高中数学《函数的概念》答辩题目及解析
高中数学《函数的概念》答辩题目及解析
![高中数学《函数的概念》答辩题目及解析](https://img.taocdn.com/s3/m/218feb911eb91a37f0115cce.png)
高中数学《函数的概念》答辩题目及解析
1.函数的三要素是什么?
【参考答案】
函数的三要素包括:定义域、值域、对应法则。
2.本节课的教学目标是什么?
【参考答案】
(一)知识与技能
理解函数的概念,能对具体函数指出定义域、对应法则、值域,能够正确使用“区间”符号表示某些函数的定义域、值域。
(二)过程与方法
通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用进一步加深集合与对应数学思想方法。
(三)情感态度价值观
在自主探索中感受到成功的喜悦,激发学习数学的兴趣。
3.怎样才能设计好授课板书呢?你能给出几点建议吗?
【参考答案】
进行板书设计的时候要注意整体的呈现,每一个版块都可以设计的很好,要是呈现在整个黑板上呢?要从黑板全局的角度去看问题。
要站在学生的视角去看黑板,比如学生坐在座位上,与教师看到的是
不同的,所以板书不宜过高和过低等等。
要学会根据教学的内容和学生的理解情况调整板书,比如学生接受的特别好,那么一些细枝末节的板书就可以适当省略,留时间在更重要的地方。
3.高中数学教师面试:《函数的概念》-逐字稿
![3.高中数学教师面试:《函数的概念》-逐字稿](https://img.taocdn.com/s3/m/8e6df8c4804d2b160b4ec0e4.png)
篇目三1.题目:《函数的概念》2.内容:3.基本要求:(1)若教学过程中需要其他辅助教学工具,进行演示即可;(2)条理清晰,重点突出;(3)学生能掌握函数的概念;(4)恰当板书,试讲时间不超过十分钟。
《函数的概念》逐字稿各位评委老师大家好,我是今天的1号考生,今天我试讲的题目是《函数的概念》。
下面开始我的试讲。
一、温故知新,引入课题上课,同学们好,请坐。
同学们,初中我们学习过函数的概念,那在今天我们学习新课之前,先请大家进行回顾。
我听到同学们说:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值和它对应,则称x 是自变量,y 是x 的函数。
非常好,看来同学们对于我们之前学习的知识掌握的很牢固。
这是我们初中学习的函数概念,也就是从运动变化的观点出发研究两个变量之间的依赖关系,那么今天我们为什么还要学习函数的概念,高中所定义的函数的概念与初中有什么不一样,这就是我们今天所要解决的主要内容。
(注:复习初中函数概念的导入对于基础比较差的学员有一定难度,可以采用以下形式:请同学们回忆初中所学习的一次函数、二次函数与反比例函数,画出函数图象)二、层层深入,知识新授1.概念解读,初步认识首先请大家看大屏幕的第一个实例:炮弹发射后距地面的高度随时间变化的规律。
请大家在导学案中画出h =130t −5t 2的图象,我看大家画的差不多了,老师呢用几何画板将图象呈现在大屏幕上了,大家观察图象并思考以下三个问题。
1、 时间t 的变化范围是多少;高度h 的变化范围是多少?2、 100s 所对应的高度是多少?3、 如何才能真实反映炮弹的发射过程?请同桌两人相互讨论,讨论结束,我请后排的这位同学你来回答。
他说呀时间的变化范围是0-26,高度的变化范围是0-845。
好,回答的很准确。
请坐。
右排的这位同学,你来回答第二题,他说呀对应的高度为0,因为此时炮弹已经落地了。
嗯,恭喜你啊没有掉进思维陷阱里,靠窗的同学继续第三题,他的回答如果想要真实反映炮弹的发射过程,就要对时间t 有一个范围限制,也就是0-26,你的归纳概括能力特别强,请坐。
高考数学专题《函数的概念及其表示》习题含答案解析
![高考数学专题《函数的概念及其表示》习题含答案解析](https://img.taocdn.com/s3/m/eeb30bf148649b6648d7c1c708a1284ac8500506.png)
专题3.1 函数的概念及其表示1.(2021·四川达州市·高三二模(文))已知定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,则(1)f =( )A .1-B .1C .13-D .13【答案】B 【解析】当0x =时,f (1)2(0)1f +=①;当1x =时,(0)2f f +(1)2=②,由此进行计算能求出f (1)的值. 【详解】定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,∴当0x =时,f (1)2(0)1f +=,①当1x =时,(0)2f f +(1)2=,②②2⨯-①,得3f (1)3=,解得f (1)1=. 故选:B2.(2021·浙江高一期末)已知231,1,()3,1,x x f x x x +⎧=⎨+>⎩则(3)f =( )A .7B .2C .10D .12【答案】D 【解析】根据分段函数的定义计算. 【详解】由题意2(3)3312f =+=.故选:D .练基础3.(2021·全国高一课时练习)设3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,则(5)f 的值为( )A .16B .18C .21D .24【答案】B 【解析】根据分段函数解析式直接求解. 【详解】因为3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,所以(5)(10)(15)15318f f f ===+=. 故选:B.4.(2021·浙江湖州市·湖州中学高一开学考试)若函数213()22f x x x =-+的定义域和值域都是[1,]b ,则b =( ) A .1 B .3C .3-D .1或3【答案】B 【解析】 根据函数213()22f x x x =-+在[1,]b 上为增函数,求出其值域,结合已知值域可求出结果. 【详解】 因为函数213()22f x x x =-+21(1)12x =-+在[1,]b 上为增函数,且定义域和值域都是[1,]b , 所以min ()(1)f x f =1=,2max 13()()22f x f b b b b ==-+=,解得3b =或1b =(舍),故选:B5.(上海高考真题)若是的最小值,则的取值范围为( ).A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]【答案】D 【详解】由于当0x >时,1()f x x a x=++在1x =时取得最小值2a +,由题意当0x ≤时,2()()f x x a =-应该是递减的,则0a ≥,此时最小值为2(0)f a =,因此22a a ≤+,解得02a ≤≤,选D .6.(广东高考真题)函数()f x x=的定义域是______. 【答案】[)()1,00,∞-⋃+ 【解析】由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案. 【详解】由{100x x +≥≠,得1x ≥-且0x ≠.∴函数()f x =的定义域为:[)()1,00,-⋃+∞; 故答案为[)()1,00,-⋃+∞.7.(2021·青海西宁市·高三一模(理))函数()f x 的定义域为[]1,1-,图象如图1所示,函数()g x 的定义域为[]1,2-,图象如图2所示.若集合()(){}0A x f g x ==,()(){}0B x g f x ==,则A B 中有___________个元素.【答案】3 【解析】利用数形结合分别求出集合A 与集合B ,再利用交集运算法则即可求出结果. 【详解】若()()0f g x =,则()0g x =或1-或1,∴{}1,0,1,2A =-, 若()()0g f x =,则0f x 或2,∴{}1,0,1B =-,∴{}1,0,1=-AB .故答案为:3.8.(2021·湖北襄阳市·襄阳五中高三二模)已知函数22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭的定义域是[)1,+∞,则函数()y f x =的定义域是_______.【答案】(]1,2 【解析】令()()222111x x g x x x x +-=≥+-,根据函数值域的求解方法可求得()g x 的值域即为所求的()f x 的定义域.【详解】令()()222111x x g x x x x +-=≥+-,则()()222111111111x x x x g x x x x x x x x+-+==+=+≥+-+--+, 1y x x =-在[)1,+∞上单调递增,10x x∴-≥,10111x x∴<≤-+,()12g x ∴<≤,()f x ∴的定义域为(]1,2.故答案为:(]1,2.9.(2021·黑龙江哈尔滨市第六中学校高三二模(文))已知函数()221,01,0x x f x x x⎧+≥⎪=⎨<⎪⎩,若()2f a =,则实数a =___________. 【答案】1或- 【解析】分别令212a +=,212a=,解方程,求出方程的根即a 的值即可. 【详解】当0a ≥,令212a +=,解得:1a =,当0a <,令212a =,解得:2a =-, 故1a =或2-, 故答案为:1或2-. 10.(2021·云南高三二模(理))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则t 的取值范围为________.【答案】171,12⎤⎥⎦【解析】用n 表示出m ,结合二次函数的性质求得t n m =-的取值范围. 【详解】画出()f x 图象如下图所示,3114⨯+=,令()2140x x -=>,解得x =由()(),n m f n f m >=得2311m n +=-,223n m -=,且1n <≤所以(222121333n t n m n n n n -=-=-=-++<≤,结合二次函数的性质可知,当131223n =-=⎛⎫⨯- ⎪⎝⎭时,t 取得最大值为2133217322312⎛⎫-⨯++= ⎪⎝⎭,当n =时,t取得最小值为212133-⨯=. 所以t的取值范围是171,12⎤⎥⎦.故答案为:171,12⎤⎥⎦1.(2021·云南高三二模(文))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则( ) A .t 没有最小值 B .t 1 C .t 的最小值为43D .t 的最小值为1712【答案】B 【解析】先作出分段函数图象,再结合图象由()()f n f m =,得到m 与n 的关系,消元得关于n 的函数,最后求最值. 【详解】如图,作出函数()f x 的图象,练提升()()f n f m =且n m >,则1m ,且1n >,2311m n ∴+=-,即223n m -=.由21014n n >⎧⎨<-≤⎩,解得1n <≤222211317(32)()333212n n m n n n n -⎡⎤∴-=-=---=--+⎢⎥⎣⎦,又1n <≤∴当n =()min 1n m -=.故选:B.2.(2020·全国高一单元测试)已知函数21,0,()2,0,x x f x x x ⎧+≤=⎨->⎩,若()05f x =,则0x 的取值集合是( )A .{2}-B .5,22⎧⎫-⎨⎬⎩⎭C .{2,2}-D .52,2,2⎧⎫--⎨⎬⎩⎭【答案】A 【解析】根据分段函数值的求解方法,对00x ≤与00x >两种情况求解,可得答案. 【详解】若00x ≤,可得2015x +=,解得02x =-,(02x =舍去);若00x >,可得02x -=5,可得052x =-,与00x >相矛盾,故舍去,综上可得:02x =-. 故选:A.3.【多选题】(2021·全国高一课时练习)(多选题)下列函数中,定义域是其值域子集的有( )A .865y x =+ B .225y x x =--+ C .y =D .11y x=- 【答案】AC 【解析】分别求得函数的定义域和值域,利用子集的定义判断. 【详解】A 函数的定义域和值域都是R ,符合题意;B.定义域为R ,因为2225(1)66y x x x =--+=-++≤,所以函数值域为(,6]-∞,值域是定义域的真子集不符合题意;C.易得定义域为[1,)+∞,值域为[0,)+∞,定义域是值域的真子集;D.定义域为{|0}x x ≠,值域为{|1}x x ≠-,两个集合只有交集; 故选:AC4.【多选题】(2021·全国高一课时练习)已知f (x )=2211x x +-,则f (x )满足的关系有( )A .()()f x f x -=-B .1f x ⎛⎫⎪⎝⎭= ()f x - C .1f x ⎛⎫⎪⎝⎭=f (x ) D .1()()f f x x-=-【答案】BD 【解析】根据函数()f x 的解析式,对四个选项逐个分析可得答案. 【详解】因为f (x )= 2211x x+-, 所以()f x -=221()1()x x +---=2211x x +-()f x =,即不满足A 选项;1f x ⎛⎫ ⎪⎝⎭=221111x x ⎛⎫+ ⎪⎝⎭⎛⎫- ⎪⎝⎭=2211x x +-,1f x ⎛⎫⎪⎝⎭=()f x -,即满足B 选项,不满足C 选项, 1()f x -=221111x x ⎛⎫+- ⎪⎝⎭⎛⎫-- ⎪⎝⎭=2211x x +-,1()()f f x x -=-,即满足D 选项. 故选:BD5.【多选题】(2021·全国高三其他模拟)已知函数21,0,()2,0,x x f x x x x +<⎧=⎨-+≥⎩令()()()g x f f x =,则下列说法正确的是( ) A .()10g -=B .方程()2g x =有3个根C .方程()2g x =-的所有根之和为-1D .当0x <时,()()f x g x ≤【答案】ACD 【解析】由题意知()10f -=可得()10g -=;令()f x u =,因为方程()2f u =没有实根,即()2g x =没有实根;令()u f x =,则方程()2g x =-,即()2f u =-,通过化简与计算即可判断C ;当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,即可判断D . 【详解】对于A 选项,由题意知()10f -=,则()()()()1100g f f f -=-==,所以A 选项正确; 对于B 选项,令()f x u =,则求()()()2g x f f x ==的根,即求()2f u =的根, 因为方程()2f u =没有实根,所以()2g x =没有实根,所以选项B 错误;对于C 选项,令()u f x =,则方程()2g x =-,即()2f u =-,得112,03u u u +=-<⇒=-,2222,01u u u u -+=-≥⇒=由方程1()f x u =得13(0)x x +=-<或223(0)x x x -+=-≥,解得4x =-或3x =,易知方程2()f x u =,没有实数根,所以方程()2g x =-的所有根之和为-1,选项C 正确;对于D 选项,当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,当0x <时,函数()g x 的图象不在()f x 的图象的下方,所以D 选项正确,故选:ACD .6.【多选题】(2021·全国高三专题练习)已知函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞,()()()f xy f x f y =+,则( )A .()f x 的图象过点()1,0和()1,0-B .()f x 在定义域上为奇函数C .若当1x >时,有()0f x >,则当10x -<<时,()0f x <D .若当01x <<时,有()0f x <,则()0f x >的解集为()1,+∞ 【答案】AC 【解析】根据抽象函数的性质,利用特殊值法一一判断即可; 【详解】解:因为函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞,()()()f xy f x f y =+,令1x y ==,则()()()111f f f =+,则()10f =,令1x y ==-,则()()()111f f f =-+-,则()10f -=,所以()f x 过点()1,0和()1,0-,故A 正确;令1y =-,则()()()1f x f x f -=+-,即()()f x f x -=,所以()f x 为偶函数,故B 错误; 令1y x =-,则()()110f f x f x ⎛⎫-=+-= ⎪⎝⎭,则()1f f x x ⎛⎫-=- ⎪⎝⎭当1x >时,所以()11,0x -∈-,又()0f x >,则10f x ⎛⎫-< ⎪⎝⎭,即当10x -<<时,()0f x <,故C 正确;令1y x =,则()()110f f x f x ⎛⎫=+= ⎪⎝⎭,则()1f f x x ⎛⎫=- ⎪⎝⎭,当01x <<时,所以()11,x ∈+∞,又()0f x <,则10f x ⎛⎫> ⎪⎝⎭,即当1x >时,()0f x >,因为()f x 是偶函数,所以1x <-时,()0f x >,所以()0f x >的解集为()(),11,-∞-+∞,故D 错误;故选:AC7.【多选题】(2021·全国高三专题练习)已知函数()22,023,0x x x f x x x ⎧-<=⎨-+≥⎩,则( )A .()13f f -⎡⎤⎣=-⎦B .若()1f a =-,则2a =C .()f x 在R 上是减函数D .若关于x 的方程()f x a =有两解,则(]0,3a ∈ 【答案】ABD 【解析】根据函数解析式,代入数据可判断A 、B 的正误,做出()f x 的图象,可判断C 、D 的正误,即可得答案. 【详解】对于A :由题意得:2(1)(1)2(1)3f -=--⨯-=, 所以()(3)23331f f f -==-⨯+=-⎡⎤⎣⎦,故A 正确;对于B :当0a <时,2()21f a a a =-=-,解得a =1,不符合题意,舍去当0a ≥时,()231f a a =-+=-,解得2a =,符合题意,故B 正确; 对于C :做出()f x 的图象,如下图所示:所以()f x 在R 上不是减函数,故C 错误;对于D :方程()f x a =有两解,则()y f x =图象与y a =图象有两个公共点, 如下图所示所以(]0,3a ∈,故D 正确. 故选:ABD8.(2021·浙江高三月考)已知0a >,设函数2(22),(02)(),(2)x a x x a f x ax x a ⎧-++<<+=⎨≥+⎩,存在0x 满足()()00f f x x =,且()00f x x ≠,则a 的取值范围是______.1a ≤< 【解析】求得()2x ax a y =≥+关于y x =对称所得函数的解析式,通过构造函数,结合零点存在性列不等式,由此求得a 的取值范围.【详解】由于()f x 存在0x 满足()()0f f x x =,且()00f x x ≠,所以()f x 图象上存在关于y x =对称的两个不同的点.对于()()2,2y ax x a y a a =≥+≥+,交换,x y 得x ay =, 即()()12,2y x x a a y a a=≥+≥+, 构造函数()()22111222222g x x a x x x a x x x a a a a ⎛⎫⎛⎫=-++-=-++-=-++- ⎪ ⎪⎝⎭⎝⎭(()22a a x a +≤<+),所以()g x 的零点122a a +-满足()12222a a a a a+≤+-<+, 由1222a a a +-<+得()()21111001a a a a a a a a+---==<⇒<<,由()1222a a a a+≤+-得3210a a -+≤,即()()()()31111a a a a a a a --+=+---()()()21110a a a a a a ⎛=+--=--≤ ⎝⎭⎝⎭,由于01a <<1a ≤<.故答案为:112a ≤< 9. (2021·浙江高一期末)已知函数()1f x x =-+,()()21g x x =-,x ∈R .(1)在图1中画出函数()f x ,()g x 的图象;(2)定义:x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为()()(){}min ,m x f x g x =,请分别用图象法和解析式法表示函数()m x .(注:图象法请在图2中表示,本题中的单位长度请自己定义且标明)【答案】(1)图象见解析;(2)()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩;图象见解析. 【解析】(1)由一次函数和二次函数图象特征可得结果;(2)根据()m x 定义可分段讨论得到解析式;由解析式可得图象. 【详解】(1)()f x ,()g x 的图象如下图所示:(2)当0x ≤时,()211x x -≥-+,则()()1m x f x x ==-+;当01x <<时,()211x x -<-+,则()()()21m x g x x ==-; 当1≥x 时,()211x x -≥-+,则()()1m x f x x ==-+;综上所述:()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩. ()m x 图象如下图所示:10. (2021·全国高一课时练习)已知函数()12f x x x =++-,()3g x x =-. (1)在平面直角坐标系里作出()f x 、()g x 的图象.(2)x R ∀∈,用()min x 表示()f x 、()g x 中的较小者,记作()()(){}min ,x f x g x =,请用图象法和解析法表示()min x ;(3)求满足()()f x g x >的x 的取值范围.【答案】(1)答案见解析;(2)答案见解析;(3)()(),20,-∞-+∞.【解析】(1)化简函数()f x 、()g x 的解析式,由此可作出这两个函数的图象;(2)根据函数()min x 的意义可作出该函数的图象,并结合图象可求出函数()min x 的解析式; (3)根据图象可得出不等式()()f x g x >的解集. 【详解】(1)()21,2123,1212,1x x f x x x x x x -≥⎧⎪=++-=-<<⎨⎪-≤-⎩,()3,333,3x x g x x x x -≥⎧=-=⎨-<⎩. 则对应的图象如图:(2)函数()min x 的图象如图:解析式为()3,20312,21min 3,103,3x x x x x x x x x -<-≤<⎧⎪--≤≤-⎪=⎨-<<⎪⎪-≥⎩或;(3)若()()f x g x >,则由图象知在A 点左侧,B 点右侧满足条件,此时对应的x 满足0x >或2x <-, 即不等式()()f x g x >的解集为()(),20,-∞-+∞.1.(山东高考真题)设f (x )={√x,0<x <12(x −1),x ≥1 ,若f (a )=f (a +1),则f (1a )=( ) A .2 B .4 C .6 D .8 【答案】C【解析】由x ≥1时f (x )=2(x −1)是增函数可知,若a ≥1,则f (a )≠f (a +1),所以0<a <1,由f(a)=f(a +1)得√a =2(a +1−1),解得a =14,则f (1a )=f(4)=2(4−1)=6,故选C.2.(2018上海卷)设D 是含数1的有限实数集,f (x )是定义在D 上的函数,若f (x )的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1)的可能取值只能是( ) A .√3 B .√32 C .√33 D .0 【答案】B 【解析】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转π6个单位后与下一个点会重合. 我们可以通过代入和赋值的方法当f (1)=√3,√33,0时,此时得到的圆心角为π3,π6,0,然而此时x=0或练真题者x=1时,都有2个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y ,因此只有当x=√32,此时旋转π6,此时满足一个x 只会对应一个y , 故选:B .3. (2018年新课标I 卷文)设函数f (x )={2−x , x ≤01 , x >0 ,则满足f (x +1)<f (2x )的x 的取值范围是( )A. (−∞ , −1]B. (0 , +∞)C. (−1 , 0)D. (−∞ , 0) 【答案】D【解析】将函数f(x)的图象画出来,观察图象可知会有{2x <02x <x +1,解得x <0,所以满足f (x +1)<f (2x )的x 的取值范围是(−∞ , 0),故选D.4.(浙江高考真题(文))已知函数()2,1{66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦ ,()f x 的最小值是 .【答案】162- 【解析】如图根据所给函数解析式结合其单调性作出其图像如图所示,易知()()min 12,62f f f x f ⎡⎤-=-==⎣⎦.5. (2018·天津高考真题(文))已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________. 【答案】1,28⎡⎤⎢⎥⎣⎦【解析】由题意分类讨论0x >和0x ≤两种情况,结合恒成立的条件整理计算即可求得最终结果. 【详解】分类讨论:①当0x >时,()f x x ≤即:222x x a x -+-≤, 整理可得:21122a x x ≥-+, 由恒成立的条件可知:()2max 11022a x x x ⎛⎫≥-+> ⎪⎝⎭, 结合二次函数的性质可知: 当12x =时,2max 1111122848x x ⎛⎫-+=-+= ⎪⎝⎭,则18a ≥; ②当30x -≤≤时,()f x x ≤即:222x x a x ++-≤-,整理可得:232a x x ≤--+, 由恒成立的条件可知:()()2min3230a x x x ≤--+-≤≤,结合二次函数的性质可知: 当3x =-或0x =时,()2min322x x --+=,则2a ≤;综合①②可得a 的取值范围是1,28⎡⎤⎢⎥⎣⎦,故答案为1,28⎡⎤⎢⎥⎣⎦.6.(2018·浙江高考真题)已知λ∈R,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________. 【答案】(1,4) (1,3](4,)⋃+∞ 【解析】分析:根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数λ的取值范围.详解:由题意得240x x ≥⎧⎨-<⎩或22430x x x <⎧⎨-+<⎩,所以24x ≤<或12x <<,即14x <<,不等式f (x )<0的解集是(1,4),当4λ>时,()40f x x =->,此时2()430,1,3f x x x x =-+==,即在(,)λ-∞上有两个零点;当4λ≤时,()40,4f x x x =-==,由2()43f x x x =-+在(,)λ-∞上只能有一个零点得13λ<≤.综上,λ的取值范围为(1,3](4,)⋃+∞.。
高中面试数学函数试题及答案
![高中面试数学函数试题及答案](https://img.taocdn.com/s3/m/f1389e2c7ed5360cba1aa8114431b90d6c8589a6.png)
高中面试数学函数试题及答案高中数学面试试题一、选择题(每题2分,共10分)1. 函数f(x) = 2x^2 + 3x + 1的图像是一个开口向上的抛物线,其顶点坐标为:A. (0,1)B. (-3/4, -1)C. (-3/2, -1)D. (-1/4, -1)2. 已知函数y = 3x - 2,当x = 1时,y的值是:A. 1B. -1C. 3D. 53. 函数g(x) = 4x + 7在x = 2时的导数值是:A. 4B. 7C. 8D. 144. 函数h(x) = x^3 - 6x^2 + 9x + 2的零点个数是:A. 0B. 1C. 2D. 35. 函数f(x) = |x - 1| + |x + 3|的最小值是:A. 2B. 4C. 5D. 6二、填空题(每题3分,共15分)6. 函数f(x) = x^2 - 4的对称轴是________。
7. 函数y = 2^x的反函数是________。
8. 函数f(x) = x^3 + 2x^2 - x + 4的极值点是________。
9. 若函数f(x) = x^2 + bx + c在x = 2处取得最小值,则b的值为________。
10. 函数f(x) = sin(x) + cos(x)的周期是________。
三、解答题(每题10分,共20分)11. 已知函数f(x) = x^3 - 3x^2 + 2x - 1,求其导数f'(x),并找出f(x)的单调区间。
12. 已知函数g(x) = x^2 - 4x + 4,求其在区间[0, 6]上的最大值和最小值。
四、证明题(每题15分,共30分)13. 证明:对于任意实数x,函数f(x) = x^3 - 3x^2 + 2x - 1的值总是大于-1。
14. 证明:函数f(x) = x^2 + 2x + 1在(-∞, -1]区间上是单调递减的。
五、综合题(每题20分,共20分)15. 已知函数f(x) = x^2 - 4x + 4,求其在区间[0, 5]上的值域,并证明你的结论。
函数的概念与性质常见典型考题赏析
![函数的概念与性质常见典型考题赏析](https://img.taocdn.com/s3/m/35691864777f5acfa1c7aa00b52acfc789eb9ff8.png)
ʏ张文伟函数是每年高考的必考内容㊂纵观近几年的高考试题,函数的概念与性质,函数的图像与应用问题,分段函数问题,以函数形式出现的综合题和应用题一直是常考点,且常考常新㊂下面就函数的概念与性质的常见典型考题进行举例分析,供大家学习与参考㊂题型一:函数概念的理解判断对应关系是否构成函数的关键:一是自变量x的取值是否任意,二是对应的函数值y是否唯一㊂判断两个函数是否相同,要根据函数的 三要素 来判断,即看函数的定义域㊁对应关系㊁值域是否一致,当三者都一致的时候,两个函数才是相同函数㊂例1设M={x|0ɤxɤ2},N={y| 0ɤyɤ2},给出下列四个图形,如图1,图2,图3,图4,其中能表示从集合M到N的函数关系的图形有()㊂图1图2图3图4A.1个B.2个C.3个D.4个解:由函数的定义知,M中任意一个x,在N中都有唯一的y与之对应,故图1,图2,图4正确㊂应选C㊂跟踪训练1:下列函数中与函数y=x是同一个函数的是()㊂A.y=(x)2B.y=3x3C.y=4x4D.y=(x+1)2x+1-1提示:A中,y=(x)2=x(xȡ0),yȡ0,可知定义域不同且值域不同,所以两个函数不是同一个函数㊂B中,y=3x3=x(xɪR),yɪR,对应关系相同,定义域和值域都相同,所以是同一个函数㊂C中,y=4x4,yȡ0,与y=x值域不同,且当x<0时,它的对应关系与函数y=x不相同,所以不是同一个函数㊂D中,y=(x+1)2x+1-1的定义域为{x|xʂ-1},与函数y=x的定义域不相同,所以不是同一个函数㊂应选B㊂题型二:求具体函数的定义域函数的定义域是指使函数有意义的自变量的取值集合,其实质是以使函数的表达式所含运算有意义为原则㊂函数的定义域要用集合或区间的形式表示㊂若已知函数f(x)的定义域为[a,b],则函数f[g(x)]的定义域是指满足不等式aɤg(x)ɤb的x取值范围;已知f[g(x)]的定义域是[a,b],指的是xɪ[a,b],要求f(x)的定义域,就是求xɪ[a,b]时g(x)的值域㊂例2函数y=x+3-3x2+x-6的定义域是㊂解:要使此函数有意义,x必须满足x+3ȡ0,x2+x-6ʂ0,{即xȡ-3,xʂ2且xʂ-3,{也即x>-3且xʂ2,所以函数的定义域为(-3, 2)ɣ(2,+ɕ)㊂跟踪训练2:若函数f(x)的定义域为[-2,1],求函数y=f x+14()㊃f x-14()的定义域㊂提示:要使函数y=f x+14()㊃f x-14()有意义,必须满足经典题突破方法高一数学2022年10月-2ɤx +14ɤ1,-2ɤx -14ɤ1㊂ìîíïïïï由此解得-94ɤx ɤ34,-74ɤx ɤ54,ìîíïïïï即-74ɤx ɤ34㊂故函数y =f x +14()㊃f x -14()的定义域为-74,34[]㊂题型三:函数的值与值域问题一次函数的值域为R ,二次函数的值域可用公式法㊁配方法或图像法求解,反比例函数的值域可用图像法求解㊂在求值域时,一定要考虑定义域,如求y =x 2-2x (-1ɤx <2)的值域,不能用公式法,可根据定义域结合图像求解㊂例3 已知函数f (x )=3x 2-2x -1,则f (-2)=;f (m -1)=;f [f (-1)]=㊂解:f (-2)=3ˑ(-2)2-2ˑ(-2)-1=15㊂f (m -1)=3(m -1)2-2(m -1)-1=3m 2-8m +4㊂因为f (-1)=3ˑ(-1)2-2ˑ(-1)-1=4,所以f [f (-1)]=f (4)=3ˑ42-2ˑ4-1=39㊂跟踪训练3:求下列函数的值域㊂(1)y =2x -4x +3㊂(2)y =1x 2+2x +2㊂提示:(1)因为y =2x -4x +3=2(x +3)-10x +3=2-10x +3ʂ2,所以y ɪ(-ɕ,2)ɣ(2,+ɕ),即此函数的值域为(-ɕ,2)ɣ(2,+ɕ)㊂(2)令u =x 2+2x +2=(x +1)2+1ȡ1,则y =1u㊂因为u ɪ[1,+ɕ),所以y ɪ(0,1],即此函数的值域为(0,1]㊂题型四:求函数的解析式求函数解析式的四种常用方法:待定系数法,当已知函数类型时,常用待定系数法;代入法,已知y =f (x )的解析式,求函数y =f [g (x )]的解析式时,可直接用新自变量g (x )替换y =f (x )中的x ;换元法,已知y =f [g (x )]的解析式,求y =f (x )的解析式,可令g (x )=t ,反解出x ,然后代入y =f [g (x )]中,求出f (t ),即得f (x );构造方程组法,当同一个对应关系中的两个自变量之间有互为相反数或者互为倒数关系时,可构造方程组求解㊂例4 设二次函数f (x )满足f (x -2)=f (-x -2),且图像与y 轴交点的纵坐标为1,被x 轴截得的线段长为22,求函数f (x )的解析式㊂解:(方法1)设f (x )=a x 2+b x +c (a ʂ0)㊂由已知得c =1㊂由f (x -2)=f (-x -2),可得4a -b =0㊂由|x 1-x 2|=b 2-4a c |a |=22,可得b 2-4a c =8a2㊂由上可得,b =2,a =12,c =1,所以函数f (x )=12x 2+2x +1㊂(方法2)因为f (x -2)=f (-x -2),所以y =f (x )图像的对称轴为x =-2㊂又|x 1-x 2|=22,所以y =f (x )的图像与x 轴的交点为(-2-2,0),(-2+2,0)㊂设f (x )=a (x +2+2)(x +2-2)㊂因为f (0)=1,所以a =12㊂故函数f (x )=12[(x +2)2-2]=12x 2+2x +1㊂跟踪训练4:求下列函数的解析式㊂(1)已知f (x -1)=x +2x ,求f (x )㊂(2)设f (x )是定义在(1,+ɕ)上的一个函数,且f (x )=2x f1x ()-1,求f (x )㊂提示:(1)令t =x -1,则t ȡ-1,且x =t +1,所以f (t )=(t +1)2+2(t +1)=t 2+4t +3㊂故f (x )=x 2+4x +3(x ȡ-1)㊂(2)因为f (x )=2x f 1x ()-1,所以用1x 代换x ,得f 1x()=21xf (x )-1㊂由上经典题突破方法高一数学 2022年10月消去f1x(),解得f (x )=4f (x )-2x -1,所以f (x )=23x +13㊂又因为x ɪ(1,+ɕ),所以函数f (x )=23x +13,x ɪ(1,+ɕ)㊂题型五:分段函数的应用求分段函数的函数值时,一般应先确定自变量的取值在哪个区间上,然后用与这个区间相对应的解析式求函数值㊂已知分段函数的函数值,求自变量的值,要进行分类讨论,逐段用不同的函数解析式求解,求解最后检验所求结果是否适合条件㊂实际问题中的分段函数,以自变量在不同区间上的对应关系的不同进行分段求解㊂例5已知函数f (x )=x 2+1,x ȡ0,-2x ,x <0,{若f (x )=10,则x =㊂解:当x ȡ0时,f (x )=x 2+1=10,可得x =-3(舍去)或x =3;当x <0时,f (x )=-2x =10,可得x =-5㊂综上可知,x =-5或x =3㊂跟踪训练5:已知函数f (x )=12x -1,x ȡ0,1x,x <0,ìîíïïïï若f (a )=a ,则实数a 的值是㊂提示:当a ȡ0时,f (a )=a2-1=a ,可得a =-2(舍去);当a <0时,f (a )=1a=a ,可得a =-1或a =1(舍去)㊂综上知实数a =-1㊂题型六:函数的单调性问题证明函数f (x )在区间上的单调性的五个步骤:①设元,②作差,③变形,④判号,⑤定论㊂解决与抽象函数有关的变量的取值范围问题,关键是利用单调性 脱去 函数符号 f,从而转化为不等式求解㊂例6 已知函数f (x )在区间(-1,1)上单调递减,且f (a -1)>f (1-4a ),求a 的取值范围㊂解:由题意知-1<a -1<1,-1<1-4a <1,{解得0<a <12㊂因为函数f (x )在区间(-1,1)上单调递减,且f (a -1)>f (1-4a ),所以a -1<1-4a ,可得a <25㊂综上可得,0<a <25,即a 的取值范围是0,25()㊂跟踪训练6:设函数f (x )=x |x -1|+m ,当m >1时,求函数f (x )在区间[0,m ]上的最大值㊂提示:函数f (x )=x |x -1|+m =-x 2+x +m ,0ɤx ɤ1,x 2-x +m ,1<x ɤm ㊂{当0ɤx ɤ1时,f (x )=-x 2+x +m =-x -12()2+m +14ɤm +14;当1<x ɤm 时,由f (x )=x 2-x +m =x -12()2+m -14,可得f (x )在(1,m ]上单调递增,所以f (x )m a x =f (m )=m 2㊂由m 2ȡm +14且m >1得m ȡ1+22㊂所以f (x )m a x =m +14,1<m <1+22,m 2,m ȡ1+22㊂ìîíïïïï题型七:函数性质的应用函数的性质主要有定义域㊁值域㊁单调性㊁奇偶性㊁周期性㊁对称性等㊂利用奇偶性和单调性解不等式要注意的是:奇函数在定义域内的关于y 轴对称的两个区间上的单调性相同,偶函数在定义域内的关于y 轴对称的两个区间上的单调性相反㊂例7 设f (x )在R 上是偶函数,在(-ɕ,0)上单调递减,若f (a 2-2a +3)>f (a 2+a +1),求实数a 的取值范围㊂解:由题意知f (x )在(0,+ɕ)上单调递增㊂因为a 2-2a +3=(a -1)2+2>0,a 2+a +1=a +12()2+34>0,且f (a 2-2a +3)>f (a 2+a +1),所以a 2-2a +3>a 2+a +1,解得a <23㊂故所求实数a 的取值范围是 经典题突破方法 高一数学 2022年10月-ɕ,23()㊂跟踪训练7:设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围㊂提示:因为f (x )是偶函数,所以f (-x )=f (x )=f (|x |)㊂不等式f (1-m )<f (m )等价于f (|1-m |)<f (|m |)㊂又f (x )在区间[0,2]上单调递减,所以|1-m |>|m |,-2ɤm ɤ2,-2ɤ1-m ɤ2,ìîíïïï解得-1ɤm <12㊂故实数m 的取值范围是-1,12[)㊂题型八:幂函数问题对于幂函数f (x )=xα,当α>0时,在(0,+ɕ)上单调递增;当α<0时,在(0,+ɕ)上单调递减㊂对于幂函数f (x )=xα,在(0,1)上,指数越大,图像越靠近x 轴(简记为 指大图低 );在(1,+ɕ)上,指数越大,图像越远离x 轴(简记为 指大图高)㊂例8 已知函数f (x )=x 3,x ɤa ,x 2,x >a,{若存在实数b ,使方程f (x )-b =0有两个根,则a 的取值范围是㊂解:存在实数b ,使方程f (x )-b =0有两个根等价于存在实数b ,函数y =f (x )与y =b 的图像有两个交点(图略)㊂当a <0时,y =f (x )在(a ,0)上单调递减,(0,+ɕ)上单调递增,所以存在实数b ɪ(0,a 2),使函数y =f (x )与y =b 的图像有两个交点;当0ɤa ɤ1时,y =f (x )在R 上单调递增,所以不存在实数b ,使函数y =f (x )与y =b 的图像有两个交点;当a >1时,y =f (x )在(-ɕ,a )上单调递增,(a ,+ɕ)上也单调递增,所以存在实数b ɪ(a 2,a3),使函数y =f (x )与y =b 的图像有两个交点㊂综上可得,a ɪ(-ɕ,0)ɣ(1,+ɕ)㊂跟踪训练8:已知幂函数y =x 3m -9(m ɪN *)的图像关于y 轴对称,且在(0,+ɕ)上单调递减,求满足(a +1)-m 3<(3-2a )-m3的a 的取值范围㊂提示:因为幂函数y =x 3m -9在(0,+ɕ)上单调递减,所以3m -9<0,解得m <3㊂又m ɪN *,所以m =1或m =2㊂因为函数图像关于y 轴对称,所以3m -9为偶数,可知m =1,则(a +1)-13<(3-2a )-13㊂因为y =x -13在(-ɕ,0),(0,+ɕ)上均单调递减,所以a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a ,解得23<a <32或a <-1㊂故a 的取值范围为(-ɕ,-1)ɣ23,32()㊂题型九:二次函数模型二次函数求最值的四种方法:配方法,判别式法,换元法,单调性法㊂求二次函数最值问题,最好结合二次函数的图像㊂例9 某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (万元)与年产量x (t)之间的函数关系式可以近似地表示为y =x 25-48x +8000㊂已知此生产线年产量最大为210t ㊂若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少解:设可获得的总利润为W 万元,则W =40x -y=40x -x 25+48x -8000=-x 25+88x -8000=-15(x -220)2+1680(0ɤx ɤ210)㊂因为W 在[0,210]上单调递增,所以当x =210时,W m a x =-15(210-220)2+1680=1660(万元)㊂故年产量为210t 时,可获得最大利润,最大利润为1660万元㊂跟踪训练9:某工厂生产甲㊁乙两种产品所得利润分别为P (万元)和Q (万元),它们与投入资金m (万元)的关系有如下公式:P =12m +60,Q =70+6m ㊂今将200万元资金投入生产甲㊁乙两种产品,并要求对甲㊁乙两种产品的投入资金都不低于25经典题突破方法高一数学 2022年10月万元㊂(1)设对乙种产品投入资金x (万元),求总利润y (万元)关于x 的函数关系式及其定义域㊂(2)如何分配投入资金,才能使总利润最大?求出最大总利润㊂提示:(1)根据题意知,对乙种产品投入资金x 万元,对甲种产品投入资金(200-x )万元,那么总利润y =12(200-x )+60+70+6x =-12x +6x +230㊂由x ȡ25,200-x ȡ25,{解得25ɤx ɤ175,所以函数的定义域为[25,175]㊂(2)令t =x ,则y =-12t 2+6t +230=-12(t -6)2+248㊂因为x ɪ[25,175],所以t ɪ[5,57]㊂当t ɪ[5,6]时,函数单调递增;当t ɪ[6,57]时,函数单调递减㊂所以当t =6,即x =36时,y m ax =248㊂故当甲种产品投入资金164万元,乙种产品投入资金36万元时,总利润最大,最大总利润为248万元㊂题型十:分段函数模型对于自变量的不同取值范围,有着不同的对应法则,这样的函数称为分段函数㊂分段函数是一个函数,而不是几个函数㊂分段函数的定义域是各段函数定义域的并集,值域是各段函数值域的并集㊂例10 某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购1个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元㊂(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数P =f (x )的表达式㊂(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元(一个零件的利润=实际出厂单价-成本)解:(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 0个,则x 0=100+60-510.02,即x 0=550㊂因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元㊂(2)当0<x ɤ100时,P =60;当100<x ɤ550时,P =60-0.02(x -100)=62-x50;当x >550时,P =51㊂所以函数P =f(x )=60,0<x ɤ100,62-x 50,100<x ɤ550,51,x >550ìîíïïïï(x ɪN )㊂(3)设销售商一次订购量为x 个时,工厂获得的利润为L 元,则函数L =(P -40)x =20x ,0<x ɤ100,22x -x 250,100<x ɤ550,11x ,x >550ìîíïïïï(x ɪN )㊂当x =500时,L =6000;当x =1000时,L =11000㊂因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元㊂跟踪训练10:某公司生产一种产品,每年投入固定成本0.5万元,此外每生产100件这种产品还需要增加投资0.25万元㊂经预测可知,市场对这种产品的年需求量为500件,当出售的这种产品的数量为t (单位:百件)时,销售所得的收入约为5t -12t 2(万元)㊂(1)若该公司的年产量为x (单位:百件),试把该公司生产并销售这种产品所得的年利润f (x )表示为年产量x 的函数㊂(2)当这种产品的年产量为多少时,当年所得利润最大?提示:(1)当0<x ɤ5时,产品全部售出,当x >5时,产品只能售出500件㊂所以函数f(x )=经典题突破方法 高一数学 2022年10月5x -12x 2()-(0.5+0.25x ),0<x ɤ5,5ˑ5-12ˑ52()-(0.5+0.25x ),x >5,ìîíïïïï即函数f (x )=-12x 2+4.75x -0.5,0<x ɤ5,12-0.25x ,x >5㊂{(2)当0<x ɤ5时,f (x )=-12x 2+4.75x -0.5,所以当x =4.75(百件)时,f (x )有最大值,可得f (x )m a x =10.78125(万元)㊂当x >5时,f (x )<12-0.25ˑ5=10.75(万元)㊂故当这种产品的年产量为475件时,当年所得利润最大㊂题型十一:抽象函数问题解抽象函数问题,主要用赋值法㊂赋值法的关键环节是 赋值 ,赋值的方法灵活多样,既要照顾到已知条件的运用和待求结论的产生,又要考虑所给关系式的结构特点㊂例11 已知定义在区间(0,+ɕ)上的函数f (x )满足f x 1x 2()=f (x 1)-f (x 2),且当x >1时,f (x )<0㊂(1)证明:f (x )为单调递减函数㊂(2)若f (3)=-1,求f (x )在[2,9]上的最小值㊂解:(1)任取x 1,x 2ɪ(0,+ɕ),且x 1>x 2,则x 1x 2>1㊂因为当x >1时,f (x )<0,所以f x1x 2()<0,即f (x 1)-f (x 2)<0,所以f (x 1)<f (x 2),所以函数f (x )在区间(0,+ɕ)上是单调递减函数㊂(2)因为f (x )在(0,+ɕ)上是单调递减函数,所以f (x )在[2,9]上的最小值为f (9)㊂由f x 1x 2()=f (x 1)-f (x 2),可得f 93()=f (9)-f (3),而f (3)=-1,所以f (9)=-2㊂故f (x )在[2,9]上的最小值为-2㊂跟踪训练11:设函数f (x )的定义域为U ={x |x ɪR 且x >0},且满足条件f (4)=1㊂对任意的x 1,x 2ɪU ,有f (x 1㊃x 2)=f (x 1)+f (x 2),且当x 1ʂx 2时,有f (x 2)-f (x 1)x 2-x 1>0㊂(1)求f (1)的值㊂(2)如果f (x +6)+f (x )>2,求x 的取值范围㊂提示:(1)对任意的x 1,x 2ɪU ,有f (x 1㊃x 2)=f (x 1)+f (x 2),可令x 1=x 2=1,得f (1ˑ1)=f (1)+f (1)=2f (1),所以f (1)=0㊂(2)设0<x 1<x 2,则x 2-x 1>0㊂因为当x 1ʂx 2时,f (x 2)-f (x 1)x 2-x 1>0,所以f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),所以f (x )在定义域内为增函数㊂令x 1=x 2=4,可得f (4ˑ4)=f (4)+f (4)=1+1=2,即f (16)=2㊂当x +6>0,x >0,{即x >0时,原不等式可化为f [x (x +6)]>f (16)㊂因为f (x )在定义域上为增函数,所以x (x +6)>16,解得x >2或x <-8㊂又x >0,所以x >2㊂故x 的取值范围为(2,+ɕ)㊂题型十二:函数的创新题这类问题的特点是背景新颖,信息量大,通过它可考查同学们获取信息㊁分析信息并解决问题的能力㊂解答这类问题,首先要分析新定义的特点,把新定义所叙述的问题的本质弄清楚,然后应用到具体的解题过程之中,这是破解新定义信息题难点的关键㊂例12 给出定义:若m -12<x ɤm +12(其中m 为整数),则m 叫作离实数x 最近的整数,记作{x },即{x }=m ㊂现给出下列关于函数f (x )=|x -{x }|的四个命题:①f -12()=12;②f (3.4)=-0.4;③f -14()=f 14();④y =f (x )的定义域为R ,值域是-12,12[]㊂经典题突破方法高一数学 2022年10月其中真命题的序号是㊂解:因为-1-12<-12ɤ-1+12,所以-12{}=-1,所以f-12()=-12--12{}=-12+1=12,①正确㊂因为3-12<3.4ɤ3+12,所以{3.4}=3,所以f (3.4)=|3.4-{3.4}|=|3.4-3|=0.4,②错误㊂因为0-12<-14ɤ0+12,所以-14{}=0,所以f -14()=-14-0=14㊂因为0-12<14ɤ0+12,所以14{}=0,所以f 14()=14-0=14,所以f -14()=f 14(),③正确㊂y =f (x )的定义域为R ,值域是012[],④错误㊂答案为①③㊂跟踪训练12:(多选题)对任意实数a ,b ,定义m i n {a ,b }=a ,a ɤb ,b ,a >b,{若f (x )=2-x 2,g (x )=x 2-2,则关于函数F (x )=m i n {f (x ),g (x )}的说法正确的是( )㊂A .函数F (x )是偶函数B .方程F (x )=0有一个解C .函数F (x )有四个单调区间D .函数F (x )有最大值为0,无最小值提示:由题意可得,函数F (x )=2-x 2,x ɪ(-ɕ,-2]ɣ[2,+ɕ),x 2-2,x ɪ(-2,2),{作出函数F (x )图像,如图5所示㊂图5由图5可知,该函数为偶函数,有两个零点-2,2,四个单调区间㊂当x =ʃ2时,函数F (x )取得最大值为0,无最小值㊂应选A C D ㊂1.已知函数f (x )=m x 2-2m x +m -1x 2-2x +1(m ɪR ),试比较f (5)与f (-π)的大小㊂提示:f (x )=m x 2-2m x +m -1x 2-2x +1=m -1(x -1)2㊂y =-1x 2的图像向右平移1个单位得到y =-1(x -1)2的图像,再向上(m ȡ0)或向下(m <0)平移|m |个单位得到y =m -1(x -1)2的图像㊂因为y =-1x2在(-ɕ,0)上单调递减,在(0,+ɕ)上单调递增,且关于y 轴对称,所以f (x )在(-ɕ,1)上单调递减,(1,+ɕ)上单调递增,且关于直线x =1对称,所以f (-π)=f (2+π),而2+π>5,所以f (-π)=f (2+π)>f (5),即f (5)<f (-π)㊂2.已知f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=x 2+x -2,求f (x ),g (x )的解析式㊂提示:因为f (x )是偶函数,g (x )是奇函数,所以f (-x )=f (x ),g (-x )=-g (x )㊂由f (x )+g (x )=x 2+x -2,可得f (-x )+g (-x )=(-x )2-x -2,即f (x )-g (x )=x 2-x -2㊂由上可得函数f (x )=x 2-2,g (x )=x ㊂3.已知f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x 3-2x 2+2,求f (x )的解析式㊂提示:因为f (x )是定义在R 上的奇函数,所以当x =0时,f (-0)=-f (0),即f (0)=0㊂当x <0时,-x >0,所以f (x )=-f (-x )=-[(-x )3-2(-x )2+2]=x 3+2x 2-2㊂所以函数f (x )=x 3+2x 2-2,x <0,0,x =0,x 3-2x 2+2,x >0㊂ìîíïïï作者单位:河南省开封高中(责任编辑 郭正华)经典题突破方法 高一数学 2022年10月。
高中数学第三章函数的概念与性质考点总结(带答案)
![高中数学第三章函数的概念与性质考点总结(带答案)](https://img.taocdn.com/s3/m/db24e7bc18e8b8f67c1cfad6195f312b3169ebab.png)
高中数学第三章函数的概念与性质考点总结单选题1、已知f (x −2)=x 2+1,则f (5)=( )A .50B .48C .26D .29答案:A分析:利用赋值法,令x =7即可求解.解:令x =7,则f (5)=f (7−2)=72+1=50.故选:A.2、下列图形中,不能表示以x 为自变量的函数图象的是( )A .B .C .D .答案:B分析:根据函数的定义判断即可.B 中,当x >0时,y 有两个值和x 对应,不满足函数y 的唯一性,A ,C ,D 满足函数的定义,故选:B3、设f (x )是定义域为R 的奇函数,且f (1+x )=f (−x ).若f (−13)=13,则f (53)=()A .−53B .−13C .13D .53答案:C分析:由题意利用函数的奇偶性和函数的递推关系即可求得f (53)的值. 由题意可得:f (53)=f (1+23)=f (−23)=−f (23), 而f (23)=f (1−13)=f (13)=−f (−13)=−13, 故f (53)=13.故选:C.小提示:关键点点睛:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.4、函数y =3√x 4−13的图像大致是( )A .B .C .D .答案:A 分析:利用x =2时y >0排除选项D ,利用x =−2时y <0排除选项C ,利用x =12时y <0排除选项B ,所以选项A 正确.函数y =3√x 4−13的定义域为{x |x ≠±1}当x =2时,y =3√24−13=√153>0,可知选项D 错误;当x =−2时,y =3()43=√153<0,可知选项C 错误; 当x =12时,y =(12)3√(2)4−13=−12√603<0,可知选项B 错误,选项A 正确. 故选:A 5、函数f (x )=x +4x+1在区间[−12,2]上的最大值为( ) A .103B .152C .3D .4答案:B分析:利用换元法以及对勾函数的单调性求解即可.设t =x +1,则问题转化为求函数g (t )=t +4t −1在区间[12,3]上的最大值.根据对勾函数的性质,得函数g (t )在区间[12,2]上单调递减,在区间[2,3]上单调递增,所以g (t )max =max {g (12),g (3)}=max {152,103}=152. 故选:B6、函数f (x )在(−∞,+∞)上是减函数,且a 为实数,则有( )A .f (a )<f (2a )B .f (a 2)<f (a )C .f (a 2+1)<f (a )D .f (a 2−a )<f (a )答案:C分析:利用a =0可排除ABD ;根据函数单调性和a 2+1>a 恒成立可知C 正确.当a =0时,ABD 中不等式左右两侧均为f (0),不等式不成立,ABD 错误;∵a 2+1−a >0对于a ∈R 恒成立,即a 2+1>a 恒成立,又f (x )为R 上的减函数,∴f (a 2+1)<f (a ),C 正确.故选:C.7、“n =1”是“幂函数f (x )=(n 2−3n +3)⋅x n 2−3n 在(0,+∞)上是减函数”的一个( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要答案:A分析:由幂函数f(x)=(n2−3n+3)⋅x n2−3n在(0,+∞)上是减函数,可得{n 2−3n+3=1n2−3n<0,由充分、必要条件的定义分析即得解由题意,当n=1时,f(x)=x−2在(0,+∞)上是减函数,故充分性成立;若幂函数f(x)=(n2−3n+3)⋅x n2−3n在(0,+∞)上是减函数,则{n 2−3n+3=1n2−3n<0,解得n=1或n=2故必要性不成立因此“n=1”是“幂函数f(x)=(n2−3n+3)⋅x n2−3n在(0,+∞)上是减函数”的一个充分不必要条件故选:A8、函数y=√2x+4x−1的定义域为()A.[0,1)B.(1,+∞)C.(0,1)∪(1,+∞)D.[0,1)∪(1,+∞)答案:D分析:由题意列不等式组求解由题意得{2x≥0x−1≠0,解得x≥0且x≠1,故选:D多选题9、设函数f(x)={ax−1,x<ax2−2ax+1,x≥a,f(x)存在最小值时,实数a的值可能是()A.2B.-1C.0D.1答案:BC分析:分a=0,a>0和a<0三种情况讨论,结合二次函数的性质,从而可得出答案. 解:当x≥a时,f(x)=x2−2ax+1=(x−a)2−a2+1,所以当x≥a时,f(x)min=f(a)=−a2+1,若a=0,则f(x)={−1,x<0x2+1,x≥0,所以此时f(x)min=−1,即f(x)存在最小值,若a>0,则当x<a时,f(x)=ax−1,无最小值,若a<0,则当x<a时,f(x)=ax−1为减函数,则要使f(x)存在最小值时,则{−a 2+1≤a2−1a<0,解得a≤−1,综上a=0或a≤−1.故选:BC.10、已知偶函数y=f(x)(x∈R),有∀x1,x2∈(−∞,0]时,(x1−x2)⋅(f(x1)−f(x2))<0成立,则f(2ax)< f(2x2+1)对任意的x∈R恒成立的一个必要不充分条件是()A.−√2≤a≤√2B.−1<a<1C.0<a<√2D.−2<a<2答案:AD分析:由题意可判断函数在(−∞,0]为单调递减函数,在(0,+∞)上单调递增函数,只需|2ax|<2x2+1恒成立,分离参数,利用基本不等式即可求出a的取值,再结合必要不充分条件的概念可解.当∀x1,x2∈(−∞,0]时,(x1−x2)(f(x1)−f(x2))<0成立,则函数在(−∞,0]为单调递减函数,又函数y=f(x),x∈R为偶函数,则函数y=f(x)在(0,+∞)上单调递增函数,f(2ax)<f(2x2+1)对任意的x∈R恒成立,所以|2ax|<2x2+1,当x=0时,不等式恒成立,当x≠0时,2|a|<2x2+1|x|=2|x|+1|x|,又2|x|+1|x|≥2√2|x|⋅1|x|=2√2,当且仅当2|x|=1|x|时取等号,则2|a|<2√2,即|a|<√2,解得−√2<a<√2,由必要不充分条件的概念可知选项A、D正确,选项B、C错误.故选:AD11、下列各组函数是同一组函数的是()A.f(x)=2x与g(x)=√4x2B.f(x)=|x|x与g(x)={C.f(x)=2x2+1与g(t)=2t2+1D.f(x)=x与g(x)=√x33答案:BCD分析:由同一函数的定义域、对应法则都相同,即可判断选项中的函数是否为同一函数.A:g(x)=√4x2=2|x|,f(x)=2x,定义域相同,但对应法则不同,不同函数;B:f(x)=|x|x={,g(x)={,定义域和对应法则都相同,同一函数;C:f(x)=2x2+1与g(t)=2t2+1,定义域和对应法则都相同,同一函数;D:g(x)=√x33=x,f(x)=x,,定义域和对应法则都相同,同一函数;故选:BCD.12、幂函数f(x)=(m2−5m+7)x m2−6在(0,+∞)上是增函数,则以下说法正确的是()A.m=3B.函数f(x)在(−∞,0)上单调递增C.函数f(x)是偶函数D.函数f(x)的图象关于原点对称答案:ABD分析:根据幂函数的定义与性质得到方程(不等式)组,解得m=3,即可得到f(x),从而判断可得;解:因为幂函数f(x)=(m2−5m+7)x m2−6在(0,+∞)上是增函数,所以{m 2−5m+7=1m2−6>0,解得m=3,所以f(x)=x3,所以f(−x)=(−x)3=−x3=−f(x),故f(x)=x3为奇函数,函数图象关于原点对称,所以f(x)在(−∞,0)上单调递增;故选:ABD13、[多选题]下列四个图形中,可能是函数y=f(x)的图象的是()A.B.C.D.答案:AD分析:根据函数定义判断.在A,D中,对于定义域内每一个x都有唯一的y与之对应,满足函数关系;在B,C中,存在一个x有两个y与之对应的情况,不满足函数关系,故选:AD.填空题14、已知a∈{−4,−1,−12,13,12,1,2,3},若函数f(x)=x a在(0,+∞)上单调递减,且为偶函数,则a=______.答案:−4分析:根据幂函数的单调性知a<0,即可确定a的可能值,讨论a并判断对应f(x)奇偶性,即可得结果. 由题知:a<0,所以a的值可能为−4,−1,−12.当a=−4时,f(x)=x−4=x14(x≠0)为偶函数,符合题意.当a=−1时,f(x)=x−1=1x(x≠0)为奇函数,不符合题意.当a=−12时,f(x)=x−12=√x,定义域为(0,+∞),则f(x)为非奇非偶函数,不符合题意.综上,a=−4.所以答案是:−415、已知函数f(x)={−x +4,x ≤0x 2,x >0,若f(m)=4,则m =___________. 答案:0或2分析:对函数值进行分段考虑,代值计算即可求得结果.由题意可得{m ≤0−m +4=4 或{m >0m 2=4, ∴m =0或m =2,所以答案是:0或2.小提示:本题考查由分段函数的函数值求自变量,属简单题.16、已知函数f (x )={|x 2−2x |,x ≤36−x,x >3,若a 、b 、c 、d 、e (a <b <c <d <e )满足f (a )=f (b )=f (c )=f (d )=f (e ),则M =af (a )+bf (b )+cf (c )+df (d )+ef (e )的取值范围为______.答案:(0,9)解析:设f (a )=f (b )=f (c )=f (d )=f (e )=t ,作出函数f (x )的图象,可得0<t <1,利用对称性可得a +d =b +c =2,由f (e )∈(0,1)可求得5<e <6,进而可得出M =−e 2+2e +24,利用二次函数的基本性质可求得M 的取值范围.作出函数f (x )的图象如下图所示:设f (a )=f (b )=f (c )=f (d )=f (e )=t ,当0<x <2时,f (x )=2x −x 2=−(x −1)2+1≤1,由图象可知,当0<t <1时,直线y =t 与函数y =f (x )的图象有五个交点,且点(a,t )、(d,t )关于直线x =1对称,可得a +d =2,同理可得b +c =2,由f(e)=6−e=t∈(0,1),可求得5<e<6,所以,M=af(a)+bf(b)+cf(c)+df(d)+ef(e)=(a+b+c+d+e)f(e)=(e+4)(6−e)=−e2+2e+24=−(e−1)2+25∈(0,9).因此,M的取值范围是(0,9).所以答案是:(0,9).小提示:方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.解答题17、已知幂函数f(x)=(m−1)2x m2−4m+2在(0,+∞)上单调递增,函数g(x)=2x−k.(1)求m的值;(2)当x∈[1,2)时,记f(x),g(x)的值域分别为集合A,B,设p:x∈A,q:x∈B,若p是q成立的必要条件,求实数k的取值范围.(3)设F(x)=f(x)−kx+1−k2,且|F(x)|在上单调递增,求实数k的取值范围.答案:(1)m=0;(2)0≤k≤1;(3)[−1,0]∪[2,+∞)分析:(1)由幂函数的定义(m−1)2=1,再结合单调性即得解.(2)求解f(x),g(x)的值域,得到集合A,B,转化命题p是q成立的必要条件为B⊆A,列出不等关系,即得解.(3)由(1)可得F(x)=x2−kx+1−k2,根据二次函数的性质,分类讨论k2≤0和k2≥1两种情况,取并集即可得解.(1)由幂函数的定义得:(m−1)2=1,⇒m=0或m=2,当m=2时,f(x)=x−2在(0,+∞)上单调递减,与题设矛盾,舍去;当m=0时,f(x)=x2在(0,+∞)上单调递增,符合题意;[0,1]综上可知:m =0.(2)由(1)得:f(x)=x 2,当x ∈[1,2)时,f(x)∈[1,4),即A =[1,4),当x ∈[1,2)时,g(x)∈[2−k,4−k ),即B =[2−k,4−k ),由命题p 是q 成立的必要条件,则B ⊆A ,显然B ≠∅,则{2−k ≥14−k ≤4,即{k ≤1k ≥0, 所以实数k 的取值范围为:0≤k ≤1.(3)由(1)可得F(x)=x 2−kx +1−k 2,二次函数的开口向上,对称轴为x =k 2, 要使|F(x)|在上单调递增,如图所示:或即{k 2≤0F(0)≥0或{k 2≥1F(0)≤0,解得:−1≤k ≤0或k ≥2. 所以实数k 的取值范围为:[−1,0]∪[2,+∞) 小提示:关键点点睛:本题考查幂函数的定义及性质,必要条件的应用,已知函数的单调性求参数,理解p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集是解题的关键,考查学生的分析试题能力与分类讨论思想,及数形结合思想,属于较难题.18、为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量f (t )(单位:mg/m 3)与时间t (单位:ℎ)的函数关系为f (t )={kt,0<t <121kt ,t ≥12,当消毒12(ℎ)后,测量得药物释放量等于1(mg/m 3);而实验表明,当药物释放量小于34(mg/m 3)对人体无害.(1)求k 的值;(2)若使用该消毒剂对房间进行消毒,求对人体有害的时间有多长? [0,1]答案:(1)k =2;(2)724ℎ. 分析:(1)把t =12代入即可求得k 的值;(2)根据f (t )≥34,通过分段讨论列出不等式组,从而求解. (1)由题意可知f (12)=112k=1,故k =2;(2)因为k =2,所以f (t )={2t,0<t <1212t ,t ≥12, 又因为f (t )≥34时,药物释放量对人体有害,所以{0<t <122t ≥34或{t ≥1212t ≥34,解得38≤t <12或12≤t ≤23,所以38≤t ≤23, 由23−38=724,故对人体有害的时间为724ℎ.。
函数的概念试题及答案高中
![函数的概念试题及答案高中](https://img.taocdn.com/s3/m/d5c0a57cdc36a32d7375a417866fb84ae45cc38d.png)
函数的概念试题及答案高中一、选择题1. 下列哪个选项正确描述了函数的概念?A. 函数是一种运算B. 函数是一种关系C. 函数是一种映射D. 函数是一种变量2. 如果f(x) = 2x + 3,那么f(-1)的值是多少?A. -1B. 1C. 3D. 53. 函数y = x^2 + 1在x = -2时的值是多少?A. 5B. 4C. 3D. 1二、填空题4. 如果一个函数f(x)的定义域是所有实数R,那么这个函数被称为_________函数。
5. 函数f(x) = 3x - 2的反函数是_________。
三、简答题6. 函数的三要素是什么?7. 请解释什么是函数的值域,并给出一个例子。
四、计算题8. 给定函数f(x) = x^2 - 4x + 4,求出当x = 0, 1, 2, 3时的函数值。
答案一、选择题1. C. 函数是一种映射2. A. -1(计算过程:f(-1) = 2*(-1) + 3 = -2 + 3 = 1)3. A. 5(计算过程:y = (-2)^2 + 1 = 4 + 1 = 5)二、填空题4. 无界5. f^(-1)(x) = (x + 2) / 3三、简答题6. 函数的三要素包括:定义域(Domain)、值域(Range)和对应法则(Rule of correspondence)。
7. 函数的值域是指函数所有可能的输出值的集合。
例如,函数y =x^2的值域是所有非负实数,即[0, +∞)。
四、计算题8. 当x = 0时,f(x) = 0^2 - 4*0 + 4 = 4;当x = 1时,f(x) = 1^2 - 4*1 + 4 = 1;当x = 2时,f(x) = 2^2 - 4*2 + 4 = 0;当x = 3时,f(x) = 3^2 - 4*3 + 4 = 1。
结束语:通过本试题的练习,希望同学们能够加深对函数概念的理解,掌握函数的基本性质和计算方法。
函数是数学中的基础工具,对后续的数学学习至关重要。
函数的概念复习题答案
![函数的概念复习题答案](https://img.taocdn.com/s3/m/c8cb0ae2e43a580216fc700abb68a98270feac6b.png)
函数的概念复习题答案一、选择题1. 函数的定义域是指函数中所有可能的自变量x的取值范围。
以下哪个选项不是函数定义域的描述?A. 所有实数B. 所有非负实数C. 所有正实数D. 所有负实数答案:D2. 函数的值域是指函数中所有可能的因变量y的取值范围。
以下哪个选项不是函数值域的描述?A. 所有实数B. 所有非负实数C. 所有正实数D. 所有负实数答案:D3. 函数的单调性是指函数在其定义域内随着自变量的增加,函数值是增加还是减少。
以下哪个选项描述了函数的单调性?A. 函数值随着自变量的增加而增加B. 函数值随着自变量的增加而减少C. 函数值随着自变量的增加而不变D. 函数值随着自变量的增加而先增后减答案:A4. 函数的奇偶性是指函数是否满足特定的对称性。
以下哪个选项描述了偶函数的性质?A. f(-x) = f(x)B. f(-x) = -f(x)C. f(x) = -f(x)D. f(x) = f(-x)答案:A5. 函数的连续性是指函数在其定义域内任意两点之间的函数值是否没有间断。
以下哪个选项描述了连续函数的性质?A. 函数在其定义域内任意两点之间存在间断点B. 函数在其定义域内任意两点之间没有间断点C. 函数在其定义域内所有点上都存在间断点D. 函数在其定义域内至少存在一个间断点答案:B二、填空题1. 如果一个函数f(x)满足f(x) = f(-x),则称该函数为____函数。
答案:偶2. 如果一个函数f(x)满足f(x) = -f(-x),则称该函数为____函数。
答案:奇3. 如果一个函数在其定义域内任意两点之间没有间断点,则称该函数为____函数。
答案:连续4. 函数f(x) = 2x + 3的定义域是____。
答案:所有实数5. 函数f(x) = 1/x的值域是____。
答案:所有非零实数三、解答题1. 给定函数f(x) = x^2 - 4x + 4,求该函数的定义域和值域。
答案:定义域为所有实数,值域为[0, +∞)。
(版)高考文科数学函数专题讲解及高考真题(含答案)
![(版)高考文科数学函数专题讲解及高考真题(含答案)](https://img.taocdn.com/s3/m/ca363bf85f0e7cd185253613.png)
函数【】函数的概念〔1〕函数的概念①设A、B是两个非空的数集,如果按照某种对应法那么f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应〔包括集合A,B以及A到B的对应法那么f〕叫做集合A到B的一个函数,记作f:A B.②函数的三要素:定义域、值域和对应法那么.③只有定义域相同,且对应法那么也相同的两个函数才是同一函数.〔2〕区间的概念及表示法①设a,b 是两个实数,且a b,满足ax b的实数x的集合叫做闭区间,记做[a,b];满足a x b的实数x的集合叫做开区间,记做(a,b);满足a xb,或ax b的实数x的集合叫做半开半闭区间,分别记做[a,b),(a,b];满足x a,x a,x b,x b的实数x的集合分别记做[a,),(a,),(,b],(,b).注意:对于集合{x|a x b}与区间(a,b),前者a可以大于或等于b,而后者必须b.3〕求函数的定义域时,一般遵循以下原那么:f(x)是整式时,定义域是全体实数.②f(x)是分式函数时,定义域是使分母不为零的一切实数.③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤y tanx中,x k(k Z).2⑥零〔负〕指数幂的底数不能为零.⑦假设f(x)是由有限个根本初等函数的四那么运算而合成的函数时,那么其定义域一般是各根本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:假设f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式a g(x)b解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.4〕求函数的值域或最值求函数最值的常用方法和求函数值域的方法根本上是相同的.事实上,如果在函数的值域中存在一个最小〔大〕数,这个数就是函数的最小〔大〕值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比拟简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:假设函数y f(x)可以化成一个系数含有y的关于x的二次方程a(y)x2b(y)x c(y)0,那么在a(y)0时,由于x,y为实数,故必须有b2(y)4a(y)c(y)0,从而确定函数的值域或最值.④不等式法:利用根本不等式确定函数的值域或最值.⑤换元法:通过变量代换到达化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【】函数的表示法5〕函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.〔6〕映射的概念①设A、B是两个集合,如果按照某种对应法那么f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应〔包括集合A,B以及A到B的对应法那么f〕叫做集合A到B的映射,记作f:A B.②给定一个集合A到集合B的映射,且aA,b B.如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〗函数的根本性质】单调性与最大〔小〕值1〕函数的单调性①定义及判定方法函数的定义图象判定方法性质(版)高考文科数学函数专题讲解及高考真题(含答案)如果对于属于定义域 I 内〔1〕利用定义某个区间上的任意两个1yy=f(X)f(x 2)〔2〕利用函数 12<的单调性自变量的值x、x ,当x..函数的单调性x 2时,都有 f(x 1)<f(x2),.. .........那么就说 f(x) 在这个区间上是增函数. ...如果对于属于定义域 I 内某个区间上的任意两个 自变量的值 x 1、x 2,当x 1< .. x 2时,都有 f(x 1)>f(x2),.. .........那么就说 f(x) 在这个区 间上是减函数.... f(x 1)o x 1x 2xy y=f(X)f(x 1)f(x 2)o x 1 x 2x〔3〕利用函数图象〔在某个区间图象上升为增〕4〕利用复合函数1〕利用定义2〕利用函数的单调性3〕利用函数图象〔在某个区间图象下降为减〕〔4〕利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数yf [g(x)],令ug(x),假设yf(u)为增,u g(x)为增,那么y f[g(x)]为增;假设y f(u)为减,ug(x)为减,那么yf[g(x)]为增;假设y f(u)为增,ug(x)为减,那么yf[g(x)]为减;假设yf(u)为减,u g(x)为增,那么 y f[g(x)]为减. 〔2〕打“√〞函数 f(x) x a(a0)的图象与性质xf(x)分别在( , a]、[a,)上为增函数,分别在[a,0)、(0,a]上为减函数.〔3〕最大〔小〕值定义①一般地,设函数 y f(x)的定义域为I ,如果存在实数 M 满足:〔1〕对于任意yox的xI ,都有 f(x) M ;〔2〕存在x 0I ,使得f(x 0)M.那么,我们称M 是函数f(x)的最大值,记 作f max (x) M .②一般地,设函数yf(x)的定义域为I ,如果存在实数m 满足:〔1〕对于任意的xI ,都有f(x) m ;〔2〕存在x 0I ,使得f(x 0)m .那么,我们称m 是函数f(x)的最小值,记作f max (x)m .】奇偶性4〕函数的奇偶性①定义及判定方法函数的 定义图象 判定方法性质如果对于函数f(x)定义域内任意一个x,都有f(-x)=-f(x),那么函数...........f(x)叫做奇函数....函数的奇偶性如果对于函数f(x)定义域内任意一个x,都有f(-x)=f(x),那么函数..........f(x)叫做偶函数....②假设函数f(x)为奇函数,且在x 0处有定义,那么f(0)0.1〕利用定义〔要先判断定义域是否关于原点对称〕2〕利用图象〔图象关于原点对称〕1〕利用定义〔要先判断定义域是否关于原点对称〕2〕利用图象〔图象关于y轴对称〕③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数〔或奇函数〕的和〔或差〕仍是偶函数〔或奇函数〕,两个偶函数〔或奇函数〕的积〔或商〕是偶函数,一个偶函数与一个奇函数的积〔或商〕是奇函数.〖补充知识〗函数的图象1〕作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质〔奇偶性、单调性〕;④画出函数的图象.利用根本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种根本初等函数的图象.①平移变换y f(x)②伸缩变换y f(x)y f(x)③对称变换h0,左移h个单位yf(xh)yf(x)k0,上移k个单位yf(x)k h0,右移|h|个单位k0,下移|k|个单位01,伸y f(x)1,缩0A1,缩y Af(x)A1,伸y f(x)y f(x)y f(x)yf(x) x轴f(x)y f()y轴y f() y x x原点f(x)y f(x)直线yxy f1(x) y去掉y轴左边图象y f(|x|)保存y轴右边图象,并作其关于y轴对称图象保存x轴上方图象y|f(x)|将x轴下方图象翻折上去2〕识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.3〕用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形〞的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 根本初等函数 (Ⅰ)〗指数函数】指数与指数幂的运算〔1〕根式的概念①如果x na,a R,xR,n1,且n N ,那么x 叫做a 的n 次方根.当n 是奇数时,a 的 n 次方根用符号n a 表示;当n 是偶数时,正数a 的正的n 次方根用符号 n a 表示,负的n 次方根用符号 na表示;0的n 次方根是 0;负数a 没有n 次方根.②式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,a 0 .③根式的性质:(n a)na ;当n 为奇数时,n a na ;当n 为偶数时,n a n|a|a(a0).a(a0)〔2〕分数指数幂的概念mn a m(a①正数的正分数指数幂的意义是:a n0,m,n N,且n 1).0的正分数指数幂等于0.mmn (1)m (a②正数的负分数指数幂的意义是:an(1)n 0,m,nN,且n1).0的负分数指数幂没aa有意义. 注意口诀:底数取倒数,指数取相反数.〔3〕分数指数幂的运算性质①a r a s a rs (a 0,r,sR)②(a r )s a rs (a0,r,sR)③(ab )r rb r (a 0,b 0,r )aR【】指数函数及其性质〔4〕指数函数函数名称指数函数定义函数ya x (a0且a1)叫做指数函数图象a 10 a1yya xyya xy1y1(0,1)(0,1)Ox Ox 定域R域(0,)定点象定点(0,1),即当x0,y1.奇偶性非奇非偶性在R上是增函数在R上是减函数a x1(x0)a x1(x0)函数的a x1(x0)a x1(x0)化情况a x a x1(x0)1(x0) a化象的影响在第一象限内,a越大象越高;在第二象限内,a越大象越低.〖〗数函数【】数与数运算〔1〕数的定①假设a x N(a0,且a 1),x叫做以a底N的数,作x log a N,其中a叫做底数,N叫做真数.②数和零没有数.③数式与指数式的互化:xlog a N a x N(a0,a1,N0).〔2〕几个重要的数恒等式log a10,log a a1,log a a b b.〔3〕常用数与自然数常用数:lgN,即log10N;自然数:lnN,即log e N〔其中e⋯〕.〔4〕数的运算性如果a0,a1,M0,N0,那么①加法:log a M log a N log a(MN)②减法:log a M log a Nlog a MN③数乘:nlog a M log a M n(n R)④a log a N N⑤log bM n nlogaM(b0,n)log a Nlog b N且b1)ab R⑥换底公式:(b0,log b a【】对数函数及其性质5〕对数函数函数名称对数函数定义函数ylog a x(a0且a1)叫做对数函数a10a1x1x1y ylog a x y ylog a x图象(1,0)O(1,0)x O x 定义域(0,)值域R过定点图象过定点(1,0),即当x1时,y0.奇偶性非奇非偶单调性在(0,)上是增函数在(0,)上是减函数log a x0(x1)log a x0(x1)函数值的log a x0(x1)log a x0(x1)变化情况log a x0(0x1)log a x0(0x1) a变化对图象的影响在第一象限内,a越大图象越靠低;在第四象限内,a越大图象越靠高.(6)反函数的概念设函数y f(x)的定义域为A,值域为C,从式子y f(x)中解出x,得式子x(y).如果对于y在C中的任何一个值,通过式子x(y),x在A中都有唯一确定的值和它对应,那么式子x(y)表示x是y的函数,函数x(y)叫做函数y f(x)的反函数,记作x f1(y),习惯上改写成yf1(x).〔7〕反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式y f(x)中反解出x f1(y);③将x f1(y)改写成y f1(x),并注明反函数的定义域.〔8〕反函数的性质①原函数y f(x)与反函数y f1(x)的图象关于直线yx对称.②函数y f(x)的定义域、值域分别是其反函数yf1(x)的值域、定义域.③假设P(a,b)在原函数y f(x)的图象上,那么P'(b,a)在反函数y f1(x)的图象上.④一般地,函数yf(x)要有反函数那么它必须为单调函数.〖〗幂函数〔1〕幂函数的定义一般地,函数y x叫做幂函数,其中x为自变量,是常数.〔2〕幂函数的图象〔3〕幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)都有定义,并且图象都通过点(1,1).③单调性:如果0,那么幂函数的图象过原点,并且在[0,)上为增函数.如果0,那么幂函数的图象在(0,)上为减函数,在第一象限内,图象无限接近x轴与y轴.④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当q〔其中p,q互pq q质,p和q Z〕,假设p为奇数q为奇数时,那么yx p是奇函数,假设p为奇数q为偶数时,那么yx p是偶q函数,假设p为偶数q为奇数时,那么y x p是非奇非偶函数.⑤图象特征:幂函数yx,x(0,),当1时,假设0x1,其图象在直线y x下方,假设x1,其图象在直线y x上方,当10x1yx上方,假设x1,其图象在直线时,假设,其图象在直线x下方.〖补充知识〗二次函数〔1〕二次函数解析式的三种形式①一般式:f(x)ax2bx c(a0)②顶点式:f(x)a(x h)2k(a0)③两根式:f(x)a(x x1)(x x2)(a0)〔2〕求二次函数解析式的方法①三个点坐标时,宜用一般式.②抛物线的顶点坐标或与对称轴有关或与最大〔小〕值有关时,常使用顶点式.③假设抛物线与x轴有两个交点,且横线坐标时,选用两根式求f(x)更方便.〔3〕二次函数图象的性质①二次函数f(x)ax2bx c(a0)的图象是一条抛物线,对称轴方程为x b,顶点坐标是2ab4acb2 (,).2a4a②当a0时,抛物线开口向上,函数在(,b]上递减,在[b,)上递增,当xb时,2a2a2af min(x)4acb 2;当a0时,抛物线开口向下,函数在(,b]上递增,在[b,)上递减,4a2a2a当x b4acb2时,f max(x)4a.2a③二次函数f(x)ax2bx c(a0)当b24ac0时,图象与x轴有两个交点M1(x1,0),M2(x2,0),|M1M2||x1x2||a|.〔4〕一元二次方程ax2bxc0(a0)根的分布一元二次方程根的分布是二次函数中的重要内容,这局部知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理〔韦达定理〕的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程ax2bx c 0(a 0)的两实根为x1,x2,且x1x2.令f(x) ax2bx c,从以b 下四个方面来分析此类问题:①开口方向: a ②对称轴位置:x ③判别式:④端点函数2a值符号.〔5〕二次函数f(x)ax 2 bxc(a 0)在闭区间[p,q]上的最值设f(x)在区间[p,q]上的最大值为M,最小值为m ,令x 01(p q).〔Ⅰ〕当a0时〔开口向上〕2①假设bp ,那么mf(p) ②假设p bq ,那么mf( b ) ③假设b q ,那么mf(q)2a2a2a2affff(q)(p)(q)(p)OxOxOxfbbf((p)bf()f f())2a2a 2a(q)b Mf(q)bf(p)①假设x 0,那么②x 0,那么M2a2ax 0f(q)O gxff((p)b )(Ⅱ)当a02a时(开口向下)①假设bf(p)②假设pp ,那么M2af(b)2af(p)(p)Oxfb(q),那么mf(q)①假设x 0 2af(b ) f 2a(p)x 0gOxf (q)f(p)xgOxf f(b)2a(q)b q ,那么Mf( b)③假设b2a2a2af(b)2aff f (Ox(q)f(q)Ob x 0,那么mf(p).f②2a(p)f (b)2a(q)xgO xf (p)q ,那么Mf(q)) 2ax第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数yf(x)(xD),把使f(x)0成立的实数x 叫做函数yf(x)(xD)的零点。
高一数学必修1函数的概念考试题及答案解析
![高一数学必修1函数的概念考试题及答案解析](https://img.taocdn.com/s3/m/403871faf12d2af90342e6be.png)
高一数学必修1函数的概念考试题及答案解析函数的概念是函数整章的核心概念,学会用函数的观点和方法解决数学问题,是高中数学主要的学习任务之一。
下面小编给大家带来的高一数学必修1函数的概念考试题及答案解析,希望对你有帮助。
高一数学函数的概念考试题及答案解析1.下列说法中正确的为()A.y=f(x)与y=f(t)表示同一个函数B.y=f(x)与y=f(x+1)不可能是同一函数C.f(x)=1与f(x)=x0表示同一函数D.定义域和值域都相同的两个函数是同一个函数解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同.2.下列函数完全相同的是()A.f(x)=|x|,g(x)=(x)2B.f(x)=|x|,g(x)=x2C.f(x)=|x|,g(x)=x2xD.f(x)=x2-9x-3,g(x)=x+3解析:选B.A、C、D的定义域均不同.3.函数y=1-x+x的定义域是()A.{x|x≤1}B.{x|x≥0}C.{x|x≥1或x≤0}D.{x|0≤x≤1}解析:选D.由1-x≥0x≥0,得0≤x≤1.4.图中(1)(2)(3)(4)四个图象各表示两个变量x,y的对应关系,其中表示y是x的函数关系的有________.解析:由函数定义可知,任意作一条直线x=a,则与函数的图象至多有一个交点,对于本题而言,当-1≤a≤1时,直线x=a与函数的图象仅有一个交点,当a1或a-1时,直线x=a与函数的图象没有交点.从而表示y是x的函数关系的有(2)(3).答案:(2)(3)1.函数y=1x的定义域是()A.RB.{0}C.{x|x∈R,且x≠0}D.{x|x≠1}解析:选C.要使1x有意义,必有x≠0,即y=1x的定义域为{x|x∈R,且x≠0}.2.下列式子中不能表示函数y=f(x)的是()A.x=y2+1B.y=2x2+1C.x-2y=6D.x=y解析:选A.一个x对应的y值不唯一.3.下列说法正确的是()A.函数值域中每一个数在定义域中一定只有一个数与之对应B.函数的定义域和值域可以是空集C.函数的定义域和值域一定是数集D.函数的定义域和值域确定后,函数的对应关系也就确定了解析:选C.根据从集合A到集合B函数的定义可知,强调A中元素的任意性和B中对应元素的唯一性,所以A中的多个元素可以对应B中的同一个元素,从而选项A错误;同样由函数定义可知,A、B集合都是非空数集,故选项B错误;选项C正确;对于选项D,可以举例说明,如定义域、值域均为A={0,1}的函数,对应关系可以是x→x,x∈A,可以是x→x,x∈A,还可以是x→x2,x∈A.4.下列集合A到集合B的对应f是函数的是()A.A={-1,0,1},B={0,1},f:A中的数平方B.A={0,1},B={-1,0,1},f:A中的数开方C.A=Z,B=Q,f:A中的数取倒数D.A=R,B={正实数},f:A中的数取绝对值解析:选A.按照函数定义,选项B中集合A中的元素1对应集合B 中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C中的元素0取倒数没有意义,也不符合函数定义中集合A中任意元素都对应唯一函数值的要求;选项D中,集合A中的元素0在集合B 中没有元素与其对应,也不符合函数定义,只有选项A符合函数定义.5.下列各组函数表示相等函数的是()A.y=x2-3x-3与y=x+3(x≠3)B.y=x2-1与y=x-1C.y=x0(x≠0)与y=1(x≠0)D.y=2x+1,x∈Z与y=2x-1,x∈Z解析:选C.A、B与D对应法则都不同.6.设f:x→x2是集合A到集合B的函数,如果B={1,2},则A∩B一定是()A.∅B.∅或{1}C.{1}D.∅或{2}解析:选B.由f:x→x2是集合A到集合B的函数,如果B={1,2},则A={-1,1,-2,2}或A={-1,1,-2}或A={-1,1,2}或A={-1,2,-2}或A={1,-2,2}或A={-1,-2}或A={-1,2}或A={1,2}或A={1,-2}.所以A∩B=∅或{1}.7.若[a,3a-1]为一确定区间,则a的取值范围是________.解析:由题意3a-1a,则a12.答案:(12,+∞)8.函数y=x+103-2x的定义域是________.解析:要使函数有意义,需满足x+1≠03-2x0,即x32且x≠-1.答案:(-∞,-1)∪(-1,32)9.函数y=x2-2的定义域是{-1,0,1,2},则其值域是________.解析:当x取-1,0,1,2时,y=-1,-2,-1,2,故函数值域为{-1,-2,2}.答案:{-1,-2,2}10.求下列函数的定义域:(1)y=-x2x2-3x-2;(2)y=34x+83x-2.解:(1)要使y=-x2x2-3x-2有意义,则必须-x≥0,2x2-3x-2≠0,解得x≤0且x≠-12,故所求函数的定义域为{x|x≤0,且x≠-12}.(2)要使y=34x+83x-2有意义,则必须3x-20,即x23,故所求函数的定义域为{x|x23}.11.已知f(x)=11+x(x∈R且x≠-1),g(x)=x2+2(x∈R).(1)求f(2),g(2)的值;(2)求f(g(2))的值.解:(1)∵f(x)=11+x,∴f(2)=11+2=13,又∵g(x)=x2+2,∴g(2)=22+2=6.(2)由(1)知g(2)=6,∴f(g(2))=f(6)=11+6=17.12.已知函数y=ax+1(a0且a为常数)在区间(-∞,1]上有意义,求实数a的取值范围.解:函数y=ax+1(a0且a为常数).∵ax+1≥0,a0,∴x≤-1a,即函数的定义域为(-∞,-1a].∵函数在区间(-∞,1]上有意义,∴(-∞,1]⊆(-∞,-1a],∴-1a≥1,而a0,∴-1≤a0.即a的取值范围是[-1,0).。
函数的概念与性质(解析版)--2024高考数学常考题型精华版
![函数的概念与性质(解析版)--2024高考数学常考题型精华版](https://img.taocdn.com/s3/m/c0d607edc0c708a1284ac850ad02de80d4d806bb.png)
第1讲函数的概念与性质【考点分析】1.函数的定义域、值域、解析式是高考中必考内容,具有较强的综合性,贯穿整个高中数学的始终.而在高考试卷中的形式可谓千变万化,但万变不离其宗,真正实现了常考常新的考试要求.所以,我们应该掌握一些简单的基本方法.2.函数的单调性、奇偶性是高考命题热点,每年都会考一道选择或者填空题,分值5分,一般与指数,对数结合起来命题【题型目录】题型一:函数的定义域题型二:同一函数概念题型三:函数单调性的判断题型四:分段函数的单调性题型五:函数的单调性唯一性题型六:函数奇偶性的判断题型七:已知函数奇偶性,求参数题型八:已知函数奇偶性,求函数值题型九:利用奇偶性求函数解析式题型十:给出函数性质,写函数解析式题型十一:()=x f 奇函数+常数模型(()()常数⨯=+-2x f x f )题型十二:中值定理(求函数最大值最小值和问题,()()()中f x f x f 2min max =+,中指定义域的中间值)题型十三:.单调性和奇偶性综合求不等式范围问题题型十四:值域包含性问题题型十五:函数性质综合运用多选题【典型例题】题型一:函数的定义域【例1】(2021·奉新县第一中学高一月考)函数()f x =的定义域为()A .(]1,2B .[]1,4C .()1,4D .[]2,4答案:C解析:对于函数()f x =,有1040x x ->⎧⎨->⎩,解得14x <<.因此,函数()ln 1f x -=的定义域为()1,4.故选:C.【例2】函数()21log (3)f x x =-的定义域为【答案】()()3,44,⋃+∞【详解】由题意知()230log 30x x ->⎧⎨-≠⎩,得()223log 3log 1x x >⎧⎨-≠⎩,所以331x x >⎧⎨-≠⎩,所以()()3,44,x ∈⋃+∞.【例3】(2020·集宁期中)已知函数)32(-x f 的定义域是]41[,-,则函数)21(x f -的定义域()A .]12[,-B .]21[,C .]32[,-D .]31[,-【答案】C【详解】因为函数)32(-x f 的定义域是]41[,-,所以41≤≤-x ,所以5325≤-≤-x ,函数)(x f 的定义域为]55[,-,令5215≤-≤-x ,解得32≤≤-x 【例4】若函数()12log 22++=x ax y 的定义域为R ,则a 的范围为__________。
高中数学教师资格证面试真题
![高中数学教师资格证面试真题](https://img.taocdn.com/s3/m/8bfbbb5e1611cc7931b765ce0508763230127445.png)
高中数学教师资格证面试真题函数的概念1、面试备课纸1.题目:函数的概念2.内容:3.基本要求:(1)要有板书;(2)试讲十分钟左右;(3)条理清晰,重点突出;(4)学生掌握函数的概念。
2、高中数学《函数的概念》教学设计四、板书设计3、高中数学《函数的概念》答辩题目及解析问题:函数与映射的异同点?【参考答案】相同点:(1)函数与映射都是两个非空集合中元素的对应关系;(2)函数与映射的对应都具有方向性;(3)A中元素具有任意性,B中元素具有唯一性。
区别:函数是一种特殊的映射,它必须是满射。
它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。
高中数学《奇函数》高中数学《终边相同的角》一、考题回顾二、考题解析高中数学《终边相同的角》主要教学过程及板书设计教学过程(一)导入新课出示例题:在直角坐标系中,以原点为定点,X正半轴为始边,画出210°,-45°和-150°,三个角。
并判别是第几象限角?提出问题:这三个角的终边有什么特点?追问:按照之前学的方法,给定一个角,就有唯一一条终边与之对应,反之,对于直角坐标系中的任意一条射线OB,以它为终边的角是否唯一?(二)天生新知提出问题:在直角坐标系中标出210°,-150°,328°,-32°,-392°表示的角,观察他们的终边,你有什么发现?预设:210°和-150°的终边相同。
328°,-32°,-392°的终边相同。
追问并进行小组讨论:这两组终边相同的角,它们的之间有什么数量关系?终边相同的角又有什么关系?经过讨论,学生得到这样的关系:210°-(-150°)=360°,328°-(-32°)=360°,-32°-(-392°)=360°等。
函数的概念(含答案解析)
![函数的概念(含答案解析)](https://img.taocdn.com/s3/m/58bef026b94ae45c3b3567ec102de2bd9605dea2.png)
函数的概念一、选择题1.函数y=+的定义域为( )A.{x|x≤1}B.{x|x≥0}C.{x|x≥1,或x≤0}D.{x|0≤x≤1}【解析】选D.要使函数有意义,需解得0≤x≤1.2.若函数y=f(x)的定义域为{x|-3≤x≤8,x≠5},值域为{y|-1≤y≤2,y≠0},则y=f(x)的图象可能是( )【解析】选B.A中y取不到2,C中不是函数关系,D中x取不到0.3.已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列从P到Q的各对应关系f不是函数的是( )A.f:x→y=xB.f:x→y=xC.f:x→y=xD.f:x→y=【解题指南】解答此类问题时,若否定结论则只需找一反例即可.【解析】选C.因为P={x|0≤x≤4},Q={y|0≤y≤2},从P到Q的对应关系f:x→y=x,当x=4时,y=>2,所以在集合Q中没有数y与之对应,故构不成函数.4.下列式子中不能表示函数y=f(x)的是( )A.x=y2B.y=x+1C.x+y=0D.y=x2【解析】选A.从函数的概念来看,一个自变量x对应一个y;而A中x=y2中一个x 对应两个y.所以A不是函数.5.函数f(x)=(x∈R)的值域是( )A.[0,1]B.[0,1)C.(0,1]D.(0,1)【解析】选C.因为x2≥0,所以x2+1≥1,所以0<≤1,所以值域为(0,1].6.下列各组函数中,表示同一个函数的是( )A.y=与y=x+1B.y=与y=C.y=-1与y=x-1D.y=x与y=【解析】选D.对于选项A:函数y=的定义域不包含1,而y=x+1的定义域是R,显然不是同一个函数.对于选项B:函数y=的定义域为x≥0,而函数y=的定义域是{x|x≠0},显然不是同一个函数.对于选项C:函数y=-1的值域是大于等于-1的,而直线y=x-1的值域是R,显然不是同一个函数.对于选项D:因为y=x与y=的最简解析式相等,且定义域都为R,所以为同一个函数.7.函数y=2的值域是( )A.[0,+∞)B.[1,+∞)C.(-∞,+∞)D.[,+∞)【解析】选A.因为x≥0,所以≥0,所以y≥0,所以函数的值域为[0,+∞).8.已知函数f(x)的定义域为[0,1),则函数f(1-x)的定义域为( )A.[0,1)B.(0,1]C.[-1,1]D.[-1,0)∪(0,1]【解题指南】原函数的定义域,即为1-x的范围,解不等式组即可得解.【解析】选B.因为原函数的定义域为[0,1),所以0≤1-x<1,即所以0<x≤1,所以函数f(1-x)的定义域为(0,1].9.下列函数中,与函数y=有相同定义域的是( )A.f(x)=B.f(x)=C.f(x)=|x|D.f(x)=【解析】选B.因为函数y=的定义域是{x|x≠0},所以A,C,D都不对.10.已知函数f(x)=-1,则f(2)的值为( )A.-2B.-1C.0D.不确定【解题指南】解答本题的关键是明确对应关系为定义域中的任意变量的值都对应于-1,即该函数为常函数.【解析】选 B.因为函数f(x)=-1,所以不论x取何值其函数值都等于-1,故f(2)=-1.11.函数y=的定义域是(-∞,1)∪[2,5),则其值域是( )A.(-∞,0)∪B.(-∞,2]C.∪[2,+∞)D.(0,+∞)【解题指南】根据定义域求值域.【解析】选A.因为x∈(-∞,1)∪[2,5),所以x-1∈(-∞,0)∪[1,4),当x-1∈(-∞,0)时,∈(-∞,0);当x-1∈[1,4)时,∈.12.函数f(x)的定义域为[-6,2],则函数y=f()的定义域为( )A.[-4,4]B.[-2,2]C.[0,]D.[0,4]【解析】选D.因为函数f(x)的定义域为[-6,2],所以-6≤≤2,又因为≥0,所以0≤≤2,所以0≤x≤4.二、填空题1.若[a,3a-1]为一确定区间,则a的取值范围是.【解析】由题意3a-1>a,则a>.答案:【误区警示】本题易忽略区间概念而得出3a-1≥a,则a≥的错误.2.已知函数f(x)=ax2-1(a≠0),且f(f(1))=-1,则a的取值为.【解析】因为f(x)=ax2-1,所以f(1)=a-1,f(f(1))=f(a-1)=a(a-1)2-1=-1,所以a(a-1)2=0,又因为a≠0,所以a-1=0,所以a=1.答案:13.四个函数:(1)y=x+1;(2)y=x3;(3)y=x2-1;(4)y=.其中定义域相同的函数的序号是.【解析】函数y=x+1的定义域是R;函数y=x3的定义域是R;函数y=x2-1的定义域是R;函数y=的定义域是(-∞,0)∪(0,+∞).由此可知定义域相同的序号是(1)(2)(3).答案:(1)(2)(3)4.若函数y=的定义域是A,函数y=的值域是B,则A∩B= . 【解析】由题意知A={x|x≠2},B={y|y≥0},则A∩B=[0,2)∪(2,+∞).答案:[0,2)∪(2,+∞)三、解答题1.已知函数f(x)=x2+x-1,求(1)f(2).(2)f.(3)若f(x)=5,求x的值.【解析】(1)f(2)=4+2-1=5.(2)f=+-1=++1.(3)f(x)=5,即x2+x-1=5.由x2+x-6=0得x=2或x=-3.2.已知f(x)=,x∈R.(1)计算f(a)+f的值.(2)计算f(1)+f(2)+f+f(3)+f+f(4)+f的值.【解题指南】(1)将函数的自变量代入计算即可,(2)可以分别将f(1),f(2),f,f(3),f,f(4),f的函数值算出再相加,也可以根据待求式中数据的特征,结合(1)中所得结果求解.【解析】(1)由于f(a)=,f=,所以f(a)+f=1.(2)方法一:因为f(1)==,f(2)==,f==,f(3)==,f==,f(4)==,f==,所以f(1)+f(2)+f+f(3)+f+f(4)+f=++++++=.方法二:因为f(a)+f=1,从而f(2)+f=f(3)+f=f(4)+f=1,即++f(4)+f=3,而f(1)=,所以f(1)+f(2)+f+f(3)+f+f(4)+f=.3.已知函数y=(1<x≤2),求函数值域.【解析】设x1,x2∈(1,2]且x1<x2,则f(x1)-f(x2)=-=,因为x1<x2,所以x2-x1>0,因为x1,x2∈(1,2],所以(2x1-1)(2x2-1)>0,所以f(x1)-f(x2)>0,所以f(x)在(1,2]上单调递减,所以当1<x≤2时,f(2)≤f(x)<f(1),即≤f(x)<1,所以函数的值域为.4.记函数f(x)=的定义域为集合A,函数g(x)=图象在二、四象限时,k的取值集合为B,函数h(x)=x2+2x+4的值域为集合C.(1)求集合A,B,C.(2)求集合A∪(B),A∩(B∪C).R【解析】(1)由2x-3>0,得x>,所以A=, 又由k-1<0,得k<1,所以B=,而h(x)=x2+2x+4=+3≥3,所以C=.B)=,A∩(B∪C)=.(2)A∪(R。
高中数学《对数函数及其性质》答辩题目及解析
![高中数学《对数函数及其性质》答辩题目及解析](https://img.taocdn.com/s3/m/87cc4808657d27284b73f242336c1eb91a373336.png)
高中数学《对数函数及其性质》答辩题目及解析
一、指数函数与对数函数之间的关系是什么?
【参考答案】
同底的指数函数与对数函数互为反函数,两者的函数图象关于y=x对称。
二、在本节课的教学过程中,你是如何探究对数函数的性质?
【参考答案】
对数函数的性质是本节课的重点和难点。
在教学过程中为了突出教学重点以及难点,我设置学生进行小组讨论,且学生之前有探究指数函数图象和性质的基础,我尽可能的放手让学生自己去探究。
教学过程中,让学生充分参与,学生通过动手绘制函数图象、交流讨论、观察对比、分析交流,环环相扣的教学,探究出对数函数的性质。
三、学生对指、对、幂三类基本初等函数的学习主要提升了哪些数学思想方法?
【参考答案】
对于这一部分内容的学习,需要在理解定义的基础上,通过指、对、幂三类基本初等函数图象的观察、归纳得出一般图象及性质,进一步熟练掌握由特殊到一般的数学思想方法。
要深刻理解和掌握利用变化的观点处理问题,帮助学生感受函数的思想、方程的思想、化归的思想和数形结合的思想。
高考数学总复习专题函数的概念以及表示试题含解析
![高考数学总复习专题函数的概念以及表示试题含解析](https://img.taocdn.com/s3/m/28fbcbae3c1ec5da51e270ef.png)
专题2.1 函数的概念及其表示【三年高考】1.12016江苏高考6】函数丫=43- 2x- x2的定义域是▲.【答案】3,1【解析】试题分析:要使函数式有意义,必有3 2x x2 0,即x2 2x 3 0,解得3 x 1.故答案应填:3,1【考点】函数定义域【名师点睛】函数定义域的考查,一般是多知识点综合考查,先“列”后“解”是常规思路.列式主要从分母不为零、偶次根式下被开方数非负、对数中真数大于零等出发,而解则与一元二次不等式、指(对)数不等式、三角不等式等联系在一起^2.12016江苏高考17】现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥P A1B1C1D1,下部分的形状是正四棱柱ABCD AB1G D1 (如图所示),并要求正四棱柱的高OO1是正四棱锥的高PO1的4倍.(1)若AB 6 m, PO1 2 m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m ,则当PO1为多少时,仓库的容积最大?A B【答案】(1) 312 (2) PO1 273【解析】试题分析:(1)明确柱体与锥体积公式的区别,分别代入对应公式求解;(2)先根据体积关系建立函数解析式,VV 锥V 柱 ±6 36h h 30 h 6,然后利用导数求其最值.3试题解析:解:(1)由尸5=2知 因为月1产以8=&>所以正四棱锥尸一话1C 山1的体积/= ; ,,声:,尸&二g 乂 6, x 2 = 24(n?);正四棱柱 ABCD-AiBiCiDi 的体积 %=加,001 =62xB = 2£S (m ) 所以仓库的各积片厂计歹广24+282=312 (m 曾.从而 V′2636 3h 226 12 h 2.3令V' 0,得h 26或h2褥(舍).当0 h 2d 3时,V' 0 , V 是单调增函数; 当2百 h 6时,V' 0, V 是单调减函数. 故h 28时,V 取得极大值,也是最大值. 因此,当PO 1 2J 3 m 时,仓库的容积最大.【考点】函数的概念、导数的应用、棱柱和棱锥的体积 【名师点睛】对应用题的训练,一般从读题、审题、剖•析题目、寻找切入点等方面进行强化,注重培养将文字语言转化为数学语言的能力,强化构建数学模型的几种方法.而江苏高考的应用题往往需结合导数知识解决相应的最值问题,因此掌握利用导数求最值方法是一项基本要 求,需熟练掌握.(2)设 AB=a(m) , PO=h(m),则 0Vh<6,因为在 Rt^ PO 1B 1 中,OB2PO 12一 2即 a 2 36于是仓库的容积V V 柱一 2・V 锥 a 4h OO=4h.连ZO OB.PBi ;h 2 .-a 2 h —a 2h — 36h h 3 0 h 6 , 3 3 3则a 的值为。
必修1 函数的定义域 复习专题 (含解析)答辩
![必修1 函数的定义域 复习专题 (含解析)答辩](https://img.taocdn.com/s3/m/f94e7fc1770bf78a652954a1.png)
必修1 函数的定义域复习专题 (含解析一.选择题(共17小题)1.(2007•陕西)函数f(x)=lg的定义域为()A.[0,1] B.(﹣1,1)C.[﹣1,1] D.(﹣∞,﹣1)∪(1,+∞)函数的定义域及其求法。
考点:分对数的真数一定要大于0,进而构造不等式进行求解.析:解解:由,知,1﹣x2>0,即,x2<1,进而得到,﹣1<x<1答:故,函数的定义域为(﹣1,1)故选B考查对数真数的要求,即,真数要大于0.点评:2.(2006•湖南)函数的定义域是()A.(0,1] B.(0,+∞)C.[1,+∞)D.(1,+∞)考函数的定义域及其求法。
点:分根据对数函数的定义,及根式有意义的条件,进行求解.解答:解:∵函数的定义域是log2x≥0,解得x≥1,选C.点评:此题主要考查对数函数定义域的求法,注意根式里面要大于等于0,这是个易错点.3.(2005•江西)函数的定义域为()A.(1,2)∪(2,3)B.(﹣∞,1)∪(3,+∞)C.(1,3)D.[1,3]考点:函数的定义域及其求法。
分析:首先,考查对数的定义域问题,也就是log2(﹣x2+4x﹣3)的真数(﹣x2+4x﹣3)一定要大于零,其次,分母不能是零.解答:解:由﹣x2+4x﹣3>0,得1<x<3,又因为log2(﹣x2+4x﹣3)≠0,即﹣x2+4x﹣3≠1,得x≠2故,x的取值范围是1<x<3,且x≠2.定义域就是(1,2)∪(2,3)故选A.点评:对定义域的考查一定要使得式子有意义.比方说分母不能是0,对数的真数必须大于0,偶次开方一定非负等等.4.(2004•陕西)函数y=的定义域是()A.[﹣,﹣1)∪(1,] B.(﹣,﹣1)∪(1,)C.[﹣2,﹣1)∪(1,2]D.(﹣2,﹣1)∪(1,2)考点:函数的定义域及其求法;对数的运算性质。
专题:计算题。
分析:由函数表达式知,被开方数大于或等于0,故对数的真数大于0且对数值小于或等于1,x2﹣1>0,且x2﹣1≤1;解可得答案.解答:解:﹣≤x<﹣1或1<x≤.∴y=的定义域为[﹣,﹣1)∪(1,].答案:A点评:考查对数的定义域和单调性.5.函数y=的定义域为()A.{x|x≤1}B.{x|x≥1}C.{x|x≥1或x≤0}D.{x|0≤x≤1}考点:函数的定义域及其求法。
函数概念试题与答案精解
![函数概念试题与答案精解](https://img.taocdn.com/s3/m/3e1b902da216147917112861.png)
一、选择题(共18小题)1、下列各曲线中,不能表示y是x的函数的是()A 、B 、C 、D 、2、下列解析式中,y不是x的函数是()A、y+x=0B、|y|=2xC、y=|2x|D、y=2x2+43、下列函数中,与y=|x|表示同一个函数的是()A、y=B、y=C、y=D、y=4、下列说法正确的是()A、变量x、y满足y2=x,则y是x的函数B、变量x、y满足x+3y=1,则y是x的函数C 、代数式πr3是它所含字母r的函数D、在V=πr3中,是常量,r是自变量,V是r的函数5、函数是研究()A、常量之间的对应关系的B、常量与变量之间的对应关系的C、变量与常量之间对应关系的D、变量之间的对应关系的6、下列关系式中,不是函数关系的是()A、y=(x<0)B、y=±(x>0)C、y=(x>0)D、y=﹣(x>0)7、下列是关于变量x和y的四个关系式:①y=x;②y2=x;③2x2=y;④y2=2x.其中y是x的函数有()A、1个B、2个C、3个D、4个8、下列等式中,是x的函数的有()个.(1)3x﹣2y=1;(2)x2+y2=1;(3)xy=1;(4)|y|=x.A、1个B、2个C、3个D、4个9、下列各表达式不是表示y与x的函数的是()GodMan1A、y=3x2B、y=C、y=±(x>0)D、y=3x+110、下图中,分别给出了变量x与y之间的对应关系,y不是x的函数的是()A、B、C、D、11、下列说法正确的是()A、若y<2x,则y是x的函数B、正方形面积是周长的函数C、变量x,y满足y2=2x,y是x的函数D、温度是变量12、下列各图中反映了变量y是x的函数是()A、B、C、D、13、在下表中,设x表示乘公共汽车的站数,y表示应付的票价(元)根据此表,下列说法正确的是()A、y是x的函数B、y不是x的函数C、x是y的函数D、以上说法都不对14、下列各曲线中,不能表示y是x函数的为()A、B、C、D、15、如图可作为函数y=f(x)的图象的是()A、B、C、D、16、下面分别给出了变量x,y之间的对应关系,其中y是x的函数的是()A、B、C、D、17、如图,分别给出了变量x与y之间的对应关系,y是x的函数的图象是()A、B、C、D、18、下图分别给出了变量x与y之间的对应关系,其中y是x的函数是()A、B、C、D、二、填空题(共2小题)19、在关系式y=2x2+x+1中,可把_________ 看成_________ 的函数,其中_________ 是自变量,_________ 是因变量.20、下列:①y=x2;②y=2x+1;③y2=2x(x≥0);④y=(x≥0),具有函数关系(自变量为x)的是_________ .三、解答题(共1小题)21、已知两个变量x、y满足关系2x﹣3y+1=0,试问:①y是x的函数吗?②x是y的函数吗?若是,写出y与x 的关系式,若不是,说明理由.答案与评分标准一、选择题(共18小题)1、下列各曲线中,不能表示y是x的函数的是()A、B、C、D、考点:函数的概念。
数学答辩题
![数学答辩题](https://img.taocdn.com/s3/m/2873f42d4b35eefdc8d333af.png)
一.以函数概念为例谈一谈它的内容以及它与其它高中数学知识的联系。
参考答案:(1)从其内容看,函数概念包含定义域、值域、对应法则等,以及单调性、奇偶性、周期性、对称性等性质和一些具体的函数,这些内容是函数教学的基础,但不是全部。
(2)从关系的角度来看,不仅函数的主要内容之间存在着种种实质性的联系,比如函数导数就是高中重要内容之一,函数与其他中学数学内容也有着密切的联系。
方程的根可以作为函数的图象与轴交点的横坐标;不等式的解就是函数的图象在轴上方的那一部分所对应的横坐标的集合;数列也就是定义在自然数集合上的函数;同样的几何内容也与函数有着密切的联系。
……。
二.根据具体内容,比如立体几何教学你会选择什么比较恰当的教学方法?参考答案:每一堂课都有规定的教学任务和目标要求。
所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。
数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识。
而在立体几何中,我们还时常穿插演示法,来向学生展示几何模型,或者验证几何结论。
如在教授立体几何之前,要求学生每人用铅丝做一个立方体的几何模型,观察其各条棱之间的相对位置关系,各条棱与正方体对角线之间、各个侧面的对角线之间所形成的角度。
这样在讲授空间两条直线之间的位置关系时,就可以通过这些几何模型,直观地加以说明。
此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。
在一堂课上,有时要同时使用多种教学方法。
“教无定法,贵要得法”。
只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法。
三.谈一谈解题错误的类型和解决的方法参考答案:答题过程中会出现各类错误。
但是能否更深层次地指出错误的真正原因呢?一般把错误分成三个层次:其一是运算错误,这是完全可以避免的错误;其二是在考试中不能正确地选择解题方法,但是考试后仔细思考能想到,这种错误只要通过自己平时解题之后的总结,找到通性通法,以后一般也能纠正;其三无论怎样也找不到正确的解题方法,这样的错误不是通过一段时间就能消灭的,而是需要全部的知识点融会贯通,才有可能纠正。
高考数学中“函数的概念与基本初等函数多选题”的类型分析附答案
![高考数学中“函数的概念与基本初等函数多选题”的类型分析附答案](https://img.taocdn.com/s3/m/d909dc0b3186bceb18e8bbaf.png)
高考数学中“函数的概念与基本初等函数多选题”的类型分析附答案一、函数的概念与基本初等函数多选题1.对于定义在R 上的函数()f x ,若存在正实数a ,b ,使得()()f x a f x b +≤+对一切x ∈R 均成立,则称()f x 是“控制增长函数”.在以下四个函数中是“控制增长函数”的有( )A .()xf x e =B .()f x =C .()()2sin f x x=D .()sin f x x x =⋅【答案】BCD 【分析】假设各函数是“控制增长函数”,根据定义推断()()f x a f x b +≤+对一切x ∈R 恒成立的条件,并判断,a b 的存在性,即可得出结论. 【详解】对于A. ()()f x a f x b +≤+可化为22()()11x a x a x x b ++++≤+++,22ax a a b ≤--+0a >,不等式在x ∈R 上不恒成立,所以2()1f x x x =++不是“控制增长函数”; 对于B. ()()f x a f x b +≤+可化为,b ≤,即2||||2x a x b +≤++恒成立.又||||x a x a +≤+,故只需保证2||||2x a x b +≤++.20,2a b b b->≥ ,当220a b -≤时,b ≤恒成立,()f x ∴=“控制增长函数”;对于C.()21()sin 1,()()2f x x f x a f x -≤=≤∴+-≤,2b ∴≥时,a 为任意正数,()()f x a f x b +≤+恒成立, ()2()sin f x x ∴=是“控制增长函数”;对于D. ()()f x a f x b +≤+化为,()sin()sin x a x a x x b ++≤+,令2a π= ,则(2)sin sin ,2sin x x x x b x b ππ+≤+≤,当2b π≥时,不等式()sin()sin x a x a x x b ++≤+恒成立,()sin f x x x ∴=⋅是“控制增长函数”.故选:BCD 【点睛】本题考查了新定义的理解,函数存在成立和恒成立问题的研究.我们可先假设结论成立,再不断寻求结论成立的充分条件,找得到就是“控制增长函数”.如果找出了反例,就不是“控制增长函数”.2.对于函数()()13cos ,,22132,,22x x f x f x x π⎧⎡⎤∈-⎪⎢⎥⎪⎣⎦=⎨⎛⎫⎪-∈+∞ ⎪⎪⎝⎭⎩,下面结论正确的是( )A .任取121,,2x x ⎡⎫∈-+∞⎪⎢⎣⎭,都有()()122f x f x -≤恒成立 B .对于一切1,2x ⎡⎫∈-+∞⎪⎢⎣⎭,都有()()()*22N k f x f x k k =+∈ C .函数()1ln 2y f x x ⎛⎫=--⎪⎝⎭有3个零点 D .对任意0x >,不等式()k f x x ≤恒成立,则实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭【答案】ABC 【分析】先在坐标轴中画出()y f x =的图象,根据图象可判断A 选项,结合解析式可判断B 选项,再画出1ln()2y x =-与k y x=的图象,数形结合可判断C,D 选项.【详解】在坐标轴上作出函数()f x 的图象如下图所示:由图象可知()f x 的最大值为1,最小值为1-,故选项A 正确; 由题可知()()()1312,(,)(2),(,)22221f x f x x f x f x x =-∈+∞⇒+=∈-+∞, 所以*1(2)()()()2k f x k f x k N +=∈即()2(2)k f x f x k =+,故选项B 正确;作出1ln()2y x =-的图象,因为11ln(2)ln 2232-=<,由图象可知()y f x =与1ln()2y x =-有3个交点,故选项C 正确;结合图象可知,若对任意0x >,不等式()kf x x恒成立, 即2x n =时,不等式(2)2kf n n恒成立, 又11(2)()(0)()22nnf n f ==, 所以1()22n k n ,即22n nk 在*n N ∈时恒成立, 设2()2x x g x =,则2ln 4()2xxg x -⋅'=, 故[)2,x ∈+∞时,()0g x '<,函数()g x 在[)2,+∞上单调递减, 所以[)2,x ∈+∞时,max ()(2)1g x g ==,又(1)1g =,所以max 212n n ⎛⎫= ⎪⎝⎭,即1k ,故选项D 错误.故选:ABC. 【点睛】本题主要考查分段函数的周期性及数形结合法在处理函数问题中的应用,有一定难度.3.已知函数1()x x f x e+=,当实数m 取确定的某个值时,方程2()()10f x mf x ++=的根的个数可以是( ) A .0个 B .1个C .2个D .4个【答案】ABC 【分析】令()t f x =,画出1()x x f x e+=,结合210t mt ++=的解的情况可得正确的选项. 【详解】()xx f x e '=-, 故当0x <时,0f x ,故()f x 在,0上为增函数;当0x >时,0fx,故()f x 在0,上为减函数,而()10f -=且当0x >时,()0f x >恒成立,故()f x 的图象如图所示:考虑方程210t mt ++=的解的情况.24m ∆=-,当2m <-时,>0∆,此时方程210t mt ++=有两个不等的正根12t t <, 因为121t t =,故101t <<,21t >,由图象可知方程()1t f x =的解的个数为2,方程()2t f x =的解的个数为0, 故方程2()()10f x mf x ++=的根的个数是2.当2m =-时,0∆=,此时方程210t mt ++=有两个相等的正根121t t ==, 由图象可知方程1f x的解的个数为1,故方程2()()10f x mf x ++=的根的个数是1.当22m -<<时,∆<0,此时方程210t mt ++=无解, 故方程2()()10f x mf x ++=的根的个数是0.当2m =时,0∆=,此时方程210t mt ++=有两个相等的负根121t t ==-, 由图象可知方程()1f x =-的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是1.当2m >时,>0∆,此时方程210t mt ++=有两个不等的负根12t t <, 由图象可知方程()1t f x =的解的个数为1,方程()2t f x =的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是2. 故选:ABC . 【点睛】本题考查复合方程的解,此类问题,一般用换元法来考虑,其中不含的参数的函数的图象应利用导数来刻画,本题属于难题.4.已知函数()f x 满足:当-<3≤0x 时,()()1xf x ex =+,下列命题正确的是( )A .若()f x 是偶函数,则当03x <≤时,()()1xf x e x =+B .若()()33f x f x --=-,则()()32g x f x e=+在()6,0x ∈-上有3个零点 C .若()f x 是奇函数,则1x ∀,[]23,3x ∈-,()()122f x f x -<D .若()()3f x f x +=,方程()()20f x kf x -=⎡⎤⎣⎦在[]3,3x ∈-上有6个不同的根,则k 的范围为2312k e e -<<- 【答案】BC 【分析】A 选项,利用函数的奇偶性求出解析式即可判断;B 选项,函数()f x 关于直线3x =-对称,利用导数研究函数的单调性作出函数图像,由函数图像可知当()6,0x ∈-时,函数()f x 与直线32y e=-有3个交点可判断;C 选项,由函数图像关于原点对称求出函数的值域进行判断;D 选项,函数周期为3,作出函数图像知方程()0f x =在[]3,3x ∈-上有两个不同的根,则2312k e e -<≤-时方程()f x k =在[]3,3x ∈-上有4个不同的根. 【详解】A 选项,若03x <≤,则30x -≤-<,()()1xf x e x --=-+,因为函数()f x 是偶函数,所以()()()1xf x f x ex -=-=-+,A 错误;B 选项,若()()33f x f x --=-,则函数()f x 关于直线3x =-对称,当-<3≤0x 时,()()2xf x ex '=+,当()3,2x ∈--时,()0f x '<,函数()f x 单调递减,当()2,0x ∈--时,()0f x '>,函数()f x 单调递增,且()323f e-=-,()2120f e-=-<,()10f -=, 作出函数大致图像如图所示,则当()6,0x ∈-时,函数()f x 与直线32y e=-有3个交点,即函数()()32g x f x e =+在()6,0x ∈-上有3个零点,B 正确;C 选项,由B 知当[3,0)x ∈-时,()2[,1)f x e -∈-,若函数()f x 为奇函数,则当[]3,3x ∈-时()()1,1f x ∈-,所以1x ∀,[]23,3x ∈-,()()122f x f x -<,C 正确;D 选项,若()()3f x f x +=,则函数()f x 的周期为3,作出函数在[]3,3x ∈-上的图像如图所示,若方程()()20f x kf x -=⎡⎤⎣⎦即()()[]0f x f x k -=在[]3,3x ∈-上有6个不同的根,因为方程()0f x =在[]3,3x ∈-上有两个不同的根,所以()f x k =在[]3,3x ∈-上有4个不同的根,又()323f e -=-,()2120f e -=-<,所以2312k e e -<≤-,D 错误. 故选:BC 【点睛】本题考查函数的图像与性质综合应用,涉及函数的单调性、奇偶性、对称性,函数的零点与方程的根,综合性较强,属于较难题.5.已知当0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,以下结论正确的是( )A .()f x 在区间[]6,4--上是增函数;B .()()220212f f -+-=;C .函数()y f x =周期函数,且最小正周期为2;D .若方程()1f x kx =+恰有3个实根,则14222k <<-224k =; 【答案】BD【分析】利用函数的性质,依次对选项加以判断,ABC 考查函数的周期性及函数的单调性,重点理解函数周期性的应用,是解题的关键,D 选项考查方程的根的个数,需要转化为两个函数的交点个数,在同一图像中分别研究两个函数,临界条件是直线与函数()f x 相切,结合图像将问题简单化. 【详解】对于A ,0x ≤时(2)y f x =+,即()f x 在区间[]6,4--上的单调性与()f x 在区间[]0,2上单调性一致, 所以()f x 在[]6,5--上是增函数,在[]5,4--上是减函数,故A 错误; 对于B ,当0x ≤时,()2()f x f x +=,()()22=22242=0f f -=-⨯+⨯,()()()()20211=1+2=1=2+42f f f f -=---=,故B 正确;对于C ,当0x ≤时,()2()f x f x +=, 当0x >时,()f x 不是周期函数,故C 错误; 对于D ,由0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,可求得当20x -<<时,2()24f x x x =--;直线1y kx =+恒过点(0,1),方程()1f x kx =+恰有3个实根, 即函数()f x 和函数1y kx =+的图像有三个交点,当0k >时,直线1y kx =+与函数()f x (0x >)相切于点00(,)x y ,则020001244124k k x kx x x⎧>⎪⎪=-+⎨⎪+=-+⎪⎩,解得04=2k x ⎧=-⎪⎨⎪⎩,要函数()f x 和函数1y kx =+的图像有三个交点, 则k的取值范围为:142k <<- 当0k <时,当0x >时,直线1y kx =+与函数()f x 有两个交点, 设直线1y kx =+与函数()f x (0x ≤)相切于点00(,)x y '',则020*******k x kx x x =-'-⎧⎨'+=-'-'⎩,解得04=k x ⎧=⎪⎨'⎪⎩综上,方程()1f x kx =+有3个实根,则14222k <<-或224k =-,故D 正确.故选:BD. 【点睛】本题考查函数的性质,单调性,及函数零点个数的判断,主要考查学生的逻辑推理能力,数形结合能力,属于较难题.6.设函数()f x 是定义在区间I 上的函数,若对区间I 中的任意两个实数12,x x ,都有1212()()(),22x x f x f x f ++≤则称()f x 为区间I 上的下凸函数.下列函数中是区间(1,3)上的下凸函数的是( ) A .()21f x x =-+ B .()2f x x =-- C .3()5f x x =+ D .21()1x f x x +=- 【答案】ACD 【分析】根据函数的解析式,求得1212()()()22x x f x f x f ++=,可判定A 正确;根据特殊值法,可判定B 不正确;根据函数的图象变换,结合函数的图象,可判定C 、D 正确. 【详解】对于A 中,任取12,(1,3)x x ∈且12x x ≠,则1212()()12x x f x x +=-++, 121212()()1(2121)()122f x f x x x x x +=-+-+=-++,可得1212()()()22x x f x f x f ++=,满足1212()()()22++≤x x f x f x f ,所以A 正确; 对于B 中,取1235,22x x ==,则1222x x +=,可得351()()222f f ==-,所以12()()122f x f x +=-,12()(2)02x x f f +==, 此时1212()()()22x x f x f x f ++>,不符合题意,所以B 不正确; 对于C 中,函数3()5f x x =+,由幂函数3y x =的图象向上移动5个单位,得到函数3()5f x x =+的图象, 如图所示,取12,(1,3)x x ∈且12x x ≠,由图象可得12()2C x x f y +=,12()()2D f x f x y +=, 因为D C y y >,所以1212()()()22++≤x x f x f x f ,符合题意,所以是正确的;对于D 中,函数213()211x f x x x +==+-- 由函数3y x =的图象向右平移1个单位,再向上平移2个单位,得到21()1x f x x +=-的图象,如图所示,取12,(1,3)x x ∈且12x x ≠,由图象可得12()2C x x f y +=,12()()2D f x f x y +=,因为D C y y >,所以1212()()()22++≤x x f x f x f ,符合题意,所以是正确的;【点睛】本题主要考查了函数的新定义及其应用,其中解答中正确理解函数的新定义,以及结合函数的图象求解是解答的关键,着重考查了数形结合法,以及推理与运算能力,属于中档试题.7.下列结论正确的是( )A .函数()y f x =的定义域为[]1,3,则函数()21y f x =+的定义域为[]0,1 B .函数()f x 的值域为[]1,2,则函数()1f x +的值域为[]2,3C .若函数24y x ax =-++有两个零点,一个大于2,另一个小于-1,则a 的取值范围是()0,3D .已知函数()23,f x x x x R =+∈,若方程()10f x a x --=恰有4个互异的实数根,则实数a 的取值范围为()()0,19,⋃+∞ 【答案】ACD 【分析】根据抽象函数定义域及代换的方法可求函数的定义域,判断A ,利用函数图象的平移可判断函数值域的变换情况,判断B ,利用数形结合及零点的分布求解判断C ,作出函数()23f x x x =+与1y a x =-的图象,数形结合即可判断D.【详解】对于A, ()y f x =的定义域为[]1,3,则由1213x ≤+≤可得()21y f x =+定义域为[]0,1,故正确;对于B ,将函数()f x 的图象向左平移一个单位可得函数()1f x +的图象,故其值域相同,故错误;对于C, 函数2()4y g x x ax ==-++有两个零点,一个大于2,另一个小于-1只需(2)0(1)0g g >⎧⎨->⎩,解得0<<3a ,故正确;对于D, 作出函数()23f x x x =+与1y a x =-的图象,如图,由图可以看出,0a ≤时,不可能有4个交点,找到直线与抛物线相切的特殊位置1a =或9a =,观察图象可知,当01a <<有4个交点,当9a <时,两条射线分别有2个交点,综上知方程()10f x a x --=恰有4个互异的实数根时,()()0,19,a ∈+∞正确.故选:ACD 【点睛】关键点点睛:对于方程实根问题,可转化为函数图象交点问题,本题中,()23f x x x=+图象确定,而1y a x =-是过(1,0)关于1x =对称的两条射线,参数a 确定两射线张角的大小,首先结合图形找到关键位置,即1a =时左边射线与抛物线部分相切,9a =时右边射线与抛物线相切,然后观察图象即可得出结论.8.已知函数()()2214sin 2x xe xf x e -=+,则下列说法正确的是( ) A .函数()y f x =是偶函数,且在(),-∞+∞上不单调 B .函数()y f x '=是奇函数,且在(),-∞+∞上不单调递增 C .函数()y f x =在π,02⎛⎫-⎪⎝⎭上单调递增 D .对任意m ∈R ,都有()()f m f m =,且()0f m ≥【答案】AD 【分析】由函数的奇偶性以及函数的单调性即可判断A 、B 、C 、D. 【详解】 解:对A ,()()222114sin =2cos 2xx xx e x e f x x e e-+=+-,定义域为R ,关于原点对称,()2211=2cos()2cos()()x x x xe ef x x x f x e e --++---=-=,()y f x ∴=是偶函数,其图像关于y 轴对称,()f x ∴在(),-∞+∞上不单调,故A 正确;对B ,1()2sin xx f x e x e'=-+, 11()2sin()=(2sin )()x xx x f x e x e x f x e e--''-=-+---+=-, ()f x '∴是奇函数,令1()2sin xxg x e x e =-+, 则1()+2cos 2+2cos 0x xg x e x x e '=+≥≥, ()f x '∴在(),-∞+∞上单调递增,故B 错误;对C ,1()2sin x x f x e x e'=-+,且()'f x 在(),-∞+∞上单调递增, 又(0)0f '=,π,02x ⎛⎫∴∈- ⎪⎝⎭时,()0f x '<,()y f x ∴=在π,02⎛⎫- ⎪⎝⎭上单调递减,故C 错误;对D ,()y f x =是偶函数,且在(0,)+∞上单调递增,()()f m f m ∴=,且()(0)0f m f ≥=,故D 正确.故选:AD. 【点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式;(3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用.9.下列说法中,正确的有( ) A .若0a b >>,则b a a b> B .若0a >,0b >,1a b +=,则11a b+的最小值为4C .己知()11212xf x =-+,且()()2110f a f a -+-<,则实数a 的取值范围为()2,1- D .已知函数()()22log 38f x x ax =-+在[)1,-+∞上是增函数,则实数a 的取值范围是(]11,6--【答案】BCD 【分析】利用不等式的基本性质可判断A 选项的正误;将+a b 与11a b+相乘,展开后利用基本不等式可判断B 选项的正误;判断函数()f x 的单调性与奇偶性,解不等式()()2110f a f a -+-<可判断C 选项的正误;利用复合函数法可得出关于实数a 的不等式组,解出a 的取值范围,可判断D 选项的正误. 【详解】对于A 选项,0a b >>,则1a bb a>>,A 选项错误; 对于B 选项,0a >,0b >,1a b +=,()1111224b a a b a b a b a b ⎛⎫∴+=++=++≥+= ⎪⎝⎭, 当且仅当12a b ==时,等号成立,所以,11a b+的最小值为4,B 选项正确; 对于C 选项,函数()f x 的定义域为R , 任取1x 、2x R ∈且12x x <,则21220x x >>, 所以,()()()()211212121211111122021221221212121x x x x x x x x f x f x -⎛⎫⎛⎫-=---=-=> ⎪ ⎪++++++⎝⎭⎝⎭,即()()12f x f x >,所以,函数()f x 为R 上的减函数,()()()()2211112212221212xxx x xf x -+-=-==+++, 则()()()()()()21212212122212221x x x x x x x xf x f x --------====-+⋅++, 所以,函数()f x 为R 上的奇函数,且为减函数, 由()()2110f a f a-+-<可得()()()22111f a f a f a-<--=-,所以,211a a -<-,即220a a +-<,解得21a -<<,C 选项正确;对于D 选项,对于函数()()22log 38f x x ax =-+,令238u x ax =-+,由于外层函数2log y u =为增函数,则内层函数238u x ax =-+在[)1,-+∞上为增函数,所以min 16380au a ⎧≤-⎪⎨⎪=++>⎩,解得116a -<≤-,D 选项正确.故选:BCD. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.10.已知函数()()124,01,21,1,x x f x af x x ⎧--≤≤⎪=⎨⎪->⎩其中a R ∈,下列关于函数()f x 的判断正确的为( ) A .当2a =时,342f ⎛⎫=⎪⎝⎭B .当1a <时,函数()f x 的值域[]22-,C .当2a =且[]()*1,x n n n ∈-∈N时,()1212242n n f x x --⎛⎫=-- ⎪⎝⎭D .当0a >时,不等式()122x f x a -≤在[)0,+∞上恒成立 【答案】AC 【分析】对于A 选项,直接代入计算即可;对于B 选项,由题得当(]*,1,x m m m N ∈+∈时,()()m f x a f x m =-,进而得当(]*,1,x m m m N ∈+∈时,()()2,2f x ∈-,故()f x 的值域(]2,2-;对于C 选项,结合B 选项得当2a =且[]()*1,x n n n ∈-∈N时,()()121n f x f x n -=-+进而得解析式;对于D 选项,取特殊值即可得答案.【详解】解:对于A 选项,当2a =时,3111222442222f f ⎛⎫⎛⎫⎛⎫==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故A 选项正确; 对于B 选项,由于当01x ≤≤,函数的值域为[]0,2,所以当(]*,1,x m m m N ∈+∈时,()()m f x a f x m =-,由于(]0,1x m -∈,所以()[]0,2f x m -∈,因为1a <,所以()1,1m a ∈-,所以当(]*,1,x m m m N ∈+∈时,()()2,2f x ∈-,综上,当1a <时,函数()f x 的值域(]2,2-,故B 选项错误;对于C 选项,由B 选项得当(]*,1,x m m m N ∈+∈时,()()mf x a f x m =-,故当2a =且[]()*1,x n n n ∈-∈N时,()()1112122412n n f x f x n x n --⎛⎫=-+=--+- ⎪⎝⎭1112122422422n n n x n x --⎛⎫⎛-⎫=--+=-- ⎪ ⎪⎝⎭⎝⎭,故C 选项正确; 对于D 选项,取812a =,34x =,则331241442f ⎛⎫=--= ⎪⎝⎭,122x a-=()311142482488111222222222---⎛⎫⎛⎫==⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,不满足式()122x f x a -≤,故D选项错误. 故选:AC. 【点睛】本题考查函数的综合应用,考查分析能力与运算求解能力,是难题.本题解题的关键在于根据题意得当(]*,1,x m m m N ∈+∈时,()()mf x a f x m =-,且当01x ≤≤,函数的值域为[]0,2,进而利用函数平移与伸缩变换即可求解.11.已知函数123,12()1,222x x f x x f x ⎧--≤≤⎪=⎨⎛⎫> ⎪⎪⎝⎭⎩,则下列说法正确的是( )A .若函数()=-y f x kx 有4个零点,则实数k 的取值范围为11,246⎛⎫⎪⎝⎭B .关于x 的方程*1()0()2n f x n N -=∈有24n +个不同的解 C .对于实数[1,)x ∈+∞,不等式2()30xf x -≤恒成立D .当1[2,2](*)n n x n N -∈∈时,函数()f x 的图象与x 轴围成的图形的面积为1 【答案】AC 【分析】根据函数的表达式,作出函数的图像,对于A ,C 利用数形结合进行判断,对于B ,D 利用特值法进行判断. 【详解】当312x ≤≤时,()22f x x =-;当 322x <≤时,()42f x x =-;当23x <≤,则3122<≤x , 1()1222⎛⎫==- ⎪⎝⎭x x f x f ;当34x <≤,则3222<≤x, 1()2222⎛⎫==- ⎪⎝⎭x x f x f ;当46x <≤,则232<≤x, 11()2242⎛⎫==- ⎪⎝⎭x x f x f ; 当68x <≤,则342<≤x,1()1224⎛⎫==- ⎪⎝⎭x x f x f ; 依次类推,作出函数()f x 的图像:对于A ,函数()=-y f x kx 有4个零点,即()y f x =与y kx =有4个交点,如图,直线y kx =的斜率应该在直线m , n 之间,又16m k =,124=n k ,11,246⎛⎫∴∈⎪⎝⎭k ,故A 正确; 对于B ,当1n =时,1()2f x =有3个交点,与246+=n 不符合,故B 错误; 对于C ,对于实数[1,)x ∈+∞,不等式2()30xf x -≤恒成立,即3()2≤f x x恒成立,由图知函数()f x 的每一个上顶点都在曲线32y x =上,故3()2≤f x x恒成立,故C 正确; 对于D , 取1n =,[1,2]x ∈,此时函数()f x 的图像与x 轴围成的图形的面积为111122⨯⨯=,故D 错误; 故选:AC 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.12.1837年,德国数学家狄利克雷(P .G.Dirichlet ,1805-1859)第一个引入了现代函数概念:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,那么y 是x 的函数”.由此引发了数学家们对函数性质的研究.下面是以他的名字命名的“狄利克雷函数”:1,()0,R x Q D x x Q ∈⎧=⎨∈⎩(Q 表示有理数集合),关于此函数,下列说法正确的是( )A .()D x 是偶函数B .,(())1x R D D x ∀∈=C .对于任意的有理数t ,都有()()D x t D x +=D .存在三个点112233(,()),(,()),(,())A x D x B x D x C x D x ,使ABC 为正三角形 【答案】ABCD 【分析】利用定义判断函数奇偶性,可确定A 的正误,根据“狄利克雷函数”及有理数、无理数的性质,判断其它三个选项的正误. 【详解】A :由()D x 定义知:定义域关于原点对称,当x Q ∈则x Q -∈,当R x Q ∈则Rx Q -∈,即有()()D x D x -=,故()D x 是偶函数,正确;B :由解析式知:,()1x R D x ∀∈=或()0D x =,即(())1D D x =,正确;C :任意的有理数t ,当x Q ∈时,x t Q +∈即()()D x t D x +=,当R x Q ∈时,R x t Q +∈即()()D x t D x +=,正确;D :若存在ABC 为正三角形,则其高为1,所以当((0,1),A B C 时成立,正确; 故选:ABCD 【点睛】关键点点睛:应用函数的奇偶性判断,结合新定义函数及有理数、无理数的性质判断各选项的正误.13.已知函数()22,1,1x x f x x x -≥⎧=⎨<⎩,若存在实数a ,使得()()f a f f a ⎡⎤=⎣⎦,则a 的个数不是( ) A .2 B .3 C .4 D .5 【答案】ABD【分析】令()f a t =,即满足()f t t =,对t 进行分类讨论,结合已知函数解析式代入即可求得满足题意的t ,进而求得a. 【详解】令()f a t =,即满足()f t t =,转化为函数()1y f t =与2y t =有交点,结合图像由图可知,()f t t =有两个根0t =或1t = (1)当1t =,即()1f a =,由()22,1,1a a f a a a -≥⎧=⎨<⎩,得1a =±时,经检验均满足题意; (2)当0t =,即()0f a =,当1a ≥时,()20f a a =-=,解得:2a =;当1a <时,()20f a a ==,解得:0a =;综上所述:共有4个a . 故选:ABD . 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解14.定义域和值域均为[],a a -的函数()y f x =和()y g x =的图象如图所示,其中0a c b >>>,下列四个结论中正确有( )A .方程()0f g x =⎡⎤⎣⎦有且仅有三个解B .方程()0g f x =⎡⎤⎣⎦有且仅有三个解C .方程()0f f x =⎡⎤⎣⎦有且仅有八个解D .方程()0g g x =⎡⎤⎣⎦有且仅有一个解【答案】ABD 【分析】通过利用()t f x =和()t g x =,结合函数()y f x =和()y g x =的图象,分析每个选项中外层函数的零点,再分析内层函数的图象,即可得出结论. 【详解】由图象可知,对于方程()y f x =,当a y c -≤<-或c y a <≤,方程()y f x =只有一解;当y c =±时,方程()y f x =只有两解;当c y c -<<时,方程()y f x =有三解; 对于方程()y g x =,当a y a -≤≤时,方程()y g x =只有唯一解. 对于A 选项,令()t x g =,则方程()0f t =有三个根1t b =-,20t =,3t b =,方程()g x b =-、()0g x =、()g x b =均只有一解, 所以,方程()0f g x =⎡⎤⎣⎦有且仅有三个解,A 选项正确; 对于B 选项,令()t f x =,方程()0g t =只有一解1t b =,方程()f x b =只有三解,所以,方程()0g f x =⎡⎤⎣⎦有且仅有三个解,B 选项正确; 对于C 选项,设()t f x =,方程()0f t =有三个根1t b =-,20t =,3t b =,方程()f x b =-有三解,方程()0f x =有三解,方程()f x b =有三解, 所以,方程()0f f x =⎡⎤⎣⎦有且仅有九个解,C 选项错误;对于D 选项,令()t x g =,方程()0g t =只有一解1t b =,方程()g x b =只有一解, 所以,方程()0g g x =⎡⎤⎣⎦有且仅有一个解,D 选项正确. 故选:ABD. 【点睛】思路点睛:对于复合函数()y f g x ⎡⎤=⎣⎦的零点个数问题,求解思路如下: (1)确定内层函数()u g x =和外层函数()y f u =; (2)确定外层函数()y f u =的零点()1,2,3,,i u u i n ==;(3)确定直线()1,2,3,,i u u i n ==与内层函数()u g x =图象的交点个数分别为1a 、2a 、3a 、、n a ,则函数()y f g x ⎡⎤=⎣⎦的零点个数为123n a a a a ++++.15.已知函数()2,021,0x x ax x f x x -⎧+≤=⎨->⎩,则( )A .()f x 的值域为()1,-+∞B .当0a ≤时,()()21f x f x >+C .当0a >时,存在非零实数0x ,满足()()000f x f x -+=D .函数()()g x f x a =+可能有三个零点 【答案】BC 【分析】A .考虑2a =时的情况,求解出各段函数值域再进行判断;B .先根据条件分析()f x 的单调性,再根据21x +与x 的大小关系进行判断;C .作出222,,y x ax y x ax y x ax =+=-+=-+的函数图象,根据图象的对称性进行分析判断;D .根据条件先分析出()0,1a ∈,再根据有三个零点确定出a 满足的不等式,由此判断出a 是否有解,并判断结论是否正确.【详解】A .当0x >时,21011xy -=->-=-,当0x ≤时,22224a a y x ax x ⎛⎫=+=+- ⎪⎝⎭,取2a =,此时()2111y x =+-≥-,所以此时的值域为[)1,-+∞,故A 错误;B .当0a ≤时,22224a a y x ax x ⎛⎫=+=+- ⎪⎝⎭的对称轴为02a x =-≥,所以()f x 在(],0-∞上单调递减,又因为()f x 在()0,∞+上单调递减,且200021a -+⨯=-,所以()f x 在R 上单调递减,又因为22131024x x x ⎛⎫+-=-+> ⎪⎝⎭,所以21x x +>,所以()()21f x f x >+,故B 正确;C .作出函数22,,21x y x ax y x ax y -=+=-+=-的图象如下图所示:由图象可知:22,y x ax y x ax =+=-+关于原点对称,且2y x ax =-+与21x y -=-相交于()00,x y ,因为点()00,x y 在函数2y x ax =-+的图象上,所以点()00,x y --在函数2y x ax =+的图象上,所以()()()00000f x f x y y +-=+-=,所以当0a >时,存在0x 使得()()000f x f x -+=,故C 正确;D .由题意知:()f x a =-有三个根,所以()f x 不是单调函数,所以0a >, 又因为()211,0xy -=-∈-,所以()1,0a -∈-,所以()0,1a ∈,且22,4a y x ax ⎡⎫=+∈-+∞⎪⎢⎣⎭,若方程有三个根,则有24a a ->-,所以4a >或0a <,这与()0,1a ∈矛盾,所以函数()()g x f x a =+不可能有三个零点,故D 错误, 故选:BC. 【点睛】思路点睛:函数与方程的综合问题,采用数形结合思想能高效解答问题,通过数与形的相互转化能使问题转化为更简单的问题,常见的图象应用的命题角度有: (1)确定方程根的个数; (2)求参数范围; (3)求不等式解集; (4)研究函数性质.16.已知函数2ln(1),0()21,0x x f x x ax x +≥⎧=⎨-+<⎩,其中实数 a ∈R ,则下列关于 x 的方程f 2 (x ) −(1+ a )⋅ f (x ) + a = 0的实数根的情况,说法正确的有( ) A .a 取任意实数时,方程最多有5个根 B .当151522a --+<<时,方程有2个根 C .当 15a --=时,方程有3个根 D .当 a ≤ −4时,方程有4个根 【答案】CD 【分析】先化简方程为()1f x =或()f x a =,再对a 进行分类讨论,结合图象来确定()1f x =或()f x a =分别有几个根,根据结果逐一判断选项正误即可.【详解】解:关于x 的方程f 2 (x ) − (1+ a )⋅ f (x ) + a = 0,即[][]()1()0f x f x a --=,故()1f x =或()f x a =.函数2ln(1),0()21,0x x f x x ax x +≥⎧=⎨-+<⎩中,()0,()ln 1x f x x ≥=+单调递增,()2220,(2)11x a x f x a x x a -+=-<=+-,对称轴为x a =,判别式()()411a a ∆=+-.(1)当0a ≥时,函数()f x 图象如下:由图象可知,方程()1f x =有1个根,1a >时方程()f x a =有2个根,01a ≤≤时,方程()f x a =有1个根,故1a >时已知方程有3个根,01a ≤<时,已知方程有2个根,1a =时已知方程有1个根;(2)1a =-时,函数()f x 图象如下:10a -<<时,函数()f x 图象如下:由两个图象可知,10a -≤<时,方程()1f x =有2个根,方程()f x a =没有根,故已知方程有2个根;(3)1a <-时,函数()f x 图象如下:方程()1f x =有两个根.下面讨论最小值21a -与a 的关系,由21a a -<解得152a -<, 故当15a --<时,21a a -<,直线y a =如图①,方程()f x a =有2个根,故已知方程有4个根; 当15a --=21a a -=,直线y a =如图②,方程有()f x a =有1 个根,故已知方程有3个根;1a <<-时,21a a ->,直线y a =如图③,方程()f x a =没有根,故已知方程有2个根.综上可知,a 取任意实数时,方程最多有4个根,选项A1a <<时方程有2个根,1a =时已知方程有1个根,1a >时方程有3个根,故选项B 错误;当a =3个根,C 正确;当4a ≤-<时,方程有4个根,故D 正确. 故选:CD. 【点睛】 关键点点睛:本题的解题关键在于分类讨论确定二次函数的图象,以及其最低点处21a -与a 的关系,以确定方程()f x a =的根的情况,才能突破难点.17.已知函数()sin sin xxf x e e=+,以下结论正确的是( )A .()f x 是偶函数B .()f x 最小值为2C .()f x 在区间,2ππ⎛⎫-- ⎪⎝⎭上单调递减 D .()()2g x f x x π=-的零点个数为5【答案】ABD 【分析】去掉绝对值,由函数的奇偶性及周期性,对函数分段研究,利用导数再得到函数的单调性,再对选项进行判断. 【详解】∵x ∈R ,()()f x f x -=,∴()f x 是偶函数,A 正确;因为()()2f x f x π+=,由函数的奇偶性与周期性,只须研究()f x 在[]0,2π上图像变化情况.()sin sin sin 2,01,2x x x e x f x e x e πππ⎧≤≤⎪=⎨+<≤⎪⎩, 当0x π≤≤,()sin 2cos xf x xe '=,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上单调递增,在,2ππ⎡⎤⎢⎥⎣⎦上单调递减,此时()[]2,2f x e ∈;当2x ππ≤≤时,()()sin sin cos x xf x x e e -'=-,则()f x 在3,2x ππ⎡⎤∈⎢⎥⎣⎦上单调递增,在3,22x ππ⎡⎤∈⎢⎥⎣⎦上单调递减,此时()12,f x e e ⎡⎤∈+⎢⎥⎣⎦,故当02x π≤≤时,()min 2f x =,B 正确. 因()f x 在,2x ππ⎛⎫∈ ⎪⎝⎭上单调递减,又()f x 是偶函数,故()f x 在,2ππ⎛⎫-- ⎪⎝⎭上单调递增,故C 错误. 对于D ,转化为()2f x x π=根的个数问题.因()f x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,在,2ππ⎛⎫⎪⎝⎭上单调递减,在3,2ππ⎛⎫ ⎪⎝⎭上单调递增,在3,22ππ⎛⎫⎪⎝⎭上单调递减.当(),x π∈-∞时,()2f x ≥,22x π<,()2f x x π=无实根.()3,x π∈+∞时,()max 262x e f x π>>=,()2f x xπ=无实根,3,2x ππ⎡⎤∈⎢⎥⎣⎦,显然x π=为方程之根.()sin sin xx f x ee -=+,()()sin sin cos 0x x f x x e e -'=->,3123322f e e πππ⎛⎫=+>⨯=⎪⎝⎭,单独就这段图象,()302f f ππ⎛⎫'='=⎪⎝⎭,()f x 在3,2ππ⎡⎤⎢⎥⎣⎦上变化趋势为先快扣慢,故()g x 在3,2ππ⎛⎫⎪⎝⎭内有1个零点,由图像知()g x 在3,32ππ⎛⎫⎪⎝⎭内有3个零点,又5252f e π⎛⎫=> ⎪⎝⎭,结合图象,知D 正确.故选:ABD. 【点睛】方法点睛:研究函数性质往往从以下方面入手: (1)分析单调性、奇偶性、周期性以及对称性;(2)数形结合法:先对解析式变形,进而构造两个容易画出图象的函数,将两个函数的图象画在同一个平面直角坐标系中,利用数形结合的方法求解.18.若实数2a ≥,则下列不等式中一定成立的是( ) A .21(1)(2)a a a a +++>+B .1log (1)log (2)a a a a ++>+C .1log (1)a a a a++< D .12log (2)1a a a a +++<+ 【答案】ABD 【分析】对于选项A :原式等价于()()ln 1ln 212a a a a ++>++,对于选项C :1log (1)a a a a ++<()ln 11ln a a a a ++⇔<()ln 1ln 1a a a a+⇔<+,对于选项D :变形为()()ln 2ln 121a a a a ++<++,构造函数()ln xf x x =,通过求导判断其在(),x e ∈+∞上的单调性即可判断;对于选项B :利用换底公式:1log (1)log (2)a a a a ++>+()()()ln 1ln 2ln ln 1a a a a ++⇔>+, 等价于()()2ln 1ln ln 2a a a +>⋅+,利用基本不等式22a b ab +⎛⎫≤ ⎪⎝⎭,再结合放缩法即可判断; 【详解】 令()ln x f x x =,则()21ln x f x x -'=0<在()3,x ∈+∞上恒成立,所以函数()ln xf x x=在(),x e ∈+∞上单调递减, 对于选项A :因为2a ≥,所以21(1)(2)a a a a +++>+()()()()2ln 11ln 2a a a a ⇔++>++,即原不等式等价于()()ln 1ln 212a a a a ++>++,因为12a a +<+,所以()()ln 1ln 212a a a a ++>++,从而可得21(1)(2)a a a a +++>+,故选项A 正确; 对于选项C :1log (1)a a a a ++<()ln 11ln a a a a ++⇔<()ln 1ln 1a a a a+⇔<+, 由于函数()ln x f x x =在(),e +∞上单调递减,所以()()43f f <,即ln 4ln 343<,因为ln 42ln 2ln 2442==,所以ln 2ln 323<,取2a =,则()ln 1ln 1a a a a+>+,故选项C 错误;对于选项D :12log (2)1a a a a +++<+()()ln 22ln 11a a a a ++⇔<++()()ln 2ln 121a a a a ++⇔<++,与选项A 相同,故选项D 正确.对于选项B :1log (1)log (2)a a a a ++>+()()()ln 1ln 2ln ln 1a a a a ++⇔>+,因为2a ≥, 所以等价于()()2ln 1ln ln 2a a a +>⋅+,因为()()2ln ln 2ln ln 22a a a a ++⎡⎤⋅+<⎢⎥⎣⎦,因为()()()()222222ln 2ln 21ln ln 2ln 1222a a a a a a a ⎡⎤⎡⎤+++++⎡⎤⎢⎥⎢⎥=<=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以不等式1log (1)log (2)a a a a ++>+成立,故选项B 正确; 故选:ABD 【点睛】本题考查利用对数的换底公式、构造函数法、利用导数判断函数的单调性、结合基本不等式和放缩法比较大小;考查逻辑推理能力、知识的综合运用能力、转化与化归能力和运算求解能力;属于综合型强、难度大型试题.19.一般地,若函数()f x 的定义域为[],a b ,值域为[],ka kb ,则称为的“k 倍跟随区间”;若函数的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”.下列结论正确的是( )A .若[]1,b 为()222f x x x =-+的跟随区间,则2b =B .函数()11f x x=+存在跟随区间C .若函数()f x m =1,04m ⎛⎤∈- ⎥⎝⎦D .二次函数()212f x x x =-+存在“3倍跟随区间” 【答案】ABCD 【分析】根据“k 倍跟随区间”的定义,分析函数在区间内的最值与取值范围逐个判断即可. 【详解】对A, 若[]1,b 为()222f x x x =-+的跟随区间,因为()222f x x x =-+在区间[]1,b 为增函数,故其值域为21,22b b ⎡⎤-+⎣⎦,根据题意有222b b b -+=,解得1b =或2b =,因为1b >故2b =.故A 正确; 对B,因为函数()11f x x =+在区间(),0-∞与()0,+∞上均为减函数,故若()11f x x=+存在跟随区间[],a b则有11+11+abba⎧=⎪⎪⎨⎪=⎪⎩,解得:1212ab⎧-=⎪⎪⎨⎪=⎪⎩.故存在, B正确.对C, 若函数()f x m=[],a b,因为()f x m=,故由跟随区间的定义可知b ma ba m⎧=-⎪⇒-=⎨=⎪⎩a b<即()()()11a b a b a b-=+-+=-,因为a b<,1=.易得01≤<.所以(1a m m=-=--,令t=20t t m--=,同理t=20t t m--=,即20t t m--=在区间[]0,1上有两根不相等的实数根.故140mm+>⎧⎨-≥⎩,解得1,04m⎛⎤∈- ⎥⎝⎦,故C正确.对D,若()212f x x x=-+存在“3倍跟随区间”,则可设定义域为[],a b,值域为[]3,3a b.当1a b<≤时,易得()212f x x x=-+在区间上单调递增,此时易得,a b为方程2132x x x-+=的两根,求解得0x=或4x=-.故存在定义域[]4,0-,使得值域为[]12,0-.故D正确.故选:ABCD.【点睛】本题主要考查了函数新定义的问题,需要根据题意结合函数的性质分析函数的单调性与取最大值时的自变量值,并根据函数的解析式列式求解.属于难题.20.函数()()1xf x x Rx=∈+,以下四个结论正确的是()A.()f x的值域是()1,1-B.对任意x∈R,都有()()1212f x f xx x->-C.若规定()()()()()11,n nf x f x f x f f x+==,则对任意的(),1nxn N f xn x*∈=+ D.对任意的[]1,1x∈-,若函数()2122f x t at≤-+恒成立,则当[]1,1a∈-时,2t≤-或。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学《函数的概念》答辩题目及解析
1.函数的三要素是什么?
【参考答案】
函数的三要素包括:定义域、值域、对应法则。
2.本节课的教学目标是什么?
【参考答案】
(一)知识与技能
理解函数的概念,能对具体函数指出定义域、对应法则、值域,能够正确使用“区间”符号表示某些函数的定义域、值域。
(二)过程与方法
通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用进一步加深集合与对应数学思
想方法。
(三)情感态度价值观
在自主探索中感受到成功的喜悦,激发学习数学的兴趣。
3.怎样才能设计好授课板书呢?你能给出几点建议吗?
【参考答案】
进行板书设计的时候要注意整体的呈现,每一个版块都可以设计的很好,要是呈现在整个黑板上呢?要从黑板全局的角度去看问
题。
要站在学生的视角去看黑板,比如学生坐在座位上,与教师看到的是不同的,所以板书不宜过高和过低等等。
要学会根据教学的内容和学生的理解情况调整板书,比如学生接受的特别好,那么一些细枝末节的板书就可以适当省略,留时间在更重要的地方。