5种常规的蛋白质测定方法的全方位的比较分析
蛋白质标准

蛋白质标准
蛋白质标准通常用于衡量或评估食品、生物学样品或其他物质中的蛋白质含量。
以下是一些常见的蛋白质标准和相关的测定方法:
1.氮测定法:蛋白质通常包含氮元素,因此测定样品中的氮含量
可以用于估算蛋白质含量。
常用的氮测定法包括Kjeldahl法和Dumas法。
2.Bradford法:Bradford法是一种颜色反应法,通过蛋白质与
Bradford试剂反应产生颜色,根据颜色的强度来估计蛋白质的含量。
这种方法对蛋白质含量较高的样品比较敏感。
3.Lowry法:Lowry法也是一种基于颜色反应的测定方法,与
Bradford法类似,但相对较为灵敏,适用于较低蛋白质浓度的样品。
4.BCA法(双硫键-联苯胺法):BCA法是一种基于联苯胺与蛋
白质反应产生颜色的方法,用于测定蛋白质浓度。
5.Biuret法:Biuret法是一种根据蛋白质与Cu^2+形成的Biuret
复合物的紫色产物的强度来测定蛋白质含量的方法。
6.UV吸收法:在280纳米波长处,蛋白质中的芳香族氨基酸(如
酪氨酸、酪氨酸和苯丙氨酸)具有特征性的吸收峰。
通过测量UV吸收强度,可以估算蛋白质含量。
7.荧光法:蛋白质在紫外光激发下产生荧光,测定荧光强度可用
于估算蛋白质含量。
标准样品通常用于校准这些测定方法,确保测得的蛋白质含量是
准确可靠的。
常见的蛋白质标准物质包括卵清蛋白、牛血清蛋白等。
具体选择哪种方法和标准取决于实验的目的、样品的性质和要求的灵敏度。
蛋白质含量测定方法

蛋白质含量测定方法
一、Lowry法。
Lowry法是一种经典的蛋白质含量测定方法,其原理是利用蛋白质与铜离子和
碱性试剂在碱性条件下发生蓝色化合物的形成,然后通过比色法来测定蛋白质的含量。
这种方法的优点是灵敏度高,适用于各种类型的蛋白质样品,但需要注意的是,样品中的其他成分可能对测定结果产生干扰。
二、Bradford法。
Bradford法是一种快速、简便的蛋白质含量测定方法,其原理是利用共轭蛋白
质与染料结合后产生吸收峰的变化来测定蛋白质的含量。
相比于Lowry法,Bradford法对于样品中存在的干扰物质的耐受性更强,因此在实际应用中更为广泛。
三、BCA法。
BCA法是一种基于铜离子的蛋白质含量测定方法,其原理是利用蛋白质与铜
离子和BCA试剂在碱性条件下发生紫色化合物的形成,然后通过比色法来测定蛋
白质的含量。
与Lowry法相比,BCA法对于一些常见的干扰物质的耐受性更好,
因此在实际应用中也得到了广泛的应用。
四、UV吸收法。
UV吸收法是一种利用蛋白质在280nm处的吸收峰来测定蛋白质含量的方法。
这种方法不需要添加试剂,操作简便,但对于一些特定类型的蛋白质可能存在灵敏度不足的问题。
以上介绍的几种蛋白质含量测定方法各有优缺点,选择合适的方法需要根据具
体的实验要求和样品特性来进行。
在进行蛋白质含量测定时,还需要注意样品的制备、操作的规范性以及仪器的准确性,以确保获得可靠的实验结果。
希望本文介绍的内容能对相关研究工作者有所帮助。
蛋白质测定方法

蛋白质测定方法蛋白质是生物体内一种重要的有机物质,对于生物体的生长、发育和代谢具有重要作用。
因此,蛋白质的测定方法显得尤为重要。
本文将介绍常见的蛋白质测定方法,希望能够为相关研究和实验提供帮助。
一、Lowry法。
Lowry法是一种常用的蛋白质定量方法,其原理是利用蛋白质与铜离子和碱性试剂在碱性条件下发生的还原反应,生成紫色络合物,通过比色测定蛋白质含量。
该方法具有灵敏度高、线性范围广、稳定性好的特点,适用于多种类型的蛋白质样品。
二、BCA法。
BCA法是一种基于铜离子的蛋白质测定方法,原理是蛋白质与试剂中的碱性铜离子在碱性条件下发生蓝色产物,通过比色测定蛋白质含量。
相比于Lowry法,BCA法具有操作简便、快速、灵敏度高的特点,适用于高通量的蛋白质测定。
三、Bradford法。
Bradford法是一种基于染料结合的蛋白质测定方法,原理是蛋白质与染料结合后产生颜色变化,通过比色测定蛋白质含量。
该方法具有操作简便、快速、灵敏度高的特点,对于一些含有胶体物质或其他干扰物质的样品,Bradford法的选择性更好。
四、UV吸收法。
UV吸收法是一种常用的蛋白质测定方法,原理是利用蛋白质特有的氨基酸在紫外光区域的吸收特性,通过测定蛋白质在280nm处的吸光度来定量测定蛋白质含量。
该方法操作简便、快速,适用于纯化后的蛋白质样品的测定。
五、荧光法。
荧光法是一种基于蛋白质荧光特性的测定方法,原理是蛋白质在特定激发波长下产生荧光信号,通过测定荧光强度来定量测定蛋白质含量。
该方法具有灵敏度高、选择性好的特点,适用于高通量的蛋白质测定。
六、总蛋白法。
总蛋白法是一种常用的蛋白质测定方法,原理是利用蛋白质与试剂中的染料结合后产生颜色变化,通过比色测定蛋白质含量。
该方法操作简便、快速,适用于多种类型的蛋白质样品。
总结。
蛋白质的测定方法多种多样,选择合适的方法需要根据样品的特性、实验的目的和仪器设备的条件来综合考虑。
希望本文介绍的蛋白质测定方法能够为相关研究和实验提供参考,促进科研工作的开展。
常见蛋白质测定方法的总结与比较

分析化学结课作业常见蛋白质测定方法的总结与比较材料科学与技术学院林化13-1班刘旺衢130534106常见蛋白质测定方法的总结与比较刘旺衢(北京林业大学材料科学与技术学院林化13-1班 130534106,10083)蛋白质是构成生物体细胞组织的重要成分。
食物中的蛋白质是人体中氮的唯一来源。
具有糖类和脂肪不可替代的作用。
蛋白质与营养代谢、细胞结构、酶、激素、病毒、免疫、物质运转、遗传等密切相关,是对人类最重要的物质之一。
准确精密的测定蛋白质,关乎人类的生产、生活、生存。
目前测定蛋白质含量的方法有多种,如凯氏定氮法、紫外吸收法、双缩脲法、考马斯亮蓝染色法、酚试剂法等几种方法,下面本文将总结比较这五种蛋白质的测定方法。
一、凯氏定氮法凯氏定氮法是测定化合物或混合物中总氮量的一种方法。
即在有催化剂的条件下,用浓硫酸消化样品将有机氮都转变成无机铵盐,然后在碱性条件下将铵盐转化为氨,随水蒸气馏出并为过量的酸液吸收,再以标准酸滴定,就可计算出样品中的氮量。
由于蛋白质含氮量比较恒定,可由其氮量计算蛋白质含量,故此法是经典的蛋白质定量方法。
蛋白质是含氮的有机化合物。
蛋白质与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。
然后碱化蒸馏使氨游离,用硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数计算蛋白质含量,即含氮量*6.25=蛋白含量。
凯氏定氮法具有灵敏度高, 样品用量少,最低可检出0.05mg氮;精密度、准确度高,平行误差一般小于0.5%;应用范围广,适用于一切形态的食品与生物样品;仪器装置简单,试剂廉价的优点。
但也存在操作比较繁琐费时,特别是蒸馏定氮过程的效率低,不利于大批样品的测定;定氮的结果既包括有机氮,也包括无机氮,有机氮中除蛋白氮外,还包括非蛋白氮,测定的结果只能是粗蛋白质的含量;在蛋白质氨基酸构成有差异的情况下,特别是大量含碱性氨基酸、氨基酸酞氨和小分子量氨基酸的蛋白质,其含氮量就高,必须要根据不同的样品选择对应的换算系数。
蛋白质测量方法

蛋白质测量方法蛋白质是生物体内重要的有机化合物,广泛参与细胞结构、生物催化、免疫调节、信号传导等生物学过程。
因此,准确测量蛋白质的含量对于研究和应用具有重要意义。
本文将介绍几种常用的蛋白质测量方法。
一、紫外吸收法紫外吸收法是常用的蛋白质测量方法之一。
蛋白质在紫外光区域(200-280nm)对紫外光有很强的吸收能力,而其他常见的生物分子如核酸、糖等对紫外光的吸收能力较弱。
因此,通过测量蛋白质溶液在紫外光区域的吸光度,可以间接测量蛋白质的含量。
常用的测量波长为280nm,这是因为蛋白质中含有色氨酸、酪氨酸和苯丙氨酸等氨基酸,它们在280nm波长下的吸光度较高。
二、Lowry法Lowry法是一种经典的蛋白质测量方法。
该方法通过蛋白质与碱式铜离子和费林试剂(一种还原剂)反应,产生紫色产物。
紫色产物的吸光度与蛋白质的含量呈线性关系,可以通过测量吸光度来测量蛋白质的含量。
Lowry法对于含有多种干扰物质的样品有较好的选择性和灵敏性,但需要注意的是,该方法对于一些特殊的蛋白质可能不适用。
三、Bradford法Bradford法是一种简便快速的蛋白质测量方法。
该方法利用考马斯亮蓝G-250与蛋白质反应,在酸性条件下形成蓝紫色复合物。
蛋白质的浓度与复合物的吸光度呈线性关系,可以通过测量吸光度来测量蛋白质的含量。
与Lowry法相比,Bradford法对于含有多种干扰物质的样品更为灵敏和稳定,但对于碱性蛋白质和一些特殊蛋白质可能不适用。
四、比色法比色法是一种常用的蛋白质测量方法。
该方法利用蛋白质与某些染料反应生成有色复合物,通过测量复合物的吸光度来测量蛋白质的含量。
常用的染料有布拉德福德染料、皮尔斯染料等。
比色法适用于大部分蛋白质的测量,但需要注意染料的选择和测量波长的确定。
五、生物素-亲和法生物素-亲和法是一种特异性较高的蛋白质测量方法。
该方法利用生物素和亲和素结合,形成生物素-亲和素复合物。
通过测量复合物的信号强度来测量蛋白质的含量。
蛋白质含量测定方法汇总[整理]
![蛋白质含量测定方法汇总[整理]](https://img.taocdn.com/s3/m/cc657e44a55177232f60ddccda38376baf1fe02d.png)
蛋白质含量测定方法汇总[整理]蛋白质含量测定是一种用于测定任何生物样品中蛋白质含量的有效测试方法。
此外,蛋白质含量也可以被用于检测不同生物样品中的样本污染程度的指标,以及生物样品中某种从另一个样本污染的量。
现今,存在许多蛋白质含量测定的方法,通常称作“蛋白质测定方法”,它们常用于检测各种类型的高分子生物物质,如蛋白质、核酸、多糖、脂类等。
下面总结了一些常见的蛋白质含量测定方法:1、分子吸光法:分子吸光法是一种常用的蛋白质测定方法,它利用液体或气体样品中分子的光吸收特性来测量蛋白质的含量。
它通过测量样品当量吸收辐射的强度来测量含量,并通过分子结构及激发能获取分子吸收率。
2、酶标法:酶标法是一种常见的蛋白质测定方法,它使用特定酶将蛋白质转化为可测试物质来准确估算样品中蛋白质含量。
此外,也可以用其他物质作为指示物来改变酶反应的速率,从而获取蛋白质含量。
3、体外测定法:体外测定法是一种常见的蛋白质测定方法,它可以任意选择探测,即特定蛋白质向特定外部刺激物反应的速率,以反映样品中的蛋白质含量。
它在分析较新的样品以及批量定量分析中有很大的优势。
4、表面增强拉曼光谱:表面增强拉曼光谱是一种新的蛋白质测定方法,它利用光的调制前后产生的均方根像素来测量蛋白质的含量,这种方法可在低浓度范围内准确定量样品中的蛋白质含量。
5、比多肽配体应答行为水平测定:比多肽配体应答行为水平是一种常见的蛋白质测定方法,它利用特指性多肽核酸探针乙酰化后,在特定条件下发生应答强度及反应速率的改变,从而测量样品中的蛋白质含量。
这是一种可以在短时间内实现高灵敏度和高精度的测定方法。
6、限制性酶体系:限制酶体系是一种常见的蛋白质测定方法,它利用限制性酶来切割或降解蛋白质链,从而得到可用于测定蛋白质含量的切片产物。
限制酶体系也能够有效地检测末端特异性蛋白质种类,以及它们的分布情况。
测定蛋白质常用方法

测定蛋白质常用方法印迹法是一种常见的定性分析方法,主要是通过利用电致沉淀效应,将蛋白质物质在电场中集中,形成一个凝胶层,以提取出蛋白质。
在实验中,先制备一个有活性、有保留度和有稳定性的蛋白质样品,然后将其放入体外,在受到电场作用下,蛋白质物质会被电致沉淀,形成一个凝胶层,从而获得蛋白质。
该方法的特点是准确度高,样品消耗量少,可以高效地完成蛋白质的测定,但对于那些含有非蛋白质物质的样品,其测定效果不理想。
(二)酶探针法酶探针法是一种定性分析,利用一种特殊酶和一种特殊探针,运用其特异性以及特殊的结构,来测定蛋白质的特殊部位。
实验中,首先选择一种酶,如DNase I、DNase II、RNase A,然后将其与相应的探针(如荧光标记的核酸或多肽)相结合,这样结合的物质会与蛋白质产生特异性的结合作用,从而可以测定蛋白质的特定位点。
优点是准确度高,可以测定蛋白质的特定位点,但由于其方法复杂,在一定程度上增加了实验技术难度。
二、定量分析(一)荧光法荧光法是一种常用的定量分析方法,主要利用某种荧光探针和荧光激发光,以及荧光探针的特异性与蛋白质的特异性,激发一定的荧光,从而测定蛋白质的含量。
实验过程中,首先将荧光探针结合到蛋白质上,然后把探针/蛋白质混合物放入荧光仪中,将一定强度的荧光激发光照射到探针/蛋白质混合物上,从而发生特定的荧光反应,通过记录荧光发射强度,就可以测定蛋白质的含量。
优点是准确度较高,可以在不同范围内快速地进行测定,而且样品消耗量少,但该方法的应用范围较窄,只能用于测定那些可以与荧光探针发生特异性结合的蛋白质。
(二)比色法比色法是一种定量分析方法,它利用蛋白质与一定比例的钠稀释液发生相互作用,产生稳定的色谱,从而测定蛋白质的含量。
实验过程中,先将蛋白质样品与钠稀释液做混合,然后在420nm的色谱仪上测定色谱,测定出其颜色深浅,然后利用已知的标准曲线,计算出蛋白质的含量。
比色法的优点是灵敏度高,可以在较低消耗的样品情况下完成蛋白质的测定,而且在实验中只需要使用普通的外设,操作简便,但是存在一定的滞后度,不能测定出瞬时变化的蛋白质含量。
测定蛋白质的方法

测定蛋白质的方法蛋白质是生物体内重要的有机大分子,对维持生命活动起着重要的作用。
因此,测定蛋白质的含量和性质对于生物学、医学和食品科学等领域具有重要意义。
下面将介绍几种常用的测定蛋白质的方法。
一、紫外吸收法。
紫外吸收法是一种常用的测定蛋白质含量的方法。
蛋白质在紫外光下有较强的吸收作用,因此可以通过测定蛋白质在特定波长下的吸光度来确定其含量。
这种方法操作简便,结果准确,广泛应用于蛋白质含量的测定。
二、比色法。
比色法是通过蛋白质与某些化学试剂发生反应后产生色素,再利用分光光度计测定其吸光度来测定蛋白质含量的方法。
常用的比色试剂有布拉德福试剂、洛文斯试剂等。
比色法对于含有多种物质的样品也能准确地测定蛋白质的含量。
三、氨基酸分析法。
氨基酸分析法是通过水解蛋白质得到氨基酸,再利用色谱等方法对氨基酸进行分析,从而测定蛋白质含量的方法。
这种方法能够准确地测定不同氨基酸的含量,对于分析蛋白质的组成和结构具有重要意义。
四、免疫学方法。
免疫学方法是利用抗体与特定蛋白质结合的原理来测定蛋白质含量的方法。
常用的免疫学方法有酶联免疫吸附实验(ELISA)和免疫印迹等。
这种方法对于特定蛋白质的测定具有高度的特异性和灵敏度。
五、质谱法。
质谱法是利用质谱仪对蛋白质进行分析,从而测定蛋白质的含量和结构的方法。
这种方法能够准确地确定蛋白质的分子量、氨基酸序列和翻译后修饰等信息,对于蛋白质的深入研究具有重要意义。
总结。
以上介绍了几种常用的测定蛋白质的方法,每种方法都有其特点和适用范围。
在实际应用中,可以根据需要选择合适的方法来测定蛋白质的含量和性质,从而更好地开展相关研究和应用。
希望本文能对您有所帮助。
检验蛋白质的方法

检验蛋白质的方法
第一种方法是生物素标记法。
生物素标记法是通过将生物素与蛋白质结合,然后用生物素与酶的结合作用来检测蛋白质的存在。
这种方法具有灵敏度高、特异性强的特点,适用于检测蛋白质的存在和纯度。
第二种方法是免疫沉淀法。
免疫沉淀法是通过将抗体与蛋白质结合,然后用沉淀剂将蛋白质沉淀下来,最后通过洗涤和电泳等步骤来检测蛋白质的存在。
这种方法适用于检测蛋白质的结构和相互作用。
第三种方法是质谱法。
质谱法是通过将蛋白质进行分子质量的测定,然后通过质谱仪来检测蛋白质的存在和结构。
这种方法具有高灵敏度、高分辨率的特点,适用于检测蛋白质的组成和修饰。
除了以上介绍的方法,还有许多其他的方法可以用来检验蛋白质,比如酶联免疫吸附试验、免疫荧光染色法等。
这些方法各有特点,可以根据实际需要选择合适的方法来进行蛋白质的检验。
总的来说,检验蛋白质的方法有很多种,每种方法都有其特点和适用范围。
在进行蛋白质检验时,我们可以根据需要选择合适的方法来进行检验,以确保检验结果的准确性和可靠性。
希望本文介绍的方法对大家有所帮助,谢谢阅读!。
四种蛋白质含量测定方法的比较研究

四种蛋白质含量测定方法的比较研究蛋白质是生物体内的重要成分,其含量的测定对于生物学、医学、食品科学等领域具有重要意义。
目前常用的蛋白质含量测定方法主要有四种,包括生物素-亲和法、BCA法、Lowry法和Bradford法。
下面将对这四种方法进行比较研究。
一、生物素-亲和法生物素-亲和法是一种基于亲和层析原理的蛋白质含量测定方法。
该方法利用生物素与亲和基团之间的非共价作用,将生物素标记的探针与目标蛋白质结合,通过洗脱和检测来测定蛋白质的含量。
该方法具有高灵敏度、高特异性和高重复性等优点,但需要使用生物素标记的试剂,成本较高。
二、BCA法BCA法是一种基于铜离子还原能力的蛋白质含量测定方法。
该方法利用蛋白质与铜离子的络合作用,还原离子中的铜离子,生成紫色络合物,通过比色法测定蛋白质的含量。
该方法具有灵敏度高、线性范围广、操作简便等优点,但受到还原剂和蛋白质成分的影响,结果易受到误差。
三、Lowry法Lowry法是一种基于蛋白质与酸性铜离子的还原反应的蛋白质含量测定方法。
该方法利用蛋白质与酸性铜离子的还原反应,生成紫色络合物,通过比色法测定蛋白质的含量。
该方法具有灵敏度高、线性范围广、重复性好等优点,但需要多个试剂的配制和操作,较为繁琐。
四、Bradford法Bradford法是一种基于染料结合的蛋白质含量测定方法。
该方法利用染料与蛋白质之间的非共价作用,形成蓝色复合物,通过比色法测定蛋白质的含量。
该方法具有灵敏度高、操作简便、适用于多种蛋白质的测定等优点,但受到盐离子和其他成分的影响,结果易受到误差。
综上所述,四种蛋白质含量测定方法各有优缺点,选择合适的方法需要根据实际需求和实验条件进行综合考虑。
5种蛋白质分析方法

蛋白质分析方法1、微量凯氏(Kjeldahl)定氮法样品与浓硫酸共热。
含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。
经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。
若以甘氨酸为例,其反应式如下:NH2CH2COOH+3H2SO4——2CO2+3SO2+4H2O+NH3 (1)2NH3+H2SO4——(NH4)2SO4 (2)(NH4)2SO4+2NaOH——2H2O+Na2SO4+2NH3 (3)反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。
为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。
收集氨可用硼酸溶液,滴定则用强酸。
实验和计算方法这里从略。
计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白氮即得。
如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。
评价:总氮-非蛋白氮=蛋白质氮——>蛋白质含量灵敏度低,误差大,耗时长。
2、双缩脲法(Biuret法)(一)实验原理双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。
在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。
凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。
紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。
测定范围为1-10mg蛋白质。
干扰这一测定的物质主要有:硫酸铵、Tris 缓冲液和某些氨基酸等。
此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。
主要的缺点是灵敏度差。
因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。
(二)试剂与器材1. 试剂:(1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(BSA)或标准酪蛋白,配制成10mg/ml 的标准蛋白溶液,可用BSA浓度1mg/ml的A280为0.66来校正其纯度。
蛋白质含量测定方法

蛋白质含量测定方法
蛋白质是生物体内重要的营养成分之一,对于食品、生物医药等领域具有重要意义。
因此,准确测定蛋白质含量是很多领域的研究和生产工作中必不可少的一项内容。
在科学研究、食品加工、药物生产等领域,蛋白质含量的准确测定对于保证产品质量、促进科学研究具有重要作用。
一、总蛋白质含量测定方法。
1. 琼脂糖凝胶电泳法。
琼脂糖凝胶电泳法是一种常用的蛋白质含量测定方法,通过电泳技术将蛋白质在凝胶中进行分离,然后根据蛋白质在凝胶中的迁移距离和分子量进行定量测定。
2. 分光光度法。
分光光度法是利用蛋白质特有的吸收光谱特性来进行测定的方法,通过比较样品溶液和空白溶液的吸光度差异来计算蛋白质含量。
3. 比色法。
比色法是利用蛋白质与某种试剂发生显色反应,然后通过比色计或分光光度计测定溶液吸光度的方法来进行蛋白质含量测定。
二、特定蛋白质含量测定方法。
1. 酶联免疫吸附法(ELISA法)。
ELISA法是一种常用的特定蛋白质含量测定方法,通过将待测蛋白质与特异性抗体结合,然后加入酶标记的二抗来进行测定。
2. 荧光素酶标记法。
荧光素酶标记法是利用荧光素酶标记的抗体与待测蛋白质结合,然后通过荧光素底物的反应来进行蛋白质含量的测定方法。
以上介绍的是一些常用的蛋白质含量测定方法,不同的方法适用于不同的实验目的和样品类型。
在进行蛋白质含量测定时,需要根据实际情况选择合适的方法,并且在测定过程中要严格按照操作规程进行,以保证测定结果的准确性和可靠性。
总之,蛋白质含量的准确测定对于各个领域的研究和生产工作都具有重要的意义,希望本文介绍的方法能够对相关工作者有所帮助。
蛋白质定量方法对比

蛋白质定量方法对比全文共四篇示例,供读者参考第一篇示例:蛋白质是生物体内重要的有机分子,负责着细胞结构的建立和维持以及体内新陈代谢的进行。
因此,研究蛋白质的定量方法对于生命科学领域具有重要意义。
本文将比较几种常见的蛋白质定量方法,包括BCA法、Lowry法、Bradford法和Spectrophotometric method,分析它们各自的优缺点和适用场景。
首先,BCA法是一种基于铜蛋白络合物比色反应的蛋白质定量方法。
该方法具有高灵敏度和广泛线性范围,适用于多种类型的蛋白质样本。
然而,BCA法也存在一些缺点,包括受到干扰物质的影响、反应条件较为复杂等。
与BCA法相比,Lowry法是一种较为经典的蛋白质定量方法。
该方法利用费里酚蓝与蛋白质中的酚类物质在碱性条件下形成的复合物来定量蛋白质含量。
Lowry法具有较高的准确性和稳定性,但需要较长的反应时间和较大的标准曲线范围。
另一种常见的蛋白质定量方法是Bradford法,该方法利用共价结合蛋白质中的氨基酸残基与染料之间的相互作用来定量蛋白质。
与前两种方法相比,Bradford法具有操作简便、灵敏度高的特点,但对于具有不同氨基酸组成的蛋白质可能存在测定误差。
最后,Spectrophotometric method是一种利用紫外可见分光光度计进行蛋白质定量的方法。
通过测定蛋白质溶液在特定波长下的吸光度来计算蛋白质的浓度。
这种方法操作简单、速度快,但对于含有其他物质的样品可能存在测定误差。
综上所述,不同的蛋白质定量方法各有优劣,研究人员在选择适合的方法时应该根据具体需求和样品特性来进行选择。
在进行蛋白质定量时,应根据实验要求和条件选择最适合的方法,以确保结果的准确性和可靠性。
希望本文的比较能够帮助读者更好地理解各种蛋白质定量方法的特点和适用范围,提高实验的效率和准确性。
第二篇示例:蛋白质是生物体内重要的基本组成部分,具有多种生理功能。
准确测定蛋白质的含量对于生物学研究和临床诊断具有重要意义。
几种测蛋白含量方法的比较

几种测蛋白含量方法的比较蛋白质含量测定方法的比较及肽含量的测定(一)蛋白质测定方法的比较(原理、优缺点)蛋白质含量测定法,目前包括定氮法、双缩脲法、福林酚法(Lowry 法)和紫外吸收法、考马斯亮蓝法。
其中考马斯亮蓝和福林酚法灵敏度最高,比紫外吸收法灵敏10~20倍,比双缩脲法灵敏100 倍以上。
定氮法较复杂,但准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。
在选择方法时应该考虑:(1)实验测定要求的灵敏度和精确度;(2)蛋白质的性质;(3)溶液中存在的干扰物质;(4)测定花费时间。
蛋白质含量测定法,目前包括定氮法、双缩脲法、福林酚法(Lowry 法)和紫外吸收法、考马斯亮蓝法。
其中考马斯亮蓝和福林酚法灵敏度最高,比紫外吸收法灵敏10~20倍,比双缩脲法灵敏100 倍以上。
定氮法较复杂,但准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。
在选择方法时应该考虑:(1)实验测定要求的灵敏度和精确度;(2)蛋白质的性质;(3)溶液中存在的干扰物质;(4)测定花费时间。
1微量凯氏定氮法(GB 5009.5-2010)1.1原理样品与浓硫酸共热。
含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。
经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。
1.2操作方法样品经前处理、炭化、消化、蒸馏、滴定等主要步骤1.3特点准确度较高,适用于0.2~ 1.0mg氮,误差为±2%;操作复杂费时,整个过程需要耗时8~10h,试剂消耗量大。
,测得结果为总氮含量,包括蛋白氮和非蛋白氮含量;适用范围广,几乎所有样品均可用此方法。
2双缩脲比色法2.1原理双缩脲法是利用蛋白质的双缩脲反应而测定蛋白质含量的方法。
因蛋白质含有两个以上的肽键,所以有双缩脲反应。
在碱性溶液中蛋白质与Cu2+形成紫红色络合物,在一定的实验条件下,未知样品溶液与标准蛋白质溶液同时反应,并于540~560nm 测定,即可以通过标准蛋白质的标准曲线求出未知样品的蛋白质浓度。
比较常用的几种蛋白质测定方法的优缺点

比较常用的几种蛋白质测定方法的优缺点引言蛋白质是生物体中重要的组成成分之一,也是许多生物学和生化学研究的重要对象。
因此,准确测定蛋白质的含量对于研究生物学和医学等领域具有重要意义。
随着科技的进步,出现了许多不同的蛋白质测定方法,每种方法都具有其独特的优缺点。
本文将对常用的几种蛋白质测定方法进行比较,探讨它们的优缺点。
1. Bradford法Bradford法是常用且经典的蛋白质测定方法之一。
该方法利用染料共价结合蛋白质,形成染色复合物。
该染色复合物与蛋白质浓度呈线性关系,可以通过比色测定来确定蛋白质的含量。
Bradford法具有简单、快速、操作方便的优点,可以测定低至微克级别的蛋白质含量。
然而,Bradford法对于某些化合物的干扰较为敏感,且结果受蛋白质组成的影响较大。
2. BCA法BCA法是一种基于铜离子和蛋白质的还原反应的蛋白质测定方法。
该方法通过还原剂将蛋白质中的两个或四个近似残基之间的硫键断裂,生成含有可溶性铜离子的蛋白质。
铜离子与特定染料在碱性条件下形成染色复合物,可通过光密度测定来确定蛋白质的含量。
BCA法具有灵敏度高、结果稳定、重复性好的优点,并且能够有效抵抗一些常见的干扰物质。
然而,BCA法对于某些还原剂和胶体含量较高的样品可能存在一定的干扰。
3. Lowry法Lowry法是一种经典的蛋白质测定方法,也是Bradford法的改进版。
该方法利用酸性条件下染料与蛋白质产生复合物,并在碱性条件下产生显色反应。
Lowry法具有较高的测定灵敏性和较宽的测定范围,能够测定低至纳克级别的蛋白质含量。
然而,Lowry法操作相对较为复杂,需要多个步骤,花费的时间较长。
此外,该方法对于一些离子存在较高的样品可能存在干扰。
4. UV吸收法UV吸收法是一种简单、快速的蛋白质测定方法。
该方法利用蛋白质中特定的氨基酸在紫外光区域的特定波长下吸收光线,可以测定蛋白质的含量。
UV吸收法具有操作简便、测定时间短、无需使用染料的优点,并且对于大多数蛋白质都适用。
蛋白质的定量分析方法

蛋白质的定量分析方法1.蛋白质的常规检测方法1.1凯氏定氮法一种最经典的蛋白质检测方法。
原理:样品中含氮有机化合物与浓硫酸在催化剂作用下共热消化,含氮有机物分解产生氨,氨又与硫酸作用变成硫酸铵。
然后加碱蒸馏放出氨,氨用过量的硼酸吸收,再用盐酸标准溶液滴定求出总氮量换算为蛋白质含量。
优点:范围广泛、测定结果准确、重现性好。
缺点:操作复杂费时、试剂消耗量大。
1.2双缩脲法常用于需要快速但并不需要十分精确的蛋白质检测。
原理:双缩脲是三分子的脲经180℃左右加热,放出一份子氨后得到的产物,在强碱性溶液中,双缩脲与硫酸铜形成紫色络合物(肽链中的氮原子和铜离子配价结合),称为双缩脲反应。
紫色络合物颜色的深浅和蛋白质浓度成正比,因此可用来测定蛋白质含量。
优点:较快速、干扰物质少、不同蛋白质产生的颜色深浅相近。
缺点:灵敏度差、三羟甲基氨基甲烷、一些氨基酸和EDTA等会干扰该反应。
1.3Folin酚试剂法原理:与双缩法大体相同,利用蛋白质中的肽键和铜离子结合产生双缩脲反应。
同时也由于Folin酚试剂中的磷钼酸-磷钨酸试剂被蛋白质的酪氨酸和苯丙氨酸残基还原,产生深蓝色的钼蓝和钨蓝的混合物。
在一定条件下,蓝色深度与蛋白的量成正比,由此可测定蛋白质的含量。
优点:灵敏度高、对水溶性的蛋白质含量的测定很有效。
缺点:费时,要精确控制操作时间;Folin酚试剂的配制比较繁琐,且酚类和柠檬酸、硫酸铵、Tris缓冲液、甘氨酸、糖类、甘油、还原剂(二硫代苏糖醇、巯基乙醇)、EDTA和尿素均会干扰反应。
1.4紫外吸收法原理:蛋白质中的酪氨酸、苯丙氨酸和色氨酸残基使其在280nm处具有紫外吸收,其吸光度与蛋白质含量成正比。
此外,蛋白质溶液在280nm处的吸光值与肽键含量成正比。
利用一定波长下蛋白质溶液的吸光值与蛋白质含量的正比关系可以测定蛋白质含量。
优点:简便、灵敏、快速、不消耗样品,测定后能回收。
缺点:测定蛋白质含量的精确度差、专一性差;干扰物质多,若样品中含有嘌呤、嘧啶等能吸收紫外光的物质会出现较大的干扰。
蛋白质定量方法的比较与优缺点分析

蛋白质定量方法的比较与优缺点分析蛋白质定量是生物学研究中非常重要的一项技术。
通过定量分析蛋白质,可以揭示许多生物学问题和生物化学反应机理。
但是,不同的蛋白定量方法有各自的优缺点,因此,选择适合的蛋白质定量方法是非常重要的。
下面,我们将分别介绍蛋白质定量的几种常见方法,并比较它们的优缺点。
1. Bradford法Bradford法是一种常用的蛋白质定量方法。
它是通过将一种特殊的染色剂Bradford与蛋白质结合,然后利用比色法来定量蛋白的含量。
Bradford法使用简单,快速,且具有较高的灵敏度。
但是,这种方法对于蛋白质的种类和质量要求较高,因此,在使用Bradford法进行蛋白质定量之前,需要进行标准曲线的制备和检测。
同时,Bradford法不太适用于含有一些干扰物质的样品。
2. BCA法BCA法是通过还原剂将蛋白质上的铜离子还原成铜离子,并在还原过程中与一种染色剂Bicinchoninic Acid(BCA)发生反应,然后根据比色法进行测定蛋白质含量的一种常见方法。
BCA法有较高的灵敏度,适用于不同种类的蛋白质。
但是,这种方法对于蛋白质的样品有较高的要求,同时也需要进行标准曲线的制备和测定。
3. Lowry法Lowry法是一种蛋白质定量的经典方法。
这种方法首先将蛋白质与碱式铜离子形成蛋白质和铜络合物,然后使用Folin-Ciocalteu试剂进行比色法测定蛋白质含量。
Lowry法在测定种类和样品方面都非常广泛。
但是,这种方法操作步骤较多,比较繁琐,同时与其他方法比较,这种方法的灵敏度较低。
4. UV-Vis吸收光谱定量法UV-Vis吸收光谱定量法是通过测定蛋白质在波长280nm处的吸收光谱,从而进行蛋白质定量的一种方法。
这种方法具有灵敏度较高,且对蛋白质的种类没有特殊要求的特点。
但是,这种方法只适用于含有色氨酸或苯丙氨酸等芳香族氨基酸的蛋白质。
在比较以上几种方法的优缺点后,我们可以得出结论:选择适合的蛋白质定量方法需要我们综合考虑所测蛋白质的种类和质量,实验室设备,操作步骤等因素。
四种蛋白质测定方法的比较研究

四种蛋白质测定方法的比较研究一、本文概述蛋白质测定是生物化学和分子生物学研究中的基本步骤,对于理解生物体的生理功能和疾病机制具有重要意义。
在众多蛋白质测定方法中,Bradford法、Lowry法、Bicinchoninic Acid (BCA)法和Kjeldahl法是常用的几种。
本文旨在对这些方法进行比较研究,分析各自的原理、优缺点以及适用范围,为科研工作者在选择合适的蛋白质测定方法时提供参考。
本文将简要介绍每种方法的原理和操作步骤。
Bradford法基于蛋白质与考马斯亮蓝G250染料的结合反应Lowry法基于蛋白质与FolinCiocalteu试剂的反应,以及后续的铜离子参与的反应BCA法则是基于蛋白质与Cu2在碱性条件下与BCA形成复合物的原理而Kjeldahl法则是一种经典的有机物氮含量测定方法,通过测定蛋白质中的氮含量来计算蛋白质浓度。
本文将深入探讨这些方法的优缺点。
例如,Bradford法操作简便、灵敏度高,但易受某些氨基酸的影响Lowry法准确度较高,但操作复杂、耗时较长BCA法准确度和灵敏度均较高,适用范围广泛,但试剂成本较高Kjeldahl法则适用于大批量样品的测定,但前处理复杂,且无法区分不同类型的蛋白质。
本文将结合实际应用场景,讨论各种方法的适用范围。
例如,在实验室规模的研究中,Bradford法和BCA法因其操作简便、灵敏度高而受到青睐而在需要高准确度的研究中,Lowry法则可能是更好的选择对于大批量样品的测定,Kjeldahl法则显示出其独特的优势。
本文通过对四种常见蛋白质测定方法的比较研究,旨在为科研工作者在选择合适的蛋白质测定方法时提供理论依据和实践指导。
二、蛋白质测定的四种主要方法蛋白质是生命活动的主要承担者,其浓度的测定在生物化学研究中占有举足轻重的地位。
目前,有多种方法可用于蛋白质的定量分析,但本文将重点介绍四种最常用且被广泛认可的方法:比色法、Bradford法、Biuret法以及Kjeldahl法。
测定蛋白质含量的方法有哪些

测定蛋白质含量的方法有哪些测定蛋白质含量是生物化学实验中常见的一项工作,目的在于确定给定样品中蛋白质的含量。
这样的测定对于许多领域的研究和应用都是至关重要的,包括分子生物学、生物医学研究、食品科学和营养学等。
蛋白质含量的测定方法根据原理和技术的不同可以分为多种类型,下面将详细介绍其中常用的方法。
1. 低里斯法(Lowry法):这是一种常用的测定蛋白质含量的光度法。
在这个方法中,样品中的蛋白质与Folin-Ciocalteu试剂中的碱性铜离子形成络合物,这些络合物在碱性条件下在750 nm附近吸收光线。
通过与蛋白质浓度相关的标准曲线进行比较,可以确定样品中蛋白质的含量。
2. BCA法(双异硫氰酸铜法):BCA法也是一种常用的光度法,它与低里斯法原理类似。
在这个方法中,蛋白质的还原性氨基酸(主要是赖氨酸、组氨酸和半胱氨酸)与BCA试剂中的铜离子反应生成紫色的络合物,这些络合物在560 nm 处吸收光线。
通过与蛋白质浓度相关的标准曲线进行比较,可以确定样品中蛋白质的含量。
3. 线性校正法(Coomassie蓝法):这也是一种常用的光度法。
在这个方法中,蛋白质与Coomassie Brilliant Blue G-250试剂反应生成蓝色络合物,这些络合物在595 nm处吸收光线。
通过与蛋白质浓度相关的标准曲线进行比较,可以确定样品中蛋白质的含量。
4. 尿素法:这是一种测定总蛋白质含量的化学方法。
在尿素法中,样品中的蛋白质与硝酸铜溶液反应生成紫色络合物,测定其吸光度从而计算蛋白质的含量。
5. Biuret法:这是一种经典的测定蛋白质含量的光度法。
这个方法利用了蛋白质中的肽键和某些氨基酸(特别是赖氨酸和组氨酸)与碱性铜离子形成紫色络合物的性质。
测定络合物的吸光度从而计算蛋白质的含量。
6. Kjeldahl法:这是一种测定总氮含量的化学方法,因为蛋白质中含有氮元素,所以可以通过测定氮含量来推算蛋白质的含量。
这个方法需要将样品中的蛋白质进行分解、提取和转化,最终测定氮含量,并换算为蛋白质含量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5种常规的蛋白质测定方法的全方位的比较分析来源: 类别:技术文章 更新时间:2011-02-16 16:32:50 阅读 62次蛋白质的测定在饲料的品质确定中占很大的作用,蛋白质的测定方法有很多种,最为常见的使用方式有定氮法,双缩脲法(Biuret 法)、考马斯亮蓝法(Bradford 法)、Folin -酚试剂法(Lowry 法)和紫外吸收法,蛋白质测定仪采用索氏定氮原理,通过用加碱、加酸等过程将物质中的氮元素转化为氨气,然后再用滴定的方法讲物质中氮的含量或者蛋白质的含量计算出来。
蛋白质测定仪采用微电脑全自动控制,有两种模式:手动模式和自动模式。
根据这两种模式又能将其分之为半自动定氮仪以及全自动定氮仪两种,在进行检测的过程中克服了定氮法的一些弊端,让定氮法进行进一步的发展。
下面就是以上4种测定方法中的优缺点比较:方法灵敏度 时间 原理 干扰物质 说明 凯氏定氮法(Kjedahl 法) 灵敏度低,适用于0.2~ 1.0mg 氮,误差为 ±2%费时 8~10小时 将蛋白氮转化为氨,用酸吸收后滴定 非蛋白氮(可用三氯乙酸沉淀蛋白质而分离) 用于标准蛋白质含量的准确测定;干扰少;费时太长 双缩脲法(Biuret 法) 灵敏度低1~20mg 中速 20~30分钟多肽键+碱性Cu 2+?紫色络合物 硫酸铵; Tris 缓冲液; 某些氨基酸 用于快速测定,但不太灵敏;不同蛋白质显色相似 紫外吸收法 较为灵敏 50~100mg 快速5~10分钟 蛋白质中的酪氨酸和色氨酸残基在280nm 处的光吸收 各种嘌吟和嘧啶; 各种核苷酸用于层析柱流出液的检测;核酸的吸收可以校正 Folin -酚试剂法(Lowry 法) 灵敏度高 ≈5mg慢速40~60 分钟 双缩脲反应;磷钼酸-磷钨酸试剂被Tyr 和Phe 还原 硫酸铵;Tris 缓冲液; 甘氨酸;各种硫醇耗费时间长;操作要严格计时; 颜色深浅随不同蛋白质变化 考马斯亮蓝法(Br adford 法) 灵敏度最高 1~5mg快速5~15分钟 考马斯亮蓝染料与蛋白质结合时,其lmax 由465nm 变为595nm 强碱性缓冲液; TritonX-100; SDS 最好的方法;干扰物质少; 颜色稳定; 颜色深浅随不同蛋白质变化蛋白质含量测定的方法一、微量凯氏(Kjeldahl)定氮法含氮有机物与浓硫酸共热,即分解产生氨(消化),氨又与硫酸作用,变成硫酸铵。
经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。
若以甘氨酸为例,其反应式如下:H2NCH2COOH+ 3H2SO4 ® 2CO2 + 3SO2 +4H2O +NH3 (1)2NH3 + H2SO4 ® (NH4)2SO4 (2)(NH4)2SO4 + 2NaOH ® 2H2O +Na2SO4 + 2NH3 (3)为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。
收集氨可用硼酸溶液,滴定则用强酸。
计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白氮即得。
如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。
二、双缩脲法(Biuret法)蛋白质含有两个以上的肽键,因此有双缩脲反应。
在碱性溶液中,蛋白质与Cu2+形成紫色络合物,此紫色络合物颜色的深浅与蛋白质含量成正比,而与蛋白质的相对分子量及氨基酸成分无关,故可用来测定蛋白质含量。
测定范围为1~10ug 蛋白质。
干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。
此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。
主要的缺点是灵敏度差。
因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。
三、Folin—酚试剂法(Lowry法)这种蛋白质测定法是最灵敏的方法之一。
过去此法是应用最广泛的一种方法,由于其试剂配制较为困难,近年来逐渐被考马斯亮兰法所取代。
此法的显色原理与双缩脲方法是相同的,只是加入了第二种试剂,即Folin—酚试剂,以增加显色量,从而提高了检测蛋白质的灵敏度。
这两种显色反应产生深蓝色的原因是:?在碱性条件下,蛋白质中的肽键与铜结合生成复合物。
?Folin—酚试剂中的磷钼酸盐—磷钨酸盐被蛋白质中的酪氨酸和苯丙氨酸残基还原,产生深蓝色(钼蓝和钨蓝的混合物)。
在一定的条件下,蓝色深度与蛋白的含量成正比。
Folin—酚试剂法最早由Lowry确定了蛋白质浓度测定的基本步骤。
以后在生物化学领域得到广泛的应用。
这个测定法的优点是灵敏度高,比双缩脲法灵敏得多,缺点是费时间较长,要精确控制操作时间,标准曲线也不是严格的直线形式,且专一性较差,干扰物质较多。
对双缩脲反应发生干扰的离子,同样容易干扰Lowry 反应。
而且对后者的影响还要大得多。
酚类、柠檬酸、硫酸铵、Tris缓冲液、甘氨酸、糖类、甘油等均有干扰作用。
浓度较低的尿素(0.5%),硫酸钠(1%),硝酸钠(1%),三氯乙酸(0.5%),乙醇(5%),乙醚(5%),丙酮(0.5%)等溶液对显色无影响,但这些物质浓度高时,必须作校正曲线。
含硫酸铵的溶液,只须加浓碳酸钠—氢氧化钠溶液,即可显色测定。
若样品酸度较高,显色后会色浅,则必须提高碳酸钠—氢氧化钠溶液的浓度1~2倍。
进行测定时,加Folin—酚试剂时要特别小心,因为该试剂仅在酸性pH条件下稳定,但上述还原反应只在pH=10的情况下发生,故当Folin一酚试剂加到碱性的铜—蛋白质溶液中时,必须立即混匀,以便在磷钼酸—磷钨酸试剂被破坏之前,还原反应即能发生。
此法也适用于酪氨酸和色氨酸的定量测定。
此法可检测的最低蛋白质量达5mg。
通常测定范围是20~250mg。
四、紫外吸收法由于蛋白质分子中,酪氨酸和色氨酸残基的苯环含有共轭双键,因此蛋白质具有吸收紫外光的性质。
吸收高峰在280nm处,其吸光度与蛋白质含量成正比,可用作定量测定。
紫外吸收法简便、灵敏、快速,不消耗样品,低浓度的盐类不干扰测定。
特别适用于柱层析洗脱液的快速连续检测,利用280nm进行紫外检测,来判断蛋白质吸附或洗脱情况是最常用的方法。
此法的特点是测定蛋白质含量的准确度较差,干扰物质多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质,有一定的误差。
故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。
若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。
核酸的干扰可以通过查校正表,再进行计算的方法,加以适当的校正。
但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。
此外,进行紫外吸收法测定时,由于蛋白质吸收高峰常因pH的改变而有变化,因此要注意溶液的pH值,测定样品时的pH要与测定标准曲线的pH相一致。
五、考马斯亮兰法(Bradford法)1976年由Bradford建立的考马斯亮兰法(Bradford法),是根据蛋白质与染料相结合的原理设计的。
这种蛋白质测定法具有超过其他几种方法的突出优点,因而正在得到广泛的应用。
这一方法是目前灵敏度最高的蛋白质测定法。
考马斯亮兰G-250染料,在酸性溶液中与蛋白质结合,使染料的最大吸收峰由465nm变为595nm,溶液的颜色也由棕黑色变为蓝色。
经研究认为,染料主要是与蛋白质中的碱性氨基酸(特别是精氨酸)和芳香族氨基酸残基相结合。
在595nm下测定的吸光度值A595,与蛋白质浓度成正比。
Bradford法的突出优点是:(1)灵敏度高,据估计比Lowry法约高四倍,其最低蛋白质检测量可达1mg。
这是因为蛋白质与染料结合后产生的颜色变化很大,蛋白质-染料复合物有更高的消光系数,因而光吸收值随蛋白质浓度的变化比Lowry法要大的多。
(2)测定快速、简便,只需加一种试剂。
完成一个样品的测定,只需要5分钟左右。
由于染料与蛋白质结合的过程,大约只要2分钟即可完成,其颜色可以在1小时内保持稳定,且在5分钟至20分钟之间,颜色的稳定性最好。
因而完全不用像Lowry法那样费时和严格地控制时间。
(3)干扰物质少。
如干扰Lowry法的K+、Na+、Mg2+离子、Tris缓冲液、糖和蔗糖、甘油、巯基乙醇、EDTA等均不干扰此测定法。
此法的缺点是:(1)由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同,因此Bradford法用于不同蛋白质测定时有较大的偏差,在制作标准曲线时通常选用 g—球蛋白为标准蛋白质,以减少这方面的偏差。
(2)仍有一些物质干扰此法的测定,主要的干扰物质有:去污剂、 Triton X-100、十二烷基硫酸钠(SDS)和0.1N的NaOH。
(如同0.1N的酸干扰Lowary法一样)。
(3)标准曲线也有轻微的非线性,因而不能用Beer定律进行计算,而只能用标准曲线来测定未知蛋白质的浓度。
六、BCA比色法在碱性溶液中,蛋白质将Cu2+还愿为Cu+再与BCA试剂(4,4´-二羧酸-2,2´-二喹啉钠)生成紫色复合物,于562nm由最大吸收,其强度和蛋白质浓度成正比。
此法的优点是单一试剂、终产物稳定,于lowry法相比几乎没有干扰物质的影响。
尤其是在TritonX-100,SDS等表面活性剂中也可以测定。
其灵敏度范围一般在10~1200 ug/ml。
表五种蛋白质含量测定方法的比较方法灵敏度时间原理干扰物质说明1 . 凯氏定氮法(Kjedahl法):灵敏度低,适用于0.2~ 1.0mg氮,误差为±2%,费时 8~10小时,将蛋白氮转化为氨,用酸吸收后滴定,非蛋白氮(可用三氯乙酸沉淀蛋白质而分离)用于标准蛋白质含量的准确测定;干扰少;费时太长2 . 双缩脲法(Biuret法):灵敏度低 1~20mg, 中速20~30 分钟,多肽键+碱性Cu2+®紫色络合物,硫酸铵; Tris缓冲液;某些氨基酸用于快速测定,但不太灵敏;不同蛋白质显色相似3.紫外吸收法较为灵敏, 50~100mg ,快速, 5~10分钟,蛋白质中的酪氨酸和色氨酸残基在280nm处的光吸收各种嘌吟和嘧啶;各种核苷酸用于层析柱流出液的检测;核酸的吸收可以校正4. Folin-酚试剂法(Lowry法)灵敏度高~5mg 慢速, 40~60 分钟,双缩脲反应;磷钼酸-磷钨酸试剂被Tyr和Phe还原硫酸铵; Tris缓冲液;甘氨酸;各种硫醇耗费时间长;操作要严格计时;颜色深浅随不同蛋白质变化5. 考马斯亮蓝法(Bradford法)灵敏度最高 1~5mg 快速, 5~15分钟考马斯亮蓝染料与蛋白质结合时,其lmax由465nm变为595nm 强碱性缓冲液;TritonX-100;SDS 最好的方法;干扰物质少;颜色稳定;颜色深浅随不同蛋白质变化从以上表格中可以得出,不同的方法有不同的特点和优势,如紫外吸收法测定时间快。