2,
∴BC=6cm.
∵AB∥CD,
∴点D到AB边的距离等于BC的长度,
又∵AD∥BC(平行四边形的对边平行)
∴∠A+∠B=180°∠C+∠D=180° (两直线平行,同旁内角互补)
∴∠B=∠D= 180 °-∠A= 180º- 52°=128 °
巩固练习
18.1 平行四边形/
3.如图: 在 ABCD中,∠A+∠C=200° A
则:∠A= 100 ,∠B= 80 °.
探究新知
18.1 平行四边形/
四边形
两组对边分别平行 A
D
平 行

B
C
两组对边分别平行的四边形叫做平行四边形.
边 形
A
D 记作: ABCD
读作:平行四边形ABCD
B
C
∵ AB∥CD
∵四边形ABCD是平行四边形
AD∥BC
∴ AB∥CD
∴四边形ABCD是平行四边形
AD∥BC
注:图形中字母的标识顺序应为顺时针方向或逆时针方向。
1. 理解并掌握平行四边形的概念及掌握平行 四边形的定义和对边相等、对角相等的两条性 质.
探究新知
18.1 平行四边形/
知识点 1 平行四边形的定义
下列常见的四边形它们的边之间有什么关系呢?
探究新知

直角坐标系中平行四边形对角线法则

直角坐标系中平行四边形对角线法则

直角坐标系中的平行四边形对角线法则在直角坐标系中,平行四边形是一种特殊的四边形,它具有一些独特的性质和规律。

其中,对角线法则是一条重要的性质,它为我们理解和解决平行四边形相关问题提供了便利。

在本文中,我将从简单到复杂,由浅入深地探讨直角坐标系中平行四边形对角线法则的相关内容。

1. 平行四边形的定义和性质平行四边形是指具有两对平行边的四边形,它有多种特殊的性质。

对角线互相等长,即平行四边形的对角线相等。

对角线互相平分,并垂直相交。

这些性质使得对角线在平行四边形的性质和问题中扮演着重要的角色。

2. 对角线法则的基本概念对角线法则指的是在平行四边形中,两对相对的边的平方和等于对角线的平方和。

即在平行四边形ABCD中,AC²+BD²=AB²+BC²+CD²+DA²。

这一法则为我们解决平行四边形相关问题提供了一种简单而直接的方法。

3. 对角线法则的应用举例举例来说明对角线法则的应用。

假设平行四边形ABCD中,已知AB=3,BC=4,AD=5,求对角线AC的长度。

根据对角线法则,AC²=AB²+BC²+2×AB×BC×cos∠ABC,代入已知数据后可求得AC4. 对角线法则的证明与推广我们来探讨对角线法则的证明与推广。

对角线法则的证明可以使用向量、坐标和三角学等方法,这些方法各有其独特的优势和适用范围。

对角线法则在空间几何、向量运算、三角函数和解析几何等领域都有广泛的应用,是一条十分通用的数学规律。

结论通过对直角坐标系中平行四边形对角线法则的探讨,我们不仅深入理解了平行四边形的性质和规律,还学会了利用对角线法则解决相关问题。

在今后的学习和工作中,我将继续深入研究和应用这一重要的数学知识,以便更好地理解和解决相关问题。

总结本文围绕直角坐标系中平行四边形的对角线法则展开,首先介绍了平行四边形的性质和对角线法则的基本概念,然后通过应用举例说明了这一法则的实际用途,最后探讨了对角线法则的证明与推广。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
△OAC绕AC的中点旋转180°,点O落到点B的位置.抛物
线 yax2 2 3x 经过点A,点D是该抛物线的顶点.
(1) 求a的值,点B的坐标及顶点D的坐标; (2) 若点P是x轴上一点,以P、A、D为顶点作平行四边形, 该平行四边形的另一顶点F在y轴上.写出点P的坐标(直接 写出答案即可).
(1, 3 3 )
(-1,0)
F3(4+ 7,0) F4(4- 7 ,0)
(2,-3)
小结:
一个规律: 坐标系中平行四边形
对角线两个顶点的横坐标之和相等;
对角线两个顶点的纵坐标之和相等.
两种思想:
1.分类讨论思想 2.方程思想
结束语
谢谢大家聆听!!!
15
探究二:
对角线两个顶点的横坐标之和相等;
对角线两个顶点的纵坐标之和相等.
y
(c,d)B
(Aa,b)
o 图4
C’ (e-a+c,d+m) mC (e-a+c,d)
D’ (e,b+m)
m
D (e,b)
x
归纳与发现
(3)通过对图1,2,3,4的观察,你会发现: 无论 平行四边形ABCD处于直角坐标系中哪个位置,当其 顶点坐标为A(xA,yA),B( xB ,yB),
(2,0)
解:⑴把A(2,0)代入 yax2 2 3x,
得:a= 3
由题意:OA∥BC,而
OA=2,C(1, 3 3 )
∴B(3, 3 3 )
∵ y 3x22 3x
x+1=2+0
∴顶点D(1, 3)
②当P→D: 0- 3 =0+y
(2) ∵A(2,0),D(1, 3)
设P(x,0),F(0,y)
坐标系中的平行四边形
1.(1)在图1中,给出平行四边形ABCD的顶点A,B,D 的坐标, 写出图1中的顶点C的坐标是__(_5_,_2_)__
y
y
y
B(1,2) C(5,2) B(c,d) C(c+e,d)
B(c,d) C(e-a+c,d
o(A) D(4,0) x 图1
o(A) D(e,0)x 图2
A(a,b) D(e,b)
o
x
图3
(2)观在察图图2中1,2,,3给,你出能平发行现四平边行形四A边BC形D的的四顶个点顶A点,的B,D 的坐标, 横写坐出标图,2纵中坐的标顶之点间C的关坐系标吗是(?__c+_e_,_d)___
(3)的在坐图标对对3,中角角写,线线出给两两图出个个3平顶顶中行点点的四的的顶边横纵点形坐坐CA的标标B坐之之C标和和D的是相相顶(_等等_e点;_.-a_A+_c,_,d_B)_,D
变式二:如图:将△ABC绕AC的中点P旋转 180°,点B落到点 B’的位置,求点B’的坐标;
(8,9)
y
A(C’)
(B’)
(3,7)● ● P
● C (A’)

(6,4)
B (1,2)
o
x
(07中考绍兴24题)如图,在平面直角坐标系中,O为原
点,点A、C的坐标分别为(2,0)、(1,3 3 ).将
x=1
∴ y=- 3 ∴p2(1,0)
①当P→A x+2=1+0
0+0=y- 3
∴ x=-1
③当P→F: x+0=2+1
y+0=0- 3

x=3
y=- 3
∴p3(3,0)
y= 3
∴p1(-1,0)
∴存在点p1(-1,0), p2(1,0), p3(3,0)满足条件.
(07义乌)如图,抛物线
yx2 2x3与x轴交A、源自B两点(A点在B点左侧),直线与抛物
线交于A、C两点 ,其中C点的横坐标为2.
(1)求A、C两点的坐标;
(2)若点G抛物线上的动点,在x轴上是否存在点F, 使A、C、F、G这样的四个点为顶点的四边形是平 行四边形?如果存在,求出所有满足条件的F点坐标; 如果不存在, 请说明理由.
F1(1,0) F2(-3,0)
C( xC ,yC),D( xD,yD)时,
则:四个顶点的 横坐标之间的等量关系为 XA+XC=XB+XD ;
纵坐标之间的等量关系为 yA+yC=yB+yD .
y
(xB,yB)
(xA,yA)
(xC,yC)
(xD,yD)
o
x
1、如图,在平行四边形ABB1A1中A、B的坐标分别 (2,0),(0,1),则a+b的值为( A ) A、2 B、3 C、4 D、5
y
B1(a,2) B(0,1)
a+2=0+3 ∴a=1 1+b=2+0 ∴b=1
A1(3,b)
0
A(2,0)
x
变式一:如图:求点D的坐标,使以A、B、C、 D为顶点的四边形为平行四边形。
(-2,5) D2
y
(3,7)
A

D1 (8,9)
● C(6,4)

B(1,2)
o
x
D3 (4,-1)
当图形的顶点位置不确定时, 要进行分类讨论。
相关文档
最新文档