芯片封装介绍Word版
芯片封装介绍范文
![芯片封装介绍范文](https://img.taocdn.com/s3/m/29b403aa112de2bd960590c69ec3d5bbfd0ada96.png)
芯片封装介绍范文芯片封装是一种将芯片器件封装在外部包装中的技术过程。
它起到保护芯片免受外界环境影响的作用,同时也为芯片与外部世界进行连接提供了可能。
芯片封装可分为多种形式,如塑封、球栅阵列封装(BGA)、无引线封装(QFN)等。
早期的芯片封装主要采用塑封封装。
塑封封装通过将芯片与塑料基片进行固定连接,然后使用塑料材料进行封装。
塑封封装方式简单、成本较低,适用于低功耗芯片,如逻辑芯片和存储器芯片。
然而,随着集成度的不断提高和功耗的增加,塑封封装的局限性也逐渐暴露出来,如散热不佳、引脚容易受损等。
为解决塑封封装的问题,球栅阵列封装(BGA)应运而生。
BGA封装采用无引线设计,通过在底部安装一个由球形焊球组成的阵列,与印刷电路板焊接在一起。
相较于塑封封装,BGA封装具有更好的热性能和导热性能,能够更好地满足高密度与高功率芯片的需求。
此外,BGA封装的焊点可靠性也较高,能够适应复杂环境和振动应力。
因此,BGA封装逐渐成为高性能芯片封装的主流技术。
除了BGA封装之外,无引线封装(QFN)也是一种常见的芯片封装形式。
与BGA封装类似,QFN封装也采用无引线设计,通过焊接芯片与印刷电路板的底部金属接触面相连接。
与BGA封装相比,QFN封装在尺寸上更加紧凑,适用于小型化和轻量化的应用,如移动设备和无线通信模块。
此外,QFN封装还具有低成本、良好的导热性能和可靠性等优势。
除了上述封装形式,另外还有多种芯片封装技术,如多芯片模块(MCM)、3D封装等。
多芯片模块将多个芯片集成在一个封装中,以实现更高的功能集成和性能。
3D封装则是将多个芯片堆叠在一起,通过垂直连接实现信号传输和功耗管理。
这些封装形式在高端应用领域得到广泛应用,如服务器、网络设备和高性能计算机等。
总之,芯片封装是将芯片器件封装在外部包装中的技术过程,它为芯片提供了物理保护和外部连接的功能。
在不同类型的封装中,塑封封装适用于低功耗芯片,BGA和QFN封装适用于高性能芯片,而MCM和3D封装则适用于高度集成和功能复杂的芯片。
芯片封装流程及原理
![芯片封装流程及原理](https://img.taocdn.com/s3/m/b6a797f3f424ccbff121dd36a32d7375a517c644.png)
芯片封装流程及原理下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!芯片封装是将芯片与外部环境隔离,并提供电气连接和机械保护的过程。
芯片封装介绍
![芯片封装介绍](https://img.taocdn.com/s3/m/4acc238d680203d8ce2f242a.png)
一、什么叫封装封装,就是指把硅片上的电路管脚,用导线接引到外部接头处,以便与其它器件连接.封装形式是指安装半导体集成电路芯片用的外壳。
它不仅起着安装、固定、密封、保护芯片及增强电热性能等方面的作用,而且还通过芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印刷电路板上的导线与其他器件相连接,从而实现内部芯片与外部电路的连接。
因为芯片必须与外界隔离,以防止空气中的杂质对芯片电路的腐蚀而造成电气性能下降。
另一方面,封装后的芯片也更便于安装和运输。
由于封装技术的好坏还直接影响到芯片自身性能的发挥和与之连接的PCB(印制电路板)的设计和制造,因此它是至关重要的。
衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。
封装时主要考虑的因素:1、芯片面积与封装面积之比为提高封装效率,尽量接近1:1;2、引脚要尽量短以减少延迟,引脚间的距离尽量远,以保证互不干扰,提高性能;3、基于散热的要求,封装越薄越好。
封装主要分为DIP双列直插和SMD贴片封装两种。
从结构方面,封装经历了最早期的晶体管TO(如TO-89、TO92)封装发展到了双列直插封装,随后由PHILIP 公司开发出了SOP小外型封装,以后逐渐派生出SOJ(J型引脚小外形封装)、TSOP(薄小外形封装)、VSOP(甚小外形封装)、SSOP(缩小型SOP)、TSSOP (薄的缩小型SOP)及SOT(小外形晶体管)、SOIC(小外形集成电路)等。
从材料介质方面,包括金属、陶瓷、塑料、塑料,目前很多高强度工作条件需求的电路如军工和宇航级别仍有大量的金属封装。
封装大致经过了如下发展进程:结构方面:TO->DIP->PLCC->QFP->BGA ->CSP;材料方面:金属、陶瓷->陶瓷、塑料->塑料;引脚形状:长引线直插->短引线或无引线贴装->球状凸点;装配方式:通孔插装->表面组装->直接安装二、具体的封装形式1、 SOP/SOIC封装SOP是英文Small Outline Package 的缩写,即小外形封装。
常用芯片封装方式及说明(例图+文字版)
![常用芯片封装方式及说明(例图+文字版)](https://img.taocdn.com/s3/m/52b62dd6b14e852458fb5763.png)
芯片封装方式大全各种IC封装形式图片BGABall Grid ArrayEBGA 680LLBGA 160LPBGA 217LPlastic Ball GridArraySBGA 192LQFPQuad FlatPackageTQFP 100LSBGASC-70 5LSDIPSIPSingle InlinePackageSOSmallOutlinePackageTSBGA 680LCLCCCNRCommunicationand NetworkingRiserSpecificationRevision 1.2CPGACeramic Pin GridArrayDIPDual InlinePackageSOJ 32LSOJSOP EIAJTYPE II 14LSOT220SSOP 16LSSOPTO18DIP-tabDual InlinePackage withMetal HeatsinkFBGAFDIPFTO220Flat PackHSOP28ITO220TO220TO247TO264TO3TO5TO52TO71ITO3pJLLCCLDCCLGALQFPPCDIPPGAPlastic Pin GridArrayTO72TO78TO8TO92TO93TO99TSOPThin SmallOutlinePackagePLCC详细规格PPSLQFP 100L详细规格METAL QUAD100L详细规格PQFP 100L详细规格QFPQuad FlatPackageTSSOP orTSOP IIThinShrinkOutlinePackageuBGAMicro BallGrid ArrayuBGAMicro BallGrid ArrayZIPZig-ZagInlinePackageTEPBGA 288L TEPBGAC-BendLeadSOT220SOT223SOT223SOT23SSOT25/SOT353SOT26/SOT363SCERQUADCeramicQuad FlatPack详细规格CeramicCaseLAMINATECSP 112LChip ScalePackage详细规格GuLeLLP 8La详细规格PCI 32bit 5VPeripheralComponentInterconnect详细规格PCI 64bit3.3VSOT523SOT89SOT89Socket 603FosterLAMINATETCSP 20LChip ScalePackageTO252PCMCIAPDIPPLCC详细规格SIMM30SingleIn-lineMemoryModuleSIMM72SingleIn-lineMemoryModuleSIMM72SingleIn-lineTSO DIMMSmall OutlineDual In-lineMemory ModuleSOCKET 370For intel 370 pinPGA Pentium III& Celeron CPUSOCKET 423For intel 423 pinPGA Pentium 4CPUSOCKET462/SOCKET AFor PGA AMDAthlon & DuronCPUSOCKET 7For intel Pentium& MMX PentiumCPUSLOT 1For intelPentium IIPentium III& CeleronCPUSLOT AFor AMDAthlon CPUSNAPTKSNAPTKSNAPZPS各种封 装 缩 写 说 明BGABQFP132BGABGABGABGABGA CLCCCNRPGADIPDIP-tab BGADIPTOFlat PackHSOP28 TOTOLCCCLCCBGALQFP DIPPGAPLCCLQFPLQFPPQFPQFPQFPTQFP BGASC-70 5LDIPSIPSOSOJSOPTOSOPSOP CANTOTOTOTO3CANCANCANCANCANTO8TO92CANCANTSOPTSSOP or TSOP BGABGAZIP以下封装形式未找到相关图片,仅作简易描MODULE 方形状金属壳双列直插式 例如:LH0084述,供参考: DIM 单列直插式,塑料例如:MH88500 QUIP蜘蛛脚状四排直插式,塑料 例如:NEC7810 DBGABGA 系列中陶瓷芯片 例如:EP20K400FC672-3CBGA BGA 系列中金属封装芯片 例如: EP20K300EBC652-3RQFPQFP 封装系列中,表面带金属散装体 例如:EPF10KRC 系列 DIMM 电路正面或背面镶有LCC 封装小芯片,陶瓷,双列直插式例如:X28C010DIP-BATTERY 电池与微型芯片内封SRAM 芯片,塑料双列直插式例如:达拉斯SRAM 系列(五)按用途分类集成电路按用途可分为电视机用集成电路。
芯片封装大全(图文对照)
![芯片封装大全(图文对照)](https://img.taocdn.com/s3/m/c68c467d8e9951e79a89270f.png)
封装有两大类;一类是通孔插入式封装(through-hole package);另—类为表面安装式封装(surface moun te d Package)。
每一类中又有多种形式。
表l和表2是它们的图例,英文缩写、英文全称和中文译名。
图6示出了封装技术在小尺寸和多引脚数这两个方向发展的情况。
DIP是20世纪70年代出现的封装形式。
它能适应当时多数集成电路工作频率的要求,制造成本较低,较易实现封装自动化印测试自动化,因而在相当一段时间内在集成电路封装中占有主导地位。
但DIP的引脚节距较大(为2.54mm),并占用PCB板较多的空间,为此出现了SHDIP和SKDIP等改进形式,它们在减小引脚节距和缩小体积方面作了不少改进,但DIP最大引脚数难以提高(最大引脚数为64条)且采用通孔插入方式,因而使它的应用受到很大限制。
为突破引脚数的限制,20世纪80年代开发了PGA封装,虽然它的引脚节距仍维持在2.54mm或1.77mm,但由于采用底面引出方式,因而引脚数可高达500条~600条。
随着表面安装技术(surface mounted technology, SMT)的出现,DIP封装的数量逐渐下降,表面安装技术可节省空间,提高性能,且可放置在印刷电路板的上下两面上。
SOP应运而生,它的引脚从两边引出,且为扁平封装,引脚可直接焊接在PCB板上,也不再需要插座。
它的引脚节距也从DIP的2.54 mm减小到1.77mm。
后来有SSOP和TSOP改进型的出现,但引脚数仍受到限制。
QFP也是扁平封装,但它们的引脚是从四边引出,且为水平直线,其电感较小,可工作在较高频率。
引脚节距进一步降低到1.00mm,以至0.65 mm和0.5 mm,引脚数可达500条,因而这种封装形式受到广泛欢迎。
但在管脚数要求不高的情况下,SOP以及它的变形SOJ(J型引脚)仍是优先选用的封装形式,也是目前生产最多的一种封装形式。
方形扁平封装-QFP (Quad Flat Package)[特点] 引脚间距较小及细,常用于大规模或超大规模集成电路封装。
完整word版,74HC138芯片资料
![完整word版,74HC138芯片资料](https://img.taocdn.com/s3/m/3025f88758f5f61fb636660a.png)
74HC138芯片资料74HC138是一款高速CMOS器件,74HC138引脚兼容低功耗肖特基TTL(LSTTL)系列。
74HC138译码器可接受3位二进制加权地址输入(A0, A1和A2),并当使能时,提供8个互斥的低有效输出(Y0至Y7)。
74HC138特有3个使能输入端:两个低有效(E1和E2)和一个高有效(E3)。
除非E1和E2置低且E3置高,否则74HC138将保持所有输出为高。
利用这种复合使能特性,仅需4片74HC138芯片和1个反相器,即可轻松实现并行扩展,组合成为一个1-32(5线到32线)译码器。
任选一个低有效使能输入端作为数据输入,而把其余的使能输入端作为选通端,则74HC138亦可充当一个8输出多路分配器,未使用的使能输入端必须保持绑定在各自合适的高有效或低有效状态。
一、主要特性1、采用CMOS工艺2、低功耗3、工作电压:2~6V4、封装形式:SOP16管脚说明逻辑图真值表:电气参数正常工作范围(Ta=-40~+80℃)参数符号最小典型最大单位测试条件逻辑电源电压VDD 3.0 5.0 5.5 V -高电平输入电压V IH 3.0 V VDD=5.0V 低电平输入电压V IL 2.0 V VDD=5.0V极限参数(Ta=25℃)参数符号范围单位逻辑电源电压VDD -0.5~+7.0 V逻辑输入电压VII -0.5~ VDD+0.5 V 功率损耗PD <400 mW工作温度Topt -40~+80 ℃储存温度Tstg -50~+150 ℃直流特性参数 符号最小 典型 最大 单位 测试条件 高电平输出电压 V OH 4.9 V VDD=5.0V 低电平输出电压 V OL 0.1 V VDD=5.0V 静态电流损耗 IDD 1 uA VDD=6.0V 输出端口驱动电流 I OH -32 -40 mA VDD=5.0V I OL46 56 mA VDD=5.0V参数符号 最小 典型 最大 单位 测试条件 输出上升延时 t PLH 4 ns VDD=5.0V F=250KHz C L =30P波形图见图一 测试电路见图二输出下降延时 t PHL 5 ns 输出上升沿 t r 5 ns 输出下降沿 t f5ns。
芯片封装介绍范文
![芯片封装介绍范文](https://img.taocdn.com/s3/m/0f4089b67d1cfad6195f312b3169a4517723e5b9.png)
芯片封装介绍范文芯片封装是指将集成电路芯片连接到引脚或其他外部设备上的过程。
它是电子产品制造中的关键步骤之一,可以保护芯片不受外界环境的干扰,并提供连接和扩展功能。
本文将介绍芯片封装的基本原理、常见封装类型、封装材料以及未来发展趋势。
一、基本原理芯片封装的基本原理是将芯片通过焊接、黏贴或其他方法连接到引脚或其他外部设备上,并用封装材料将芯片包裹起来。
这样可以保护芯片免受静电、水分、化学物质等外界环境的影响。
同时,封装还可以提供电信号传输、散热、机械支撑等功能。
二、常见封装类型1.芯片封装分类根据封装时芯片的裸露状态,芯片封装可以分为无封装(chip-scale package, CSP)、裸芯封装(die attach, DA)和裸片封装(chip-on-board, COB)三种类型。
无封装是将芯片直接焊接在印刷电路板上,裸芯封装是将芯片放置在封装基座上后封装,裸片封装是将多个裸芯封装组合在一起。
2.封装形式根据封装结构形式,常见的封装类型有双列直插封装(Dual In-line Package, DIP)、表面贴装封装(Surface Mount Technology, SMT)、无引线封装(Leadless Package, LGA/QFN/BGA)等。
DIP封装是最早使用的一种封装形式,引脚呈两列排列。
SMT封装是一种体积小、重量轻、可自动化组装的封装形式。
无引线封装是指芯片的引脚直接焊接到封装的底部,并通过焊球或焊盘与PCB连接,适用于高密度集成。
三、封装材料封装材料对芯片封装的效果和性能起着重要作用。
常见的封装材料有封装基座、封装胶水和引线材料。
1.封装基座封装基座是芯片封装的主要组成部分,其材料应具有良好的导热性、机械强度和耐候性。
常见的封装基座材料有金属、陶瓷、塑料等。
金属基座具有良好的导热性能,适用于需要高功率处理的芯片。
陶瓷基座具有优良的机械强度和导热性能,适用于高频和高温环境下的应用。
芯片封装类型图解精选全文完整版
![芯片封装类型图解精选全文完整版](https://img.taocdn.com/s3/m/05caa340cdbff121dd36a32d7375a417866fc181.png)
可编辑修改精选全文完整版芯片封装类型图解本文介绍了常见的集成电路封装形式,包括BGA、CPGA、FBGA、JLCC、LDCC、LQFP100L、PCDIP、PLCC、PPGA、PQFP、TQFP100L、TSBGA217L、TSOP、CSP、SIP、ZIP、S-DIP、SK-DIP、PGA、SOP、MSP和QFP等。
SIP是单列直插式封装,引脚在芯片单侧排列,与DIP基本相同。
ZIP是Z型引脚直插式封装,引脚比SIP粗短些,节距等特征也与DIP基本相同。
S-DIP是收缩双列直插式封装,引脚在芯片两侧排列,引脚节距为1.778mm,芯片集成度高于DIP。
SK-DIP是窄型双列直插式封装,除了芯片的宽度是DIP的1/2以外,其它特征与DIP相同。
PGA是针栅阵列插入式封装,封装底面垂直阵列布置引脚插脚,插脚节距为2.54mm或1.27mm,插脚数可多达数百脚,用于高速的且大规模和超大规模集成电路。
SOP是小外型封装,表面贴装型封装的一种,引脚端子从封装的两个侧面引出,字母L状,引脚节距为1.27mm。
MSP是微方型封装,表面贴装型封装的一种,又叫QFI等,引脚端子从封装的四个侧面引出,呈I字形向下方延伸,没有向外突出的部分,实装占用面积小,引脚节距为1.27mm。
QFP是四方扁平封装,表面贴装型封装的一种,引脚端子从封装的两个侧面引出,呈L字形,引脚节距为1.0mm、0.8mm、0.65mm、0.5mm、0.4mm、0.3mm,引脚可达300脚以上。
SVP是一种表面安装型垂直封装,其引脚端子从封装的一个侧面引出,中间部位弯成直角并与PCB键合,适用于垂直安装,实装占有面积很小。
其引脚节距为0.65mm和0.5mm。
LCCC是一种无引线陶瓷封装载体,其四个侧面都设有电极焊盘而无引脚,适用于高速、高频集成电路封装。
PLCC是一种无引线塑料封装载体,适用于高速、高频集成电路封装,是一种塑料封装的LCC。
SOJ是一种小外形J引脚封装,其引脚端子从封装的两个侧面引出,呈J字形,引脚节距为1.27mm。
芯片封装知识简介
![芯片封装知识简介](https://img.taocdn.com/s3/m/b135411fa76e58fafab003cb.png)
芯片封装详细图解
![芯片封装详细图解](https://img.taocdn.com/s3/m/ed56b36abdd126fff705cc1755270722182e5970.png)
封装类型
01
02
03
04
针脚型封装
将芯片固定在引脚上,引脚向 外延伸,便于与其他电路连接
。
表面贴装型封装
将芯片直接贴装在PCB板上, 实现小型化和轻便化。
球栅阵列型封装
将芯片的电极以球形方式排列 ,实现高速、高密度的信号传
输。
晶圆级封装
将整个晶圆进行封装,实现更 小尺寸的封装。
02 芯片封装材料
常用的陶瓷材料包括氧化铝、氮化硅等,可以根据具体需求选择合适的陶瓷材料。
塑料材料
塑料材料在芯片封装中主要用于廉价、 大批量生产的封装。
常用的塑料材料包括环氧树脂、聚苯 乙烯等,可以根据具体需求选择合适 的塑料材料。
塑料材料具有成本低、加工方便等优 点,能够满足中低端芯片的封装需求。
其他材料
其他材料在芯片封装中主要用于 特殊需求的封装,如玻璃、石墨
晶片贴装
晶片贴装
将芯片按照设计要求放置在封装基板上,使用粘合剂将其固 定。
位置调整
通过显微镜对芯片位置进行调整,确保其与周围元件对齐。
引脚连接
引脚焊接
使用焊接技术将芯片的引脚与基板的 导电路径连接起来。
引脚保护
在焊接完成后,对引脚进行保护处理 ,防止其氧化和损坏。
密封与涂装
密封处理
将芯片和引脚进行密封,以保护内部电路不受外界环境影响。
金属材料
金属材料在芯片封装中主要用 于制造引脚、底座和散热器等 部件。
金属材料具有良好的导电性和 导热性,能够满足芯片的电气 和散热需求。
常用的金属材料包括铜、铁、 铝等,可以根据具体需求选择 合适的金属材料。
陶瓷材料
陶瓷材料在芯片封装中主要用于制造高可靠性、高稳定性的封装。
先进芯片封装知识介绍
![先进芯片封装知识介绍](https://img.taocdn.com/s3/m/45a9104e78563c1ec5da50e2524de518964bd306.png)
先进芯片封装知识介绍芯片封装是指将芯片封装到具有引脚和外壳的封装中的过程。
封装是芯片最后一个工艺步骤,也是芯片与外部环境连接的关键环节。
芯片封装技术的先进性对于提高芯片的性能、可靠性和尺寸方面具有重要意义。
本文将介绍芯片封装的先进技术和其应用。
首先,先进芯片封装技术的主要应用之一是微型化。
随着电子产品的发展,对芯片体积的要求越来越高。
微型化封装技术可以将芯片封装得越来越小,从而提高产品的集成度和性能。
常见的微型封装技术有BGA(Ball Grid Array)和CSP(Chip Scale Package)等。
BGA封装利用了球形引脚的布局方式,将芯片封装在小型外壳内,可以实现更高的可靠性和更高的热传导性能。
CSP封装则采用更加紧凑的设计,将芯片封装成与芯片尺寸几乎相同的封装,从而实现最小化的封装。
其次,先进芯片封装技术还包括多芯片封装和三维封装。
多芯片封装是将多个芯片封装在同一个封装中,以实现更高的集成度和更小的体积。
常见的多芯片封装技术有MCM(Multi-Chip Module)和SiP(System in Package)等。
MCM封装将多个芯片封装在同一个封装中,通过高密度连接技术实现芯片之间的互联。
SiP封装则将多个芯片封装在同一个封装中,并通过高密度互联技术实现芯片之间的通信。
三维封装则是将芯片在垂直方向上堆叠,以实现更高的集成度和更小的尺寸。
另外,先进芯片封装技术还包括高可靠性封装和高温封装。
随着电子产品的应用场景不断扩大,对芯片封装的可靠性和耐高温性能要求也越来越高。
高可靠性封装技术通过设计更加稳定可靠的引脚结构和封装结构,以提高产品的可靠性。
高温封装技术则通过选择高温稳定的材料和设计结构,以实现芯片在高温环境下的可靠运行。
这些封装技术在汽车电子、航空航天等领域具有广泛的应用。
最后,先进芯片封装技术还包括智能封装和光学封装。
智能封装技术将传感器和控制电路封装在一起,以实现智能化的功能。
(完整word版)ADC0832芯片介绍
![(完整word版)ADC0832芯片介绍](https://img.taocdn.com/s3/m/739a2a65680203d8cf2f246c.png)
这一课我们来学习ADC0832芯片的应用。
模-数(AD)和数-模(DA)转换是模拟电路和数字电路进行沟通的渠道,从前面的课程我们知道,数字电路里,电平只有高和低两种状态,比如5V和0V,对应着1和0;模拟电路里,电平则理论上有无数个状态,比如0V、0。
1V、0。
2V…等等。
如何将模拟电平值在数字电路里表达出来呢?这就需要AD转换过程,同理的,也有DA转换过程。
这一课,我们就利用实验板上的ADC0832芯片来实AD转换这一过程。
ADC0832是美国国家半导体公司生产的一种8位分辨率、双通道A/D转换芯片。
由于它体积小,兼容性强,性价比高而深受单片机爱好者及企业欢迎,其目前已经有很高的普及率.学习并使用ADC0832可是使我们了解A/D转换器的原理,有助于我们单片机技术水平的提高.ADC0832具有以下特点:● 8位分辨率;● 双通道A/D转换;● 输入输出电平与TTL/CMOS相兼容;● 5V电源供电时输入电压在0~5V之间;● 工作频率为250KHZ,转换时间为32μS;● 一般功耗仅为15mW;● 8P、14P—DIP(双列直插)、PICC多种封装;● 商用级芯片温宽为0°C to +70°C?,工业级芯片温宽为40℃ to +85℃下面看看它的引脚及功能。
ADC0832为8位分辨率A/D转换芯片,其最高分辨可达256级,可以适应一般的模拟量转换要求.其内部电源输入与参考电压的复用,使得芯片的模拟电压输入在0~5V之间。
芯片转换时间仅为32μS,据有双数据输出可作为数据校验,以减少数据误差,转换速度快且稳定性能强。
独立的芯片使能输入,使多器件挂接和处理器控制变的更加方便.通过DI数据输入端,可以轻易的实现通道功能的选择.正常情况下ADC0832与单片机的接口应为4条数据线,分别是CS、CLK、DO、DI。
但由于DO端与DI端在通信时并未同时有效并与单片机的接口是双向的,所以电路设计时可以将DO和DI并联在一根数据线上使用。
芯片封装类型(各种芯片封装的介绍及运用)
![芯片封装类型(各种芯片封装的介绍及运用)](https://img.taocdn.com/s3/m/23576977d15abe23492f4d82.png)
芯片封装类型(各种芯片封装的介绍及运用) 1、DIPDIP是20世纪70年代出现的封装形式。
它能适应当时多数集成电路工作频率的要求,制造成本较低,较易实现封装自动化印测试自动化,因而在相当一段时间内在集成电路封装中占有主导地位。
但DIP的引脚节距较大(为2.54mm),并占用PCB板较多的空间,为此出现了SHDIP和SKDIP等改进形式,它们在减小引脚节距和缩小体积方面作了不少改进,但DIP最大引脚数难以提高(最大引脚数为64条)且采用通孔插入方式,因而使它的应用受到很大限制。
2、PGA为突破引脚数的限制,20世纪80年代开发了PGA封装,虽然它的引脚节距仍维持在2.54mm或1.77mm,但由于采用底面引出方式,因而引脚数可高达500条~600条。
3、SOP随着表面安装技术(surface mounted technology, SMT)的出现,DIP封装的数量逐渐下降,表面安装技术可节省空间,提高性能,且可放置在印刷电路板的上下两面上。
SOP应运而生,它的引脚从两边引出,且为扁平封装,引脚可直接焊接在PCB板上,也不再需要插座。
它的引脚节距也从DIP的2.54 mm减小到1.77mm。
后来有SSOP和TSOP改进型的出现,但引脚数仍受到限制。
4、QFPQFP也是扁平封装,但它们的引脚是从四边引出,且为水平直线,其电感较小,可工作在较高频率。
引脚节距进一步降低到1.00mm,以至0.65 mm和0.5 mm,引脚数可达500条,因而这种封装形式受到广泛欢迎。
但在管脚数要求不高的情况下,SOP以及它的变形SOJ(J 型引脚)仍是优先选用的封装形式,也是目前生产最多的一种封装形式。
方形扁平封装-QFP (Quad Flat Package)[特点] 引脚间距较小及细,常用于大规模或超大规模集成电路封装。
必须采用SMT(表面安装技术)进行焊接。
操作方便,可靠性高。
芯片面积与封装面积的比值较大。
小型外框封装-SOP (Small Outline Package)[特点] 适用于SMT安装布线,寄生参数减小,高频应用,可靠性较高。
芯片封装介绍
![芯片封装介绍](https://img.taocdn.com/s3/m/117129e7910ef12d2bf9e708.png)
1、BGA(ball grid array)球形触点陈列,表面贴装型封装之一。
在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。
也称为凸点陈列载体(PAC)。
引脚可超过200,是多引脚LSI 用的一种封装。
封装本体也可做得比QFP(四侧引脚扁平封装)小。
例如,引脚中心距为1.5mm 的360 引脚BGA 仅为31mm 见方;而引脚中心距为0.5mm 的304 引脚QFP 为40mm 见方。
而且BGA 不用担心QFP 那样的引脚变形问题。
该封装是美国Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有可能在个人计算机中普及。
最初,BGA 的引脚(凸点)中心距为1.5mm,引脚数为225。
现在也有一些LSI 厂家正在开发500 引脚的BGA。
BGA 的问题是回流焊后的外观检查。
现在尚不清楚是否有效的外观检查方法。
有的认为,由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。
美国Motorola 公司把用模压树脂密封的封装称为OMPAC,而把灌封方法密封的封装称为GPAC(见OMPAC 和GPAC)。
2、BQFP(quad flat package with bumper)带缓冲垫的四侧引脚扁平封装。
QFP 封装之一,在封装本体的四个角设置突起(缓冲垫) 以防止在运送过程中引脚发生弯曲变形。
美国半导体厂家主要在微处理器和ASIC 等电路中采用此封装。
引脚中心距0.635mm,引脚数从84 到196 左右(见QFP)。
3、碰焊PGA(butt joint pin grid array) 表面贴装型PGA 的别称(见表面贴装型PGA)。
4、C-(ceramic)表示陶瓷封装的记号。
例如,CDIP 表示的是陶瓷DIP。
是在实际中经常使用的记号。
5、Cerdip用玻璃密封的陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、BGA(ball grid array)球形触点陈列,表面贴装型封装之一。
在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。
也称为凸点陈列载体(PAC)。
引脚可超过200,是多引脚LSI 用的一种封装。
封装本体也可做得比QFP(四侧引脚扁平封装)小。
例如,引脚中心距为1.5mm 的360 引脚 BGA 仅为31mm 见方;而引脚中心距为0.5mm 的304 引脚QFP 为40mm 见方。
而且BGA 不用担心QFP 那样的引脚变形问题。
该封装是美国Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有可能在个人计算机中普及。
最初,BGA 的引脚(凸点)中心距为1.5mm,引脚数为225。
现在也有一些LSI 厂家正在开发500 引脚的BGA。
BGA 的问题是回流焊后的外观检查。
现在尚不清楚是否有效的外观检查方法。
有的认为,由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。
美国Motorola 公司把用模压树脂密封的封装称为OMPAC,而把灌封方法密封的封装称为GPAC(见OMPAC 和GPAC)。
2、BQFP(quad flat package with bumper)带缓冲垫的四侧引脚扁平封装。
QFP 封装之一,在封装本体的四个角设置突起(缓冲垫) 以防止在运送过程中引脚发生弯曲变形。
美国半导体厂家主要在微处理器和ASIC 等电路中采用此封装。
引脚中心距0.635mm,引脚数从84 到196 左右(见QFP)。
3、碰焊PGA(butt joint pin grid array) 表面贴装型PGA 的别称(见表面贴装型PGA)。
4、C-(ceramic)表示陶瓷封装的记号。
例如,CDIP 表示的是陶瓷DIP。
是在实际中经常使用的记号。
5、Cerdip用玻璃密封的陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。
带有玻璃窗口的Cerdip 用于紫外线擦除型EPROM 以及内部带有EPROM 的微机电路等。
引脚中心距2.54mm,引脚数从8 到42。
在日本,此封装表示为DIP-G(G 即玻璃密封的意思)。
6、Cerquad表面贴装型封装之一,即用下密封的陶瓷QFP,用于封装DSP 等的逻辑LSI 电路。
带有窗口的Cerquad 用于封装EPROM 电路。
散热性比塑料QFP 好,在自然空冷条件下可容许1. 5~2W 的功率。
但封装成本比塑料QFP 高3~5 倍。
引脚中心距有1.27mm、0.8mm、0.65mm、0.5mm、 0.4mm 等多种规格。
引脚数从32 到368。
7、CLCC(ceramic leaded chip carrier)带引脚的陶瓷芯片载体,表面贴装型封装之一,引脚从封装的四个侧面引出,呈丁字形。
带有窗口的用于封装紫外线擦除型EPROM 以及带有EPROM 的微机电路等。
此封装也称为 QFJ、QFJ-G(见QFJ)。
8、COB(chip on board)板上芯片封装,是裸芯片贴装技术之一,半导体芯片交接贴装在印刷线路板上,芯片与基板的电气连接用引线缝合方法实现,芯片与基板的电气连接用引线缝合方法实现,并用树脂覆盖以确保可靠性。
虽然COB 是最简单的裸芯片贴装技术,但它的封装密度远不如TAB 和倒片焊技术。
9、DFP(dual flat package)双侧引脚扁平封装。
是SOP 的别称(见SOP)。
以前曾有此称法,现在已基本上不用。
10、DIC(dual in-line ceramic package)陶瓷DIP(含玻璃密封)的别称(见DIP).11、DIL(dual in-line)DIP 的别称(见DIP)。
欧洲半导体厂家多用此名称。
12、DIP(dual in-line package)双列直插式封装。
插装型封装之一,引脚从封装两侧引出,封装材料有塑料和陶瓷两种。
DIP 是最普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等。
引脚中心距2.54mm,引脚数从6 到64。
封装宽度通常为15.2mm。
有的把宽度为7.52mm 和10.16mm 的封装分别称为skinny DIP 和slim DIP(窄体型DIP)。
但多数情况下并不加区分,只简单地统称为DIP。
另外,用低熔点玻璃密封的陶瓷DIP 也称为cerdip(见cerdip)。
13、DSO(dual small out-lint)双侧引脚小外形封装。
SOP 的别称(见SOP)。
部分半导体厂家采用此名称。
14、DICP(dual tape carrier package)双侧引脚带载封装。
TCP(带载封装)之一。
引脚制作在绝缘带上并从封装两侧引出。
由于利用的是TAB(自动带载焊接)技术,封装外形非常薄。
常用于液晶显示驱动LSI,但多数为定制品。
另外,0.5mm 厚的存储器LSI 簿形封装正处于开发阶段。
在日本,按照EIAJ(日本电子机械工业)会标准规定,将DICP 命名为DTP。
15、DIP(dual tape carrier package)同上。
日本电子机械工业会标准对DTCP 的命名(见DTCP)。
16、FP(flat package)扁平封装。
表面贴装型封装之一。
QFP 或SOP(见QFP 和SOP)的别称。
部分半导体厂家采用此名称。
17、flip-chip倒焊芯片。
裸芯片封装技术之一,在LSI 芯片的电极区制作好金属凸点,然后把金属凸点与印刷基板上的电极区进行压焊连接。
封装的占有面积基本上与芯片尺寸相同。
是所有封装技术中体积最小、最薄的一种。
但如果基板的热膨胀系数与LSI 芯片不同,就会在接合处产生反应,从而影响连接的可靠性。
因此必须用树脂来加固LSI 芯片,并使用热膨胀系数基本相同的基板材料。
18、FQFP(fine pitch quad flat package)小引脚中心距QFP。
通常指引脚中心距小于0.65mm 的QFP(见QFP)。
部分导导体厂家采用此名称。
19、CPAC(globe top pad array carrier)美国Motorola 公司对BGA 的别称(见BGA)。
20、CQFP(quad fiat package with guard ring)带保护环的四侧引脚扁平封装。
塑料QFP 之一,引脚用树脂保护环掩蔽,以防止弯曲变形。
在把LSI 组装在印刷基板上之前,从保护环处切断引脚并使其成为海鸥翼状(L 形状)。
这种封装在美国Motorola 公司已批量生产。
引脚中心距0.5mm,引脚数最多为208 左右。
21、H-(with heat sink)表示带散热器的标记。
例如,HSOP 表示带散热器的SOP。
22、pin grid array(surface mount type)表面贴装型PGA。
通常PGA 为插装型封装,引脚长约3.4mm。
表面贴装型PGA 在封装的底面有陈列状的引脚,其长度从1.5mm 到2.0mm。
贴装采用与印刷基板碰焊的方法,因而也称为碰焊PGA。
因为引脚中心距只有1.27mm,比插装型PGA 小一半,所以封装本体可制作得不怎么大,而引脚数比插装型多(250~528),是大规模逻辑LSI 用的封装。
封装的基材有多层陶瓷基板和玻璃环氧树脂印刷基数。
以多层陶瓷基材制作封装已经实用化。
23、JLCC(J-leaded chip carrier)J 形引脚芯片载体。
指带窗口CLCC 和带窗口的陶瓷QFJ 的别称(见CLCC 和QFJ)。
部分半导体厂家采用的名称。
24、LCC(Leadless chip carrier)无引脚芯片载体。
指陶瓷基板的四个侧面只有电极接触而无引脚的表面贴装型封装。
是高速和高频IC 用封装,也称为陶瓷QFN 或QFN-C(见QFN)。
25、LGA(land grid array)触点陈列封装。
即在底面制作有阵列状态坦电极触点的封装。
装配时插入插座即可。
现已实用的有227 触点(1.27mm 中心距)和447 触点(2.54mm 中心距)的陶瓷LGA,应用于高速逻辑 LSI 电路。
LGA 与QFP 相比,能够以比较小的封装容纳更多的输入输出引脚。
另外,由于引线的阻抗小,对于高速LSI 是很适用的。
但由于插座制作复杂,成本高,现在基本上不怎么使用。
预计今后对其需求会有所增加。
26、LOC(lead on chip)芯片上引线封装。
LSI 封装技术之一,引线框架的前端处于芯片上方的一种结构,芯片的中心附近制作有凸焊点,用引线缝合进行电气连接。
与原来把引线框架布置在芯片侧面附近的结构相比,在相同大小的封装中容纳的芯片达1mm 左右宽度。
27、LQFP(low profile quad flat package)薄型QFP。
指封装本体厚度为1.4mm 的QFP,是日本电子机械工业会根据制定的新QFP 外形规格所用的名称。
28、L-QUAD陶瓷QFP 之一。
封装基板用氮化铝,基导热率比氧化铝高7~8 倍,具有较好的散热性。
封装的框架用氧化铝,芯片用灌封法密封,从而抑制了成本。
是为逻辑LSI 开发的一种封装,在自然空冷条件下可容许W3的功率。
现已开发出了208 引脚(0.5mm 中心距)和160 引脚(0.65mm 中心距)的LSI 逻辑用封装,并于1993 年10 月开始投入批量生产。
29、MCM(multi-chip module)多芯片组件。
将多块半导体裸芯片组装在一块布线基板上的一种封装。
根据基板材料可分为MCM-L,MCM-C 和MCM-D 三大类。
MCM-L 是使用通常的玻璃环氧树脂多层印刷基板的组件。
布线密度不怎么高,成本较低。
MCM-C 是用厚膜技术形成多层布线,以陶瓷(氧化铝或玻璃陶瓷)作为基板的组件,与使用多层陶瓷基板的厚膜混合IC 类似。
两者无明显差别。
布线密度高于MCM-L。
MCM-D 是用薄膜技术形成多层布线,以陶瓷(氧化铝或氮化铝)或Si、Al 作为基板的组件。
布线密谋在三种组件中是最高的,但成本也高。
30、MFP(mini flat package)小形扁平封装。
塑料SOP 或SSOP 的别称(见SOP 和SSOP)。
部分半导体厂家采用的名称。
31、MQFP(metric quad flat package)按照JEDEC(美国联合电子设备委员会)标准对QFP 进行的一种分类。
指引脚中心距为0.65mm、本体厚度为3.8mm~2.0mm 的标准QFP(见QFP)。
32、MQUAD(metal quad)美国Olin 公司开发的一种QFP 封装。
基板与封盖均采用铝材,用粘合剂密封。
在自然空冷条件下可容许2.5W~2.8W 的功率。