高中物理必修二《万有引力与航天》知识提纲
高中物理知识点万有引力与航天知识点总结
![高中物理知识点万有引力与航天知识点总结](https://img.taocdn.com/s3/m/7f2952cddbef5ef7ba0d4a7302768e9950e76e69.png)
《高中物理万有引力与航天知识点总结》一、引言从远古时代人类对星空的仰望与好奇,到现代航天技术的飞速发展,万有引力与航天始终是人类探索宇宙的重要基石。
在高中物理中,万有引力与航天这一章节不仅涵盖了丰富的物理知识,还能激发同学们对宇宙奥秘的探索热情。
通过对这部分知识点的学习,我们可以更好地理解天体运动的规律,感受宇宙的宏大与神秘。
二、万有引力定律1. 内容万有引力定律是由牛顿发现的,其内容为:自然界中任何两个物体都相互吸引,引力的大小与这两个物体的质量的乘积成正比,与它们之间距离的平方成反比。
用公式表示为:F = Gm₁m₂/r²,其中F 是两个物体之间的引力,m₁、m₂分别是两个物体的质量,r 是两个物体之间的距离,G 是万有引力常量。
2. 万有引力常量 GG 的值是由卡文迪许通过扭秤实验测定的,其数值为 G =6.67×10⁻¹¹ N·m²/kg²。
万有引力常量的测定在物理学中具有重要意义,它使万有引力定律能够进行定量计算。
3. 适用范围万有引力定律适用于质点间的相互作用。
当两个物体间的距离远大于物体本身的大小时,物体可视为质点。
对于质量分布均匀的球体,也可以将其视为质量集中于球心的质点,此时两个球体间的万有引力可以用万有引力定律计算。
三、天体运动1. 开普勒行星运动定律(1)开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
(2)开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
(3)开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。
用公式表示为:a³/T² = k,其中 a 是椭圆轨道的半长轴,T 是行星绕太阳公转的周期,k 是一个与行星无关的常量,只与中心天体(太阳)的质量有关。
必修2第6章万有引力与航天知识点总结
![必修2第6章万有引力与航天知识点总结](https://img.taocdn.com/s3/m/0d1bce87e53a580216fcfe08.png)
常用要有GMm/r^2=mr(2π/t)^2=(mv^2)/r=(mv2π)/T=mrw^2密度=3g/4πRG(R为该星球的半径)mg=GMm/r^2应用变式求天体质量(以地球质量计算为例①知月球绕地球运动的周期T,半径r由GMm/r^2=mr(2π/t)^2得,M=4(π^2)(r^3)/GT^2②知月球绕地球运动的线速度v和半径r由GMm/r^2=(mv^2)/r,得M=(rv^2)/G③知月球绕地球运动的限速的v和周期T由GMm/r^2=(mv2π)/T得M=(2πvr^2)/TG=(Tv^3)/2πG④知地球的半径r和地球表面的重力加速度g由黄金代换(mg=GMm/r^2)知M=gr^2/G做万有引力的题目也就是简单的天体力学记住公式是最基本的许多题都是套公式的非常简单要拿高分看下面下面说一下需要注意的一. 建立两种模型确定研究对象的物理模型是解题的首要环节,运用万有引力定律也不例外,无论是自然天体(如月球、地球、太阳),还是人造天体(如飞船、卫星、空间站),也不管它多么大,首先应把它们抽象为质点模型。
人造天体直接看作质点;自然天体看作球体,质量则抽象为在其球心。
这样,它们之间的运动抽象为一个质点绕另一质点的匀速圆周运动。
二. 抓住两条思路无论物体所受的重力,还是天体的运动,都跟万有引力存在着直接的因果关系,因此,万有引力定律在这些问题中的应用十分广泛。
但解决问题的基本思路实质上只有两条:思路1:利用万有引力等于重力的关系即思路2:利用万有引力等于向心力的关系即式中a是向心加速度,根据问题的条件可以用来表示。
其实最主要的公式还是一个也就是F=GMm/R^2=mg =mv^2/R=mw^2R=mR4π^2/T^2.[解题过程]万有引力1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:F=Gm1m2/r^2 (G=6.67×10^-11N*m^2/kg^2,方向在它们的连线上)3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}5.第一、二、三宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s6.地球同步卫星GMm/(r 地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r 地:地球的半径。
高中物理必修二万有引力与宇宙航行知识点总结归纳完整版
![高中物理必修二万有引力与宇宙航行知识点总结归纳完整版](https://img.taocdn.com/s3/m/dacb1b7ab207e87101f69e3143323968001cf47b.png)
千里之行,始于足下。
高中物理必修二万有引力与宇宙航行知识点总结归纳完整版引力与宇宙航行是高中物理必修2的重要内容之一,涉及到引力定律、行星运动、卫星运动、宇宙探索等知识点。
在学习这些内容时,我们需要掌握以下几个重点知识。
第一,引力定律。
牛顿引力定律是描述两个物体之间相互作用的力的大小与方向的关系。
它的数学表达式为F=G*m1*m2/r^2,其中F表示两物体之间的引力,m1和m2分别表示两物体的质量,r表示两物体之间的距离,G为万有引力常量。
第二,行星运动。
行星围绕太阳运动的规律可以利用开普勒定律来描述。
开普勒第一定律,也称作椭圆轨道定律,指出行星绕太阳的轨道是一个椭圆。
开普勒第二定律,也称作面积速度定律,指出行星在同一时间内扫过的面积相等。
开普勒第三定律,也称作调和定律,指出行星公转周期的平方与半长轴的立方成正比。
第三,卫星运动。
卫星围绕地球运动的规律也可以利用开普勒定律来描述。
卫星的轨道一般为近似圆形,其运动速度与高度成正比。
卫星的速度分为正轨道速度和逃逸速度两种,前者用于保持卫星绕地球做圆周运动,后者用于使卫星摆脱地球引力束缚。
第四,宇宙探索。
人类对宇宙的探索主要依靠航天器和火箭。
卫星是用于研究地球和宇宙的重要工具,包括地球观测卫星、太阳观测卫星、星际探测器等。
火箭是宇宙运载工具,可以将航天器送入太空。
火箭原理是利用燃料的燃烧产生大量的气体推动火箭飞行,同时利用牛顿第三定律。
第1页/共2页锲而不舍,金石可镂。
除了上述知识点,我们还需要掌握一些相关的数学计算方法。
例如,通过引力定律计算两物体之间的引力大小;通过开普勒定律计算行星公转周期等等。
在学习过程中,我们还需要注意一些常见的误区。
例如,引力是所有物体之间都存在的,而不仅仅是行星或卫星之间;行星绕太阳运动的轨道并非完全是椭圆,而是近似椭圆等。
通过对引力与宇宙航行的学习,我们可以更加深入地了解宇宙的构成和演化过程,为未来的宇宙探索提供基础知识和理论支撑。
(word完整版)高一物理必修二第六章《万有引力与航天》知识点总结,推荐文档.docx
![(word完整版)高一物理必修二第六章《万有引力与航天》知识点总结,推荐文档.docx](https://img.taocdn.com/s3/m/da162aea312b3169a551a470.png)
万有引力与航天知识点总结一、人类认识天体运动的历史1、 “地心说 ”的内容及代表人物: 托勒密 (欧多克斯、亚里士多德)2、 “日心说 ”的内容及代表人物: 哥白尼(布鲁诺被烧死、伽利略)二、开普勒行星运动定律的内容开普勒第二定律:v 近 v 远开普勒第三定律: K — 与中心天体质量有关,与环绕星体无关的物理量;必须是同一中心天体的星体a 地 3 = a 火 3 a 水 3 =......才可以列比例,太阳系:T 地 2 T 火 2=T 水 2三、万有引力定律1、内容及其推导:应用了开普勒第三定律、牛顿第二定律、牛顿第三定律。
3F m42mmR K①r②F = 4π2K FFF ③r 2T 2T 2r 2FM FMm FG Mmr 2r 2r 22、表达式: F Gm 1m 2r 23、内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1,m2 的乘积成正比,与它们之间的距离r 的二次方成反比。
4.引力常量: G=6.67 ×10-11N/m 2/kg 2,牛顿发现万有引力定律后的 100 多年里, 卡文迪许 在实验室里用扭秤实验测出。
5、适用条件:①适用于两个质点间的万有引力大小的计算。
②对于质量分布均匀的球体,公式中的r 就是它们球心之间的距离 。
③一个均匀球体与球外一个质点的万有引力也适用,其中 r 为球心到质点间的距离。
④两个物体间的距离远远大于物体本身的大小时, 公式也近似的适用, 其中 r 为两物体质心间的距离。
6、推导: GmM4 2R 3GMR 2m2 RT 242T1四、万有引力定律的两个重要推1、在匀球的空腔内任意位置,点受到地壳万有引力的合力零。
2、在匀球体内部距离球心r ,点受到的万有引力就等于半径r 的球体的引力。
五、黄金代若已知星球表面的重力加速度g 和星球半径 R,忽略自的影响,星球物体的万有引力等于物体的重力,有 G Mmmg 所以 MgR2 R2G其中 GM gR2是在有关算中常用到的一个替关系,被称黄金替。
物理万有引力与航天重点知识归纳
![物理万有引力与航天重点知识归纳](https://img.taocdn.com/s3/m/f0314780b52acfc788ebc972.png)
万有引力与航天重点知识归纳考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
(2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。
(3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k Ta =23。
其中k 值与太阳有关,与行星无关。
中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k TR =23,R ——轨道半径。
2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。
(2) 公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ⋅⨯=-。
(3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。
(4) 两个物体间的万有引力也遵循牛顿第三定律。
3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。
①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。
由以上分析可知,重力和重力加速度都随纬度的增加而增大。
(2) 物体受到的重力随地面高度的变化而变化。
在地面上,22R GM g mg R Mm G =⇒=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=⇒=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。
考点二、万有引力定律的应用——求天体质量及密度1.T 、r 法:232224)2(GTr M T mr r Mm G ππ=⇒=,再根据32333,34R GT r V M R Vπρρπ=⇒==,当r=R 时,23GT πρ=2.g 、R 法:GgR Mmg RMm G 22=⇒=,再根据GRg VM R V πρρπ43,343=⇒==3.v 、r 法:Grv M r v m r Mm G 222=⇒=4.v 、T 法:G T v M T mr r Mm G r v m r Mm G ππ2)2(,32222=⇒==考点三、星体表面及某高度处的重力加速度1、 星球表面处的重力加速度:在忽略星球自转时,万有引力近似等于重力,则22R GM g mg R Mm G =⇒=。
完整版人教版必修二第六章:万有引力与航天简明实用笔记知识要点
![完整版人教版必修二第六章:万有引力与航天简明实用笔记知识要点](https://img.taocdn.com/s3/m/e8d2e2d2647d27284a735156.png)
一、行星的运动——开普勒三定律 (察看到的,不是实验定律)(环绕,中心天体可视为不动)1、开普勒第必定律——轨道定律(圆周模型)全部的行星环绕太阳运行的轨道都是椭圆,太阳处在椭圆的一个焦点上。
2、开普勒第二定律——面积定律(v 1r 1 v 2 r 2 )对于任意一个行星而言, 太阳和行星的连线在相等的时间内扫过相等的面积。
依据开普勒第二定律可得,行星在远日点的速率较小,在近期点的速率较大。
3、开普勒第三定律——周期定律(a 3 k )T 2全部行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
( a 表示椭圆的半长轴, T 代表公转周期, 同一中心天体 k 是定值 r 3GM T2k42)明显 k 是一个与行星自己没关的量,只与中心体有关 。
开普勒第三定律对全部行星都合用。
对于同一颗行星的卫星,也切合这个运动规律。
二、万有引力定律1、定律的推导。
2、定律的内容:自然界中任何两个物体都互相吸引,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比。
3、定律的公式: F Gm 1m 2(× 10-112/kg 2. )r 24、万有引力定律公式的合用条件:①质点间 (对于相距很远因此可以看作质点的物体)思虑:在公式中,当 r →0 时, →∞能否有意义?F②对平均的球体 ,可以看作是质量会合于球心上的质点,这是一种等效的简化办理方法。
③不是质点也不可以视为质点的 不可以直接 用公式,但可采纳 微积分 的思想间接求!5、万有引力定律说明①引力的方向 ——两质点的连线上。
②为引力常量 G ——在数值上等于两个质量都是1kg 的物体相距 1m 时的互相作用力, 其数值与单位制有关。
在 SI 制中, G = 6.67 × 10-11N · m 2/kg 2,1687 年牛顿宣布规律,而 1798 年英卡文迪许完成实验之时测定。
卡被称为称出地球质量的人 . 精度不高,可取来运算③一致单位 ——在运用万有引力定律计算时,公式中各量的单位须一致使用国际单位制。
(完整版)万有引力与航天重点知识归纳
![(完整版)万有引力与航天重点知识归纳](https://img.taocdn.com/s3/m/21f28c81866fb84ae55c8d18.png)
万有引力与航天重点知识归纳考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
(2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。
(3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k Ta =23。
其中k 值与太阳有关,与行星无关。
中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k TR =23,R ——轨道半径。
2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。
(2) 公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ⋅⨯=-。
(3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。
(4) 两个物体间的万有引力也遵循牛顿第三定律。
3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。
①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。
由以上分析可知,重力和重力加速度都随纬度的增加而增大。
(2) 物体受到的重力随地面高度的变化而变化。
在地面上,22R GM g mg R Mm G =⇒=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=⇒=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。
考点二、万有引力定律的应用——求天体质量及密度1.T 、r 法:232224)2(GTr M T mr r Mm G ππ=⇒=,再根据32333,34R GT r V M R Vπρρπ=⇒==,当r=R 时,23GT πρ=2.g 、R 法:GgR Mmg RMm G 22=⇒=,再根据GRg VM R V πρρπ43,343=⇒==3.v 、r 法:Grv M r v m r Mm G 222=⇒=4.v 、T 法:G T v M T mr r Mm G r v m r Mm G ππ2)2(,32222=⇒==考点三、星体表面及某高度处的重力加速度1、 星球表面处的重力加速度:在忽略星球自转时,万有引力近似等于重力,则22R GM g mg R Mm G =⇒=。
必修二物理万有引力与航天知识点
![必修二物理万有引力与航天知识点](https://img.taocdn.com/s3/m/79a03e4317fc700abb68a98271fe910ef12dae8d.png)
必修二物理万有引力与航天知识点
1. 万有引力定律:任何两个物体之间存在着一个互相吸引的力,这个力与两个物体的质量成正比,与它们之间的距离的平方成反比。
2. 地球引力:地球对物体施加的引力称为地球引力,地球引力可以近似看作物体的重力,其大小由物体的质量和地球的质量以及它们之间的距离决定。
3. 行星运动:行星围绕太阳运动的轨道是椭圆形的,太阳位于椭圆的一个焦点上。
根据开普勒定律,行星与太阳之间的连线在相等的时间内扫过相等的面积。
4. 航天知识:航天是指人类在大气层外的空间进行探索和活动的行为。
航天技术包括火箭发射、卫星定位、航天飞行器的设计和制造等方面。
5. 地球自转和公转:地球自转是指地球绕自身中心轴旋转一周的运动,导致了地球的昼夜变化。
地球公转是指地球围绕太阳运动的轨道,完成一年的时间。
6. 卫星运行:人造卫星绕地球运行,可以用于通信、气象观测、科学研究等领域。
卫星的轨道有不同类型,如地球同步轨道、极地轨道等。
7. 火箭原理:火箭利用燃料的燃烧产生的庞大的排气冲击力,通过排气速度差产生反作用力,从而推动火箭向前运动。
8. 重力势能和动能:物体在重力场中具有重力势能,当物体从一个高处移动到另一个低处时,它的重力势能减小,同时动能增加。
9. 卫星通信:卫星通信利用卫星将信号从发送者传送到接收者,通过卫星的广覆盖范围和高速传输能力,实现长距离通信。
10. 空间站:空间站是人类在太空中建造的长期居住和科学研究设施。
它们提供生活、工作和研究的空间,同时也作为航天员进行航天任务的基地。
高中必修二物理万有引力与航天知识点
![高中必修二物理万有引力与航天知识点](https://img.taocdn.com/s3/m/b71efcdeb4daa58da1114a2b.png)
高中必修二物理万有引力与航天知识点对于高中物理知识来说,万有引力与现阶段的航天航空紧密结合,成为了现阶段高考的热点问题,下面小编给大家带来高中物理万有引力与航天知识点,希望对你有帮助。
高中物理万有引力与航天知识点(一)开普勒行星运动定律(1)、所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。
(2)、对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积。
(3)、所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
万有引力定律1.内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.2.公式:F=Gr2m1m2,其中G=6.67×10-11N·m2/kg2,称为引力常量.3.适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离.对于均匀的球体,r是两球心间的距离.高中物理万有引力与航天知识点(二)万有引力定律的应用1.解决天体(卫星)运动问题的基本思路(1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式:Gr2Mm=mrv2=mω2r=mT2π2r.(2)在地球表面或地面附近的物体所受的重力等于地球对物体的万有引力,即mg=GR2Mm,gR2=GM.2.天体质量和密度的估算通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r,由万有引力等于向心力,即Gr2Mm=mT24π2r,得出天体质量M=GT24π2r3.(1)若已知天体的半径R,则天体的密度ρ=VM=πR34=GT2R33πr3(2)若天体的卫星环绕天体表面运动,其轨道半径r等于天体半径R,则天体密度ρ=GT23π可见,只要测出卫星环绕天体表面运动的周期,就可求得天体的密度.3.人造卫星(1)研?ahref="xxxxyangsheng/kesou/"target="_blank">咳嗽煳佬堑幕痉椒?/p>看成匀速圆周运动,其所需的向心力由万有引力提供.Gr2Mm=mrv2=mrω2=mrT24π2=ma向.(2)卫星的线速度、角速度、周期与半径的关系①由Gr2Mm=mrv2得v=rGM,故r越大,v越小.②由Gr2Mm=mrω2得ω=r3GM,故r越大,ω越小.③由Gr2Mm=mrT24π2得T=GM4π2r3,故r越大,T越大(3)人造卫星的超重与失重①人造卫星在发射升空时,有一段加速运动;在返回地面时,有一段减速运动,这两个过程加速度方向均向上,因而都是超重状态.②人造卫星在沿圆轨道运动时,由于万有引力提供向心力,所以处于完全失重状态.在这种情况下凡是与重力有关的力学现象都会停止发生.(4)三种宇宙速度①第一宇宙速度(环绕速度)v1=7.9km/s.这是卫星绕地球做圆周运动的最大速度,也是卫星的最小发射速度.若7.9km/s≤v<11.2km/s,物体绕地球运行.②第二宇宙速度(脱离速度)v2=11.2km/s.这是物体挣脱地球引力束缚的最小发射速度.若11.2km/s≤v<16.7km/s,物体绕太阳运行.③第三宇宙速度(逃逸速度)v3=16.7km/s这是物体挣脱太阳引力束缚的最小发射速度.若v≥16.7km/s,物体将脱离太阳系在宇宙空间运行.题型:1.求星球表面的重力加速度在星球表面处万有引力等于或近似等于重力,则:GR2Mm=mg,所以g=R2GM(R为星球半径,M为星球质量).由此推得两个不同天体表面重力加速度的关系为:g2g1=R12R22·M2M1.2.求某高度处的重力加速度若设离星球表面高h处的重力加速度为gh,则:G(R+h)2Mm=mgh,所以gh=(R+h)2GM,可见随高度的增加重力加速度逐渐减小.ggh=(R+h)2R2.3.近地卫星与同步卫星(1)近地卫星其轨道半径r近似地等于地球半径R,其运动速度v=RGM==7.9km/s,是所有卫星的最大绕行速度;运行周期T=85min,是所有卫星的最小周期;向心加速度a=g=9.8m/s2是所有卫星的最大加速度.(2)地球同步卫星的五个“一定”①周期一定T=24h.②距离地球表面的高度(h)一定③线速度(v)一定④角速度(ω)一定⑤向心加速度(a)一定高中物理必修二知识点曲线运动1.曲线运动的特征(1)曲线运动的轨迹是曲线。
(完整版)高中物理必修二第六章万有引力与航天知识点归纳与重点题型总结.docx
![(完整版)高中物理必修二第六章万有引力与航天知识点归纳与重点题型总结.docx](https://img.taocdn.com/s3/m/13a65942941ea76e59fa041f.png)
辽宁省示范性高中瓦房店市第八高级中学高一物理导学案主备人:伦论审核人:姜慎明蔡艳科WFD8G1—WLBX2—FX2高中物理必修二第六章万有引力与航天知识点归纳与重点题型总结一、行星的运动1、开普勒行星运动三大定律①第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
②第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
推论:近日点速度比较快,远日点速度比较慢。
③第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。
即: a3k其中 k 是只与中心天体的质量有关,与做圆周运动的天体的质量无关。
T 2推广:对围绕同一中心天体运动的行星或卫星,上式均成立。
K 取决于中心天体的质量例. 有两个人造地球卫星,它们绕地球运转的轨道半径之比是1:2,则它们绕地球运转的周期之比为。
二、万有引力定律1、万有引力定律的建立G Mm①太阳与行星间引力公式F②月—地检验r 2③卡文迪许的扭秤实验——测定引力常量 G6.67 10 11 N m2 / kg2 2、万有引力定律G①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量m1和 m2的乘积成正比,与它们之间的距离r 的二次方成反比。
即:m1m2F G②适用条件r 2(Ⅰ)可看成质点的两物体间,r为两个物体质心间的距离。
(Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。
③运用(1)万有引力与重力的关系:重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。
忽略地球自转可得:mg G Mm2R例.设地球的质量为 M,赤道半径 R,自转周期 T,则地球赤道上质量为 m的物体所受重力的大小为?(式中 G为万有引力恒量)( 2)计算重力加速度mg G Mm 地球表面附近( h《 R)方法:万有引力≈重力MmR2地球上空距离地心 r=R+h 处方法:mg'G(R h) 2在质量为 M’,半径为 R’的任意天体表面的重力加速度g''''M'' m方法:Gmg''2R(3)计算天体的质量和密度利用自身表面的重力加速度: GMmmgR2利用环绕天体的公转:Mm v 2m2r42等等G2m m 2 rr r T(注:结合M4R3 得到中心天体的密度)3例. 宇航员站在一星球表面上的某高处,以初速度V0沿水平方向抛出一个小球,经过时间t ,球落到星球表面,小球落地时的速度大小为 V. 已知该星球的半径为 R,引力常量为G ,求该星球的质量 M。
人教版物理必修二第六章-万有引力与航天知识总结
![人教版物理必修二第六章-万有引力与航天知识总结](https://img.taocdn.com/s3/m/06acbc7902d276a201292e9d.png)
GgR M R MmG mg 22==第六章 万有引力与航天(1)开普勒行星运动定律适用于一切行星(卫星)绕恒星(行星)运动的情况; (2)不同行星绕太阳运动的椭圆轨道是不同的; (3;(4k 值只与中心天体有关。
引力和重力的关系1、在两极或不考虑地球自转:重力和万有引力相等2R Mm Gmg =2、赤道位置向F mg R MmG+=2 3、重力加速度与高度的关系万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比。
2.公式:122m mF G r=(G =6.67×10-11 N·m 2/kg 2)。
G 物理意义:引力常量在数值上等于两个质量都是1 kg 的质点相距1 m 时的相互吸引力。
3.适用范围:(1)质点间引力的计算;(2)质量分布均匀的球体,r 是球体球心间的距离;(3)一均匀球体与球外一个质点间的万有引力的计算,r 是球心到质点的距离; (4)两个物体间的距离远大于物体本身的大小时,r 为两物体质心间的距离。
计算天体的质量和密度1、忽略天体自转,天体表面重力和万有引力相等:2、测出卫星绕天体做匀速圆周运动的半径r 和周期T 。
2RMmG mg =2)(h R Mm Gg m +='(1)由2224πMm r G m r T=得天体的质量2324πr M GT =。
(2)若已知天体的半径R ,则天体的密度32333π=4π3M M r V GT R R ρ==。
若卫星绕中心天体表面运行,轨道半径r =R ,则有23πGT ρ=,224πRM GT =。
人造地球卫星一、卫星的动力学规律由万有引力提供向心力,222n 224πMm v r G ma m m r m r r Tω====。
二、卫星的各物理量随轨道半径变化的规律1.线速度v :由22Mm v G m r r =得v =r 越大,v 越小;r 越小,v越大。
高中物理人教版必修2第五章万有引力与航天知识点总结
![高中物理人教版必修2第五章万有引力与航天知识点总结](https://img.taocdn.com/s3/m/52117037ed630b1c58eeb510.png)
第五章 万有引力与航天知识点总结1、开普勒行星运动三大定律① 第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
② 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
推论:近日点速度比较快,远日点速度比较慢。
③ 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。
理解:(1)k 是与太阳质量有关而与行星无关的常量.(2)开普勒第三定律不仅适用于行星,也适用于卫星,只不过此时 a 3 /T 2=k ′,比值k ′是由行星的质量所决定的另一常量,与卫星无关. 2、万有引力定律(1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.(2)公式:F =G 221rmm ,其中2211/1067.6kg m N G ⋅⨯=-,叫做引力常量。
(3)适用条件:此公式适用于质点间的相互作用.当两物体间的距离远远大于物体本身的大小时,物体可视为质点.均匀的球体可视为质点,r 是两球心间的距离.一个均匀球体与球外一个质点间的万有引力也适用,其中r 为球心到质点间的距离. 3、万有引力定律的应用基本思路: 一是把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供;二是在地球表面或地面附近的物体所受的重力等于地球对物体的引力.(1)把行星(或卫星)绕中心天体看做匀速圆周运动,万有引力充当向心力(=n F F 引)G Mm r 2=m v 2r =m ω2r =m 4π2T2r =ma 向 r 增大 2Mm G r=22222n n v m v r mr mr T T GMma a rωωπ⇒=⇒=⎛⎫⇒=⎪⎝⎭⇒=32a k T =V 减小ω减小T 增大a n 减小(2)天体对其表面的物体的万有引力近似等于重力,即2MmGmg R=或2gR GM =(R 、g 分别是天体的半径、表面重力加速度),公式2gR GM =应用广泛,称“黄金代换”。
高中物理必修二第六章《万有引力与航天》知识点
![高中物理必修二第六章《万有引力与航天》知识点](https://img.taocdn.com/s3/m/3e34af60a417866fb84a8e2a.png)
高中物理必修二第六章万有引力与航天一、行星的运动1、 开普勒行星运动三大定律①第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
②第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
推论:近日点速度比较快,远日点速度比较慢。
③第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。
即: 其中k 是只与中心天体的质量有关,与做圆周运动的天体的质量无关。
推广:对围绕同一中心天体运动的行星或卫星,上式均成立。
K 取决于中心天体的质量例.有两个人造地球卫星,它们绕地球运转的轨道半径之比是1:2,则它们绕地球运转的周期之比为 。
二、万有引力定律1、万有引力定律的建立 ①太阳与行星间引力公式 ②月—地检验③卡文迪许的扭秤实验——测定引力常量G 2、万有引力定律①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们之间的距离r 的二次方成反比。
即: ②适用条件(Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。
(Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。
③运用(1)万有引力与重力的关系:重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。
忽略地球自转可得: 例.设地球的质量为M ,赤道半径R ,自转周期T ,则地球赤道上质量为m 的物体所受重力的大小为?(式中G 为万有引力恒量)(2)计算重力加速度地球表面附近(h 《R ) 方法:万有引力≈重力 地球上空距离地心r=R+h 处 方法: 在质量为M ’,半径为R ’的任意天体表面的重力加速度''g 方法:(3)计算天体的质量和密度 利用自身表面的重力加速度: 利用环绕天体的公转: 等等 (注:结合 得到中心天体的密度)32a k T =2Mm F G r =11226.6710/G N m kg -=⨯⋅122m m F G r =2R Mm G mg =2')(h R Mm G mg +=2''''''R m M G mg =mg R Mm G =2r T m r m r v m r Mm G 222224πω===334R M πρ⋅=2R Mm G mg =例.宇航员站在一星球表面上的某高处,以初速度V 0沿水平方向抛出一个小球,经过时间t ,球落到星球表面,小球落地时的速度大小为V. 已知该星球的半径为R ,引力常量为G ,求该星球的质量M 。
高二物理复习提纲第四单元-万有引力与航天
![高二物理复习提纲第四单元-万有引力与航天](https://img.taocdn.com/s3/m/fb919df5ec3a87c24128c408.png)
第四单元 万有引力与航天一、知识脉络二、知识点说明1、万有引力定律(1) 内容(2)万有引力定律公式: 122m m F Gr=,11226.6710/G N m kg -=⨯⋅ (3)万有引力定律适用于一切物体,但用公式计算时,注意有一定的适用条件。
2、万有引力定律在天文学上的应用。
(1)基本方法:①把天体的运动看成匀速圆周运动,其所需向心力由万有引力提供:222Mm v G m m r r rω==②在忽略天体自转影响时,天体表面的重力加速度:2Mg G R =,R 为天体半径。
(2)天体质量的估算测出环绕天体作匀速圆周运动的半径r ,周期为T ,由2224Mm G m r r T π=得被环绕天体的质量为2324r M GTπ=, 3、三种宇宙速度①第一宇宙速度:v 1=7.9km/s ,人造卫星在地面附近环绕地球作匀速圆周运动的速度。
②第二宇宙速度:v 2=11.2km/s ,使物体挣脱地球束缚,在地面附近的最小发射速度。
③第三宇宙速度:v 3=16.7km/s ,使物体挣脱太阳引力束缚,在地面附近的最小发射速度。
三.考点与练习考点1 通过有关事实了解万有引力定律的发现过程 1.下列说法正确的是A .地球是宇宙的中心,太阳、月亮及其它行星都绕地球运动B .太阳是静止不动的,地球和其它行星都绕太阳运动C .太阳从东边升起,在西边落下,所以太阳是绕地球运动的一颗行星周期定律开普勒行星运动定律轨道定律面积定律 发现万有引力定律 表述的测定天体质量的计算发现未知天体 人造卫星、宇宙速度应用万有引力定律D .“日心说”和“地心说”是对立统一的,都能正确地描述天体运行规律 2.公式r 3/ T 2=k ,下列说法正确的是A .公式只适用于围绕太阳运行的行星B .不同星球的行星或卫星,其常量k 是相同的C .围绕地球运行的不同卫星,其常量k 是相同的D .行星绕太阳的k 值与月亮绕地球的k 值是相同的 考点2 知道万有引力定律 3.下列说法中正确的有A .行星与太阳之间的一对力是平衡力B .行星与太阳之间的一对力,其力的性质是不相同的C .如果太阳的质量减小一些则,则行星与太阳之间的这对力就不平衡了D .行星既不能飞出太阳又不会被吸引到太阳上,是因为行星受的太阳的引力就是行星绕太阳运动的向心力4.关于牛顿得到的太阳与行星间的引力关系式,下列说法中正确的是A .可以直接计算出太阳对地球的引力大小B .是通过实验直接验证得出来的C .这个规律也适用于地球与月球D .这个规律不适用于人造卫星与地球 5.由太阳与行星间的引力关系式2rMm G FA .r 是行星与太阳中心间的距离B .r 是行星表面与太阳表面的距离C .比例系数G 是一个无单位的物理量D .行星受到太阳的引力的方向就是行星太阳运行的切线方向 6.如果认为行星围绕太阳做匀速圆周运动,下面说法正确的是 A .太阳对行星的引力等于行星做匀速圆周运动的向心力B .太阳对行星的引力大小与行星的质量成正比,与行星和太阳间的距离成反比C .太阳对行星的引力可由实验得出D .行星同时受到太阳的引力和向心力两个的力作用7.一群质量不同的小行星在同一轨道上绕太阳旋转,则这些小行星的 A .加速度和向心力都相同 B .运行周期和运行速率都相同 C .加速度和向心力都不同 D .运行周期和运行速率都不同 8.关于万有引力常量G ,以下说法正确的是A .在国际单位制中,G 的单位是N•m 2/kgB .在国际单位制中,G 的数值等于两个质量各1kg 的物体,相距1m 时的相互吸引力C .在不同星球上,G 的数值不一样D .在不同的单位制中,G 的数值都一样 9.要使两物体间万有引力减小到原来的1/4,可采用的方法是A .便两物体的质量各减少一半,距离保持不变B .两物体间距离增至原来的2倍,质量不变C .使其中一个物体质量减为原来的1/4,距离不变D .使两物体质量及它们之间的距离都减为原来的1/410.如图所示,r而球的质量分布均匀,大小分别为m 1与m 2,则两球间万有引 力的大小为A .221r m m GB .2121r m m GC .22121)(r r m m G +D .22121)(r r r m m G++ 11.一个物体在地球表面所受的重力为G ,则在距地面高度为地球半径的2倍时,所受引力为A .G /2B .G /3C .G /4D .G /9 考点3 万有引力定律的应用 12.火星的半径是地球半径的一半,火星的质量约是地球质量的1/9,那么地球表面50 kg 的物体受到地球的吸引力约是火星表面同质量的物体受到火星吸引力的 A .2.25倍 B .4/9倍 C .4倍 D .8倍13.已知引力常量G 、地球绕太阳做匀速圆周运动的轨道半径为R ,地球绕太阳运行的周期T ,仅利用这三个数据,可以估算出的物理量A .地球的质量B .太阳的质量C .太阳的半径D .地球绕太阳运行速度的大小14.我国预计在2007年10月26日发射一颗绕月运行的探月卫星“嫦娥1号”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 《万有引力与航天》知识提纲一、知识网络托勒密:地心说人类对行 哥白尼:日心说星运动规 开普勒 第一定律(轨道定律)行星 第二定律(面积定律)律的认识 第三定律(周期定律)运动定律万有引力定律的发现万有引力定律的内容 万有引力定律 F =G221rm m 引力常数的测定万有引力定律 称量地球质量M =G gR 2万有引力 的理论成就 M =2324GTr π与航天 计算天体质量 r =R,M=2324GT R πM=GgR 2人造地球卫星 M=2324GT r π宇宙航行 G 2rMm= m r v 2mr 2ωma第一宇宙速度7.9km/s 三个宇宙速度 第二宇宙速度11.2km/s 地三宇宙速度16.7km/s二、重点内容讲解 1、计算重力加速度(1)在地球表面附近的重力加速度,在忽略地球自转的情况下,可用万有引力定律来计算。
F 引=G 2R M =6.67*1110-*2324)10*6730(10*98.5=9.8(m/2s )=9.8N/kg 即在地球表面附近,物体的重力加速度g =9.8m/2s 。
这一结果表明,在重力作用下,物体加速度大小与物体质量无关。
(2)即算地球上空距地面h 处的重力加速度g ’。
有万有引力定律可得:g ’=2)(h R GM +又g =2R GM ,∴g g '=22)(h R R +,∴g ’=2)(h R R +g (3)计算任意天体表面的重力加速度g ’。
有万有引力定律得: g ’=2''R GM (M ’为星球质量,R ’卫星球的半径),又g =2R GM ,∴g g '=2)'('R R M M •。
注意:在地球表面物体受到地球施与的万有引力与其重力是合力与分力的关系,万有引力的另一个分量给物体提供其与地球一起自转所需要的向心力。
由于这个向心力很少,我们可以忽略,所以在地球表面的物体F 引=G 2、天体运行的基本公式在宇宙空间,行星和卫星运行所需的向心力,均来自于中心天体的万有引力。
因此万有引力即为行星或卫星作圆周运动的向心力。
因此可的以下几个基本公式。
(1)向心力的六个基本公式,设中心天体的质量为M ,行星(或卫星)的圆轨道半径为r ,则向心力可以表示为:F 引=F 向,n F =G 2rMm =ma =m r v 2=mr 2ω=mr 2)2(T π=mr 2)2(f π=m ωv 。
(2)五个比例关系:(r 为行星的轨道半径) 向心力:n F =G2r Mm ,F ∝21r ; 向心加速度:a=G 2r M , a ∝21r;① G 2rMm=m r v 2; 得v =r GM ,v ∝r1;②G2r Mm =m r 2ω ;得ω=3r GM ,ω∝31r; ③G 2r Mm =mr 2)2(T π;得T =2πGMr 3,T ∝3r ; (3)v 与ω的关系。
在r 一定时,v=r ω,v ∝ω;在r 变化时,如卫星绕一螺旋轨道远离或靠近中心天体时,r 不断变化,v 、ω也随之变化。
根据,v ∝r1和ω∝31r,这时v 与ω为非线性关系,而不是正比关系。
3、引力常量的意义根据万有引力定律和牛顿第二定律可得:G 2r Mm =mr 2)2(T π∴k GMT r ==2234π.这实际上是开普勒第三定律。
它表明k Tr =23是一个与行星无关的物理量,它仅仅取决于中心天体的质量。
在实际做题时,它具有重要的物理意义和广泛的应用。
它同样适用于人造卫星的运动,在处理人造卫星问题时,只要围绕同一星球运转的卫星,均可使用该公式。
4、估算中心天体的质量和密度(1)中心天体的质量,根据万有引力定律和向心力表达式可得:G 2rMm =mr 2)2(T π, ∴M =2324GT r π (2)中心天体的密度方法一:中心天体的密度表达式ρ=V M ,V =343R π(R 为中心天体的半径),根据前面M 的表达式可得:ρ=3233RGT r π。
当r =R 即行星或卫星沿中心天体表面运行时,ρ=23GT π。
此时表面只要用一个计时工具,测出行星或卫星绕中心天体表面附近运行一周的时间,周期T ,就可简捷的估算出中心天体的平均密度。
方法二:由g=2RGM ,M=G gR 2进行估算,ρ=V M ,∴ρ=R G gπ435、稳定运行与变轨运行(1)稳定运行:某天体m 围绕某中心天体M 稳定做圆周运动时,始终满足F 引=F 向,即:22GMm mv r r= 所以v =r GM ,故r 越大时,v 越小;r 越小时,v 越大;(2)变轨运行:某天体m 最初沿某轨道1稳定做圆周运动满足22GMm mv r r=,由于某原因其v 变大,此时其所需要的向心力2n mv F r =变大,万有引力2GMmF r=引不足以提供向心力时,m 就做离心运动,运动到较高轨道2做稳定的圆周运动,此时v 比原轨道1处的v 小;反之,若在轨道1处v 突然变小时,将会到较低轨道3稳定运行,此时v 比原轨道1要大;三、常考模型规律示例总结 1. 对万有引力定律的理解(1)万有引力定律:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的平方成反比,两物体间引力的方向沿着二者的连线。
(2)公式表示:F=221rm Gm 。
(3)引力常量G :①适用于任何两物体。
②意义:它在数值上等于两个质量都是1kg 的物体(可看成质点)相距1m 时的相互作用力。
③G 的通常取值为G=6。
67×10-11Nm 2/kg 2。
是英国物理学家卡文迪许用实验测得。
(4)适用条件:①万有引力定律只适用于质点间引力大小的计算。
当两物体间的距离远大于每个物体的尺寸时,物体可看成质点,直接使用万有引力定律计算。
②当两物体是质量均匀分布的球体时,它们间的引力也可以直接用公式计算,但式中的r 是指两球心间的距离。
③当所研究物体不能看成质点时,可以把物体假想分割成无数个质点,求出两个物体上每个质点与另一物体上所有质点的万有引力,然后求合力。
(此方法仅给学生提供一种思路) (5)万有引力具有以下三个特性:①普遍性:万有引力是普遍存在于宇宙中的任何有质量的物体(大到天体小到微观粒子)间的相互吸引力,它是自然界的物体间的基本相互作用之一。
②相互性:两个物体相互作用的引力是一对作用力和反作用力,符合牛顿第三定律。
③宏观性:通常情况下,万有引力非常小,只在质量巨大的天体间或天体与物体间它的存在才有宏观的物理意义,在微观世界中,粒子的质量都非常小,粒子间的万有引力可以忽略不计。
〖例1〗设地球的质量为M ,地球的半径为R ,物体的质量为m ,关于物体与地球间的万有引力的说法,正确的是:A 、地球对物体的引力大于物体对地球的引力。
A 、 物体距地面的高度为h 时,物体与地球间的万有引力为F=2h GMm 。
B 、 物体放在地心处,因r=0,所受引力无穷大。
D 、物体离地面的高度为R 时,则引力为F=24RGMm〖答案〗D 〖总结〗(1)矫揉造作配地球之间的吸引是相互的,由牛顿第三定律,物体对地球与地球对物体的引力大小相等。
(2)F=221rm Gm 。
中的r 是两相互作用的物体质心间的距离,不能误认为是两物体表面间的距离。
(3)F=221r m Gm 适用于两个质点间的相互作用,如果把物体放在地心处,显然地球已不能看为质点,故选项C 的推理是错误的。
〖变式训练1〗对于万有引力定律的数学表达式F=221r m Gm ,下列说法正确的是: A 、公式中G 为引力常数,是人为规定的。
B 、r 趋近于零时,万有引力趋于无穷大。
C 、m 1、m 2之间的引力总是大小相等,与m 1、m 2的质量是否相等无关。
D 、m 1、m 2之间的万有引力总是大小相等,方向相反,是一对平衡力。
〖答案〗C2. 计算中心天体的质量解决天体运动问题,通常把一个天体绕另一个天体的运动看作匀速圆周运动,处在圆心的天体称作中心天体,绕中心天体运动的天体称作运动天体,运动天体做匀速圆周运动所需的向心力由中心天体对运动天体的万有引力来提供。
ma T mr mr r mv rGMm ====2222)2(πω式中M 为中心天体的质量,Sm 为运动天体的质量,a 为运动天体的向心加速度,ω为运动天体的角速度,T 为运动天体的周期,r 为运动天体的轨道半径.(1)天体质量的估算通过测量天体或卫星运行的周期T 及轨道半径r,把天体或卫星的运动看作匀速圆周运动.根据万有引力提供向心力,有22)2(T mr rGMm π=,得2324GT r M π= 注意:用万有引力定律计算求得的质量M 是位于圆心的天体质量(一般是质量相对较大的天体),而不是绕它做圆周运动的行星或卫星的m,二者不能混淆.用上述方法求得了天体的质量M 后,如果知道天体的半径R,利用天体的体积334R V π=,进而还可求得天体的密度.3233R GT r V M πρ==如果卫星在天体表面运行,则r=R,则上式可简化为23GTπρ=规律总结:① 掌握测天体质量的原理,行星(或卫星)绕天体做匀速圆周运动的向心力是由万有引力来提供的.② 物体在天体表面受到的重力也等于万有引力.③ 注意挖掘题中的隐含条件:飞船靠近星球表面运行,运行半径等于星球半径. (2)行星运行的速度、周期随轨道半径的变化规律研究行星(或卫星)运动的一般方法为:把行星(或卫星)运动当做匀速圆周运动,向心力来源于万有引力,即:2222)2(T mr mr r mv rGMm πω=== 根据问题的实际情况选用恰当的公式进行计算,必要时还须考虑物体在天体表面所受的万有引力等于重力,即mg R GMm=2(3)利用万有引力定律发现海王星和冥王星〖例2〗已知月球绕地球运动周期T 和轨道半径r ,地球半径为R 求(1)地球的质量?(2)地球的平均密度? 〖思路分析〗(1) 设月球质量为m ,月球绕地球做匀速圆周运动,则:22)2(T mr rGMm π= ,2324GT r M π= (2)地球平均密度为3233334R GT r R M ππρ==答案:2324GTr M π= ; 3233R GT r πρ= 总结:①已知运动天体周期T 和轨道半径r ,利用万有引力定律求中心天体的质量。
②求中心天体的密度时,求体积应用中心天体的半径R 来计算。
〖变式训练2〗人类发射的空间探测器进入某行星的引力范围后,绕该行星做匀速圆周运动,已知该行星的半径为R ,探测器运行轨道在其表面上空高为h 处,运行周期为T 。
(1)该行星的质量和平均密度?(2)探测器靠近行星表面飞行时,测得运行周期为T 1,则行星平均密度为多少?答案:(1)232)(4GT h R M +=π;323)(3R GT h R +=πρ (2)213GT πρ= 3. 地球的同步卫星(通讯卫星)同步卫星:相对地球静止,跟地球自转同步的卫星叫做同步卫星,周期T=24h ,同步卫星又叫做通讯卫星。