华师版七年级上册数学易错题及分析大全
2新华师版初中数学七年级上册专题练习.易错专题:有理数中的易错题
易错专题:有理数中的易错题——易错归纳、逐个击破◆类型一 遗漏“0”及对“0”的认识不够1.下列说法正确的是( )A .符号相反的数互为相反数B .当a ≠0时,|a|总大于0C .一个数的绝对值越大,表示它的点在数轴上越靠右D .一个有理数不是正数就是负数2.绝对值小于2.5的所有非负整数的积为 .◆类型二 与运算相关的符号的判断不准确3.在-32,-|-2.5|,-(-2.5),-(-3)2,(-3)2016,(-3)3中,负数的个数是( )A .1个B .2个C .3个D .4个4.下列式子中成立的是( )A .-|-5|>4B .-3<|-3|C .-|-4|=4D .|-5.5|<55.-⎪⎪⎪⎪-23的相反数是 . 6.a 是有理数,则下列各式:①|-a|=a ;②-(-a )=a ;③a ≤-a ;④a>-a.其中正确的是 (填序号).7.(-1)2016+(-1)2015= .◆类型三 运算法则、运算顺序及符号错误8.化简:|π-4|+|3-π|= .【易错4】9.计算下列各题:(1)(-3.1)-(-4.5)+(+4.4)-(+1.3);(2)-24×⎝⎛⎭⎫-23+34+112;(3)-14-15×[|-2|-(-3)3]-(-4)2.◆类型四 精确度理解不透10.下列说法错误的是( )A .3.14×103精确到十位B .4.609万精确到万位C .近似数0.8和0.80表示的意义不同D .用科学记数法表示的数2.5×104,其原数是25000◆类型五 多种情况时漏解11.在数轴上到原点距离等于2的点所表示的数是( )A .-2B .2C .±2D .不能确定12.已知|x|=3,|y|=2,且x>y ,则x +y 的值为( )A .5B .-1C .-5或-1D .5或113.若|x|=|-2|,则x = .14.在数轴上点A 表示的数为-2,若点B 离点A 的距离为3个单位,则点B 表示的数为 .15.若a ,b 互为相反数,c ,d 互为倒数,|x|=3,则式子2(a +b )-(-cd )2016+x 的值为 .16.已知abc |abc|=1,求|a|a +|b|b +|c|c的值.参考答案与解析1.B 2.0 3.D 4.B 5.236.②7.08.1 9.解:(1)原式=4.5;(2)原式=-4;(3)原式=-2245. 10.B 11.C 12.D 13.±2 14.-5或115.2或-4 解析:因为a ,b 互为相反数,c ,d 互为倒数,|x |=3,所以a +b =0,cd =1,x =±3.所以2(a +b )-(-cd )2016+x =0-(-1)2016+x =-1+x .当x =3时,-1+x =-1+3=2;当x =-3时,-1+x =-1+(-3)=-4.16.解:由abc |abc |=1,可得a ,b ,c 三个都为正数或a ,b ,c 中只有一个为正数.分两种情况讨论:①当a ,b ,c 三个都为正数时,则有|a |a ,|b |b ,|c |c 三个都为1,可得|a |a +|b |b +|c |c=3;②当a ,b ,c 中只有一个为正数时,则有|a |a ,|b |b ,|c |c中有一个为1,其余两个都为-1,可得|a |a +|b |b +|c |c=-1.综上所述,所求式子的值为3或-1.。
七年级数学上册 2.13《有理数的混合运算》错例剖析素材 (新版)华东师大版
有理数混合运算错例剖析在学习有理数的混合运算时,有的同学因对知识掌握不牢而出现解题失误,现就在运算中常见的几种典型错误总结如下:一、概念理解不全面例1 已知2x =,y 的平方等于16,求x y +的值. 错解:由2x =,216y =,易得2, 4.x y == 所以24 6.x y +=+=剖析:上述解法是对绝对值和平方的概念理解不清而出错,致使解答不完整,本题应分情况进行分类讨论. 正解:因为2x =,所以2x =或2x =-;又因为216y =,所以4y =或4y =-.(1)当2x =,4y =时,6x y +=;(2)当2x =,4y =-时,2x y +=-;(3)当2x =-,4y =时,2x y +=;(4)当2x =-,4y =-时, 6.x y +=-二、运算符号错误例2 计算:()211123329⎛⎫⎛⎫-⨯-÷⨯- ⎪ ⎪⎝⎭⎝⎭ 错解:原式=()2192 2.36⎛⎫⎛⎫-⨯-⨯⨯-= ⎪ ⎪⎝⎭⎝⎭ 剖析:上述解法的运算顺序和步骤都正确,但丢掉了结果的性质符号,致使结果错误.有理数的运算总是分两步进行的,一是判定结果的性质符号,二是进行绝对值的计算.正解:原式=()2192 2.36⎛⎫⎛⎫-⨯-⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭三、误用运算律例3 计算:()11162312⎛⎫-÷-+ ⎪⎝⎭错解:原式=()()()11166612187266.2312⎛⎫-÷+-÷-+-÷=-+-=- ⎪⎝⎭ 剖析:错解受乘法分配律的影响,形成了思维定势,误认为除法也能用分配律,也就是说().a b c a b a c ÷+≠÷+÷2正解:原式=()()64116624.1212124⎛⎫-÷-+=-÷=-⎪⎝⎭四、违背运算顺序 例4 计算:()()()115551010---⨯÷⨯- 错解1:原式=()11551622⎛⎫⎛⎫---÷-=--=- ⎪ ⎪⎝⎭⎝⎭; 错解2:原式=()11050.1010⨯÷⨯-= 剖析:有理数的运算顺序是:先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里边的;对于同一级运算,应按从左到右的顺序进行. 本题错误的原因是改变了正确的运算顺序,由于贪图运算简便,错解1对同一级运算未能按从左到右的顺序进行,错解2提前进行了减法运算.正解:原式=()()()155********.10---⨯⨯⨯-=--=- 五、出现拆数上的错误例5 计算:()672311⎛⎫-÷- ⎪⎝⎭错解:原式=()()()()662972372332423.11111111⎛⎫-+÷-=-÷-+÷-=-= ⎪⎝⎭ 剖析:错解是把67211-拆成了67211-+,事实上6672721111⎛⎫-=-+ ⎪⎝⎭()67211⎛⎫=-+- ⎪⎝⎭. 正解:原式=6622723= 7232424.11111111⎛⎫÷+÷==+= ⎪⎝⎭ 六、对乘方的意义理解不透例6 计算:()()22222235333⎛⎫+-++-⨯ ⎪⎝⎭错解:原式()444495914418.9999=+++⨯=++= 剖析:上述解法把223与223⎛⎫ ⎪⎝⎭,23-与2(3)-给混淆了. 223中的指数在分子上,它表示22433⨯=,而223⎛⎫ ⎪⎝⎭表示224339⨯=,所以223223⎛⎫≠ ⎪⎝⎭;又因为()23339-=-⨯=-,()()()23339-=-⨯-=,所以()2233.-≠- 正解:原式()242295944.9999=+-++⨯=-+=。
数学初一上学期期末易错题(附答案)
数学初一上学期期末易错题一、计算题1.解方程:(1)0.1−0.2x 0.3−1=0.7−x 0.4(2)3x ﹣7(x ﹣1)=3+2(x+3)2.解方程(1)0.1x+0.030.2−0.2x−0.030.3+34=0 (2)2014−x 2013+2016−x 2015=2018−x 2017+2020−x20193.若有理数a 、b 、c 在数轴上对应的点A 、B 、C 位置如图 化简 |c|−|c −b|+|a +b|+|b|4.已知2x m y 2与-3xy n 是同类项 试计算下面代数式的值:m -(m 2n +3m -4n)+(2nm 2-3n). 5.解关于x 的方程mx-1=nx6.计算: −12016×[(−2)5−32−514÷(−17)]−2.57.计算 |13−12|+|14−13|+|15−14|+⋯|12002−12001| |8.−(−3)2−[3+0.4×(−112)]÷(−2)9.如果1<x <2 求代数式 |x−2|x−2−|x−1|1−x +|x|x 的值.10.化简 | |x−1|−2|+|x+1| 11. 解下列方程:(1)3x+2=2x-5 (2)3(2x+1)=4(x-3)(3)13(4−3x)=12(5x −6)(4)313x +123=511x +17(5)2x −23(x −2)=13[x −12(3x +1)](6)12{12[12(12x −2)−2]−2}−2=2 12. 计算下列各式(1)(3x 2+2x −3)(2x −1)(2)(4x 4−6x 2+2)(5x 3−2x 2+x −1) (3)(a +b)2−(a −b)2 (4)(a +b)3−3ab(a +b)(5)(a +b +c)(a 2+b 2+c 2−ab −bc −ca) (6)(3x 3−4x 2+5x −1)÷(x 2+3x −1) (7)(5x 3−7x +1)÷(2x +1) (8)(x 3+1)÷(x +1)(9)(a 2−b 2)÷(a 2+2ab +b 2)×(a 3+b 3) (10)(7x 2+3x)÷(2x +1)×(6x +3)÷(7x +3)13.观察 11×2 + 12×3 =(1- 12 )+( 12 - 13 )=1- 13 = 23(1)计算:11×2 + 12×3 + 13×4 +……+ 12013×2014 = (2)计算: 11×3+13×5+15×7+⋯…+199×10114.先化简 再求值.(1)2−(3x −2)−x 2 其中 x =1(2)2(12x 2−3xy −y 2)−2(−2x 2−7xy +3y 2) 其中 x y 满足 |x −2|=−√y −2x15.已知 |a|a + |b|b+ |c|c =-1 试求 ab |ab| + bc |bc| + ca |ca| + abc|abc| 的值. 16.试证明: (x +y −2z)3+(y +z −2x)3+(z +x −2y)3 = 3(x +y −2z)(y +z −2x)(z +x −2y)17.若 a <0 试化简 2a−|3a|||3a|−a|18.已知 |a|=523,|b|=113求a-b 的值19.解关于x 的方程 x−a b −x−b a =b a 其中 a ≠0,b ≠0,a ≠b20.若 x <0 化简 ||x|−2x||x−3|−|x|二、解答题21.已知关于x 的方程3a(x+2)=(2b-1)x+5有无数多个解 求a 与b 的值.22.数字1、2、3、4、5及6可组成不同组合的三个两位数 且每个数字恰好用一次.把每组合的三个两位数相加 写出全部由此得到的和.(例如 因为12+34+56=102 所以102是其中一个得到的和.)23.已知a 、b 、c 为有理数 且满足a=8-b c 2=ab-16.求a 、b 、c 的值.24.已知线段AB=10cm 直线AB上有一点C 且BC=4cm M是线段AC的中点求AM的长.25.一项工程甲单独做15天完工乙单独做20天完工丙单独做24天完工.现在先让甲、乙合做5天剩下工程由丙一个人完成.丙需做多少天?26.设(ax3−x+6)(3x2+5x+b)=6x5+10x4−7x3+13x2+32x−12求a与b的值27.8点20分时针与分针所成的角是多少度?28.已知A B C三点在同一条直线上AB=16.D是BC中点并且AD=12 求BC。
(最全整理)七年级上册数学易错题精选及讲解答案
有理数部分1.填空:(1)当a________时,a与-a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是________;(3)在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是_______.错解(1)a为任何有理数;(2)+5;(3)+3;(4)-6.2.用“有”、“没有”填空:在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.错解有,有,没有.3.用“都是”、“都不是”、“不都是”填空:(1)所有的整数________负整数;(2)小学里学过的数________正数;(3)带有“+”号的数________正数;(4)有理数的绝对值________正数;(5)若|a|+|b|=0,则a,b________零;(6)比负数大的数________正数.错解(1)都不是;(2)都是;(3)都是;(4)都是;(5)不都是;(6)都是.4.用“一定”、“不一定”、“一定不”填空:(1)-a________是负数;(2)当a>b时,________有|a|>|b|;(3)在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数;(4)|x|+|y|________是正数;(5)一个数________大于它的相反数;(6)一个数________小于或等于它的绝对值;错解(1)一定;(2)一定;(3)一定不;(4)一定;(5)一定;(6)不一定.5.把下列各数从小到大,用“<”号连接:并用“>”连接起来.8.填空:(1)如果-x=-(-11),那么x=________;(2)绝对值不大于4的负整数是________;(3)绝对值小于4.5而大于3的整数是________.错解(1)11;(2)-1,-2,-3;(3)4.9.根据所给的条件列出代数式:(1)a,b两数之和除a,b两数绝对值之和;(2)a与b的相反数的和乘以a,b两数差的绝对值;(3)一个分数的分母是x,分子比分母的相反数大6;(4)x,y两数和的相反数乘以x,y两数和的绝对值.10.代数式-|x|的意义是什么?错解代数式-|x|的意义是:x的相反数的绝对值.11.用适当的符号(>、<、≥、≤)填空:(1)若a是负数,则a________-a;(2)若a是负数,则-a_______0;(3)如果a>0,且|a|>|b|,那么a________ b.错解(1)>;(2)<;(3)<.12.写出绝对值不大于2的整数.错解绝对值不大2的整数有-1,1.13.由|x|=a能推出x=±a吗?错解由|x|=a能推出x=±a.如由|x|=3得到x=±3,由|x|=5得到x=±5.14.由|a|=|b|一定能得出a=b吗?错解一定能得出a=b.如由|6|=|6|得出6=6,由|-4|=|-4|得-4=-4.15.绝对值小于5的偶数是几?错解绝对值小于5的偶数是2,4.16.用代数式表示:比a的相反数大11的数.错解-a-11.17.用语言叙述代数式:-a-3.错解代数式-a-3用语言叙述为:a与3的差的相反数.18.算式-3+5-7+2-9如何读?错解算式-3+5-7+2-9读作:负三、正五、减七、正二、减九.19.把下列各式先改写成省略括号的和的形式,再求出各式的值.(1)(-7)-(-4)-(+9)+(+2)-(-5);(2)(-5)-(+7)-(-6)+4.解(1)(-7)-(-4)-(+9)+(+2)-(-5)=-7-4+9+2-5=-5;(2)(-5)-(+7)-(-6)+4=5-7+6-4=8.20.计算下列各题:(2)5-|-5|=10;21.用适当的符号(>、<、≥、≤)填空:(1)若b为负数,则a+b________a;(2)若a>0,b<0,则a-b________0;(3)若a为负数,则3-a________3.错解(1)>;(2)≥;(3)≥.22.若a为有理数,求a的相反数与a的绝对值的和.错解-a+|a|=-a+a=0.23.若|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.错解由|a|=4,得a=±4;由|b|=2,得b=±2.当a=4,b=2时,a-b=2;当a=4,b=-2时,a-b=6;当a=-4,b=2时,a-b=-6;当a=-4,b=-2时,a-b=-2.24.列式并计算:-7与-15的绝对值的和.错解|-7|+|-15|=7+15=22.25.用简便方法计算:26.用“都”、“不都”、“都不”填空:(1)如果ab≠0,那么a,b________为零;(2)如果ab>0,且a+b>0,那么a,b________为正数;(3)如果ab<0,且a+b<0,那么a,b________为负数;(4)如果ab=0,且a+b=0,那么a,b________为零.错解(1)不都;(2)不都;(3)都;(4)不都.27.填空:(3)a,b为有理数,则-ab是_________;(4)a,b互为相反数,则(a+b)a是________.错解(1)负数;(2)正数;(3)负数;(4)正数.28.填空:(1)如果四个有理数相乘,积为负数,那么负因数个数是________;错解(1)3;(2)b>0.29.用简便方法计算:解30.比较4a和-4a的大小:错解因为4a是正数,-4a是负数.而正数大于负数,所以4a>-4a.31.计算下列各题:(5)-15×12÷6×5.解=-48÷(-4)=12;(5)-15×12÷6×5错解因为|a|=|b|,所以a=b.=1+1+1=3.34.下列叙述是否正确?若不正确,改正过来.(1)平方等于16的数是(±4)2;(2)(-2)3的相反数是-23;错解(1)正确;(2)正确;(3)正确.35.计算下列各题;(1)-0.752;(2)2×32.解36.已知n为自然数,用“一定”、“不一定”或“一定不”填空:(1)(-1)n+2________是负数;(2)(-1)2n+1________是负数;(3)(-1)n+(-1)n+1________是零.错解(1)一定不;(2)不一定;(3)一定不.37.下列各题中的横线处所填写的内容是否正确?若不正确,改正过来.(1)有理数a的四次幂是正数,那么a的奇数次幂是负数;(2)有理数a与它的立方相等,那么a=1;(3)有理数a的平方与它的立方相等,那么a=0;(4)若|a|=3,那么a3=9;(5)若x2=9,且x<0,那么x3=27.38.用“一定”、“不一定”或“一定不”填空:(1)有理数的平方________是正数;(2)一个负数的偶次幂________大于这个数的相反数;(3)小于1的数的平方________小于原数;(4)一个数的立方________小于它的平方.错解(1)一定;(2)一定;(3)一定;(4)一定不.39.计算下列各题:(1)(-3×2)3+3×23;(2)-24-(-2)4;(3)-2÷(-4)2;解(1)(-3×2)3+3×23=-3×23+3×23=0;(2)-24-(-2)4=0;40.用科学记数法记出下列各数:(1)314000000;(2)0.000034.错解(1)314000000=3.14×106;(2)0.000034=3.4×10-4.41.判断并改错(只改动横线上的部分):(1)用四舍五入得到的近似数0.0130有4个有效数字.(2)用四舍五入法,把0.63048精确到千分位的近似数是0.63.(3)由四舍五入得到的近似数3.70和3.7是一样的.(4)由四舍五入得到的近似数4.7万,它精确到十分位.42.改错(只改动横线上的部分):(1)已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536;(2)已知7.4273=409.7,那么74.273=4097,0.074273=0.04097;(3)已知3.412=11.63,那么(34.1)2=116300;(4)近似数2.40×104精确到百分位,它的有效数字是2,4;(5)已知5.4953=165.9,x3=0.0001659,则x=0.5495.有理数·错解诊断练习正确答案1.(1)不等于0的有理数;(2)+5,-5;(3)-2,+4;(4)6.2.(1)没有;(2)没有;(3)有.3.(1)不都是;(2)不都是;(3)不都是;(4)不都是;(5)都是;(6)不都是.原解错在没有注意“0”这个特殊数(除(1)、(5)两小题外).4.(1)不一定;(2)不一定;(3)不一定;(4)不一定;(5)不一定;(6)一定.上面5,6,7题的原解错在没有掌握有理数特别是负数大小的比较.8.(1)-11;(2)-1,-2,-3,-4;(3)4,-4.10.x绝对值的相反数.11.(1)<;(2)>;(3)>.12.-2,-1,0,1,2.13.不一定能推出x=±a,例如,若|x|=-2.则x值不存在.14.不一定能得出a=b,如|4|=|-4|,但4≠-4.15.-2,-4,0,2,4.16.-a+11.17.a的相反数与3的差.18.读作:负三、正五、负七、正二、负九的和,或负三加五减七加二减九.19.(1)原式=-7+4-9+2+5=-5;(2)原式=-5-7+6+4=-2.21.<;>;>.22.当a≥0时,-a+|a|=0,当a<0时,-a+|a|=-2a.23.由|a+b|=a+b知a+b≥0,根据这一条件,得a=4,b=2,所以a-b=2;a=4,b=-2,所以a-b=6.24.-7+|-15|=-7+15=8.26.(1)都不;(2)都;(3)不都;(4)都.27.(1)正数、负数或零;(2)正数、负数或零;(3)正数、负数或零;(4)0.28.(1)3或1;(2)b≠0.30.当a>0时,4a>-4a;当a=0时,4a=-4a;当a<0时,4a<-4a.(5)-150.32.当b≠0时,由|a|=|b|得a=b或a=-b,33.由ab>0得a>0且b>0,或a<0且b<0,求得原式值为3或-1.34.(1)平方等于16的数是±4;(2)(-2)3的相反数是23;(3)(-5)100.36.(1)不一定;(2)一定;(3)一定.37.(1)负数或正数;(2)a=-1,0,1;(3)a=0,1;(4)a3=±27;(5)x3=-27.38.(1)不一定;(2)不一定;(3)不一定;(4)不一定.40.(1)3.14×108;(2)3.4×10-5.41.(1)有3个有效数字;(2)0.630;(3)不一样;(4)千位.42.(1)2536,0.002536;(2)409700,0.0004097;(3)341;(4)百位,有效数字2,4,0;(5)0.05495.整式的加减例1 下列说法正确的是()A. 的指数是0B. 没有系数C. -3是一次单项式D. -3是单项式分析:正确答案应选D。
七年级数学上册3整式加减易错课堂二整式加减习题新版华东师大版
书写或题意理解不正确导致出错 【例1】一个两位数,十位数字是x,个位数字是y,如果把它们的位 置交换,得到的数是( C ) A.y+x B.yx C.10y+x D.10x+y 易错分析:当x作十位数,y作个位数时,该数为10x+y,y作十位数 ,x作个位数、多项式、整式的概念理解不清而导致出错
【例 2】下列式子:①-x;②mπ+n;③yx;④a2-b2;⑤-x22y;⑥x2+3y. 其 中 是 单 项 式 的 有 _①__⑤_ , 是 多 项 式 的 有 ②__④__⑥___ , 是 整 式 的 有 _____①__②__④__⑤__⑥______.(填序号)易错分析:多项式是几个单项式的和,
易错分析:(1)系数是指数字因数,π是常数属于系数部分;(2)中多项式
的项、系数、常数项都包含本身的性质、符号.
解:各项分别为:-1,3a,-2b,5ab,-a2b,6a2b3;常数项和各 项的系数分别为:-103a2b3的系数是________2_×__1_0_3______,次数是__5__. 6.下列说法中错误的是( D ) A.多项式2x2-5x常数项为0 B.多项式2x2-5x的一次项系数是-5 C.多项式x+y-23xy的二次项系数是-8 D.多项式x+2y+3xy-4x2y2的次数是2次0
m+n
π 是多项式,因为π是常数.式子:①-2x;②a-2 b;③1;④x2y;⑤x-y;⑥a3b.其中是单项 式的有_____①__③__④__⑥____.(填序号) 4.在式子 x+y,3m,13p+q,31n,a2 中,整式的个数有( D ) A.1 个 B.2 各式中,代数式书写正确的是( A ) A.35a2 B.a19 C.213a D.m×2n 2.甲种糖果每千克 a 元,乙种糖果每千a克m+b b元n,若买甲种糖果 m 千克, 乙种糖果 n 千克,混合后的糖果每千克_m__+__n系数、项理解不透彻而出错
七年级上册数学易错题集及解析
有理数类型一:正数和负数1.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解答:解:表示互为相反意义的量:足球比赛胜5场与负5场.故选A点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.此题的难点在“增产10吨粮食与减产﹣10吨粮食”在这一点上要理解“﹣”就是减产的意思.变式1:2.下列具有相反意义的量是()A.前进与后退B.胜3局与负2局C.气温升高3℃与气温为﹣3℃D.盈利3万元与支出2万元考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:A、前进与后退,具有相反意义,但没有量.故错误;B、正确;C、升高与降低是具有相反意义的量,气温为﹣3℃只表示某一时刻的温度,故错误;D、盈利与亏损是具有相反意义的量.与支出2万元不具有相反意义,故错误.故选B.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.类型二:有理数1.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数考点:有理数.分析:按照有理数的分类判断:有理数.解答:解:负整数和负分数统称负有理数,A正确.整数分为正整数、负整数和0,B正确.正有理数与0,负有理数组成全体有理数,C错误.3.14是小数,也是分数,小数是分数的一种表达形式,D正确.故选C.点评:认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.变式:2.下列四种说法:①0是整数;②0是自然数;③0是偶数;④0是非负数.其中正确的有()A.4个B.3个C.2个D.1个考点:有理数.分析:根据0的特殊规定和性质对各选项作出判断后选取答案,注意:2002年国际数学协会规定,零为偶数;我国2004年也规定零为偶数.解答:解:①0是整数,故本选项正确;②0是自然数,故本选项正确;③能被2整除的数是偶数,0可以,故本选项正确;④非负数包括正数和0,故本选项正确.所以①②③④都正确,共4个.故选A.点评:本题主要对0的特殊性的考查,熟练掌握是解题的关键.3.下列说法正确的是()A.零是最小的整数B.有理数中存在最大的数C.整数包括正整数和负整数D.0是最小的非负数考点:有理数.分析:根据有理数的分类进行判断即可.有理数包括:整数(正整数、0和负整数)和分数(正分数和负分数).解答:解:A、整数包括正整数、0、负整数,负整数小于0,且没有最小值,故A错误;B、有理数没有最大值,故B错误;C、整数包括正整数、0、负整数,故C错误;D、正确.故选D.点评:认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.4.把下面的有理数填在相应的大括号里:(★友情提示:将各数用逗号分开)15,,0,﹣30,0.15,﹣128,,+20,﹣2.6正数集合﹛15,0.15,,+20…﹜负数集合﹛,﹣30,﹣128,﹣2.6…﹜整数集合﹛15,0,﹣30,﹣128,+20…﹜分数集合﹛,0.15,,﹣2.6…﹜考点:有理数.分析:按照有理数的分类填写:有理数.解答:解:正数集合﹛15,0.15,,+20,﹜负数集合﹛,﹣30,﹣128,﹣2.6,﹜整数集合﹛15,0,﹣30,﹣128,+20,﹜分数集合﹛,0.15,,﹣2.6,﹜点评:认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.类型一:数轴选择题1.(2009•绍兴)将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“15cm”分别对应数轴上的﹣3.6和x,则()A.9<x<10 B.10<x<11 C.11<x<12 D.12<x<13考点:数轴.分析:本题图中的刻度尺对应的数并不是从0开始的,所以x对应的数要减去﹣3.6才行.解答:解:依题意得:x﹣(﹣3.6)=15,x=11.4.故选C.点评:注意:数轴上两点间的距离=右边的数减去左边的数.2.在数轴上,与表示数﹣1的点的距离是2的点表示的数是()A.1 B.3 C.±2 D.1或﹣3考点:数轴.分析:此题可借助数轴用数形结合的方法求解.在数轴上,与表示数﹣1的点的距离是2的点有两个,分别位于与表示数﹣1的点的左右两边.解答:解:在数轴上,与表示数﹣1的点的距离是2的点表示的数有两个:﹣1﹣2=﹣3;﹣1+2=1.故选D.点评:注意此类题应有两种情况,再根据“左减右加”的规律计算.3.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是()A.2002或2003 B.2003或2004 C.2004或2005 D.2005或2006考点:数轴.分析:某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数可能正好是2005个,也可能不是整数,而是有两个半数那就是2004个.解答:解:依题意得:①当线段AB起点在整点时覆盖2005个数;②当线段AB起点不在整点,即在两个整点之间时覆盖2004个数.故选C.点评:在学习中要注意培养学生数形结合的思想.本题画出数轴解题非常直观,且不容易遗漏,体现了数形结合的优点.4.数轴上的点A表示的数是+2,那么与点A相距5个单位长度的点表示的数是()A.5 B.±5 C.7 D.7或﹣3考点:数轴.分析:此题注意考虑两种情况:要求的点在已知点的左侧或右侧.解答:解:与点A相距5个单位长度的点表示的数有2个,分别是2+5=7或2﹣5=﹣3.故选D.点评:要求掌握数轴上的两点间距离公式的运用.在数轴上求到已知点的距离为一个定值的点有两个.5.如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C表示的数是()A.﹣0.5 B.﹣1.5 C.0 D.0.5考点:数轴.分析:根据数轴的相关概念解题.解答:解:∵数轴上的点A,B分别表示数﹣2和1,∴AB=1﹣(﹣2)=3.∵点C是线段AB的中点,∴AC=CB=AB=1.5,∴把点A向右移动1.5个单位长度即可得到点C,即点C表示的数是﹣2+1.5=﹣0.5.故选A.点评:本题还可以直接运用结论:如果点A、B在数轴上对应的数分别为x1,x2,那么线段AB的中点C表示的数是:(x1+x2)÷2.6.点M在数轴上距原点4个单位长度,若将M向右移动2个单位长度至N点,点N表示的数是()A.6 B.﹣2 C.﹣6 D.6或﹣2考点:数轴.分析:首先根据绝对值的意义“数轴上表示一个数的点到原点的距离,即为这个数的绝对值”,求得点M对应的数;再根据平移和数的大小变化规律,进行分析:左减右加.解答:解:因为点M在数轴上距原点4个单位长度,点M的坐标为±4.(1)点M坐标为4时,N点坐标为4+2=6;(2)点M坐标为﹣4时,N点坐标为﹣4+2=﹣2.所以点N表示的数是6或﹣2.故选D.点评:此题考查了绝对值的几何意义以及平移和数的大小变化规律.7.如图,A、B、C、D、E为某未标出原点的数轴上的五个点,且AB=BC=CD=DE,则点D所表示的数是()A.10 B.9 C.6 D.0考点:数轴.分析:A与E之间的距离已知,根据AB=BC=CD=DE,即可得到DE之间的距离,从而确定点D所表示的数.解答:解:∵AE=14﹣(﹣6)=20,又∵AB=BC=CD=DE,AB+BC+CD+DE=AE,∴DE=AE=5,∴D表示的数是14﹣5=9.故选B.点评:观察图形,求出AE之间的距离,是解决本题的关键.8.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是﹣3.考点:数轴.分析:此题可借助数轴用数形结合的方法求解.解答:解:设点A表示的数是x.依题意,有x+7﹣4=0,解得x=﹣3.点评:此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.9.已知在纸面上有一数轴(如图),折叠纸面.(1)若折叠后,数1表示的点与数﹣1表示的点重合,则此时数﹣2表示的点与数2表示的点重合;(2)若折叠后,数3表示的点与数﹣1表示的点重合,则此时数5表示的点与数﹣3表示的点重合;若这样折叠后,数轴上有A、B两点也重合,且A、B两点之间的距离为9(A在B的左侧),则A点表示的数为﹣3.5,B点表示的数为 5.5.考点:数轴.分析:(1)数1表示的点与数﹣1表示的点重合,则这两点关于原点对称,求出﹣2关于原点的对称点即可;(2)若折叠后,数3表示的点与数﹣1表示的点重合,则这两点一定关于1对称,即两个数的平均数是1,若这样折叠后,数轴上有A、B两点也重合,且A、B两点之间的距离为9(A在B的左侧),则这两点到1的距离是4.5,即可求解.解答:解:(1)2.(2)﹣3(2分);A表示﹣3.5,B表示5.5.点评:本题借助数轴理解比较直观,形象.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.10.如图,数轴上A、B两点,表示的数分别为﹣1和,点B关于点A的对称点为C,点C所表示的实数是﹣2﹣.考点:数轴.分析:点B到点A的距离等于点B的对称点C到点A的距离.解答:解:点B到点A的距离为:1+,则点C到点A的距离也为1+,设点C的坐标为x,则点A到点C的距离为:﹣1﹣x=1+,所以x=﹣2﹣.点评:点C为点B关于点A的对称点,则点C到点A的距离等于点B到点A的距离.两点之间的距离为两数差的绝对值.11.把﹣1.5,,3,﹣,﹣π,表示在数轴上,并把它们用“<”连接起来,得到:﹣π<﹣1.5<﹣<<3.考点:数轴.分析:把下列各数表示在数轴上,根据数轴上的数右边的数总是大于左边的数即可用“<”连接起来.解答:解:根据数轴可以得到:﹣π<﹣1.5<﹣<<3.点评:此题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.12.如图,数轴上的点A、O、B、C、D分别表示﹣3,0,2.5,5,﹣6,回答下列问题.(1)O、B两点间的距离是 2.5.(2)A、D两点间的距离是3.(3)C、B两点间的距离是 2.5.(4)请观察思考,若点A表示数m,且m<0,点B表示数n,且n>0,那么用含m,n的代数式表示A、B两点间的距离是n﹣m.考点:数轴.分析:首先由题中的数轴得到各点的坐标,坐标轴上两点的距离为两数坐标差的绝对值.解答:解:(1)B,O的距离为|2.5﹣0|=2.5(2)A、D两点间的距离|﹣3﹣(﹣6)|=3(3)C、B两点间的距离为:2.5(4)A、B两点间的距离为|m﹣n|=n﹣m.点评:数轴上两点的距离为两数的距离为两数的绝对值,两点的距离为一个正数.类型一:数轴1.若|a|=3,则a的值是±3.考点:绝对值.专题:计算题.分析:根据绝对值的性质求解.注意a值有2个答案且互为相反数.解答:解:∵|a|=3,∴a=±3.点评:考查了绝对值的性质.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8 B.2 C.8或﹣2 D.﹣8或2考点:绝对值;相反数.分析:首先根据相反数,绝对值的概念分别求出x、y的值,然后代入x+y,即可得出结果.解答:解:x的相反数是3,则x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.则x+y的值为﹣8或2.故选D.点评:此题主要考查相反数、绝对值的意义.绝对值相等但是符号不同的数是互为相反数.一个数到原点的距离叫做该数的绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.若=﹣1,则a为()A.a>0 B.a<0 C.0<a<1 D.﹣1<a<0考点:绝对值.分析:根据“一个负数的绝对值是它的相反数”求解.解答:解:∵=﹣1,∴|a|=﹣a,∵a是分母,不能为0,∴a<0.故选B.点评:绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.变式:4.﹣|﹣2|的绝对值是2.考点:绝对值.专题:计算题.分析:先计算|﹣2|=2,﹣|﹣2|=﹣2,所以﹣|﹣2|的绝对值是2.解答:解:﹣|﹣2|的绝对值是2.故本题的答案是2.点评:掌握绝对值的规律,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.5.已知a是有理数,且|a|=﹣a,则有理数a在数轴上的对应点在()A.原点的左边B.原点的右边C.原点或原点的左边D.原点或原点的右边考点:绝对值.分析:根据绝对值的性质判断出a的符号,然后再确定a在数轴上的位置.解答:解:∵|a|=﹣a,∴a≤0.所以有理数a在原点或原点的左侧.故选C.点评:此题主要考查绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.若ab>0,则++的值为()A.3 B.﹣1 C.±1或±3 D.3或﹣1考点:绝对值.分析:首先根据两数相乘,同号得正,得到a,b符号相同;再根据同正、同负进行分情况讨论.解答:解:因为ab>0,所以a,b同号.①若a,b同正,则++=1+1+1=3;②若a,b同负,则++=﹣1﹣1+1=﹣1.故选D.点评:考查了绝对值的性质,要求绝对值里的相关性质要牢记:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.该题易错点是分析a,b的符号不透彻,漏掉一种情况.类型一:有理数的大小比较1、如图,正确的判断是()A.a<-2 B.a>-1 C.a>b D.b>2考点:数轴;有理数大小比较.分析:根据数轴上点的位置关系确定对应点的大小.注意:数轴上的点表示的数右边的数总比左边的数大.解答:解:由数轴上点的位置关系可知a<-2<-1<0<1<b<2,则A、a<-2,正确;B、a>-1,错误;C、a>b,错误;D、b>2,错误.故选A.点评:本题考查了有理数的大小比较.用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.本题中要注意:数轴上的点表示的数右边的数总比左边的数大.2、比较1,-2.5,-4的相反数的大小,并按从小到大的顺序用“<”边接起来,为_______考点:有理数大小比较;数轴.分析:1,-2.5,-4的相反数分别是-1,2.5,4.根据数轴上右边的数总大于左边的数可排列出大小顺序.解答:解:1的相反数是-1,-2.5的相反数是2.5,-4的相反数是4.按从小到大的顺序用“<”连接为:-1<2.5<4.点评:由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.类型一:有理数的加法1.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c|等于()A.﹣1 B.0 C.1 D.2考点:有理数的加法.分析:先根据有理数的相关知识确定a、b、c的值,然后将它们代入a+b+|c|中求解.解答:解:由题意知:a=1,b=﹣1,c=0;所以a+b+|c|=1﹣1+0=0.故选B.点评:本题主要考查的是有理数的相关知识.最小的正整数是1,最大的负整数是﹣1,绝对值最小的有理数是0.类型二:有理数的加法与绝对值1.已知|a|=3,|b|=5,且ab<0,那么a+b的值等于()A.8 B.﹣2 C.8或﹣8 D.2或﹣2考点:绝对值;有理数的加法.专题:计算题;分类讨论.分析:根据所给a,b绝对值,可知a=±3,b=±5;又知ab<0,即ab符号相反,那么应分类讨论两种情况,a正b负,a负b正,求解.解答:解:已知|a|=3,|b|=5,则a=±3,b=±5;且ab<0,即ab符号相反,当a=3时,b=﹣5,a+b=3﹣5=﹣2;当a=﹣3时,b=5,a+b=﹣3+5=2.故选D.点评:本题考查绝对值的化简,正数的绝对值是其本身,负数的绝对值是它的相反数,0的绝对值是0.变式:2.已知a,b,c的位置如图,化简:|a﹣b|+|b+c|+|c﹣a|=﹣2a.考点:数轴;绝对值;有理数的加法.分析:先根据数轴上的大小关系确定绝对值符号内代数式的正负情况a﹣b<0,b+c<0,c﹣a>0,再根据绝对值的性质去掉绝对值符号进行有理数运算即可求解.注意:数轴上的点右边的总比左边的大.解答:解:由数轴可知a<c<0<b,所以a﹣b<0,b+c<0,c﹣a>0,则|a﹣b|+|b+c|+|c﹣a|=b﹣a﹣b﹣c+c﹣a=﹣2a.点评:此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.要注意先确定绝对值符号内代数式的正负情况,再根据绝对值的性质去掉绝对值符号进行有理数运算.类型一:正数和负数,有理数的加法与减法选择题1.某汽车厂上半年一月份生产汽车200辆,由于另有任务,每月上班人数不一定相等,上半年各月)A.205辆B.204辆C.195辆D.194辆考点:正数和负数;有理数的加法;有理数的减法.专题:应用题;图表型.分析:图表中的各数据都是和一月份比较所得,据此可求得上半年每月和第一月份产量的平均增减值,再加上一月份的产量,即可求得上半年每月的平均产量.解答:解:由题意得:上半年每月的平均产量为200+=195(辆).故选C.点评:此题主要考查正负数在实际生活中的应用.需注意的是表中没有列出一月份与一月份的增减值,有些同学在求平均值时往往忽略掉一月份,从而错误的得出答案D.2.某商店出售三种不同品牌的大米,米袋上分别标有质量如下表:)考点:正数和负数;有理数的减法.专题:图表型.分析:利用正负数的意义,求出每种品牌的质量的范围差即可.解答:解:A品牌的质量差是:0.1﹣(﹣0.1)=0.2kg;B品牌的质量差是:0.3﹣(﹣0.3)=0.6kg;C品牌的质量差是:0.2﹣(﹣0.2)=0.4kg.∴从中任意拿出两袋不同品牌的大米,选B品牌的最大值和C品牌的最小值,相差为0.3﹣(﹣0.2)=0.5kg,此时质量差最大.故选D.点评:理解标识的含义,理解“正”和“负”的相对性,确定一对具有相反意义的量,是解决本题的关键.3.﹣9,6,﹣3三个数的和比它们绝对值的和小24.考点:绝对值;有理数的加减混合运算.分析:根据绝对值的性质及其定义即可求解.解答:解:(9+6+3)﹣(﹣9+6﹣3)=24.答:﹣9,6,﹣3三个数的和比它们绝对值的和小24.点评:本题考查了绝对值的意义,任何一个数的绝对值一定是非负数,同时考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.4.已知a、b互为相反数,且|a﹣b|=6,则b﹣1=2或﹣4.考点:有理数的减法;相反数;绝对值.分析:由a、b互为相反数,可得a+b=0;由于不知a、b的正负,所以要分类讨论b的正负,才能利用|a﹣b|=6求b的值,再代入所求代数式进行计算即可.解答:解:∵a、b互为相反数,∴a+b=0即a=﹣b.当b为正数时,∵|a﹣b|=6,∴b=3,b﹣1=2;当b为负数时,∵|a﹣b|=6,∴b=﹣3,b﹣1=﹣4.故答案填2或﹣4.点评:本题主要考查了代数式求值,涉及到相反数、绝对值的定义,涉及到绝对值时要注意分类讨论思想的运用.5.一家饭店,地面上18层,地下1层,地面上1楼为接待处,顶楼为公共设施处,其余16层为客房;地面下1楼为停车场.(1)客房7楼与停车场相差7层楼;(2)某会议接待员把汽车停在停车场,进入该层电梯,往上14层,又下5层,再下3层,最后上6层,那么他最后停在12层;(3)某日,电梯检修,一服务生在停车场停好汽车后,只能走楼梯,他先去客房,依次到了8楼、接待处、4楼,又回接待处,最后回到停车场,他共走了22层楼梯.考点:正数和负数;有理数的加减混合运算.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:“正”和“负”相对,所以,若记地上为正,地下为负.由此做此题即可.故(1)7﹣(﹣1)﹣1=7(层),(2分)答:客房7楼与停车场相差7层楼.(2)14﹣5﹣3+6=12(层),(3分)答:他最后停在12层.(3)8+7+3+3+1=22(层),(3分)答:他共走了22层楼梯.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.6.某人用400元购买了8套儿童服装,准备以一定价格出售.他以每套55元的价格为标准,将超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2(单位:元)他卖完这八套儿童服装后是盈利,盈利或亏损了37元.考点:有理数的加减混合运算;正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.他以每套55元的价格出售,售完应得盈利5×8=40元,要想知道是盈利还是亏损,只要把他所记录的数据相加再与他应得的盈利相加即可,如果是正数,则盈利,是负数则亏损.解答:解:+2+(﹣3)+2+1+(﹣2)+(﹣1)+0+(﹣2)=﹣35×8+(﹣3)=37(元)答:他盈利了37元.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.类型一:有理数的乘法1.绝对值不大于4的整数的积是()A.16 B.0 C.576 D.﹣1考点:有理数的乘法;绝对值.专题:计算题.分析:先找出绝对值不大于4的整数,再求它们的乘积.解答:解:绝对值不大于4的整数有,0、1、2、3、4、﹣1、﹣2、﹣3、﹣4,所以它们的乘积为0.故选B.点评:绝对值的不大于4的整数,除正数外,还有负数.掌握0与任何数相乘的积都是0.2.五个有理数的积为负数,则五个数中负数的个数是()A.1 B.3 C.5 D.1或3或5考点:有理数的乘法.分析:多个有理数相乘的法则:几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.解答:解:五个有理数的积为负数,负数的个数是奇数个,则五个数中负数的个数是1、3、5.故选D.点评:本题考查了有理数的乘法法则.3.比﹣3大,但不大于2的所有整数的和为0,积为0.考点:有理数的乘法;有理数大小比较;有理数的加法.分析:根据题意画出数轴便可直接解答.解答:解:根据数轴的特点可知:比﹣3大,但不大于2的所有整数为:﹣2,﹣1,0,1,2.故其和为:(﹣2)+(﹣1)+0+1+2=0,积为:(﹣2)×(﹣1)×0×1×2=0.点评:由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.4.已知四个数:2,﹣3,﹣4,5,任取其中两个数相乘,所得积的最大值是12.考点:有理数的乘法.分析:由于有两个负数和两个正数,故任取其中两个数相乘,最大的数为正数,且这两个数同号.故任取其中两个数相乘,最大的数=﹣3×(﹣4)=12.解答:解:2,﹣3,﹣4,5,这四个数中任取其中两个数相乘,所得积的最大值=﹣3×(﹣4)=12.故本题答案为12.点评:几个不等于零的数相乘,积的符号由负因数的个数决定:当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正.类型一:倒数1.负实数a的倒数是()A.﹣a B .C .﹣D.a考点:倒数.分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数可知.解答:解:根据倒数的定义可知,负实数a的倒数是.故选B.点评:本题主要考查了倒数的定义.变式:2.﹣0.5的相反数是0.5,倒数是﹣2,绝对值是0.5.考点:倒数;相反数;绝对值.分析:根据相反数的定义,只有符号不同的两个数互为相反数.根据倒数的定义,互为倒数的两数积为1;正数的绝对值是其本身,负数的绝对值是它的相反数.解答:解:﹣0.5的相反数是0.5;﹣0.5×(﹣2)=1,因此﹣0.5的倒数是﹣2;﹣0.5是负数,它的绝对值是其相反数,为0.5.点评:本题主要考查相反数、倒数和绝对值的定义.要记住,正数的相反数是负数,负数的相反数是正数,0的相反数是本身.3.倒数是它本身的数是±1,相反数是它本身的数是0.考点:倒数;相反数.分析:根据相反数,倒数的概念可知.解答:解:倒数是它本身的数是±1,相反数是它本身的数是0.点评:主要考查相反数,倒数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.类型二:有理数的除法1.下列等式中不成立的是()A.﹣B.=C.÷1.2÷D.考点:有理数的除法;有理数的减法.分析:A、先化简绝对值,再根据有理数减法法则计算;B、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,据此判断;C、根据有理数除法法则判断;D、根据有理数除法法则判断.解答:解:A、原式=﹣=,选项错误;B、等式成立,所以选项错误;C、等式成立,所以选项错误;D 、,所以不成立,选项正确.故选D.点评:本题主要考查了有理数的减法和除法法则.减法、除法可以分别转化成加法和乘法,乘方是利用乘法法则来定义的,所以有理数混合运算的关键是加法和乘法.加法和乘法的法则都包括符号和绝对值两部分,同学在计算中要学会正确确定结果的符号,再进行绝对值的运算.变式:2.甲小时做16个零件,乙小时做18个零件,那么()A.甲的工作效率高B.乙的工作效率高C.两人工作效率一样高D.无法比较考点:有理数的除法.专题:应用题.分析:根据工作效率=工作总量÷工作时间,先分别求出甲、乙二人的工作效率,再进行比较.解答:解:甲小时做16个零件,即16÷=24;乙小时做18个零件,即18=24.故工作效率一样高.故选C.点评:本题是一道工程问题的应用题,较简单.基本关系式为:工作总量=工作效率×工作时间.类型一:有理数的乘方选择题1.下列说法错误的是()A.两个互为相反数的和是0 B.两个互为相反数的绝对值相等C.两个互为相反数的商是﹣1 D.两个互为相反数的平方相等考点:相反数;绝对值;有理数的乘方.分析:根据相反数的相关知识进行解答.解答:解:A、由相反数的性质知:互为相反数的两个数相加等于0,正确;B、符号不同,绝对值相等的两个数互为相反数,正确;C、0的相反数是0,但0不能做除数,所以0与0的商也不可能是﹣1,错误;D、由于互为相反数的绝对值相等,所以它们的平方也相等,正确.故选C.点评:此题主要考查了相反数的定义和性质;定义:符号不同,绝对值相等的两个数互为相反数;性质:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.。
7年级数学易错题整理及解析
7年级数学易错题整理及解析一、有理数运算部分1. 计算:公式解析:首先计算指数运算,根据运算法则,先算乘方。
对于公式,这里要注意指数运算优先级高于负号,所以公式。
对于公式,公式。
然后进行除法运算:公式。
最后进行减法运算:公式。
2. 计算:公式解析:先计算括号内的式子:公式。
再计算除法:公式。
接着计算乘方:公式。
然后计算乘法:公式。
最后计算加法:公式。
二、整式加减部分1. 化简:公式解析:合并同类项,对于公式的同类项公式和公式,公式。
对于公式的同类项公式和公式,公式。
所以化简结果为公式。
2. 先化简,再求值:公式,其中公式解析:先去括号:公式。
然后合并同类项:公式。
当公式时,代入式子得:公式。
三、一元一次方程部分1. 解方程:公式解析:首先去分母,方程两边同时乘以公式(公式和公式的最小公倍数),得到:公式。
然后去括号:公式。
接着移项:公式。
合并同类项:公式。
最后系数化为公式:公式。
2. 某班有学生公式人,会下象棋的人数是会下围棋人数的公式倍,两种棋都会及两种棋都不会的人数都是公式人,求只会下围棋的人数。
解析:设会下围棋的有公式人,则会下象棋的有公式人。
根据全班人数可列方程:公式。
这里公式是会下棋的人数(其中两种棋都会的人算了两次,所以要减去一次),再加上两种棋都不会的人数就是全班人数。
合并同类项得公式,解得公式。
只会下围棋的人数为会下围棋的人数减去两种棋都会下的人数,即公式人。
七年级上册数学易错题精选及讲解答案
七年级上册数学易错题精选及讲解答案集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#有理数部分1.填空:(1)当a________时,a与-a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是________;(3)在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是_______.错解 (1)a为任何有理数;(2)+5;(3)+3;(4)-6.2.用“有”、“没有”填空:在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.错解有,有,没有.3.用“都是”、“都不是”、“不都是”填空:(1)所有的整数________负整数;(2)小学里学过的数________正数;(3)带有“+”号的数________正数;(4)有理数的绝对值________正数;(5)若|a|+|b|=0,则a,b________零;(6)比负数大的数________正数.错解 (1)都不是;(2)都是;(3)都是;(4)都是;(5)不都是;(6)都是.4.用“一定”、“不一定”、“一定不”填空:(1)-a________是负数;(2)当a>b时,________有|a|>|b|;(3)在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数;(4)|x|+|y|________是正数;(5)一个数________大于它的相反数;(6)一个数________小于或等于它的绝对值;错解 (1)一定;(2)一定;(3)一定不;(4)一定;(5)一定;(6)不一定.5.把下列各数从小到大,用“<”号连接:并用“>”连接起来.8.填空:(1)如果-x=-(-11),那么x=________;(2)绝对值不大于4的负整数是________;(3)绝对值小于而大于3的整数是________.错解 (1)11;(2)-1,-2,-3;(3)4.9.根据所给的条件列出代数式:(1)a,b两数之和除a,b两数绝对值之和;(2)a与b的相反数的和乘以a,b两数差的绝对值;(3)一个分数的分母是x,分子比分母的相反数大6;(4)x,y两数和的相反数乘以x,y两数和的绝对值.10.代数式-|x|的意义是什么错解代数式-|x|的意义是:x的相反数的绝对值.11.用适当的符号(>、<、≥、≤)填空:(1)若a是负数,则a________-a;(2)若a是负数,则-a_______0;(3)如果a>0,且|a|>|b|,那么a________ b.错解 (1)>;(2)<;(3)<.12.写出绝对值不大于2的整数.错解绝对值不大2的整数有-1,1.13.由|x|=a能推出x=±a吗错解由|x|=a能推出x=±a.如由|x|=3得到x=±3,由|x|=5得到x=±5.14.由|a|=|b|一定能得出a=b吗错解一定能得出a=b.如由|6|=|6|得出6=6,由|-4|=|-4|得-4=-4.15.绝对值小于5的偶数是几错解绝对值小于5的偶数是2,4.16.用代数式表示:比a的相反数大11的数.错解-a-11.17.用语言叙述代数式:-a-3.错解代数式-a-3用语言叙述为:a与3的差的相反数.18.算式-3+5-7+2-9如何读错解算式-3+5-7+2-9读作:负三、正五、减七、正二、减九.19.把下列各式先改写成省略括号的和的形式,再求出各式的值.(1)(-7)-(-4)-(+9)+(+2)-(-5);(2)(-5)-(+7)-(-6)+4.解(1)(-7)-(-4)-(+9)+(+2)-(-5)=-7-4+9+2-5=-5;(2)(-5)-(+7)-(-6)+4=5-7+6-4=8.20.计算下列各题:(2)5-|-5|=10;21.用适当的符号(>、<、≥、≤)填空:(1)若b为负数,则a+b________a;(2)若a>0,b<0,则a-b________0;(3)若a为负数,则3-a________3.错解 (1)>;(2)≥;(3)≥.22.若a为有理数,求a的相反数与a的绝对值的和.错解-a+|a|=-a+a=0.23.若|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.错解由|a|=4,得a=±4;由|b|=2,得b=±2.当a=4,b=2时,a-b=2;当a=4,b=-2时,a-b=6;当a=-4,b=2时,a-b=-6;当a=-4,b=-2时,a-b=-2.24.列式并计算:-7与-15的绝对值的和.错解 |-7|+|-15|=7+15=22.25.用简便方法计算:26.用“都”、“不都”、“都不”填空:(1)如果ab≠0,那么a,b________为零;(2)如果ab>0,且a+b>0,那么a,b________为正数;(3)如果ab<0,且a+b<0,那么a,b________为负数;(4)如果ab=0,且a+b=0,那么a,b________为零.错解 (1)不都;(2)不都;(3)都;(4)不都.27.填空:(3)a,b为有理数,则-ab是_________;(4)a,b互为相反数,则(a+b)a是________.错解 (1)负数;(2)正数;(3)负数;(4)正数.28.填空:(1)如果四个有理数相乘,积为负数,那么负因数个数是________;错解 (1)3;(2)b>0.29.用简便方法计算:解30.比较4a和-4a的大小:错解因为4a是正数,-4a是负数.而正数大于负数,所以4a>-4a.31.计算下列各题:(5)-15×12÷6×5.解=-48÷(-4)=12;(5)-15×12÷6×5错解因为|a|=|b|,所以a=b.=1+1+1=3.34.下列叙述是否正确若不正确,改正过来.(1)平方等于16的数是(±4)2;(2)(-2)3的相反数是-23;错解 (1)正确;(2)正确;(3)正确.35.计算下列各题;(1)-;(2)2×32.解36.已知n为自然数,用“一定”、“不一定”或“一定不”填空:(1)(-1)n+2________是负数;(2)(-1)2n+1________是负数;(3)(-1)n+(-1)n+1________是零.错解 (1)一定不;(2)不一定;(3)一定不.37.下列各题中的横线处所填写的内容是否正确若不正确,改正过来.(1)有理数a的四次幂是正数,那么a的奇数次幂是负数;(2)有理数a与它的立方相等,那么a=1;(3)有理数a的平方与它的立方相等,那么a=0;(4)若|a|=3,那么a3=9;(5)若x2=9,且x<0,那么x3=27.38.用“一定”、“不一定”或“一定不”填空:(1)有理数的平方________是正数;(2)一个负数的偶次幂________大于这个数的相反数;(3)小于1的数的平方________小于原数;(4)一个数的立方________小于它的平方.错解 (1)一定;(2)一定;(3)一定;(4)一定不.39.计算下列各题:(1)(-3×2)3+3×23;(2)-24-(-2)4;(3)-2÷(-4)2;解(1)(-3×2)3+3×23=-3×23+3×23=0;(2)-24-(-2)4=0;40.用科学记数法记出下列各数:.000034.错解.14×106;(2)=×10-4.41.判断并改错(只改动横线上的部分):(1)用四舍五入得到的近似数有4个有效数字.(2)用四舍五入法,把精确到千分位的近似数是.(3)由四舍五入得到的近似数和是一样的.(4)由四舍五入得到的近似数万,它精确到十分位.42.改错(只改动横线上的部分):(1)已知=,那么=,=;(2)已知=,那么=4097,=;(3)已知=,那么2=116300;(4)近似数×104精确到百分位,它的有效数字是2,4;(5)已知=,x3=,则x=.有理数·错解诊断练习正确答案1.(1)不等于0的有理数;(2)+5,-5;(3)-2,+4;(4)6.2.(1)没有;(2)没有;(3)有.3.(1)不都是;(2)不都是;(3)不都是;(4)不都是;(5)都是;(6)不都是.原解错在没有注意“0”这个特殊数(除(1)、(5)两小题外).4.(1)不一定;(2)不一定;(3)不一定;(4)不一定;(5)不一定;(6)一定.上面5,6,7题的原解错在没有掌握有理数特别是负数大小的比较.8.(1)-11;(2)-1,-2,-3,-4;(3)4,-4.10.x绝对值的相反数.11.(1)<;(2)>;(3)>.12.-2,-1,0,1,2.13.不一定能推出x=±a,例如,若|x|=-2.则x值不存在.14.不一定能得出a=b,如|4|=|-4|,但4≠-4.15.-2,-4,0,2,4.16.-a+11.17.a的相反数与3的差.18.读作:负三、正五、负七、正二、负九的和,或负三加五减七加二减九.19.(1)原式=-7+4-9+2+5=-5;(2)原式=-5-7+6+4=-2.21.<;>;>.22.当a≥0时,-a+|a|=0,当a<0时,-a+|a|=-2a.23.由|a+b|=a+b知a+b≥0,根据这一条件,得a=4,b=2,所以a-b=2;a=4,b=-2,所以a-b=6.24.-7+|-15|=-7+15=8.26.(1)都不;(2)都;(3)不都;(4)都.27.(1)正数、负数或零;(2)正数、负数或零;(3)正数、负数或零;(4)0.28.(1)3或1;(2)b≠0.30.当a>0时,4a>-4a;当a=0时,4a=-4a;当a<0时,4a<-4a.(5)-150.32.当b≠0时,由|a|=|b|得a=b或a=-b,33.由ab>0得a>0且b>0,或a<0且b<0,求得原式值为3或-1.34.(1)平方等于16的数是±4;(2)(-2)3的相反数是23;(3)(-5)100.36.(1)不一定;(2)一定;(3)一定.37.(1)负数或正数;(2)a=-1,0,1;(3)a=0,1;(4)a3=±27;(5)x3=-27.38.(1)不一定;(2)不一定;(3)不一定;(4)不一定.40.(1)×108;(2)×10-5.41.(1)有3个有效数字;(2);(3)不一样;(4)千位.42.(1)2536,;(2)409700,;(3)341;(4)百位,有效数字2,4,0;(5).整式的加减例1 下列说法正确的是()A. 的指数是0B. 没有系数C. -3是一次单项式D. -3是单项式分析:正确答案应选D。
华师大版七年级上有理数难题易错题 打印 2
《有理数》提高题5、|2131-|++-+-|4151||3141|…|2011120121-|类型三 比较大小(数轴上可特值法)例:有理数a 、b 在数轴上的位置如图所示,则下列结论中,正确的是( )A 、a+b >a >b >a-bB 、a >a+b >b >a-bC 、a-b >a >b >a+bD 、a-b >a >a+b >b练习 1、如果a 、b 均为有理数,且b <0,则a 、a-b 、a+b 的大小关系。
( )A 、a <a+b <a-bB 、a <a-b <a+bC 、a+b <a <a-bD 、a-b <a+b <b2、有理数a 、b 在数轴上的对应点的位置如图所示,用不等号把a 、b 、-a 、-b 连接起来:________________________3、如图b a ,为数轴上的两点表示的有理数,在a b b a a b b a ---+,,2,中,负数的个数有( ) A .1 B .2 C .3 D .44、已知0,0<>b a且0<+b a ,那么有理数b a b a ,,,-的大小关系是 。
(用“<”号连接) 5、若0,0><n m 且n m >,比较m n n m n m n m --+--,,,,的大小,并用“>”号连接。
6、有理数c b a ,,在数轴上的位置如图所示,化简式子-3c b b a b a -++++7、有理数c b a ,,在数轴上的位置如图所示,化简-2c c a b b a ------+118、已知有理数c b a ,,在数轴上的对应的位置如下图:化简-3b a c a c -+-+-1的结果 O a b O a b -11c O a b 1c O a b -1c。
完整)七年级上册数学易错题精选
完整)七年级上册数学易错题精选有理数部分1.填空:1) 当a为负数时,a与-a必有一个是负数;2) 在数轴上,与原点相距5个单位长度的点所表示的数是正数5或负数-5;3) 在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是正数4或负数-2;4) 在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是6.2.用“有”、“没有”填空:在有理数集合里,有最大的负数,没有最小的正数,没有绝对值最小的有理数.3.用“都是”、“都不是”、“不都是”填空:1) 所有的整数都不是负整数;2) 小学里学过的数不都是正数;3) 带有“+”号的数都是正数;4) 有理数的绝对值都是正数;5) 若|a|+|b|=0,则a,b都是零;6) 比负数大的数都是正数.4.用“一定”、“不一定”、“一定不”填空:1) -a一定是负数;2) 当a>b时,不一定有|a|>|b|;3) 在数轴上的任意两点,距原点较近的点所表示的数一定大于距原点较远的点所表示的数;4) |x|+|y|一定是正数;5) 一个数一定大于它的相反数;6) 一个数一定小于或等于它的绝对值;5.把下列各数从小到大,用“<”号连接:-3 < -2 < -1 <0 < 1 < 2 < 3并用“>”连接起来:3 > 2 > 1 > 0 > -1 > -2 > -38.填空:1) 如果-x=11,那么x=-11;2) 绝对值不大于4的负整数是-4,-3,-2,-1,0;3) 绝对值小于4.5而大于3的整数是4.9.根据所给的条件列出代数式:1) (a+b)/(|a|+|b|);2) -(a+b)*(|a-b|);3) (x+6)/x;4) -(x+y)*(|x+y|).10.代数式|x|的意义是什么?正确解:代数式|x|的意义是x的绝对值。
11.用适当的符号(>、<、≥、≤)填空:1)若a是负数,则a<-a;2)若a是负数,则-a<0;3)如果a>0,且|a|>|b|,那么a>b.12.写出绝对值不大于2的整数。
华师版七年级数学上册易错题分析(含答案)
易错题精讲分析有理数部分1. 填空:⑴当a _______ 寸,a与一a必有一个是负数;(2) 在数轴上,与原点0相距5个单位长度的点所表示的数是__________ ;(3) 在数轴上,a点表示+ 1,与a点距离3个单位长度的点所表示的数是 ___________ ;(4) 在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是错解⑴a为任何有理数;⑵+ 5; (3) + 3;⑷—6.2. 用“有”、“没有”填空:在有理数集合里, ________ 大的负数, _________ 小的正数,__________ 绝对值最小的有理数.错解有,有,没有.3. 用“都是”、“都不是”、“不都是”填空:(1) _________________ 所有的整数整数;⑵小学里学过的数 _________ 数;⑶带有“ + ”号的数 _________ 数;⑷有理数的绝对值________ 数;⑸若|a| + |b|=0,则a,b _________ ;⑹比负数大的数 __________ 数.错解(1)都不是;⑵都是;(3)都是;⑷都是;(5)不都是;⑹都是.4. 用“一定”、“不一定”、“一定不”填空:(1)— a ______ 负数;⑵当a>b 时, _________ 有|a| >|b| ;(3) 在数轴上的任意两点,距原点较近的点所表示的数__________ 于距原点较远的点所表示的数;(4) |x| + |y| ________ 是正数;(5) 一个数________ 于它的相反数;(6) 一个数________ 小于或等于它的绝对值;错解(1) 一定;⑵一定;(3) —定不;⑷一定;(5) —定;⑹不一定.5•把下列各数从小到大,用“V”号连接:并用“〉”连接起来.8. 填空:(1) 如果—x= —( —11),那么x= _____ ;(2) 绝对值不大于4的负整数是__________ ;(3) 绝对值小于4. 5而大于3的整数是__________ .错解(1)11 ;(2) —1,—2,—3;(3)4 .9. 根据所给的条件列出代数式:(1) a,b两数之和除a,b两数绝对值之和;(2) a与b的相反数的和乘以a,b两数差的绝对值;(3) 一个分数的分母是x,分子比分母的相反数大6;⑷x,y两数和的相反数乘以x,y两数和的绝对值.10. 代数式一凶的意义是什么?错解代数式-|x|的意义是:x的相反数的绝对值.11. 用适当的符号(>、v、》、w )填空:(1) ______________________ 若a是负数,贝U a —a;⑵若a是负数,则一a _______ 0;⑶如果a>0,且|a| >|b|,那么a ____________ b .错解(1) >; (2) v;(3) v.12 .写出绝对值不大于2的整数.错解绝对值不大2的整数有—1,1.13. 由|x|=a能推出x=±a吗?错解由|x|=a能推出x=±a.如由|x|=3得到x=±3,由|x|=5得到x=±5. 14. 由|a|=|b| —定能得出a=b吗?错解一定能得出a=b.如由|6|=|6|得出6=6,由| —4|=| —4|得一4= —4.15 .绝对值小于5的偶数是几?错解绝对值小于5的偶数是2, 4.16. 用代数式表示:比a的相反数大11的数.错解—a—11.17. 用语言叙述代数式:—a—3.错解代数式—a —3用语言叙述为:a与3的差的相反数.18 .算式—3+ 5 —7 + 2—9如何读?错解算式—3+ 5—7+ 2 —9读作:负三、正五、减七、正二、减九.19. 把下列各式先改写成省略括号的和的形式,再求出各式的值.(1) ( —7) —( —4) —( + 9) + ( + 2) —( —5);(2) ( —5) —( + 7) —( —6) + 4.解(1) ( —7) —( —4) —( + 9) + ( + 2) —( —5)=—7 —4+ 9+ 2 —5= —5;(2) ( —5) —( + 7) —( —6) + 4 =5—7+ 6 —4=8.20. 计算下列各题:(2) 5 - | - 5|=10 ;21•用适当的符号(>、v、》、w )填空:(1) _________________________ 若b为负数,贝U a+ b a⑵若a>0, b v0,则a-b ____________ 0;⑶若a为负数,贝U 3-a _______ 3错解(1) >;⑵>;(3) >.22 •若a为有理数,求a的相反数与a的绝对值的和.错解—a+ |a|= —a+ a=0.23. 若|a|=4 , |b|=2,且|a + b|=a + b,求a-b 的值.错解由|a|=4,得a=±4;由|b|=2,得b=± 2.当a=4,b=2 时,a- b=2;当a=4,b=- 2 时,a- b=6;当a=-4,b=2时,a-b=-6;当a=- 4,b=-2 时,a- b=-2.24 .列式并计算:—7与—15的绝对值的和.错解| —7| + | - 15|=7 + 15=22.25. 用简便方法计算:26. 用“都”、“不都”、“都不”填空:(1)如果ab M 0,那么a,b为零;⑵如果ab>0,且a+ b>0,那么a, b为正数;⑶如果ab v0,且a+ b v0,那么a, b为负数;⑷如果ab=0,且a+ b=0,那么a,b为零.错解(1)不都;⑵不都;(3)都;⑷不都.27. 填空:⑶a , b为有理数,则—ab是__________ ;⑷a , b互为相反数,则(a + b)a是__________ .错解⑴负数;⑵正数;(3)负数;⑷正数.28. 填空:(1)如果四个有理数相乘,积为负数,那么负因数个数是___________ ; 错解(1)3 ;(2)b > 0.29. 用简便方法计算:解30 .比较4a和—4a的大小:错解因为4a是正数,—4a是负数.而正数大于负数,所以4a> —4a.31. 计算下列各题:⑸一15X 12-6X 5.解=—48-( —4)=12 ;(5) —15X 12-6X5错解因为|a|=|b| ,所以a=b.=1 + 1 + 仁3.34. 下列叙述是否正确?若不正确,改正过来.(1) 平方等于16的数是(土4)2 ;(2) ( —2)3的相反数是一23;错解(1)正确;⑵正确;(3)正确.35. 计算下列各题;⑴一0. 752; (2)2 X 32.解36. 已知n为自然数,用“一定”、“不一定”或“一定不”填空:(1) ( —1)n + 2 ______ 负数;(2) ( —1)2n + 1 ______ 负数;(3) ( —1)n + ( —1)n + 1 ____ 零.错解(1) 一定不;⑵不一定;(3) —定不.37. 下列各题中的横线处所填写的内容是否正确?若不正确,改正过来.(1)有理数a的四次幕是正数,那么a的奇数次幕是负数;⑵有理数a与它的立方相等,那么a=1;⑶有理数a的平方与它的立方相等,那么a=0;⑷若|a|=3,那么a3=9;⑸若x2=9,且x v 0,那么x3=27.38. 用“一定”、“不一定”或“一定不”填空:(1) 有理数的平方________ 正数;(2) 一个负数的偶次幕________ 于这个数的相反数;⑶小于1的数的平方__________小于原数;(4) 一个数的立方________ 小于它的平方.错解(1) 一定;⑵一定;(3) —定;⑷一定不.39. 计算下列各题:(1)( —3X 2)3 + 3X 23;(2) —24 —( —2)4 ;(3) —2 宁(—4)2 ;解(1)( —3X 2)3 + 3X 23=—3X 23+ 3X 23=0;(2) —24 - ( —2)4=0 ;40 •用科学记数法记出下列各数:(1) 314000000 ; (2)0.000034.错解(1)314000000=3 . 14X 106;(2) 0 . 000034=3 4X 10—4.41.判断并改错(只改动横线上的部分):(1) 用四舍五入得到的近似数0. 0130有4个有效数字.(2) 用四舍五入法,把0.63048精确到千分位的近似数是0. 63.⑶由四舍五入得到的近似数3. 70和3. 7是一样的.(4) 由四舍五入得到的近似数4.7万,它精确到十分位.42 .改错(只改动横线上的部分):(1)已知5. 0362=25 36,那么50. 362=253. 6, 0. 050362=0. 02536;⑵已知7.4273=409 7,那么74. 273=4097, 0. 074273=0. 04097;⑶已知 3. 412=11.63,那么(34. 1)2=116300;⑷近似数2. 40X 104精确到百分位,它的有效数字是2, 4;⑸已知 5.4953=165 9, x3=0. 0001659,则x=0. 5495.有理数•错解诊断练习正确答案1. (1)不等于0 的有理数;(2) + 5,—5; (3) —2,+ 4; (4)6 .2. (1)没有;(2)没有;(3)有.3. (1)不都是;⑵ 不都是;(3)不都是;⑷ 不都是;(5)都是;⑹ 不都是.原解错在没有注意“ 0”这个特殊数(除(1)、(5)两小题外)•4. (1)不一定;⑵ 不一定;(3)不一定;⑷ 不一定;(5)不一定;⑹一定.上面5, 6, 7题的原解错在没有掌握有理数特别是负数大小的比较.8 (1) - 11;(2) - 1,- 2,—3,—4;(3)4,- 4.10. x绝对值的相反数.11. (1) V;(2) >;(3) >.12. - 2,- 1, 0, 1, 2.13. 不一定能推出x=± a,例如,若|x|= —2 .则x值不存在.14 .不一定能得出a=b,如|4|=| —4|,但4工一4.15. —2, —4, 0, 2, 4.16. —a+ 11.17. a的相反数与3的差.18. 读作:负三、正五、负七、正二、负九的和,或负三加五减七加二减九.19. (1)原式=—7+ 4—9 + 2 + 5=—5;(2) 原式=—5 —7 + 6 + 4=—2.21 .V;>;>.22. 当a>0 时,一a+ |a|=0,当a v 0 时,一a+ |a|= —2a.23. 由|a + b|=a + b 知a+ b>0,根据这一条件,得a=4, b=2,所以a—b=2;a=4, b= —2,所以a—b=6.24. —7+ | —15|= —7+ 15=8.26. (1)都不;⑵都;(3)不都;⑷都.27. (1)正数、负数或零;(2)正数、负数或零;(3) 正数、负数或零;(4)0 .28. (1)3 或1;(2)b 工0.30 .当a> 0 时,4a> —4a;当a=0 时,4a=—4a;当a v 0 时,4a v —4a.⑸一150.32. 当b^0 时,由|a|=|b| 得a=b或a=—b,33. 由ab>0得a>0且b>0,或a v0且b v 0,求得原式值为3或—1.34. (1)平方等于16的数是土4; (2)( —2)3的相反数是23;⑶(一5)100 .36. (1)不一定;⑵一定;(3) —定.37. (1)负数或正数;(2)a= —1,0,1;(3)a=0,1;(4)a3 =± 27;(5)x3 = —27.38. (1)不一定;⑵不一定;(3)不一定;⑷不一定.40. (1)3 . 14X 108;(2)3.4X 10-5 .41. (1)有3个有效数字;(2)0 . 630;⑶不一样;⑷千位.42. (1)2536,0.002536;⑵409700, 0. 0004097;(3)341 ;⑷百位,有效数字2,4, 0;(5)0 . 05495.整式的加减例1 下列说法正确的是( )a. 的指数是0b.没有系数c. —3是一次单项式d. —3是单项式分析:正确答案应选d o这道题主要是考查学生对单项式的次数和系数的理解。
华师版七年级上册数学易错题及分析大全
华师版七年级上册数学易错题及分析大全第一章有理数1.2有理数类型一:正数和负数1.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹛10吨粮食D.下降的反义词是上升2.下列具有相反意义的量是()A.前进与后退B.胜3局与负2局C.气温升高3℃与气温为﹛3℃D.盈利3万元与支出2万元类型二:有理数1.下列说法错误的是()A.负整数和负分数统称负有理数C.正有理数与负有理数组成全体有理数B.正整数。
负整数统称为整数D.3.14是小数,也是分数变式:2.下列四种说法:①是整数;②是自然数;③是偶数;④是非负数.其中正确的有()A.4个B.3个C.2个D.1个3.下列说法正确的是()A.零是最小的整数B.有理数中存在最大的数C.整数包孕正整数和负整数D.是最小的非负数4.把上面的有理数填在响应的大括号里:(★友谊提醒:将各数用逗号分隔)15.﹛30,0.15,﹛128.+20,﹛2.6 …………正数集合﹛﹛负数调集﹛﹛整数集合﹛﹛分数集合﹛﹛1.3数轴选择题1.(2009•绍兴)将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“15cm”分别对应数轴上的﹛3.6和x,则()A.9<x<10B.10<x<11XXX<x<12D.12<x<132.在数轴上,与表示数﹛1的点的间隔是2的点表示的数是()A.1B.3C.±2D.1或﹛3 3.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是()A.2002或2003B.2003或2004C.2004或2005D.2005或20064.数轴上的点A表示的数是+2,那么与点A相距5个单位长度的点表示的数是()A.5B.±5C.7D.7或﹛35.如图,数轴上的点A,B划分表示数﹛2和1,点C是线段AB的中点,则点C表示的数是()A.﹛0.5B.﹛1.5C.D.0.56.点M在数轴上距原点4个单位长度,若将M向右移动2个单位长度至N点,点N表示的数是()A.6B.﹛2C.﹛6D.6或﹛27.如图,A、B、C、D、E为某未标出原点的数轴上的五个点,且AB=BC=CD=DE,则点D所表示的数是()A.10B.9C.6D.填空题8.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是.解答题9.已知在纸面上有一数轴(如图),折叠纸面.(1)若折叠后,数1表示的点与数﹛1表示的点重合,则此时数﹛2表示的点与数表示的点重合;(2)若折叠后,数3表示的点与数﹛1表示的点重合,则此时数5表示的点与数表示的点重合;若这样折叠后,数轴上有A、B两点也重合,且A、B两点之间的距离为9(A在B的左侧),则A点表示的数为,B点表示的数为.10.如图,数轴上A、B两点,表示的数分别为﹛1,点B关于点A的对称点为C,点C所表示的实数是.11.把﹛1.5.3,﹛,﹛π,表示在数轴上,并把它们用“<”连接起来,得到:.12.如图,数轴上的点A、O、B、C、D划分表示﹛3.2.5,5,﹛6,回覆以下问题.(1)O、B两点间的间隔是.(2)A、D两点间的距离是.(3)C、B两点间的距离是.(4)请观察思考,若点A表示数m,且m<,点B表示数n,且n>,那么用含m,n的代数式表示A、B两点间的距离是.1.4绝对值类型一:数轴1.若|a|=3,则a的值是.2.若x的相反数是3,|y|=5,则x+y的值为(A.﹛8B.2C.8或﹛22=﹛1,则a为(A.a>B.a<)C.<a<1D.﹛1<a<)D.﹛8或变式:4.﹛|﹛2|的绝对值是.5.a是有理数,且|a|=﹛a,则有理数a在数轴上的对应点在(A.原点的左侧B.原点的右侧C.原点或原点的左侧D.原点或原点的右侧6.若A.3【发觉易错点】++的值为(B.﹛1C.±1或±3)D.3或﹛1)【深思及感悟】1.5有理数的大小比较类型一:有理数的大小比较1、如图,正确的判断是()A.a<-2B.a>-1C.a>bD.b>22、比较1,-2.5,-4的相反数的大小,并按从小到大的顺序用“<”边接起来,为【发现易错点】【深思及感悟】第二章2.1有理数的加法类型一:有理数的加法有理数的运算1.已知a是最小的正整数,b是最大的负整数,c 是绝对值最小的有理数,那么a+b+|c|等于()A.﹛1B.C.1D.2类型二:有理数的加法与绝对值1.|a|=3,|b|=5,且ab<,那么a+b的值即是(A.8B.﹛2C.8或﹛8D.2或﹛2)变式:2.已知a,b,c的位置如图,化简:|a﹛b|+|b+c|+|c﹛a|=.2.2有理数的减法选择题1.某汽车厂上半年一月份生产汽车200辆,由于另有任务,每月上班人数不一定相等,上半年各月与一月份的生产量比较如下表(增加为正,减少为负).则上半年每月的平均产量为()月份二三﹛9四﹛13五+8六﹛11增减(辆)﹛5A.205辆B.204辆C.195辆D.194辆2.某市肆出卖三种分歧品牌的大米,米袋上划分标有质量以下表:现从中随便拿出两袋分歧品牌的大米,这两袋大米的质量最多相差(大米品种质量标示A品牌大米B品牌大米C品牌大米(10±0.2)XXX(10±0.1)(10±0.3)XXXA.0.8kgB.0.6kgC.0.4kgD.0.5kg)填空题3.﹛9,6,﹛3三个数的和比它们绝对值的和小4.a、b互为相反数,且|a﹛b|=6,则b﹛1=..解答题5.一家饭铺,空中上18层,公开1层,空中上1楼为欢迎处,顶楼为大众办法处,别的16层为客房;空中下1楼为泊车场.(1)客房7楼与停车场相差层楼;(2)某集会欢迎员把汽车停在泊车场,进入该层电梯,往上14层,又下5层,再下3层,最后上6层,那么他最后停在层;(3)某日,电梯检验,一服务生在泊车场停好汽车后,只能走楼梯,他先去客房,依次到了8楼、欢迎处、4楼,又回欢迎处,最后回到泊车场,他共走了层楼梯.6.或人用400元采办了8套儿童服装,准备以肯订代价出卖.他以每套55元的代价为尺度,将超出的记作正数,缺乏的记作负数,记录以下:+2,﹛3,+2,+1,﹛2,﹛1.﹛2(单位:元)他卖完这八套儿童服装后是,红利或吃亏了元.2.3有理数的乘法1.绝对值不大于4的整数的积是()A.16B.C.576.D.﹛1【发现易错点】【深思及感悟】变式:2.五个有理数的积为负数,则五个数中负数的个数是()A.1B.3C.5D.1或3或53.比﹛3大,但不大于2的一切整数的和为,积为.4.四个数:2,﹛3,﹛4,5,任取个中两个数相乘,所得积的最大值是.【发觉易错点】【反思及感悟】2.4有理数的除法类型一:倒数1.负实数a的倒数是(A.﹛a变式:2.﹛0.5的相反数是3.倒数是它本身的数是,倒数是,绝对值是。
七年级数学上册乘除混合运算易错题
七年级数学上册乘除混合运算易错题乘除混合运算是七年级数学上册中的重要内容,但对于学生来说,常常是一个易错的题型。
在这篇文章中,我将介绍一些七年级数学上册中乘除混合运算的易错题,并给出解题方法,帮助学生更好地理解和掌握这个题型。
1. 题目:求解“6 ÷ 2 × 3”的结果。
解析:这个题目涉及到乘法和除法的优先级问题。
根据数学运算的优先级规则,乘法和除法的优先级是相同的,按照从左到右的顺序进行计算。
所以,先计算6 ÷2,得到3,然后再乘以3,结果为9。
答案为9。
2. 题目:求解“18 ÷ 3 × 2”的结果。
解析:这个题目同样涉及到乘法和除法的优先级问题。
按照从左到右的顺序进行计算,先计算18 ÷ 3,得到6,然后再乘以2,结果为12。
答案为12。
3. 题目:求解“24 ÷ 8 × 2”的结果。
解析:这个题目同样涉及到乘法和除法的优先级问题。
按照从左到右的顺序进行计算,先计算24 ÷ 8,得到3,然后再乘以2,结果为6。
答案为6。
4. 题目:求解“15 ÷ 5 × 0”的结果。
解析:这个题目同样涉及到乘法和除法的优先级问题。
按照从左到右的顺序进行计算,先计算15 ÷ 5,得到3,然后再乘以0,结果为0。
答案为0。
5. 题目:求解“4 × 2 ÷ 8”的结果。
解析:这个题目同样涉及到乘法和除法的优先级问题。
按照从左到右的顺序进行计算,先计算4 × 2,得到8,然后再除以8,结果为1。
答案为1。
以上是七年级数学上册中乘除混合运算的一些易错题,希望通过这些例题的解析,能够帮助同学们更好地理解和掌握乘除混合运算的技巧。
总结起来,乘除混合运算的关键是正确理解乘法和除法的优先级规则,按照从左到右的顺序进行计算。
在解题过程中,可以利用括号来明确优先级,或者先计算乘法,再进行除法运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章有理数
1.2有理数
类型一:正数和负数
1.在下列各组中,哪个选项表示互为相反意义的量()
A.足球比赛胜5 场与负5 场B.向东走3 千米,再向南走3 千米
C.增产10 吨粮食与减产﹛10 吨粮食D.下降的反义词是上升
2.下列具有相反意义的量是()
A.前进与后退B.胜3 局与负2 局C.气
温升高3℃与气温为﹛3℃D.盈利3 万元与支出2 万元
类型二:有理数
1.下列说法错误的是()
A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数
C.正有理数与负有理数组成全体有理数D.3.14 是小数,也是分数
变式:
2.下列四种说法:①0 是整数;②0 是自然数;③0 是偶数;④0 是非负数.其中正确的有()
A.4 个B.3 个C.2 个D.1 个
3.下列说法正确的是()
A.零是最小的整数B.有理数中存在最大的数
C.整数包括正整数和负整数D.0 是最小的非负数
4.把下面的有理数填在相应的大括号里:(★友情提示:将各数用逗号分开)
15,,0,﹛30,0.15,﹛128,,+20,﹛2.6
正数集合﹛…
﹛负数集合﹛…
﹛整数集合﹛…
﹛分数集合﹛…
﹛
1.3数轴
类型一:数轴
选择题
1.(2009•绍兴)将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的
“0cm”和“15cm”分别对应数轴上的﹛3.6 和x,则()
A.9<x<10 B.10<x<11
C.11<x<12 D.12<x<13
2.在数轴上,与表示数﹛1 的点的距离是2 的点表示的数是()
A.1 B.3 C.±2 D.1 或﹛3 3.数轴上表示整数的点称为整点.某数轴的单位长度是 1 厘米,若在这个数轴上随意画出一条长为2004 厘米的线段AB,则线段AB 盖住的整点的个数是()
A.2002 或2003 B.2003 或2004
C.2004 或2005 D.2005 或2006
4.数轴上的点A 表示的数是+2,那么与点A 相距5 个单位长度的点表示的数是()A.5 B.±5 C.7 D.7 或﹛3
5.如图,数轴上的点A,B 分别表示数﹛2 和1,点C 是线段AB 的中点,则点C 表示的数是()
A.﹛0.5 B.﹛1.5 C.0 D.0.5
6.点M 在数轴上距原点4 个单位长度,若将M 向右移动2 个单位长度至N 点,点N 表
示的数是()
A.6 B.﹛2 C.﹛6 D.6 或﹛2
7.如图,A、B、C、D、E 为某未标出原点的数轴上的五个点,且AB=BC=CD=DE,则点D
所表示的数是()
A.10 B.9 C.6 D.0
填空题
8.点A 表示数轴上的一个点,将点A 向右移动7 个单位,再向左移动4 个单位,终点恰
好是原点,则点A 表示的数是.
解答题
9.已知在纸面上有一数轴(如图),折叠纸面.
(1)若折叠后,数1 表示的点与数﹛1 表示的点重合,则此时数﹛2 表示的点与数
表示的点重合;
(2)若折叠后,数3 表示的点与数﹛1 表示的点重合,则此时数5 表示的点与数
表示的点重合;若这样折叠后,数轴上有A、B 两点也重合,且A
、B
两点之间的距离为
9(A 在B 的左侧),则A 点表示的数为,B 点表示的数为.
10.如图,数轴上A、B 两点,表示的数分别为﹛1 ,点B 关于点A 的对称点为C,点C 所表示的实数是.
11.把﹛1.5,,3,﹛,﹛π,表示在数轴上,并把它们用“<”连接起来,得到:.
12.如图,数轴上的点A、O、B、C、D 分别表示﹛3,0,2.5,5,﹛6,回答下列问题.
(1)O、B 两点间的距离是.
(2)A、D 两点间的距离是.
(3)C、B 两点间的距离是.
(4)请观察思考,若点A 表示数m,且m<0,点B 表示数n,且n>0,那么用含m,n 的代数式表示A、B 两点间的距离是.
1.4绝对值
类型一:数轴
1.若|a|=3,则a 的值是.
2.若x 的相反数是3,|y|=5,则x+y 的值为()
A.﹛8 B.2 C.8 或﹛2 D.﹛8 或
2 =﹛1,则a 为()
A.a>0 B.a<0 C.0<a<1 D.﹛1<a<0
变式:
4.﹛|﹛2|的绝对值是.
5.已知a 是有理数,且|a|=﹛a,则有理数a 在数轴上的对应点在()
A.原点的左边B.原点的右边
C.原点或原点的左边D.原点或原点的右边
6.若++的值为()
A.3 B.﹛1 C.±1 或±3 D.3 或﹛1
【发现易错点】
【反思及感悟】
1.5有理数的大小比较
类型一:有理数的大小比较
1、如图,正确的判断是()
A.a<-2 B.a>-1 C.a>b D.b>2
2、比较1,-2.5,-4 的相反数的大小,并按从小到大的顺序用“<”边接起来,为
【发现易错点】
【反思及感悟】
第二章有理数的运算
2.1有理数的加法
类型一:有理数的加法
1.已知a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,那么a+b+|c|等于()
A.﹛1 B.0 C.1 D.2
类型二:有理数的加法与绝对值
1.已知|a|=3,|b|=5,且ab<0,那么a+b 的值等于()
A.8 B.﹛2 C.8 或﹛8 D.2 或﹛2
变式:
2.已知a,b,c 的位置如图,化简:|a﹛b|+|b+c|+|c﹛a|= .
2.2有理数的减法
类型一:正数和负数,有理数的加法与减法
选择题
1.某汽车厂上半年一月份生产汽车200 辆,由于另有任务,每月上班人数不一定相等,上半年各月与一月份的生产量比较如下表(增加为正,减少为负).则上半年每月的平均产量为()
月份二三
四五六
增减(辆)﹛5 ﹛9 ﹛13 +8 ﹛11
.某商店
出售三种不同品牌的大米,米袋上分别标有质量如下表:
现从中任意拿出两袋不同品牌的大米,这两袋大米的质量最多相差()大米种类 A 品牌大米 B 品牌大米 C 品牌大米
质量标示(10±0.1)
kg
(10±0.3)
kg
(10±0.2)
kg
填空题
3.﹛9,6,﹛3 三个数的和比它们绝对值的和小.
4.已知a、b 互为相反数,且|a﹛b|=6,则b﹛1= .
解答题
5.一家饭店,地面上18 层,地下1 层,地面上1 楼为接待处,顶楼为公共设施处,其余16 层为客房;地面下1 楼为停车场.
(1)客房7 楼与停车场相差层楼;
(2)某会议接待员把汽车停在停车场,进入该层电梯,往上14 层,又下5 层,再下3 层,最后上6 层,那么他最后停在层;
(3)某日,电梯检修,一服务生在停车场停好汽车后,只能走楼梯,他先去客房,依次到了8 楼、接待处、4 楼,又回接待处,最后回到停车场,他共走了层楼梯.
6.某人用400 元购买了8 套儿童服装,准备以一定价格出售.他以每套55 元的价格为标准,将超出的记作正数,不足的记作负数,记录如下:+2,﹛3,+2,+1,﹛2,﹛1,0,﹛2(单位:元)他卖完这八套儿童服装后是,盈利或亏损了元.
2.3有理数的乘法
类型一:有理数的乘法
1.绝对值不大于4 的整数的积是()
A.16 B.0 C.576 D.﹛1
【发现易错点】
【反思及感悟】
变式:
2.五个有理数的积为负数,则五个数中负数的个数是()
A.1 B.3 C.5 D.1 或3 或5
3.比﹛3 大,但不大于2 的所有整数的和为,积为.
4.已知四个数:2,﹛3,﹛4,5,任取其中两个数相乘,所得积的最大值是.
【发现易错点】
【反思及感悟】
2.4有理数的除法
类型一:倒数
1.负实数a 的倒数是()
A.﹛a C.﹛D.a
变式:
2.﹛0.5 的相反数是,倒数是,绝对值是.3.倒数是它本身的数是,相反数是它本身的数是.
类型二:有理数的除法
1.下列等式中不成立的是()
A.﹛
B.=
C.÷1.2÷
D.
变式:
2.甲小时做16 小时做18 个零件,那么()A.甲的工作效率高B.乙的工作效率高。