离散数学 3集合论基础
离散数学(集合论)课后总结
第三章集合论基础1、设A={a,{a},{a,b},{{a,b},c}}判断下面命题的真值。
⑴{a}∈A T ⑵⌝({a}⊆ A) F⑶c∈A F ⑷{a}⊆{{a,b},c} F⑸{{a}}⊆A T ⑹{a,b}∈{{a,b},c} T⑺{{a,b}}⊆A T ⑻{a,b}⊆{{a,b},c} F⑼{c}⊆{{a,b},c} T ⑽({c}⊆A)→(a∈Φ) T2、证明空集是唯一的。
(性质1:对于任何集合A,都有Φ⊆A。
)证明:假设有两个空集Φ1 、Φ2 ,则因为Φ1是空集,则由性质1得Φ1 ⊆Φ2 。
因为Φ2是空集,则由性质1得Φ2 ⊆Φ1 。
所以Φ1=Φ2 。
3、设A={Φ},B=P(P(A)).问:(这道题要求知道幂集合的概念)a)是否Φ∈B?是否Φ⊆B?b)是否{Φ}∈B? 是否{Φ}⊆B?c)是否{{Φ}}∈B? 是否{{Φ}}⊆B?解:设A={Φ},B=P(P(A)) P(A)= {Φ,{Φ}}在求P(P(A))时,一些同学对集合{Φ,{Φ}}难理解,实际上你就将{Φ,{Φ}}中的元素分别看成Φ=a ,{Φ}=b, 于是{Φ,{Φ}}={a,b}B=P(P(A))=P({a,b}) ={B0, B1 , B2 , B3 }={B00, B01,B10 ,B11}={Φ, {b}, {a}, {a,b}}然后再将a,b代回即可B=P(P(A))=P({Φ,{Φ}})={Φ,{Φ} ,{{Φ}}, {Φ,{Φ}}}以后熟悉后就可以直接写出。
a) Φ∈B Φ⊆Bb) {Φ}∈B {Φ} ⊆ Bc) {{Φ}}∈B {{Φ}}⊆Ba)、b)、c)中命题均为真。
4、证明A⊆B ⇔ A∩B=A成立。
证明:A∩B=A ⇔∀x(x∈A∩B ↔x∈A)⇔∀x((x∈A∩B → x∈A)∧(x∈A→ x∈A∩B))⇔∀x((x∉A∩B∨x∈A)∧(x∉A∨x∈A∩B))⇔∀x((⌝(x∈A∧x∈B)∨x∈A)∧(x∉A∨(x∈A∧x∈B))⇔∀x(((x∉A∨x∉B)∨x∈A)∧(x∉A∨(x∈A∧x∈B)))⇔∀x(T∧(T∧( x∉A∨x∈B)))⇔∀x( x∉A∨x∈B)⇔∀x(x∈A→x∈B)⇔ A⊆B5、(A-B)-C=(A-C)-(B-C)证明:任取x∈(A-C)-(B-C)⇔x∈(A-C)∧x∉(B-C)⇔(x∈A∧x∉C)∧⌝(x∈B∧x∉C)⇔(x∈A∧x∉C)∧(x∉B∨x∈C)⇔(x∈A∧x∉C∧x∉B)∨(x∈A∧x∉C∧x∈C)⇔x∈A∧x∉C∧x∉B⇔x∈A∧x∉B∧x∉C⇔(x∈A∧x∉B)∧x∉C⇔x∈A-B∧x∉C⇔x∈(A-B)-C所以(A-B)-C=(A-C)-(B-C)6、A-(B∪C)=(A-B)∩(A-C)证明:任取x∈A-(B∪C)⇔x∈A∧x∉(B∪C)⇔x∈A∧⌝(x∈B∨x∈C)⇔x∈A∧(x∉B∧x∉C)⇔(x∈A∧x∉B)∧(x∈A∧x∉C )⇔x∈A-B∧x∈A-C⇔x∈(A-B)∩(A-C)所以A-(B∪C)=(A-B)∩(A-C))7、~(A∩B)=~A∪~B ~(A∪B)=~A∩~B 这两个公式称之为底-摩根定律。
离散数学结构练习题
离散数学结构练习题1. 集合论基础- 定义集合A={1,2,3}和集合B={2,3,4},求A∩B(A和B的交集)。
- 给定集合C={x|x是小于10的正整数},求C的子集数量。
- 证明如果A⊆B且B⊆C,则A⊆C。
2. 逻辑运算- 写出命题p: "x是偶数"和命题q: "x能被4整除"的逻辑表达式,并求p∧q(p和q的合取)。
- 给定命题r: "今天是星期一"和命题s: "明天是星期二",判断r∨s(r或s的析取)的真值。
- 证明德摩根定律:(A∪B)' = A'∩B' 和(A∩B)' = A'∪B'。
3. 函数与关系- 定义函数f: N→N,f(x) = 2x,求f(3)的值。
- 给定关系R={(1,2),(2,3),(3,4)}在集合{1,2,3,4}上,判断R是否为等价关系,并说明理由。
- 证明如果f是从集合A到集合B的单射函数,那么对于任意的a1, a2∈A,若a1≠a2,则f(a1)≠f(a2)。
4. 组合数学- 计算5个不同的球放入3个不同的盒子中,每个盒子至少有一个球的不同放法数量。
- 给定n个不同的元素,求从这n个元素中选取k个元素的所有可能组合的总数。
- 证明二项式定理:(a+b)^n = ∑(从k=0到n) C(n,k) * a^(n-k) * b^k。
5. 图论基础- 画出一个有5个顶点的无向图,使得该图是连通的且没有环。
- 给定一个有向图,找出所有可能的简单路径。
- 证明欧拉路径和欧拉回路的存在条件。
6. 布尔代数- 给定布尔表达式A∧(B∨C),使用布尔代数的规则将其简化。
- 构造一个布尔函数f(A,B,C)=A⊕B⊕C的真值表。
- 证明布尔代数中的分配律:A∧(B∨C) = (A∧B)∨(A∧C)。
7. 归纳与递归- 使用数学归纳法证明对于所有自然数n,1+2+3+...+n =n(n+1)/2成立。
离散数学第三章 集合
别地,以集合为元素的集合称为集合族或集合类,
如A={{1,2,3}, { 8,9,6}}。
14
2018/11/12
2. 子集、全集与空集 子集是描述一个集合与另一个集合之间的 关系,其定义如下。
定义3.1.1 设A和B是任意两个集合,如果集合 A 的每个元素,都是集合 B 中的一个元素,则
称A是B的子集,或称A被包含于B中,或者说
正则公理的一个自然推论是: 对任何集合S, {S} S (否则有…SSS),
从而规定了集合{S}与 S的不同层次性。
6
2018/11/12
集合与其成员是两个截然不同的概念, 集合 的元素可以是任何具体或抽象事物, 包括别的集
合, 但不能是本集合自身。
因为一个集合是由它的成员构成的, 是先有
10ቤተ መጻሕፍቲ ባይዱ
2018/11/12
表示一个特定集合,基本上有两种方法:
一是枚举法,在可能时列出它的元素,元素之 间用逗号分开,再用花括号括起。如 A={a,e,i,o,u}
表明集合A是由字母a, e, I ,o和u为元素构成的。
11
2018/11/12
二是谓词法,用谓词公式来确定集合。即个体 域中能使谓词公式为真的那些元素,确定了一 个集合,因为这些元素都具有某种特殊性质。 若P(x)含有一个自由变元的谓词公式,则 {x|P(x)}定义了集合S,并可表为 S={x|P(x)}
17
2018/11/12
定义3.1.3 如果一个集合包含了所要讨论的每 一个集合,则称该集合为全集,记为U或E。 它可形式地表为 U={x|P(x)∨┐P(x)}
其中P(x)为任何谓词公式。
18
离散数学形考任务3集合论部分概念及性质
离散数学形考任务3集合论部分概念及性质本文档将介绍离散数学形考任务3中集合论部分的概念及性质。
以下是相关内容:集合的定义集合是由一些确定的、互不相同的元素组成的整体。
集合中的元素可以是任何事物,如数字、字母、符号等。
一般使用大写字母表示集合,元素用小写字母表示,并用大括号{}将元素括起来。
集合的性质1. 互异性:集合中的元素是互不相同的,即集合中的每个元素只出现一次。
2. 无序性:集合中的元素没有先后之分,元素的排列顺序不影响集合本身。
3. 确定性:一个元素要么属于集合,要么不属于集合,不存在中间状态。
4. 外延性:两个集合中的元素完全相同,则这两个集合相等。
5. 空集:不包含任何元素的集合称为空集,用符号{}或∅表示。
集合的运算1. 并集:将两个集合中的所有元素合并在一起,形成一个新的集合。
用符号∪表示。
例如,A∪B表示集合A和集合B的并集。
2. 交集:两个集合中共同拥有的元素组成的集合。
用符号∩表示。
例如,A∩B表示集合A和集合B的交集。
3. 差集:从一个集合中排除掉与另一个集合中相同的元素,得到的新集合。
用符号-表示。
例如,A-B表示集合A和集合B的差集。
4. 补集:相对于全集U,集合A在全集U中未包含的元素组成的集合。
用符号A'表示。
例如,A'表示集合A的补集。
应用举例1. 假设有两个集合A = {1, 2, 3}和B = {2, 3, 4},则A∪B = {1, 2, 3, 4},A∩B = {2, 3},A-B = {1}。
2. 如果全集U是整数集,A = {x | x > 0}表示大于0的整数集合,补集A' = {x | x ≤ 0}。
以上是离散数学形考任务3集合论部分的概念及性质。
希望本文档能对您有所帮助!。
离散数学第3章 集合
任取x, xX … xY (2) 证X=Y
方法一 分别证明 XY 和 YX 方法二 任取x,xX … xY
注意:在使用方法二的格式时,必须保证每步推理都是充分 必要的
27
第三章 集合
命题演算法
例3-3.2 证明A(AB) = A (吸收律)
元素a属于A,记作aA; 或者a不属于A,记作aA,也可以记作┓(aA)。
(4)任意性:集合的元素也可以是集合。 例:A={1,{2},2,{3,4},{6}} A=5,2A,{2}A,6A,{6}A
6
第三章 集合 例如:A={{a,b},d,{{b}}}。可以用一种树形图来表示这种
隶属关系,该图分层构成,每一层上的结点都表示一个集 合,它的儿子就是它的元素。 集合的树型层次结构
32
第三章 集合
§3-3-3 笛卡儿积
定义3-3.2 两个元素a,b组成二元组,若它们有次序 之别,称为二元有序组,或称为有序对或序偶,记为<a, b>,称a为第一分量,b为第二分量;若它们无次序区分, 称为二元无序组,或称为无序对,记为(a,b)。
有序对具有如下性质。 (1)有序性:当x≠y时<x,y>≠<y,x>。 (2)<x,y>与<u,v>相等的充分必要条件是
A
B
11
第三章 集合
§3-2 集合之间的关系
§3-2-1 集合之间的关系 (1)相等关系: • 两集合A和B相等,当且仅当它们有相同的元素。 • 若A与B相等,记为A=B;否则,记为A≠B。 • 可形式化为:A=B(x)(xAxB)。
12
第三章 集合
离散数学的基础知识点总结
离散数学的基础知识点总结离散数学是研究离散结构和离散对象的数学分支。
它以集合论、图论和逻辑等为基础,涉及了许多重要的基础知识点。
下面是对离散数学的基础知识点进行的总结。
1. 集合论(Set theory):集合论是离散数学的基础,涉及了集合的概念、运算和恒等关系,以及集合的分类、子集、幂集和笛卡尔积等基本概念和性质。
2. 逻辑(Logic):逻辑是离散数学的重要组成部分,涉及了命题逻辑和谓词逻辑的基本概念和推理规则,包括命题的真值表、谓词的量化、逻辑等价和逻辑蕴含等概念。
3. 函数(Functions):函数是离散数学中的核心概念之一,涉及了函数的定义、域和值域、函数的性质、特殊的函数(如恒等函数、常值函数、单射函数和满射函数等)以及函数的复合和逆函数等。
4. 关系(Relations):关系是离散数学中的另一个核心概念,涉及了关系的定义、关系的特性(如自反性、对称性、传递性和等价关系等)、关系的闭包和自反闭包、关系的图示表示和矩阵表示、等价关系和偏序关系等。
5. 图论(Graph theory):图论是离散数学的重要分支,涉及了图的基本概念(如顶点、边、路径和圈等)、图的表示方法(如邻接矩阵和邻接表等)、图的遍历算法(如深度优先和广度优先等)、图的连通性和可达性、最小生成树和最短路径等基础知识。
7. 代数结构(Algebraic structures):代数结构是离散数学的一个重要方向,涉及了群、环、域和格等基本代数结构的定义、性质和分类,以及同态映射和同构等概念。
8. 数论(Number theory):数论是离散数学的一个重要分支,涉及了自然数的性质和结构,包括质数和素数、最大公因数和最小公倍数、同余和模运算、欧几里得算法和扩展欧几里得算法、费马小定理和欧拉函数等。
9. 排序和选择(Sorting and selection):排序和选择是离散数学中的一类重要问题,涉及了各种排序算法(如冒泡排序、插入排序、快速排序和归并排序等)和选择算法(如选择排序和堆排序等),以及它们的复杂度分析和应用。
离散数学集合论知识点
离散数学集合论知识点
离散数学集合论知识点
集合是离散数学中最基本的概念之一,集合论是研究集合性质、集合运算等问题的学科。
以下是关于集合论的几个重要知识点:
1. 集合的定义和符号表示
集合是由一些确定的对象组成的整体,这些对象称为该集合的元素,用大括号括起来表示。
例如,{1, 2, 3}表示一个由1、2、3三个元素组成的集合。
通常用小写字母表示集合,例如A、B、C等,用大写字母表示元素。
2. 子集和真子集
集合A是集合B的子集,当且仅当A中的每个元素都是B中的元素。
用符号A⊆B表示。
若A⊆B且A≠B,则称A是B的真子集。
用符号A⊂B表示。
3. 并集和交集
设A和B为两个集合,则它们的并集是由A和B中的元素组成的集合,用符号A∪B表示;它们的交集是A和B中共有的元素组成的集合,用符号A∩B表示。
4. 补集和差集
设U是全集,A是U的一个子集,那么A的补集是U中不属于A的所有元素组成的集合,用符号A'表示。
如果A、B是U的子集,则它们的差集是由属于A 但不属于B的元素组成的集合,用符号A-B表示。
5. 笛卡尔积
设A和B为两个集合,则A和B的笛卡尔积是由所有有序对(a,b)组成的集合,其中a∈A,b∈B。
用符号A×B表示。
例如,若A={1,2},B={a,b},则A×B={(1,a),(1,b),(2,a),(2,b)}。
以上是离散数学集合论的一些基本知识点,它们是其他数学领域的基础,在实际应用中也有广泛的应用。
《离散数学》课件-第3章集合的基本概念
例题
计算以下幂集:
,{};{,{}}
解:
P()={} P({})={,{}} P({,{}})= {, {},{{}},{,{}}}
18
3.3 集合的运算
集合的运算 并,交,补(绝对补),差(相对补-),和对称差等。
19
集合的并运算
• 定义3.3.1 设A,B为集合,由A和B的所有元素组成的集 合称为A与B的并集, 可表示为: AB={x|xAxB} 其文氏图:
其文氏图如下:
~E = , ~ = E, ~(~A)= A A ~A = , A ~A = E
27
德.摩根定律
• 定理3.3.5 设A,B为任意二个集合,则有: • (1) (AB)= A B • (2) (A B)= A B • 证明 设E为全集,显然有AE=A,AE=E成立。 • (1) (AB)= {x | xEx(AB)}= {x |
据的增加、删除、修改、排序,以及数据间关系的描述。
集合论在计算机语言、数据结构、编译原理、数据库与
知识库、形式语言及人工智能等许多领域得到广泛的应
用。
2
3.1 集合及其表示
• 集合是由一些对象聚集在一起构成的。 例如,全体整数 全体中国人 26个英文字母
• 构成集合的对象可以是各种类型的事物。 • 定义3.1.1 集合中的对象叫集合的元素,或成员。
• 集合中的元素可以具有共同性质,也可以表面上看起来不相干。
• 如{2,Tom,计算机,广州}
• 在集合论中,规定元素之间是彼此相异的,并且是没有次序关 系的。
例如,{3,4,5},{3,4,4,5,5},{5,3,4}都是同一个集合。
• 例如,A={3,4,5},
离散数学基础
离散数学基础离散数学是数学的一个分支,主要研究非连续、离散的概念和结构。
它在计算机科学、信息科学以及其他相关领域中具有重要的应用。
本文将介绍离散数学的基础概念和常见的应用。
一、集合论集合论是离散数学的基础,它研究的是元素的集合。
在集合论中,我们常用符号来表示集合和集合之间的关系。
例如,如果A是一个集合,我们可以使用A∈B表示元素A属于集合B。
集合论还引入了交集、并集、差集等运算,用于描述集合之间的关系和操作。
二、逻辑和命题逻辑是离散数学的另一个重要组成部分。
它研究的是推理和推断的规则。
逻辑中最基本的概念是命题,它可以是真或假的陈述。
逻辑运算符包括非(¬)、与(∧)、或(∨)和蕴含(→)。
利用这些运算符,我们可以构建复合命题,并进行逻辑推理。
三、图论图论是离散数学中的一个重要分支,研究的是图的性质和图的应用。
图由节点和边组成,节点表示对象,边表示对象之间的关系。
图可以用来描述网络、社交关系、路线规划等问题。
图论中的常见概念包括图的连通性、最短路径、最小生成树等。
四、代数系统离散数学还研究各种代数系统,如群、环、域等。
代数系统是一种结构,它由一组元素和定义在这些元素上的运算构成。
代数系统在密码学、编码理论等领域中有广泛的应用。
例如,RSA加密算法就是基于模运算的群的性质。
五、概率论概率论是离散数学中的一个重要分支,研究的是随机事件的发生概率和随机现象的规律。
概率论可以用来描述随机算法的性能、信息的压缩率等。
在计算机科学中,概率论在机器学习、数据挖掘等领域中有着广泛的应用。
六、离散数学的应用离散数学在计算机科学和信息科学中有着广泛的应用。
例如,离散数学的概念和方法在编程语言设计、数据结构与算法、数据库系统等方面都扮演着重要的角色。
离散数学还在密码学、图像处理、计算机网络等领域中有着重要的应用。
结论离散数学作为数学的一个分支,研究的是非连续、离散的概念和结构。
它的基础概念包括集合论、逻辑和命题、图论、代数系统以及概率论。
离散数学集合论基础知识
离散数学集合论基础知识离散数学是计算机科学中一门重要的基础学科,集合论是离散数学的基础之一。
在这篇文章中,我们将介绍离散数学集合论的基础知识,包括集合的定义、运算、关系等内容。
一、集合的定义与表示集合是具有确定性的事物或对象的总体,它是数学中的一个基本概念。
我们可以用不同的方式表示一个集合,包括列举法、描述法和图形法。
(一)列举法列举法是通过列举集合中的元素来表示一个集合。
例如,可以用列举法表示自然数集合N={1, 2, 3, 4, …},表示所有正整数的集合。
(二)描述法描述法是通过描述集合中元素的性质来表示一个集合。
例如,可以用描述法表示偶数集合E={x | x是整数,且x能被2整除},表示所有能被2整除的整数的集合。
(三)图形法图形法是用图形的方式表示一个集合。
例如,可以用图形法表示平面上所有整数坐标点构成的集合。
二、集合的运算集合的运算包括并集、交集、差集和补集等。
(一)并集集合A与集合B的并集,记作A∪B,表示由所有属于集合A或集合B的元素组成的集合。
例如,设A={1, 2, 3},B={3, 4, 5},则A∪B={1, 2, 3, 4, 5}。
(二)交集集合A与集合B的交集,记作A∩B,表示由既属于集合A又属于集合B的元素组成的集合。
例如,设A={1, 2, 3},B={3, 4, 5},则A∩B={3}。
(三)差集集合A与集合B的差集,记作A-B,表示由属于集合A但不属于集合B的元素组成的集合。
例如,设A={1, 2, 3},B={3, 4, 5},则A-B={1, 2}。
(四)补集对于给定的全集U,集合A相对于全集U的补集,记作A'或者A^c,表示由全集U中不属于集合A的元素组成的集合。
例如,设全集U为自然数集合N,A={2, 4, 6},则A'={1, 3, 5, 7, ...}(即不是偶数的自然数)。
三、集合的关系集合的关系包括包含关系、相等关系和互斥关系等。
离散数学第三章集合的基本概念和运算知识点总结
离散数学第三章集合的基本概念和运算知识点总结集合论部分第三章、集合的基本概念和运算3.1 集合的基本概念集合的定义与表⽰集合与元素集合没有精确的数学定义理解:⼀些离散个体组成的全体组成集合的个体称为它的元素或成员集合的表⽰列元素法A={ a, b, c, d }谓词表⽰法B={ x | P(x) }B 由使得P(x) 为真的x构成常⽤数集N, Z, Q, R, C 分别表⽰⾃然数、整数、有理数、实数和复数集合,注意0 是⾃然数.元素与集合的关系:⾪属关系属于∈,不属于?实例A={ x | x∈R∧x2-1=0 }, A={-1,1}1∈A, 2?A注意:对于任何集合A 和元素x (可以是集合),x∈A和x?A 两者成⽴其⼀,且仅成⽴其⼀.集合之间的关系包含(⼦集)A?B??x (x∈A→x∈B)不包含A?B??x (x∈A∧x?B)相等A = B?A?B∧B?A不相等A≠B真包含A?B?A?B∧A≠B不真包含A?B思考:≠和?的定义注意∈和?是不同层次的问题空集?不含任何元素的集合实例{x | x2+1=0∧x∈R} 就是空集定理空集是任何集合的⼦集Ax (x∈?→x∈A) ?T推论空集是惟⼀的.证假设存在?1和?2,则?1??2 且?1??2,因此?1=?2全集E 相对性在给定问题中,全集包含任何集合,即?A (A?E )幂集定义P(A) = { x | x?A }实例P(?) = {?},P({?}) = {?,{?}}P({1,{2,3}})={?,{1},{{2,3}},{1,{2,3}}}计数如果|A| = n,则|P(A)| = 2n3.2 集合的基本运算集合基本运算的定义??-~⊕并A?B = { x | x∈A∨x∈B }交A?B = { x | x∈A∧x∈B }相对补A-B = { x | x∈A∧x?B }对称差A⊕B = (A-B)?(B-A)= (A?B)-(A?B)绝对补~A = E-A⽂⽒图(John Venn)关于运算的说明运算顺序:~和幂集优先,其他由括号确定并和交运算可以推⼴到有穷个集合上,即A1?A2?…A n= {x | x∈A1∨x∈A2∨…∨x∈A n}A1?A2?…A n= {x | x∈A1∧x∈A2∧…∧x∈A n}某些重要结果A-B?AA?B ?A-B=?(后⾯证明)A?B=??A-B=A命题演算法证X?Y:任取x ,x∈X?… ?x∈Y 例3 证明A?B?P(A)?P(B)任取xx∈P(A) ?x?A?x?B ? x∈P(B)任取xx∈A ? {x}?A ? {x}∈P(A) ? {x}∈P(B){x}B x∈B包含传递法证X?Y:找到集合T 满⾜X?T 且T?Y,从⽽有X?Y例4 A-B ? A?B证A-B ? AA ? A?B所以A-B ? A?B利⽤包含的等价条件证X?Y:例5 A?C∧B?C ?A?B?C证A?C?A?C=CB?C?B?C=C(A?B)?C=A?(B?C)=A?C=C(A?B)?C=C ?A?B?C命题得证反证法证X?Y:欲证X?Y, 假设命题不成⽴,必存在x 使得x∈X 且x?Y. 然后推出⽭盾.例6 证明A?C ∧ B?C ? A?B?C证假设A?B ? C 不成⽴,则?x (x∈A?B∧x?C)因此x∈A 或x∈B,且x?C若x∈A, 则与A?C ⽭盾;若x∈B, 则与B?C ⽭盾.利⽤已知包含式并交运算:由已知包含式通过运算产⽣新的包含式X?Y ?X?Z?Y?Z, X?Z?Y?Z 例7 证明A?C?B?C ∧ A-C?B-C ? A?B证A?C?B?C,A-C ? B-C上式两边求并,得(A?C)?(A-C) ? (B?C)?(B-C)(AC)(A~C) (BC)(B~C)A(C~C) B(C~C)AE BEA B命题演算法证明X=Y:任取x ,x∈X ?… ?x∈Yx∈Y ?… ?x∈X或者x∈X ?… ? x∈Y例8 证明A?(A?B)=A (吸收律)证任取x,x∈A?(A?B) ? x∈A∨ x∈A?Bx∈A ∨ (x∈A ∧ x∈B) ? x∈A等式替换证明X=Y:不断进⾏代⼊化简,最终得到两边相等例9 证明A?(A?B)=A (吸收律)证(假设交换律、分配律、同⼀律、零律成⽴)A?(A?B)=(A?E)?(A?B) 同⼀律=A?(E?B) 分配律=A?(B?E) 交换律=A?E 零律=A 同⼀律反证法证明X=Y:假设X=Y 不成⽴,则存在x 使得x∈X且x?Y,或者存在x 使得x∈Y且x?X,然后推出⽭盾.例10 证明以下等价条件A?B ? A?B=B ? A?B=A ? A-B=?(1) (2) (3) (4)证明顺序:(1) ?(2), (2) ?(3), (3) ?(4), (4) ?(1)(1) ?(2)显然B?A?B,下⾯证明A?B?B.任取x,x∈A?B ? x∈A∨x∈B ? x∈B∨x∈B ? x∈B因此有A?B?B. 综合上述(2)得证.(2) ?(3)A=A?(A?B) ? A=A?B(将A?B⽤B代⼊)(3) ?(4)假设A-B≠?, 即?x∈A-B,那么x∈A且x?B. ⽽x?B ? x?A?B.从⽽与A?B=A⽭盾.(4) ?(1)假设A?B不成⽴,那么x (x∈A ∧ x?B) ? x∈A-B ? A-B≠?与条件(4)⽭盾.集合运算法证明X=Y:由已知等式通过运算产⽣新的等式X=Y ? X?Z=Y?Z, X?Z=Y?Z,X-Z=Y-Z 例11 证明A?C=B?C ∧ A?C=B?C ? A=B证由A?C=B?C 和A?C=B?C 得到(A?C)-(A?C)=(B?C)-(B?C)从⽽有A⊕C=B⊕C因此A⊕C=B⊕C ? (A⊕C)⊕C =(B⊕C)⊕CA⊕(C⊕C) =B⊕(C⊕C) ?A⊕?=B⊕?? A=B3.3 集合中元素的计数集合的基数与有穷集合集合A 的基数:集合A中的元素数,记作card A有穷集A:card A=|A|=n,n为⾃然数.有穷集的实例:A={ a,b,c}, card A=|A|=3;B={ x | x2+1=0, x∈R}, card B=|B|=0⽆穷集的实例:N, Z, Q, R, C 等包含排斥原理:定理设S 为有穷集,P1, P2, …, P m是m 种性质,A i 是S中具有性质P i的元素构成的⼦集,i=1, 2,…, m.则S中不具有性质P1, P2, …, P m 的元素数为证明要点:任何元素x,如果不具有任何性质,则对等式右边计数贡献为1,否则为0证设x不具有性质P1, P2, … , P m ,x?A i, i= 1, 2, … , mx?A i?A j, 1≤i < j ≤m…x?A1?A2?…?A m,x 对右边计数贡献为1 - 0 + 0 -0 + … + (-1)m· 0 = 1例1 求1到1000之间(包含1和1000在内)既不能被5 和6 整除,也不能被8 整除的数有多少个?解:S ={ x | x∈Z, 1≤x ≤1000 },如下定义S的3 个⼦集A, B, C:A={ x | x∈S, 5 | x },B={ x | x∈S, 6 | x },C={ x | x∈S, 8 | x }对上述⼦集计数:|S|=1000,|A|= ?1000/5? =200, |B|=?1000/6?=133,|C|= ?1000/8? =125,|A?B|= ?1000/30? =33, |B?C| = ?1000/40? =25,|B?C|= ?1000/24? =41,|A?B?C| = ?1000/120? =8,代⼊公式N = 1000-(200+133+125)+(33+25+41)-8=600例224名科技⼈员,每⼈⾄少会1门外语.英语:13;⽇语:5;德语:10;法语:9英⽇:2; 英德:4;英法:4;法德:4 会⽇语的不会法语、德语求:只会1 种语⾔⼈数,会3 种语⾔⼈数x+2(4-x)+y1+2=13x+2(4-x)+y2=10x+2(4-x)+y3=9x+3(4-x)+y1+y2+y3=19x=1, y1=4, y2=3, y3=2。
离散数学第三章集合的基本概念和运算
| Ai I A j I Ak | +... + ( −1) m | A1 I A2 I ...I Am | ∑
推论: 推论:在S中至少具有一条性质的元素数是
| A1 U A 2 U ... U A m |= +
1≤ i < j < k ≤ m
∑|A
i =1
m
i
|−
1≤ i < j ≤ m
∑|AI
i
证明: ~B=E-B⊆E-A=~A 或∀x∈~B⇒x∈E-B⇒ x∈E∧x ⇒ x∈E-A⇒ x∈~A 所以, ~B⊆~A
∉ B⇒x∈E∧x ∉ A
例3.8 已知A⊕B=A⊕C 证明:B=C 证明:B=B⊕φ=B⊕(A⊕A)=(B⊕A)⊕A=(A⊕B)⊕A =(A⊕C)⊕A=(C⊕A)⊕A=C⊕(A⊕A)=C⊕φ=C
| AI B |=| S | −(| A | + | B |) + | AI B | = 100 − ( 47 + 35) + 23 = 41
所以,两种语言都不熟悉的有41人。
例3.10求在1和1000之间不能被5或6,也不能被8整除的数的个数。 解:设A,B,C分别表示其中可被5,6或8整除的数的集合,则
Aj |
∑
| A i I A j I A k | − ... + ( − 1) m + 1 | A1 I A 2 I ... I A m |
例3.9有100名程序员,其中47名熟悉FORTRAN语言,35名熟 悉PASCAL语言,23名熟悉这两种语言,问有多少人对这两 种语言都不熟悉? 解:设A,B分别表示熟悉FORTRAN和PASCAL语言的程序员 的集合,则有 |S|=100,|A|=47,|B|=35,|A∩B|=23, 根据包含排斥原理,得
《离散数学》第3章集合
集合表示方法
列举法
列举法是将集合中的元素一一列举出来,写在大括号内表示集合的方法。例如,A={1,2,3}表示集合A 由元素1、2、3组成。
描述法
描述法是通过描述集合中元素的共同特性来表示集合的方法。例如,B={x|x>0}表示集合B由所有大于 0的实数组成。
常用集合类型介绍
有限集
有限集是指集合中的元素 个数是有限的。例如, C={1,2,3,4,5}是一个有限 集,它包含5个元素。
THANKS FOR WATCHING
感谢您的观看
特殊的集合。
集合论在数据库设计中应用
实体-关系模型
集合论中的集合和关系概念被用于描述实体-关系模 型,这是数据库设计中的重要方法。
数据完整性
集合论中的概念如唯一性、存在性等可以用于定义和 维护数据库的完整性约束。
查询优化
集合论中的运算和性质可以用于优化数据库查询,提 高查询效率。
集合论在其他领域应用
元素与集合关系
元素与集合的关系
元素与集合的关系只有两种,即属于和不属于。如果元素a是集合A的元素,就说a 属于A,记作a∈A;如果元素a不是集合A的元素,就说a不属于A,记作a∉A。
元素与集合的运算
元素与集合的运算主要有并集、交集和差集等。并集是指两个集合中所有元素的 集合;交集是指两个集合中共有元素的集合;差集是指属于第一个集合但不属于 第二个集合的元素的集合。幂集与笛卡尔积关来自探讨幂集与笛卡尔积的联系
幂集与笛卡尔积的区别
幂集与笛卡尔积的应用
幂集和笛卡尔积都是集合论中的重要概 念,它们之间有着密切的联系。例如, 对于任意集合A,其幂集P(A)可以看作 是A与其自身的笛卡尔积A×A的子集构 成的集合。
离散数学知识点整理
离散数学知识点整理离散数学是现代数学的一个重要分支,它在计算机科学、信息技术、数理逻辑等领域都有着广泛的应用。
下面为大家整理了一些离散数学的重要知识点。
一、集合论集合是离散数学的基础概念之一。
集合是由一些确定的、互不相同的对象组成的整体。
集合的表示方法包括列举法,如{1, 2, 3};描述法,如{x | x 是大于 0 的整数}。
集合的运算有并集、交集、差集和补集。
并集是将两个集合中的所有元素合并在一起;交集是两个集合中共同的元素;差集是从一个集合中去掉另一个集合中的元素;补集是在全集中去掉给定集合的元素。
集合之间的关系包括子集、真子集和相等。
如果集合 A 的所有元素都属于集合 B,则 A 是 B 的子集;如果 A 是 B 的子集且 A 不等于 B,则 A 是 B 的真子集;如果两个集合的元素完全相同,则它们相等。
二、关系关系是集合中元素之间的某种联系。
关系可以用矩阵和关系图来表示。
矩阵表示直观清晰,关系图则更形象。
关系的性质包括自反性、反自反性、对称性、反对称性和传递性。
自反性是指集合中的每个元素都与自身有关系;反自反性则是没有元素与自身有关系。
对称性是若 a 与 b 有关系,则 b 与 a 也有关系;反对称性是若 a 与b 有关系且 b 与 a 有关系,则 a = b。
传递性是若 a 与 b 有关系,b 与 c 有关系,则 a 与 c 有关系。
特殊的关系有等价关系和偏序关系。
等价关系满足自反性、对称性和传递性,它将集合划分为等价类。
偏序关系满足自反性、反对称性和传递性,常用于描述元素之间的排序。
三、函数函数是一种特殊的关系,对于定义域中的每个元素,在值域中都有唯一的元素与之对应。
函数有单射、满射和双射之分。
单射是不同的定义域元素对应不同的值域元素;满射是值域中的每个元素都有定义域元素与之对应;双射则既是单射又是满射。
复合函数是将一个函数的输出作为另一个函数的输入。
四、图论图由顶点和边组成。
图的分类有有向图和无向图。
同等学力离散数学基础知识点
同等学力离散数学基础知识点一、集合论基础。
1. 集合的概念与表示。
- 集合是一些确定的、互不相同的对象的总体。
例如,全体自然数的集合,记为N = {0,1,2,·s}。
集合的表示方法有列举法,如A={1,2,3};描述法,如B = {xx是偶数}。
- 元素与集合的关系:如果a是集合A中的元素,记作a∈ A;否则记作a∉A。
2. 集合间的关系。
- 子集:如果集合A的所有元素都是集合B的元素,则称A是B的子集,记作A⊆ B。
特别地,A = B当且仅当A⊆ B且B⊆ A。
- 真子集:如果A⊆ B且A≠ B,则称A是B的真子集,记作A⊂ B。
- 空集varnothing是任何集合的子集,是任何非空集合的真子集。
3. 集合的运算。
- 并集:A∪ B={xx∈ A或x∈ B}。
例如,A = {1,2,3},B={3,4,5},则A∪B={1,2,3,4,5}。
- 交集:A∩ B = {xx∈ A且x∈ B}。
对于上述A和B,A∩ B={3}。
- 差集:A - B={xx∈ A且x∉ B}。
A={1,2,3},B = {3,4,5}时,A - B={1,2}。
- 补集:设全集为U,集合A的补集¯A=U - A。
二、关系与函数。
1. 关系的概念。
- 关系是集合笛卡尔积的子集。
设A、B是两个集合,A× B={(a,b)a∈ A,b∈B},A到B的关系R是A× B的子集,若(a,b)∈ R,则称a与b有关系R,记作aRb。
- 关系的表示:可以用关系矩阵和关系图表示关系。
2. 关系的性质。
- 自反性:对于集合A上的关系R,如果对任意a∈ A,都有aRa,则R是自反的。
- 对称性:若对任意a,b∈ A,当aRb时,有bRa,则R是对称的。
- 传递性:对任意a,b,c∈ A,当aRb且bRc时,有aRc,则R是传递的。
3. 函数。
- 函数是一种特殊的关系。
设A、B是两个集合,f:A→ B是一个函数,对于任意a∈ A,存在唯一的b∈ B,使得(a,b)∈ f,记为b = f(a)。
离散数学精选笔记
离散数学精选笔记一、集合论基础。
1. 集合的定义与表示。
- 集合是由一些确定的、彼此不同的对象组成的整体。
通常用大写字母表示集合,如A、B、C等。
- 集合的表示方法有列举法和描述法。
- 列举法:把集合中的元素一一列举出来,例如A = {1,2,3}。
- 描述法:用谓词来描述集合中元素的性质,例如B={xx是偶数且x < 10}。
2. 集合间的关系。
- 包含关系:如果集合A的所有元素都是集合B的元素,则称A包含于B,记作A⊆ B。
当A⊆ B且A≠ B时,称A是B的真子集,记作A⊂ B。
- 相等关系:如果A⊆ B且B⊆ A,则A = B。
3. 集合的运算。
- 交集:A∩ B={xx∈ A且x∈ B}。
- 并集:A∪ B = {xx∈ A或x∈ B}。
- 补集:设全集为U,A相对于U的补集¯A=U - A={xx∈ U且x∉ A}。
- 集合运算的性质:- 交换律:A∩ B = B∩ A,A∪ B=B∪ A。
- 结合律:(A∩ B)∩ C = A∩(B∩ C),(A∪ B)∪ C=A∪(B∪ C)。
- 分配律:A∩(B∪ C)=(A∩ B)∪(A∩ C),A∪(B∩ C)=(A∪ B)∩(A∪ C)。
二、命题逻辑。
1. 命题与命题联结词。
- 命题是能够判断真假的陈述句。
例如“今天是晴天”是一个命题。
- 命题联结词:- 否定¬:若P为命题,则¬ P表示“P不成立”。
- 合取wedge:Pwedge Q表示“P并且Q”,当P和Q都为真时,Pwedge Q为真。
- 析取vee:Pvee Q表示“P或者Q”,当P和Q至少有一个为真时,Pvee Q为真。
- 蕴涵to:Pto Q表示“如果P,那么Q”,当P为真Q为假时,Pto Q为假,其余情况为真。
- 等价↔:P↔ Q表示“P当且仅当Q”,当P和Q同真同假时,P↔ Q为真。
2. 命题公式及其分类。
- 命题公式是由命题变元(通常用P、Q、R等表示)和命题联结词按照一定规则组成的符号串。
离散数学第三章-集合课件.ppt
例1、选择适当的谓词表示下列集合。
(1) 小于5的非负整数集 {x | x N x 5}
(2) 奇整数集合
{x | x 2n 1 n Z}
(3) 10的整倍数集合, {x | x 10n n Z} (4) {3,5,7,11,13,17,19} {x | x是素数 2 x 20}
则 A B为 mn 元集。
(2) 笛卡儿积是集合,有关集合的运算都适合。
(3) 一般,A B B A 。
3、 n 阶(n 2)笛卡儿积。
A1 A2 An
x1, x2, , xn | x1 A1 x2 A2 xn An
特别,当 A1 A2 记为 An 。
An A 时,
(4) A (~ B C)
例3、用集合公式表示下列文氏图中的阴影部分。 (1)
解: A B C
(2)
解:(A B) (A C) (B C)
三 包含排斥定理
设A和 B是两个有限集合,则 A B A B A B ,
其中 A, B 分别表示 A、B的元数.
把包含排斥定理推广到n个集合的情况可用如下定
A {a1, a2 , an}
表示集合 A 含有元素 a1, a2 , an
注意: (1) a A或 a A
(2) 集合中的元素均不相同
{a,b, c},{a,b,b, c},{c, a,b}
表示同一个集合。 (3) 集合的元素可以是任何类型的事物,
一个集合也可以作为另一个集合的元素。
例如:A a,{b,c},b,{b}
2、集合的表示法。 (1) 列举法(将元素一一列出)
例如:A {2,3, 4,5}
(2) 描述法(用谓词概括元素的属性)
例如:B {x | x Z 2 x 5}
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谓词定义: A=BABBA x(x∈Ax∈B)x(x∈Bx∈A) x((x∈Ax∈B)(x∈Bx∈A)) x(x∈Ax∈B) 2. 性质 ⑴有自反性,对任何集合A,有A=A。 ⑵有传递性,对任何集合A、B、C,如果 有A=B且 B=C ,则A=C。 ⑶有对称性,对任何集合A、B,如果有 A=B,则B=A。
二.空集 Φ 定义:没有元素的集合,称之为空集,记作Φ。 因为论域内如何客体x∈Φ是矛盾式,所以要用 一个矛盾式定义Φ。 Φ={x| P(x)∧P(x)} 性质: 1.对于任何集合A,都有ΦA。 因为x(x∈Φx∈A)为永真式,所以ΦA。
2.空集是唯一的。 证明 假设有两个空集Φ1 、Φ2 ,则 因为Φ1是空集,则由性质1得 Φ1 Φ2 。 因为Φ2是空集,则由性质1得 Φ2 Φ1 。 所以Φ1=Φ2 。 三.集合的幂集(Power Set) 定义: A是集合,由A的所有子集构成的集合,称 之为A的幂集。记作P(A)或2A。 P(A)={B| BA} 例如, A P(A) Φ {Φ} {a} {Φ,{a}} {a,b} {Φ,{a},{b},{a,b}}
三. 差运算- (相对补集) 1.定义:A、B是集合,由属于A,而不属于B的 元素构成的集合 ,称之为A与B的差集,或B对A的 相对补集,记作A-B。 例如A={1,2,3} B={2,3,4} A-B={1} A B 谓词定义: A-B ={x|x∈A∧x B} A-B x∈A-B x∈A∧xB 2.性质 设A、B、C是任意集合,则 ⑴A-Φ=A ⑵ Φ-A=Φ ⑶A-A=Φ ⑷ A-BA
⑸AB A-B=Φ ⑹(A-B)-C=(A-C)-(B-C) 证明:任取x∈(A-C)-(B-C) x∈(A-C)∧x(B-C) (x∈A∧xC)∧(x∈B∧xC) (x∈A∧xC)∧ (xB∨x∈C) (x∈A∧xC∧xB)∨ (x∈A∧xC∧ x∈C) x∈A∧xC∧xB x∈A∧xB∧xC (x∈A∧xB)∧xC x∈A-B∧xCx∈(A-B)-C 所以 (A-B)-C=(A-C)-(B-C)
证明:A∩B=A x(x∈A∩B x∈A) x((x∈A∩B x∈A)∧(x∈A x∈A∩B)) x((xA∩B∨x∈A)∧(xA∨x∈A∩B)) x(((x∈A∧x∈B)∨x∈A)∧ (xA∨(x∈A∧x∈B)) x(((xA∨xB)∨x∈A)∧ (xA∨(x∈A∧x∈B))) x(T∧(T∧ ( xA∨ x∈B))) x( xA∨ x∈B) x(x∈Ax∈B) AB
2. 有限集合与无限集合 这里对有限集合与无限集合只给出朴素 的定义,以后再给出严格的形式定义。 有限集合:元素是有限个的集合。 如果A是有限集合,用|A|表示A中元素个 数。例如,A={1,2,3}, 则|A|=3。 无限集合:元素是无限个的集合。 对无限集合的所谓‘大小’的讨论,以后 再 进行。
⑵交换律 对任何集合A、B,有A∪B=B∪A。 ⑶结合律 对任何集合A、B、C,有 (A∪B)∪C=A∪(B∪C)。
⑷同一律 对任何集合A,有A∪Φ=A。 ⑸零律 对任何集合A,有A∪E =E 。 ⑹分配律 对任何集合A、B、C,有 A∩(B∪C) =(A∩B)∪(A∩C)。 A∪(B∩C) =(A∪B)∩(A∪C)。 ⑺吸收律 对任何集合A、B,有 A∪(A∩B)=A A∩(A∪B) =A。 证明 A∪(A∩B)= (A∩E)∪(A∩B) (同一) = A∩(E∪B) (分配) = A∩E=A (零律) (同一) ⑻AB A∪B=B。
3.集合的表示方法 列举法:将集合中的元素一一列出,写在大括 号内。 例如,N={1,2,3,4,……} A={a,b,c,d} 描述法:用句子(或谓词公式)描述元素 的属性。 例如,B={x| x是偶数} C={x|x是实数且2≤x≤5} 一般地,A={x|P(x)}, 其中P(x)是描述元素x的特性的谓词公式,如果论 域内客体a使得P(a)为真,则a∈A,否则aA。
3-2 集合间的关系
一.被包含关系(子集) 1.定义:A、B是集合,如果A中元素都是 B中元素,则称B包含A,A包含于B,也称 A是B的子集。记作AB。 文氏图表示如右下图。 例如,N是自然数集合, A B R是实数集合,则NR 谓词定义: ABx(x∈Ax∈B)
2. 性质: ⑴有自反性,对任何集合A有AA。 ⑵有传递性,对任何集合A、B、C,有 AB且 BC ,则AC。 ⑶有反对称性,对任何集合A、B,有 AB且 BA ,则A=B。
二.并运算∪ 1.定义:A、B是集合,由或属于A,或属于B的 元素构成的集合 ,称之为A与B的并集,记作A∪B。 例如A={1,2,3} B={2,3,4} A∪B={1,2,3,4} 谓词定义: A∪B ={x|x∈A∨x∈B} A B x∈A∪B x∈A∨x∈B
2.性质
A∪B
⑴幂等律 对任何集合A,有A∪A=A。
第二篇 集合论
主要包括如下内容: 集合论基础 二元关系 函数
第三章 集合论基础
本章主要介绍如下内容: 基本概念及集合的表示方法 集合间的关系 特殊集合 集合的运算 包含排斥原理
3-1 基本概念
1.集合与元素 集合是个最基本的概念。 集合:是由确定的对象(客体)构成的集体。用 大写的英文字母表示。 这里所谓“确定”是指:论域内任何客体,要 么 属于这个集合,要么不属于这个集合,是唯一确 定的。 元素:集合中的对象,称之为元素。 ∈:表示元素与集合的属于关系。 例如,N表示自然数集合,2∈N,而1.5不属于N 写成(1.5∈N), 或写成 1.5N。
4. 说明 ⑴集合中的元素间次序是无关紧要的,但是必须是可以区 分的,即是不同的。例如A={a,b,c,a},B={c,b,a,},则A 与B是一样的。 ⑵对集合中的元素无任何限制,例如令 A={人,石头,1,B}, B={Φ,{Φ}} ⑶本书中常用的几个集合符号的约定: 自然数集合N= {1,2,3,……} 整数集合I,实数集合R,有理数集合Q ⑷集合中的元素也可以是集合,下面的集合的含义不同: 如 a: 张书记 {a}: 党支部(只有一个书记) {{a}}: 分党委(只有一个支部) {{{a}}}: 党委 (只有一个分党委) {{{{a}}}}: 市党委(只有一个党委)
C0 + C1 n n
+ C 2 +…… + n
n Cn
所以|P(A)|= 2n
|2A|= 2|A|= 2n
幂集元素的编码: A={a,b,c} 则 P(A)= {Φ,{c},{b},{b,c},{a},{a,c},{a,b},{a,b,c}} A的八个子集分别表示成:B0,B1,B2,B3,B4,B5,B6,B7 再将它们的下标写成二进制形式得:B000 ,B001,B010, B011, B100,B101,B110,B111, Φ { c} { b } {b,c} {a} {a,c} {a,b} {a,b,c} B000 B001 B010 B011 B100 B101 B110 B111 B0 B1 B2 B3 B4 B5 B6 B7 子集Bijk编码的写法: A={a,b,c} i、j、k的确定: Bi j k A,
二. 相等关系 1. 定义:A、B是集合,如果它们的元素完 全相同,则称A与B相等。记作A=B。 定理:A=B,当且仅当AB且 BA。 证明:充分性,已知AB且 BA,假设 A≠B,则至少有一个元素a,使得a∈A而 aB;或者a∈B而aA。如果a∈A而 aB, 则与AB矛盾。如果a∈B而aA,则与 BA矛盾。所以A=B。 必要性显然成立,因为如果A=B,则必有 AB且 BA。
2. 性质 有传递性,对任何集合A、B、C,如果 有 AB且 BC ,则AC。 练习题:设A={a,{a},{a,b},{{a,b},c}}判断下 面命题的真值。 ⑴ {a}∈A ⑵ ({a} A) ⑶ c∈A ⑷ {a}{{a,b},c} ⑸ {{a}}A ⑹ {a,b}∈{{a,b},c} ⑺ {{a,b}}A ⑻ {a,b}{{a,b},c} ⑼ {c}{{a,b},c} ⑽ ({c}A)(a∈Φ)
A={a,b,c} 则 P(A)= {Φ,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}
|P(A)|= C 0 + C 1 3 3
+
C2 3
+
C3 3
性质: 1.给定有限集合A,如果|A|=n, 则|P(A)|=2n。 证明:因为A有n个元素,故P(A)中元素个数为 而 (x+y)n= C 0 xn+C 1 xn-1y + C 2 xn-2y2 +… +C n yn n n n n 令x=y=1时得 2n= C 0 + C 1 + C 2 +…… + C n n n n n
3-3 特殊集合
一.全集 E 定义:包含所讨论的所有集合的集合, 称之为全集,记作E。 E 实际上,就是论域。 它的文氏图如右图。 由于讨论的问题不同, 全集也不同。所以全集不唯一。例如, 若讨论数,可以把实数集看成全集。 若讨论人,可以把人类看成全集。
由于论域内任何客体x都属于E,所以x∈E为永 真式。所以需要用永真式定义E。 E={x| P(x)∨P(x)} 性质:对于任何集合A,都有AE。
三. 真被包含关系(真子集) 1. 定义:A、B是集合,如果AB且A≠B, 则称B真包含A,A真包含于B,也称A是B 的真子集。记作AB。 谓词定义:ABA BA≠B x(x∈Ax∈B)x(x∈Ax∈B) x(x∈Ax∈B) (x(x∈Ax∈B)x(x∈Bx∈A)) (x(x∈Ax∈B)x(x∈Ax∈B)) (x(x∈Ax∈B) x(x∈Bx∈A)) x(x∈Ax∈B) x(x∈BxA)
3-4 集合的运算
介绍五种运算:∩∪- ~ 一.交运算∩ 1.定义:A、B是集合,由既属于A,也属于B的 元素构成的集合 ,称之为A与B的交集,记作A∩B。 例如A={1,2,3} B={2,3,4} A∩B={2,3} A B 谓词定义: A∩B={x|x∈A∧x∈B} A∩B x∈A∩B x∈A∧x∈B 如果A∩B=Φ,则称A与B不相交。