高一数学函数的表示法练习题
(完整版)高一数学函数试题及答案
![(完整版)高一数学函数试题及答案](https://img.taocdn.com/s3/m/4ea69621dd3383c4ba4cd251.png)
(数学1必修)函数及其表示一、选择题1.判断下列各组中的两个函数是同一函数的为( )⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x()F x =⑸21)52()(-=x x f ,52)(2-=x x f 。
A .⑴、⑵B .⑵、⑶C .⑷D .⑶、⑸2.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或23.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,54.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A .1B .1或32C .1,32或 D5.为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移,这个平移是( )A .沿x 轴向右平移1个单位B .沿x 轴向右平移12个单位 C .沿x 轴向左平移1个单位 D .沿x 轴向左平移12个单位6.设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( )A .10B .11C .12D .13二、填空题1.设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 。
2.函数422--=x x y 的定义域 。
3.若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 。
3.1.2一函数的表示法二
![3.1.2一函数的表示法二](https://img.taocdn.com/s3/m/48f12c2cf705cc17552709f6.png)
则 b=________.
答案
1 2
解析 f 56=3×56-b=52-b,∴f 52-b=4,
52-b<1,
①
325-b-b=4,
无解;
52-b≥1,
②
225-b=4,
综上,b=12.
解得 b=12.
①前三年中,产量增长的速度越来越快;
②前三年中,产量增长的速度越来越慢;
③第三年后,这种产品停止生产; ④第三年后,年产量保持不变. 答案 ②③ 解析 由于纵坐标表示八年来前 t 年产品生产总量, ②③正确.
2x,x≥2,
若 f(x)=3,则 x 等
于( )
A.1
B.± 3
3 C.2
D. 3
4.已知函数 f(x)的图象是两条线段(如图所示,不含
端点),则 f13等于( )
2x,0≤x≤1, 8.函数 f(x)=2,1<x<2,
3,x≥2
的定义域是___.
9.若定义运算 a⊙b=ab,,aa<≥bb. , 则函数 f(x)=
第5页
2020 学年第一学期高一数学课时练习
班级
姓名
由图①中函数取值的情况,结合函数 φ(x)的定义, 可得函数 φ(x)的图象如图②. 令-x2+2=x 得 x=-2 或 x=1. 结合图②,得出 φ(x)的解析式为
高一数学上册第一章函数及其表示知识点及练习题(含答案)
![高一数学上册第一章函数及其表示知识点及练习题(含答案)](https://img.taocdn.com/s3/m/8e3bded15ef7ba0d4a733be3.png)
函数及其表示(一)知识梳理1.映射的概念设B A 、是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,则称f 是集合A 到集合B 的映射,记作f(x).2.函数的概念(1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对A 中的 任意数 x ,在集合B 中都有 唯一确定 的数y 和它对应,则这样的对应关系叫做从A 到B 的一个函数,通常记为___y=f(x),x ∈A(2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值, 对于的函数值的集合所有的集合构成值域。
(3)函数的三要素: 定义域 、 值域 和 对应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式来表示。
4.分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。
(二)考点分析考点1:判断两函数是否为同一个函数如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。
考点2:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法;(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f1.2函数及其表示练习题(2)一、选择题1. 判断下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x f .A. ⑴、⑵B. ⑵、⑶C. ⑷D. ⑶、⑸2. 函数()y f x =的图象与直线1x =的公共点数目是( )A. 1B. 0C. 0或1D. 1或23. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A. 2,3B. 3,4C. 3,5D. 2,54. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A. 1B. 1或32C. 1,32或 D.5. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( )A. 沿x 轴向右平移1个单位B. 沿x 轴向右平移12个单位 C. 沿x 轴向左平移1个单位 D. 沿x 轴向左平移12个单位 6. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A. 10 B. 11 C. 12 D. 13二、填空题1. 设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 . 2. 函数422--=x x y 的定义域 . 3. 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 .4.函数0y =_____________________. 5. 函数1)(2-+=x x x f 的最小值是_________________.三、解答题1.求函数()f x =.2. 求函数12++=x x y 的值域.3. 12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,求()y f m =的解析式及此函数的定义域.4. 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.参考答案(2)一、选择题 1. C 2. C 3. D 4. D∴2()3,12,f x x x x ===-<<而∴ x =5. D 平移前的“1122()2x x -=--”,平移后的“2x -”, 用“x ”代替了“12x -”,即1122x x -+→,左移 6. B [][](5)(11)(9)(15)(13)11f f f f f f f =====.二、 1.(),1-∞- 当10,()1,22a f a a a a ≥=-><-时,这是矛盾的; 当10,(),1a f a a a a<=><-时; 2. {}|2,2x x x ≠-≠且 240x -≠3. (2)(4)y x x =-+- 设(2)(4)y a x x =+-,对称轴1x =, 当1x =时,max 99,1y a a =-==-4. (),0-∞ 10,00x x x x -≠⎧⎪<⎨->⎪⎩ 5. 54- 22155()1()244f x x x x =+-=+-≥-. 三、 1. 解:∵10,10,1x x x +≠+≠≠-,∴定义域为{}|1x x ≠-2. 解: ∵221331(),244x x x ++=++≥∴y ≥,∴值域为)+∞ 3. 解:24(1)4(1)0,30m m m m ∆=--+≥≥≤得或,222121212()2y x x x x x x =+=+-224(1)2(1)4102m m m m =--+=-+∴2()4102,(03)f m m m m m =-+≤≥或.4. 解:对称轴1x =,[]1,3是()f x 的递增区间,max ()(3)5,335f x f a b ==-+=即min ()(1)2,32,f x f a b ==--+=即∴3231,.144a b a b a b -=⎧==⎨--=-⎩得。
高一数学函数及其表示试题
![高一数学函数及其表示试题](https://img.taocdn.com/s3/m/8905a2cc0b4c2e3f56276311.png)
高一数学函数及其表示试题1.下列函数中,图象如图的函数可能是().A.y=x3B.y=2x C.y=D.y=log2x【答案】C【解析】由图像可知,函数的定义域为,且过点;而选项A:的定义域为,选项B:的定义域为,选项C:的定义域为,且过点,选项D:的定义域为;故选C.考点:函数的图像.2.,则 ( )A.B.C.D.【答案】D【解析】本题主要考查函数解析式.由,故选D.【考点】函数解析式,诱导公式.3.下列各组函数中,表示同一个函数的是()A.与B.与C.与D.与【答案】D【解析】表示同一函数必须具备两个条件:一是定义域相同,二是对应法则相同.对于A,的定义域为,而的定义域为,不符合;对于B,的定义域为,对于的定义域为,不符合;对于C,函数与函数的定义域都为,但当时,与的对应法则不相同,也不符合;对于D,函数与函数的定义域都为,且,两个函数的对应法则也相同,故相同函数的是答案D.【考点】1.函数的概念;2.对数的恒等式.4.设是集合M到集合N的映射, 若N="{1,2}," 则M不可能是()A.{-1}B.C.D.【答案】D【解析】对应法则是,根据映射的定义,集合M中的任何一个元素在N中都要有唯一的元素和他对应,而D选项中的2,,,不满足定义,所以不正确,故选D.【考点】映射的定义5.已知函数,那么的值是()A.B.C.D.【答案】D【解析】表示当自变量时对应的函数值;根据分段函数的定义,当时,;因为 , 所以.故选D【考点】1、函数的概念;2、分段函数.6.已知函数,则下列说法中正确的是()A.若,则恒成立B.若恒成立,则C.若,则关于的方程有解D.若关于的方程有解,则【答案】D.【解析】绝对值不等式||a|-|b||≤|a±b|≤|a|+|b|,由题,a≤0,则|x-a|≤|x|-a,f(x)≥1,A错误;f(x)≥1恒成立,则a≤0,x≥0,B错误,a<0,则0≤|x-a|≤|x|-a,方程f(x)=a,左边是正数,右边是负数,无解,所以C错误,方程f(x)=a有解,则两边同号,即|x|-a与a同号,可解得0<a≤1,选D.【考点】函数与绝对值不等式.7.下列四组中表示相等函数的是 ( )A.B.C.D.【答案】B【解析】A.的定义域不同;B.是同一函数;C.的定义域不同;D.的值域不同。
新教材人教版高中数学必修1 第三章 3.1.2 函数的表示法(一)
![新教材人教版高中数学必修1 第三章 3.1.2 函数的表示法(一)](https://img.taocdn.com/s3/m/7a1a72667375a417866f8f7d.png)
集合B { x, y | x R, y R}
对应关系f : 平面直角坐标系中的点与它的坐标对应; (3)集合A={x|x是三角形},集合B={x|x是圆} 对应关系f : 每一个三角形都对应它的内切圆; (4)集合A {x | x是新华中学的班级}, 集合B {x | x是新华中学的学生}, 对应关系f : 每一个班级都对应班里的学生.
f’:平面直角坐标系内的点跟它的坐标对应
f’ : E F
➢映射概念
非空集合、唯一确定的对应关系、任意x、唯一确定的y
1、下列对应中,能构成映射的有(
)
A
B
a1
b1
a2
b2
a3
b3
a4
b4
(1)
A
B
a1
b1 b2
a2
b3 b4
(4)
A
B
a1
b1
a2
b2
a3
b3
a4
b4
(2)
A
B
a1
b1
a2
b2
(5)
(3) f ( x) 2x2 3x 5
[0, )
(, 2) U(2, ) [ 31 , )
8
一、复习回顾
实例1:炮弹距地面的高度h(单位:m)随时间t(单位:s)
变化的规律是 : h=130t-5t2
解析法
实例2:南极上空臭氧空洞的面积从1979~2001年的变
化情况:
图象法
实例3:
列表法
二、基础知识讲解
A
B
a1
b1
a2
【高中数学必修一】1.2.2 函数的表示法-高一数学人教版(必修1)(解析版)
![【高中数学必修一】1.2.2 函数的表示法-高一数学人教版(必修1)(解析版)](https://img.taocdn.com/s3/m/1a7a37c451e79b896802266c.png)
第一章 集合与函数概念1.2.2 函数的表示法一、选择题1.若()()20(0)x x f x x x ⎧≥=⎨-<⎩,,,则f [f (–2)]=A .2B .3C .4D .5【答案】C【解析】∵–2<0,∴f (–2)=–(–2)=2.又∵2>0,∴f [f (–2)]=f (2)=22=4,故选C .2.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓缓爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到了终点.用S 1和S 2分别表示乌龟和兔子经过时间t 所行的路程,则下列图象中与故事情节相吻合的是A .B .C .D .【答案】D3.已知函数f (x +1)=3x +2,则f (x )的解析式是A.f(x)=3x+2 B.f(x)=3x+1C.f(x)=3x–1 D.f(x)=3x+4【答案】C【解析】设t=x+1,∵函数f(x+1)=3x+2=3(x+1)–1,∴函数f(t)=3t–1,即函数f(x)=3x–1,故选C.4.已知映射f:A→B,其中A={a,b},B={1,2},已知a的象为1,则b的象为A.1,2中的一个B.1,2 C.2 D.无法确定【答案】A【解析】映射f:A→B,其中A={a,b},B={1,2},已知a的象为1,可得b的象为1或2,故选A.5.若f(x)满足关系式f(x)+2f(1x)=3x,则f(2)的值为A.1 B.–1 C.–32D.32【答案】B【解析】∵f(x)满足关系式f(x)+2f(1x)=3x,分别令x=2,和x=12,得()()12262132222f ff f⎧⎛⎫+=⎪⎪⎪⎝⎭⎨⎛⎫⎪+=⎪⎪⎝⎭⎩①②,①–②×2得–3f(2)=3,∴f(2)=–1,故选B.6.甲、乙两人在一次赛跑中,路程s与时间t的函数关系如图所示,则下列说法正确的是A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲先到达终点【答案】D7.已知f(x–2)=x2–4x,那么f(x)=A .x 2–8x –4B .x 2–x –4C .x 2+8xD .x 2–4【答案】D【解析】由于f (x –2)=x 2–4x =(x 2–4x +4)–4=(x –2)2–4,从而f (x )=x 2–4.故选D . 8.国内某快递公司规定:重量在1000 g 以内的包裹快递邮资标准如下表:运送距离x (km ) 0<x ≤500 500<x ≤10001000<x ≤15001500<x ≤2000… 邮资y (元)5.006.007.008.00如果某人从北京快递900 g 的包裹到距北京1300 km 的某地,他应付的邮资是 A .5.00元B .6.00元C .7.00元D .8.00元【答案】C【解析】邮资y 与运送距离x 的函数关系式为 5.00(0500)6.00(5001000)7.00(10001500)8.00(15002000)x x y x x <≤⎧⎪<≤⎪=⎨<≤⎪⎪<≤⎩,∵1300∈(1000,1500],∴y =7.00,故选C .9.已知函数()()()32121x x f x x x x ⎧>⎪=⎨-+≤⎪⎩.若()54f a =-,则a 的值为A .12-或52B .12或52C .12-D .12【答案】C【解析】当a >1时,f (a )=3514a >≠-,此时a 不存在,当a ≤1,f (a )=–a 2+2a =–54,即4a 2–8a –5=0,解可得a =–12或a =52(舍),综上可得a =12-,故选C .10.已知函数f (x )=()20(0)x x x x ⎧≥⎨<⎩,,,则f (f (–2))的值是A .2B .–2C .4D .–4【答案】C【解析】∵已知函数()()20(0)x x f x x x ⎧≥=⎨<⎩,,,∴f (–2)=(–2)2,∴f (f (–2))=f (4)=4,故选C .二、填空题11.已知f+1)=x,则f (x )=__________.【答案】x 2–1,(x ≥1)【解析】∵()12fx x x +=+=x +2x +1–1=(x +1)2–1,∴则f (x )=x 2–1,(x ≥1).故答案为:x 2–1,(x ≥1).12.已知f (x +1)=2x 2+1,则f (x –1)=__________.【答案】2x 2–8x +9【解析】设x +1=t ,则x =t –1,f (t )=2(t –1)2+1=2t 2–4t +3,f (x –1)=2(x –1)2–4(x –1)+3=2x 2–4x +2–4x +4+3=2x 2–8x +9.故答案为:2x 2–8x +9. 13.已知f (x +1)=x 2,则f (x )=__________.【答案】(x –1)2【解析】由f (x +1)=x 2,得到f (x +1)=(x +1–1)2,故f (x )=(x –1)2.故答案为:(x –1)2. 14.已知函数f (x )=ax –b (a >0),f (f (x ))=4x –3,则f (2)=__________.【答案】3三、解答题15.()()()11032f x kx b f f =+==-,,,求f (4)的值. 【解析】∵()()()11032f x kx b f f =+==-,,,∴0132k b k b +=⎧⎪⎨+=-⎪⎩,解得k =–14,b =14, ∴f (x )=–14x +14,∴f (4)=–14×4+14=–34.16.二次函数f (x )满足f (x +1)–f (x )=2x 且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[–1,1]时,不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 【解析】(1)由题意,设f (x )=ax 2+bx +c , 则f (x +1)=a (x +1)2+b (x +1)+c .从而f (x +1)–f (x )=[a (x +1)2+b (x +1)+c ]–(ax 2+bx +c )=2ax +a +b , 又f (x +1)–f (x )=2x ,∴220a a b =⎧⎨+=⎩即11a b =⎧⎨=-⎩,又f (0)=c =1, ∴f (x )=x 2–x +1.17.已知函数f (x )=()()221(12)22x x x x x x ⎧+≤-⎪-<<⎨⎪≥⎩(1)在坐标系中作出函数的图象; (2)若f (a )=12,求a 的取值集合. 【解析】(1)函数f (x )=()()221(12)22x x x x x x ⎧+≤-⎪-<<⎨⎪≥⎩的图象如下图所示:(2)当a ≤–1时,f (a )=a +2=12,可得:a =32-;当–1<a <2时,f (a )=a 2=12,可得:a =22±;当a ≥2时,f(a )=2a =12,可得:a =14(舍去); 综上所述,a 的取值构成集合为{32-,22-,22}.18.(1)已知3311f x x x x ⎛⎫+=+ ⎪⎝⎭,求f (x ). (2)已知21f lgx x ⎛⎫+=⎪⎝⎭,求f (x ). (3)已知f (x )是一次函数,且满足3f (x +1)–2f (x –1)=2x +17,求f (x ). (4)已知f (x )满足()123f x f x x ⎛⎫+=⎪⎝⎭,求f (x ). 【解析】(1)∵3331111()3f x x x x x x x x ⎛⎫⎛⎫+=+=+-+ ⎪ ⎪⎝⎭⎝⎭, ∴f (x )=x 3–3x (x ≥2或x ≤–2).(2)令21t x +=(t >1), 则21x t =-,∴()21f t lg t =-,∴()()211f x lg x x =->.19.已知函数f (x )=1+2x x -(–2<x ≤2),用分段函数的形式表示该函数.【解析】f (x )=1+1021202x x x x x ≤≤-⎧=⎨--<<⎩,,.。
高一数学函数及其表示试题答案及解析
![高一数学函数及其表示试题答案及解析](https://img.taocdn.com/s3/m/9ae9461054270722192e453610661ed9ad5155a2.png)
高一数学函数及其表示试题答案及解析1.函数的图象与直线的公共点数目是()A.0B.1C.0或1D.1或2【答案】B【解析】若函数在处有意义,在函数的图象与直线的公共点数目是1;若函数在处无意义,则两者没有交点,∴有可能没有交点,如果有交点,那么仅有一个,故选B.【考点】函数定义与图象2.如图所示,当时,函数的图象是 ( )【答案】D【解析】对于D,当a<0时,b<0,所以抛物线的开口向下,并且直线的斜率为负值,在y轴上的截距为负值.因而选D.3.若函数的定义域为,值域为,则的取值范围是()A.B.C.D.【答案】B【解析】因为,又因为x=2时,y=-6;当x=0或x=4时,y=-2.所以,故应选B.4.某工厂8年来某产品总产量y与时间t年的函数关系如下图,则:①前3年中总产量增长速度越来越慢;②前3年总产量增长速度增长速度越来越快;③第3年后,这种产品年产量保持不变.④第3年后,这种产品停止生产;以上说法中正确的是_______.【答案】②④【解析】由函数图象可知在区间[0,3]上,图象图象凹陷上升的,表明年产量增长速度越来越快;在区间(3,8]上,如果图象是水平直线,表明总产量保持不变,即年产量为0.∴②④正确.5.下列哪组中的两个函数是同一函数()A.与B.与C.与D.与【答案】B【解析】根据同一函数的定义可知,定义域和对应法则相同时。
那么选项A中,定义域不同,选项B中,定义域和对应法则相同;选项C中,定义域不同,选项D中,定义域不同,故选B.6.若函数,则=_____ __ _____【解析】因为函数,,令x=1,则可知f(2)=1-1=0.7.对于函数,定义域为,以下命题正确的是(只要求写出命题的序号)①若,则是上的偶函数;②若对于,都有,则是上的奇函数;③若函数在上具有单调性且则是上的递减函数;④若,则是上的递增函数。
【答案】②③【解析】因为根据偶函数的定义可知,要满足定义域内任何一个变量满足f(x)=f(-x),故命题1错误。
函数的表示法练习题
![函数的表示法练习题](https://img.taocdn.com/s3/m/2193db3643323968011c9269.png)
13、已知函数 f x
x x 4 , x x 4 ,
x 0, x 0,
求 f 1; f 3 ;
f a 1 的值.
14、画出下列函数的图像: (1) y x 2, x Z 且 x 2 ;
2
(2) y 2 x 3 x , x 0, 2 ;
2 2
)
x
(B) y
2 2
2 4
x
(C) y
)
2 8
x
(D) y
2 16
x
4 x
x 4 的定义域是(
B、 ( 2, 2)
2
C、 ( , 2) (2, )
D、 { 2, 2} )
5、若函数 f ( x ) (A)-2≤x≤2 6、若 f x A.
三、解答题 12、在国内投寄外埠平信,每封信不超过 20 g 付邮资 80 分,超过 20 g 不超过 40 g 付邮资 160 分, 超过 40 g 不超过 60 g 付邮资 240 分, 以此类推, 每封 xg 0 x 100 的信应付多少邮资 (单位: ? 分) 写出函数表达式,做出函数的图像,并求出函数的值域.
18、已知函数 y = f(x+2)的定义域为[1,4],求函数 y = f(x) 的定义域.
19、已知函数 f(x)= ax ax 1 的定义域为 R,求实数 a 的取值范围.
2
3
神木中学
2
2012 高一数学
必修 1
导学案
编写:张智亮
20、已知函数 f(3x+1)=9x -6x+5,求函数 f(x)的解析式.(用配凑法)
高一数学函数及其表示试题答案及解析
![高一数学函数及其表示试题答案及解析](https://img.taocdn.com/s3/m/7eb18625580102020740be1e650e52ea5518ce2b.png)
高一数学函数及其表示试题答案及解析1.下列各组函数是同一函数的是①与;②与;③与;④与。
A.①②B.①③C.③④D.①④【答案】C【解析】①中两函数定义域相同,值域不同,分别为;②中两函数定义域不同,分别为;③、④中两函数定义域、值域都相同。
【考点】函数的概念,即函数的三要素:定义域、对应法则、值域。
2.设计下列函数求值算法程序时需要运用条件语句的函数为().A.B.C.D.【答案】C.【解析】因为分段函数在求值时,不同范围内的自变量对应不同的函数,所以在编写函数求值的算法程序需运用条件语句,故本题选C.【考点】基本算法语句中的条件语句的理解.3.二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,求实数m的取值范围【答案】(1)f(x)=x2-x+1,(2)【解析】(1)求二次函数解析式,一般方法为待定系数法.二次函数解析式有三种设法,本题设一般式f(x)=ax2+bx+1,再利用等式恒成立,求出项的系数.由a(x+1)2+b(x+1)-ax2-bx=2x得2ax+a+b=2x,所以.(2)恒成立问题一般转化为最值问题.先构造不等式,再变量分离,这样就转化为求函数的最小值问题.试题解析:(1)设f(x)=ax2+bx+1a(x+1)2+b(x+1)-ax2-bx=2x2ax+a+b=2xf(x)=x2-x+1(2)考点:二次函数解析式,二次函数最值,不等式恒成立4.已知函数,那么的值是()A.B.C.D.【答案】D【解析】表示当自变量时对应的函数值;根据分段函数的定义,当时,;因为 , 所以.故选D【考点】1、函数的概念;2、分段函数.5.下列函数中,与函数有相同图象的一个是A.B.C.D.【答案】B【解析】选项A中函数的定义域为,定义域不相同,故选项A错;选项B中函数可化为,故B正确;选项C中函数的定义域为,故选项C错;选项D中函数的定义域为,故选项D 错.所以正确答案为B.【考点】函数相等.6.设集合A=B=,从A到B的映射在映射下,B中的元素为(4,2)对应的A中元素为()A.(4,2)B.(1,3)C.(6,2)D.(3,1)【答案】D【解析】集合A=B=,从A到B的映射在映射下,B中的元素为,所以,解得,所以集合中的元素为故选D.【考点】本题主要考查了映射的定义.7.下列四组函数,表示同一函数的是( )A.,B.C.D.【答案】D【解析】 A选项两个函数的定义域相同,但至于分别是[0,+∞)和R,所以排除A.B选项的定义域分别为x≠0和x>0,所以排除B.C选项中的定义域分别为R和x≠0,所以排除C.D选项的两函数化简后都是y=x,所以选D.【考点】 1.常见函数的定义域,值域问题.2.同一函数的判定方法.8.下列4对函数中表示同一函数的是( )A.,=B.,=C.=,D.,=【答案】B【解析】A.与=定义域不同;B.与=定义域、值域、对应法则完全相同,所以是同一函数;C.=与的定义域不同;D.与=的值域不同。
高一数学函数及其表示试题答案及解析
![高一数学函数及其表示试题答案及解析](https://img.taocdn.com/s3/m/604ffd242e60ddccda38376baf1ffc4ffe47e277.png)
高一数学函数及其表示试题答案及解析1.下列函数中,图象如图的函数可能是().A.y=x3B.y=2x C.y=D.y=log2x【答案】C【解析】由图像可知,函数的定义域为,且过点;而选项A:的定义域为,选项B:的定义域为,选项C:的定义域为,且过点,选项D:的定义域为;故选C.考点:函数的图像.2.,则 ( )A.B.C.D.【答案】D【解析】本题主要考查函数解析式.由,故选D.【考点】函数解析式,诱导公式.3.设= .【答案】【解析】因为所以【考点】分段函数求值4.下列各组函数表示同一函数的是()A.B.C.D.【答案】C【解析】排除,因为三个选项中两个函数的定义域各不相同,故C正确。
【考点】函数的三要素。
5.已知函数的对应关系如下表,函数的图像是如下图的曲线,其中则的值为()A.3B.2C.1D.0【答案】B【解析】由的图像与的对应关系表可知,,所以,故选B.【考点】1.函数及其表示;2.复合函数的求值问题.6.已知函数(1)若,求的值;(2)求的值.【答案】(1)1;(2)1006【解析】(1)因为.所以可以计算出的值为1,即表示两个自变量的和为1的函数值的和为1.(2)由(1)可知两个自变量的和为1的函数值的和为1.所以令…①.利用倒序又可得到…②.所以由①+②可得2S=2012.所以S=1006.试题解析:. 5分(2). 10分【考点】1.函数的表示法.2.倒序求和法.7.下列各个对应中,构成映射的是()【答案】B【解析】按照映射的定义,A中的任何一个元素在集合B中都有唯一确定的元素与之对应.在选项A中,前一个集合中的元素2在后一个集合中没有元素与之对应,故不符合映射的定义;在选项C中,前一个集合中的元素2在后一集合中有2个元素和它对应,也不符合映射的定义;在选项D中,前一个集合中的元素1在后一集合中有2个元素和它对应,也不符合映射的定义;只有选项B满足映射的定义,【考点】映射概念.8.某公司一年购买某种货物200吨,分成若干次均匀购买,每次购买的运费为2万元,一年存储费用恰好与每次的购买吨数的数值相等(单位:万元),要使一年的总运费与总存储费用之和最小,则应购买________次.【答案】10【解析】先设此公司每次都购买x吨,利用函数思想列出一年的总运费与总存储费用之和,再结合基本不等式得到一个不等关系即可求得最小值.公司一年购买某种货物200吨,分成若干次均匀购买,每次购买的运费为2万元,一年存储费用恰好与每次的购买吨数的数值相等(单位:万元),要使一年的总运费与总存储费用之和y=2x+,当且仅当x=10时取得最小值,故答案为10.【考点】函数最值的应用点评:本题主要考查了函数最值的应用,以及函数模型的选择与应用和基本不等式的应用,考查应用数学的能力,属于基础题.9.下列所示的四幅图中,可表示为y=f(x)的图像的只可能是()【答案】D【解析】在函数中,取集合A中的任何一个元素x,都能在集合B中找个唯一一个元素y与之对应,选项D具有这样的特点,而其他选项没有。
高一数学函数及其表示试题答案及解析
![高一数学函数及其表示试题答案及解析](https://img.taocdn.com/s3/m/f6252d6959fafab069dc5022aaea998fcc224013.png)
高一数学函数及其表示试题答案及解析1.下列各组函数是同一函数的是()A.B.C.D.【答案】D.【解析】对于A,函数的定义域为,函数的定义域为,两者的定义域不相同,所以不是同一函数,即A不正确;对于B,函数的定义域为,函数的定义域为或,两者的定义域不相同,所以不是同一函数,即B不正确;对于C,函数的定义域为,函数的定义域为,两者的定义域不相同,所以不是同一函数,即C不正确;对于D,函数的定义域和值域均为,函数的定义域和值域也均为,两者的定义域和值域均相同,所以是同一函数,即D正确.【考点】相等函数的概念.2.已知,则(指出范围).【答案】.【解析】令,,即,由已知得方程:,化简整理得,,.所以,.【考点】函数的解析式求法;换元法.3.下列各组函数的图象相同的是()A.B.C.D.【答案】D【解析】函数的图象相同即是同一个函数A、定义域不相同,B、对应关系不同,C、定义域不相同,中,x不能为零;两函数相同条件是定义域相同,对应关系相同,值域相同三者有一不满足就不是同一函数,但函数定义域相同,对应关系相同值域就相同.故判断同一函数,只判断定义域,对应关系即可【考点】两函数相等4.,则 ( )A.B.C.D.【答案】D【解析】本题主要考查函数解析式.由,故选D.【考点】函数解析式,诱导公式.5.设则f(2 016)=()A.B.-C.D.-【答案】D【解析】.【考点】求分段函数函数值.6.下列各组函数中,表示同一个函数的是()A.与B.与C.与D.与【答案】D【解析】表示同一函数必须具备两个条件:一是定义域相同,二是对应法则相同.对于A,的定义域为,而的定义域为,不符合;对于B,的定义域为,对于的定义域为,不符合;对于C,函数与函数的定义域都为,但当时,与的对应法则不相同,也不符合;对于D,函数与函数的定义域都为,且,两个函数的对应法则也相同,故相同函数的是答案D.【考点】1.函数的概念;2.对数的恒等式.7.下列函数中,与函数相同的是( )A.B.C.D.【答案】D【解析】函数相同的两个条件:定义域相同,对应法则相同.原函数的定义域为,所以,故选D.【考点】函数的概念.8.下列函数中,与函数相同的是()A.B.C.D.【答案】D【解析】根据题意,由函数,那么对于A,由于对应关系不一样,定义域相同不是同一函数,对于B,由于,对应关系式不同,不成立,对于C,由于定义域相同,对应法则不同,不是同一函数,排除法选D.【考点】本题考查同一个函数的概念.9.下列函数中,与函数有相同图象的一个是A.B.C.D.【答案】B【解析】选项A中函数的定义域为,定义域不相同,故选项A错;选项B中函数可化为,故B正确;选项C中函数的定义域为,故选项C错;选项D中函数的定义域为,故选项D 错.所以正确答案为B.【考点】函数相等.10.已知函数的值域是,则的值域是A.B.C.D.【答案】A【解析】由已知可得,令,则,此时,两个函数的定义域相同,且它们的对应关系均为,所以两个函数的值域相同,故正确答案为A.【考点】函数的定义.11.设集合A=B=,从A到B的映射在映射下,B中的元素为(4,2)对应的A中元素为()A.(4,2)B.(1,3)C.(6,2)D.(3,1)【答案】D【解析】集合A=B=,从A到B的映射在映射下,B中的元素为,所以,解得,所以集合中的元素为故选D.【考点】本题主要考查了映射的定义.12.下列四组函数中,表示同一函数的一组是()A.B.C.D.【答案】D【解析】由函数的定义可知,两个函数要为同一函数则其三要素必须相同。
新教材人教B版高中数学必修第一册练习-函数及其表示方法答案含解析
![新教材人教B版高中数学必修第一册练习-函数及其表示方法答案含解析](https://img.taocdn.com/s3/m/02291b5a680203d8cf2f24a4.png)
3.1.1函数及其表示方法第三章函数3.1 函数的概念与性质3.1.1函数及其表示方法课时1 函数的概念考点1函数的概念1.下列说法正确的是()。
A.函数值域中每一个数在定义域中一定只有一个数与之对应B.函数的定义域和值域可以是空集C.函数的定义域和值域一定是数集D.函数的定义域和值域确定后,函数的对应法则也就确定了答案:C解析:由函数的定义可知,函数的定义域和值域为非空的数集。
2.下列四个图形中,不是以x为自变量的函数的图像是()。
图3-1-1-1-1答案:C解析:根据函数定义,知对自变量x的任意一个值,都有唯一确定的实数(函数值)与之对应。
显然选项A,B,D 满足函数的定义,而选项C不满足。
故选C。
3.(2018·河北衡水中学高一月考)下列四组函数中,表示同一函数的是()。
3 B.y=1与y=x0A.y=√x2与y=√x3C.y=2x+1与y=2t+1D.y=x与y=(√x)2答案:C3=x,它们的对应关系不同,不是同一函数;对于B,y=1(x∈R),y=x0=1(x≠0),它们的解析:对于A,y=√x2=|x|,y=√x3定义域不同,不是同一函数;对于C,y=2x+1与y=2t+1,它们的定义域相同,对应关系也相同,是同一函数;对于D,y=x(x∈R),y=(√x)2=x(x≥0),它们的定义域不同,不是同一函数。
【易错点拨】考查同一函数的问题,注意把握同一函数的定义,必须保证是三要素完全相同,才是同一函数。
4.(2019·西安高一检测)下列式子中不能表示函数y=f(x)的是()。
A.x=y2B.y=x+1C.x+y=0D.y=x2答案:A5.给出下列两个集合间的对应关系:①A={-1,0,1},B={-1,0,1},f:A中的数的平方;②A={0,1},B={-1,0,1},f:A中的数的开方;③A=Z,B=Q,f:A中的数的倒数;④A=R,B={正实数},f:A中的数取绝对值;⑤A={1,2,3,4},B={2,4,6,8},f:A中的数的2倍。
高一数学复习考点知识专题提升练习5--- 函数的概念及其表示(解析版)
![高一数学复习考点知识专题提升练习5--- 函数的概念及其表示(解析版)](https://img.taocdn.com/s3/m/7733f6d6c0c708a1284ac850ad02de80d4d80606.png)
高一数学复习考点知识专题提升练习精练05函数的概念及其表示1.【广东省深圳市红岭中学2019-2020学年高一期末】下列各组函数中,表示同一函数的是() A .()() ln xf x eg x x =,=B .()()24,22x f x g x x x -+==-C .()()sin 2,sin 2cos xf xg x x x==D .()()f x x g x =,【答案】D 【详解】选项A:函数()f x 的定义域是0x >,函数()g x 的定义域是全体实数,故这两个函数不是同一函数; 选项B:函数()f x 的定义域是2x ≠-,函数()g x 的定义域是全体实数,故两个函数不是同一函数; 选项C: 函数()f x 的定义域是()2x k k Z ππ≠+∈,函数()g x 的定义域是全体实数,故两个函数不是同一函数;选项D:函数()f x 和()g x 的定义域都是全体实数,且()g x x =,对应关系相同,所以是同一函数,故本题选D.2.【浙江省杭州市学军中学(学紫)2019-2020学年高一上学期期中】下列选项中两个函数,表示同一个函数的是()A .()4ln f x x =,()4ln g x x =B .()2f x x =,()g x =C .()1f x x =-,()g x =D .()f x x =,()2g x =【答案】B对于A 选项,函数()4ln f x x =的定义域为()(),00,-∞⋃+∞,函数()4ln g x x =的定义域为()0,∞+,故()4ln f x x =与()4ln g x x =不是同一函数;A 排除对于B 选项,函数()2f x x =与()g x =R ,且()2==g x x ,所以()2f x x =与()g x =B 正确;对于C 选项,函数()1f x x =-的定义域为R ,函数()1g x x ==-,定义域为R ,因此()1f x x =-与()g x =C ;对于D 选项,函数()f x x =的定义域为R ,函数()2g x =的定义域为[)0,+∞,因此()f x x=与()2g x =不是同一函数,排除D.故选B3.与函数()f x x =相等的是()A .()2x f x x=B .()2ln ln x f x x =C .()22xf x =D .()22xf x =【答案】C 【详解】()f x x =的定义域为R,而A 中0x ≠,B 中0x >,C 中x ∈R ,D 中x ∈R , 又C 中()22x f x x ==,D 中()22xf x x =≠, 故选:C.4.【山东省青岛市第二中学2019-2020学年高一上学期期末】下列哪个函数的定义域与函数12xy ⎛⎫= ⎪⎝⎭的值域相同() A .2x y =B .1y x x=+C .12y x =D .ln y x x =-【详解】指数函数12xy ⎛⎫= ⎪⎝⎭的值域是(0,)+∞ A 选项定义域是R ; B 选项定义域是{}|0x x ≠; C 选项定义域是{}|0x x ≥;D 选项定义域是{}|0x x >,满足题意。
高一数学函数试题及答案
![高一数学函数试题及答案](https://img.taocdn.com/s3/m/eb424c25f18583d0496459af.png)
[基础训练 A 组]
一、选择题
1.已知函数 f (x) (m 1)x2 (m 2)x (m2 7m 12) 为偶函数, 则 m 的值是( ) A. 1 B. 2 C. 3 D. 4
2.若偶函数 f (x) 在 ,1上是增函数,则下列关系式中成立的是( )
A. f ( 3) f (1) f (2) 2
函数及其表示[提高训练 C 组]
一、选择题
1.若集合 S y | y 3x 2, x R,T y | y x2 1, x R ,
则 S T 是( )
A. S
B. T
C.
D.有限集
2.已知函数 y f (x) 的图象关于直线 x 1对称,且当 x (0,) 时,
4.二次函数的图象经过三点 A(1 , 3), B(1,3),C(2,3) ,则这个二次函数的 24
解析式为
。
5.已知函数
f
(x)
x2
1
(x 0) ,若 f (x) 10 ,则 x
。
2x (x 0)
三、解答题
1.求函数 y x 1 2x 的值域。 2.利用判别式方法求函数 y 2x2 2x 3 的值域。
(2) f (x) 在定义域上单调递减;(3) f (1 a) f (1 a2 ) 0, 求 a 的取值范围。
3.利用函数的单调性求函数 y x 1 2x 的值域;
4.已知函数 f (x) x2 2ax 2, x5,5.
① 当 a 1时,求函数的最大值和最小值;
(1) y x 8 3 x
(2) y x 2 1 1 x 2 x 1
高一数学必修一函数概念表示及函数性质练习题(含答案)
![高一数学必修一函数概念表示及函数性质练习题(含答案)](https://img.taocdn.com/s3/m/104c99348762caaedc33d473.png)
11.已知R 是实数集,21xx ⎧⎫M =<⎨⎬⎩⎭,{y y N ==,则RN M =( )A .()1,2B .[]0,2C .∅D .[]1,22已知集合A={x |01<--ax ax },且A 3A 2∉∈,,则实数a 的取值范围是 ____3.函数f (x )=x 2﹣4x ﹣6的定义域为[0,m],值域为[﹣10,﹣6],则m 的取值范围是( )A .[0,4]B .[2,4]C .[2,6]D .[4,6] 4.设函数g(x)=x 2-2(x ∈R),f(x)=则f(x)的值域是( )A. ∪(1,+∞)B. [0,+∞)C.D. ∪(2,+∞)5.定义在),0(+∞上的函数满足对任意的))(,0(,2121x x x x ≠+∞∈,有.则满足<的x 取值范围是( )6.已知上恒成立,则实数a 的取值范围是( ) A. B.C.D.7.函数在(-1,+∞)上单调递增,则的取值范围是A .B .C .D .8.已知函数f (x )={2x 1x 01x 0+≥,,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________. 9.若函数y =2ax 1zx 2ax 3++的定义域为R ,则实数a 的取值范围是________. 10.已知函数f (x )=x 2-6x +8,x ∈[1,a],并且f (x )的最小值为f (a ),则实数a 的取值区间是________.11.二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴为1x =,给出下列结论:①0abc >;②24b ac =;③420a b c ++>;④30a c +>,其中正确的结论是 .(写出正确命题的序号)()f x 2121()(()())0x x f x f x -->(21)f x -1()3f 25---=a x x y a 3-=a 3<a 3-≥a 3-≤a12.已知1x f x x ⎛⎫=⎪+⎝⎭,则(1)f -= . 13.已知()221f x ax ax =++在[]2,3-上的最大值为6,则()f x 的最小值为_________.14已知[]1,0∈x ,则函数x x y --=12的值域是____15.已知2()f x ax bx =+是定义在[1,3]a a -上的偶函数,那么a b +=( )16.已知函数222f xmx m mx 为偶函数,求实数m 的值= .17.若函数f (x )=(2k -3)x 2+(k -2)x +3是偶函数,则f (x )的递增区间是____________. 18.定义在R 上的奇函数()f x ,当0x >时,()22xf x x =-,则()(0)1f f +-= .19. 函数()f x 是R 上的偶函数,且在[0,)+∞上单调递增,则下列各式成立的是( ) A .)1()0()2(f f f >>- B .)0()1()2(f f f >->- C .)2()0()1(->>f f f D .)0()2()1(f f f >->20.已知函数()f x 是定义在区间[-2,2]上的偶函数,当[0,2]x ∈时,()f x 是减函数,如果不等式(1)()f m f m -<成立,则实数m 的取值范围( ) A.1[1,)2- B. 1,2 C. (,0)-∞ D.(,1)-∞21.(5分)(2011•湖北)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g(x )=e x,则g (x )=( )A.e x﹣e ﹣xB.(e x+e ﹣x) C.(e ﹣x﹣e x) D.(e x﹣e ﹣x)22.已知函数1()f x x x=-. (1)判断函数()f x 的奇偶性,并加以证明;(2)用定义证明函数()f x 在区间[1,+∞)上为增函数; (3)若函数()f x 在区间[2,]a 上的最大值与最小值之和不小于1122a a-,求a 的取值范围.123.已知c bx x x f ++=22)(,不等式0)(<x f 的解集是)5,0(, (1)求)(x f 的解析式;(2)若对于任意]1,1[-∈x ,不等式2)(≤+t x f 恒成立,求t 的取值范围.24.已知函数()x f 为定义域为R ,对任意实数y x ,,均有)()()(y f x f y x f +=+,且0>x 时,0)(>x f(1)证明)(x f 在R 上是增函数(2)判断)(x f 奇偶性,并证明(3)若2)1(-=-f 求不等式4)4(2<-+a a f 的解集25.函数2()21f x x ax =-+在闭区间[]1,1-上的最小值记为()g a .(1)求()g a 的解析式; (2)求()g a 的最大值.26.已知函数22()1x f x ax x =++为偶函数. (1)求a 的值;1(2)用定义法证明函数()f x 在区间[0,)+∞上是增函数; (3)解关于x 的不等式(21)(1)f x f x -<+.参考答案1.D 【解析】试题分析:因0|{<=x x M 或}1|{},2≥=>x x N x ,故}20|{≤≤=x x M C R ,}21|{≤≤=x x M C N R ,故应选D.考点:集合的交集补集运算. 2.B 【解析】试题分析:函数()f x 是R 上的偶函数,所以()()22f f -=, ()()11f f -=,因为函数()f x 是[)0,+∞上增函数,则()()()210f f f >>,即()()()210f f f ->->.故B 正确. 考点:1函数的奇偶性;2函数的单调性. 3.A 【解析】试题分析:根据题意知,函数在[)0,2-上单调递增,在[]2,0上单调递减.首先满足⎩⎨⎧≤≤-≤-≤-22212m m ,可得21≤≤-m .根据函数是偶函数可知:)()(m f m f -=,所以分两种情况:当20≤≤m 时,根据不等式(1)()f m f m -<成立,有12-21m m m m <-≤≤-<-或,解得102m ≤<;当20m -≤<时,根据不等式(1)()f m f m -<成立,有12 -21m m m m -<-≤≤-<或,解得10m -≤<;综上可得112m -≤<. 考点:偶函数性质. 4.D 【解析】试题分析:根据已知中定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x,根据奇函数和偶函数的性质,我们易得到关于f (x )、g (x )的另一个方程:f (﹣x )+g (﹣x )=e ﹣x,解方程组即可得到g (x )的解析式. 解:∵f (x )为定义在R 上的偶函数 ∴f (﹣x )=f (x )又∵g (x )为定义在R 上的奇函数1g (﹣x )=﹣g (x ) 由f (x )+g (x )=e x,∴f (﹣x )+g (﹣x )=f (x )﹣g (x )=e ﹣x, ∴g (x )=(e x﹣e ﹣x) 故选D点评:本题考查的知识点是函数解析式的求法﹣﹣方程组法,及函数奇偶性的性质,其中根据函数奇偶性的定义构造出关于关于f (x )、g (x )的另一个方程:f (﹣x )+g (﹣x )=e ﹣x,是解答本题的关键. 5.B【解析】函数f (x )=x 2﹣4x ﹣6的图象是开口朝上,且以直线x=2为对称轴的抛物线 故f (0)=f (4)=﹣6,f (2)=﹣10∵函数f (x )=x 2﹣4x ﹣6的定义域为[0,m],值域为[﹣10,﹣6], 故2≤m≤4即m 的取值范围是[2,4] 故选B 6.B 【解析】试题分析:由题意,如下图:设1122(,),(,)A x yB x y ,联立21y x b y x =+⎧⎪⎨=⎪⎩得2210x bx +-=,则221212||(1)[()4]AB k x x x x =++- 25(8)b +=,O点到直线AB 的距离5d =,∴225(8)1||8()25b b b S f b ++==⋅⋅=. ∵()()f b f b -=,∴()f b 为偶函数.当0x >时,28()4b b f b ⋅+=,易知()f b 单调递增.故选B.考点:1.函数奇偶性;2.三角形面积应用. 7.A 【解析】 试题分析:因为2121()(()())0x x f x f x -->,所以函数()f x 在),0(+∞上单调增. 由(21)f x -<1()3f 得:.3221,31120<<<-<x x考点:利用函数单调性解不等式 8.C 【解析】,,所以,所以,选C.9.D【解析】令x<g(x),即x 2-x -2>0, 解得x<-1或x>2.令x ≥g(x),即x 2-x -2≤0,解得-1≤x ≤2. 故函数f(x)=当x <-1或x >2时,函数f(x)>f(-1)=2; 当-1≤x ≤2时,函数≤f(x )≤f(-1),即≤f(x )≤0.1故函数f(x)的值域是∪(2,+∞).选D.10.B 【解析】 作出函数在区间上的图象,以及的图象,由图象可知当直线在阴影部分区域时,条件恒成立,如图,点,,所以,即实数a 的取值范围是,选B.11.B 【解析】试题分析:由2()f x ax bx =+是定义在[1,3]a a -上的偶函数,得a a 31-=-,解得:41=a .再由()()x f x f =-,得()bx ax bx x a +=--22,即0=bx ,∴0=b .则41041=+=+b a .故选:B .考点:函数的奇偶性. 12.D 【解析】试题分析:由于函数52x y x a -=--在()1,-+∞上单调递增,可得当1x >-时,()()()()22253'022x a x a y x a x a -----==≥----,可得3021a a -≥⎧⎨+≤-⎩,解得3a ≤-,故选D. 考点:1、反比例函数的图象与性质;2、利用导数研究函数的单调性. 13.()12,1-- 【解析】试题分析:由题意可得()x f 在[)+∞,0上是增函数,而0<x 时,()1=x f ,故满足不等式()()x f x f 212>-的x 需满足⎪⎩⎪⎨⎧>->-012122x xx ,即⎩⎨⎧<<-+-<<--112121x x ,解得()12,1--∈x ,故答案为()12,1--.考点:不等式的解法.【方法点睛】本题考查分段函数的单调性,利用单调性解不等式,考查利用所学知识分析问题解决问题的能力,属于基础题.由题意可得 ()x f 在[)+∞,0上是增函数,而0<x 时,()1=x f ,故21x -必需在0=x 的右侧,故满足不等式()()x f x f 212>-的x 需满足⎪⎩⎪⎨⎧>->-012122x xx ,由此解出x 即可,借助于分段函数的图象会变的更加直观. 14.[)3,0 【解析】试题分析:因为函数3212+++=ax ax ax y 的定义域为R ,所以0322≠++ax ax 恒成立.若0=a ,则不等式等价为03≠,所以此时成立.若0≠a ,要使0322≠++ax ax 恒成立,则有0<∆,即03442<⨯-=∆a a ,解得30<<a .综上30<≤a ,即实数a 的取值范围是[)3,0.故答案为:[)3,0.考点:函数的定义域及其求法. 15.0或2- 【解析】试题分析:当0=m 时,()2=x f 为偶函数,满足题意;当0≠m 时,由于函数()()222+++=mx m mx x f 为偶函数,故对称轴为022=+-=mm x ,即2-=m ,故答案为0或2-.考点:函数的奇偶性.【方法点晴】本题考查函数奇偶性的应用.若已知一个函数为偶函数,则应有其定义域关于原点对称,且对定义域内的一切x 都有()()x f x f =-成立.其图象关于轴对称.()()222+++=mx m mx x f 是偶函数,对于二次项系数中含有参数的一元二次函数一定要分为二次项系数为0和二次项系数不为0两种情况,图象关于y 轴对称⇒对称轴为y 轴⇒实数m 的值.16.(]31,【解析】试题分析:函数()()[]a x x x x x f ,1,138622∈--=+-=,并且函数()x f 的最小值为()a f ,又∵函数()x f 在区间(]31,上单调递减,∴31≤<a ,故答案为:(]31,.考点:(1)二次函数的性质;(2)函数的最值及其几何意义. 17.①④ 【解析】试题分析:由图象知0a >,0c <,=12ba-,即20a b +=,所以0b <,所以0abc >,故①正确;因为二次函数图象与x 轴有两个交点,所以240b ac ∆=->,即24b ac >,故②错;因为原点O 与对称轴的对应点为(20),,所以2x =时,0y <,即420a b c ++<,故③错;因为当1x =-时,0y >,所以0a b c -+>,把2b a =-代入得30a c +>,故④正确,故填①④.考点:二次函数图象与系数的关系.【技巧点睛】利用图象判断解析式中,,a b c 的正负及它们之间的关系:(1)开口方向判断a 的正负;(2) 与y 轴交点位置判断c 的正负;(3) 对称轴位置判断b 的正负 (左同右异);(4) 与x 轴交点个数判断24b ac -的正负;(5) 图象上特殊点的位置判断一些函数值正负;(6) 对称轴判断2a b +和2a b -的正负. 18.12-【解析】 试题分析:由1x f x x ⎛⎫=⎪+⎝⎭,可令;1,1x x =-+求解可得; 11.2x x x =--=-。
高一数学函数及其表示试题
![高一数学函数及其表示试题](https://img.taocdn.com/s3/m/4da89ec0580216fc710afd21.png)
高一数学函数及其表示试题1.下列各组函数是同一函数的是()A.B.C.D.【答案】D.【解析】对于A,函数的定义域为,函数的定义域为,两者的定义域不相同,所以不是同一函数,即A不正确;对于B,函数的定义域为,函数的定义域为或,两者的定义域不相同,所以不是同一函数,即B不正确;对于C,函数的定义域为,函数的定义域为,两者的定义域不相同,所以不是同一函数,即C不正确;对于D,函数的定义域和值域均为,函数的定义域和值域也均为,两者的定义域和值域均相同,所以是同一函数,即D正确.【考点】相等函数的概念.2.,则 ( )A.B.C.D.【答案】D【解析】本题主要考查函数解析式.由,故选D.【考点】函数解析式,诱导公式.3.已知定义域为的函数同时满足以下三个条件:(1)对任意的,总有;(2);(3)若,,且,则有成立,则称为“友谊函数”,请解答下列各题:(1)若已知为“友谊函数”,求的值;(2)函数在区间上是否为“友谊函数”?并给出理由.(3)已知为“友谊函数”,假定存在,使得且,求证:.【答案】(1)(2)是友谊函数(3)见解析.【解析】(1)利用赋值法由得,再由得,所以(2)分别验证(1)由指数函数的性质在区间上的最小值为0,(2)直接带入验证易得(3)利用做差法直接比较(3)先利用单调性的定义证明抽象函数的单调性,然后再证明取得,又由,得(2)显然在上满足(1);(2).(3)若,,且,则有故满足条件(1)、(2)、(3),所以为友谊函数.(3)由(3)知任给其中,且有,不妨设所以:.下面证明:(i)若,则有或若,则,这与矛盾;(2)若,则,这与矛盾;综上所述:【考点】函数的概念与性质.4.下列各组函数表示同一函数的是()A.B.C.D.【答案】C【解析】排除,因为三个选项中两个函数的定义域各不相同,故C正确。
【考点】函数的三要素。
5.函数的定义域为R,且定义如下:(其中是非空实数集).若非空实数集满足,则函数的值域为.【答案】【解析】解:根据题意:当时,=当时,=当时,=综上可知,对于任意,所以答案应填:【考点】函数的概念与分段函数.6.设是集合M到集合N的映射, 若N="{1,2}," 则M不可能是()A.{-1}B.C.D.【答案】D【解析】对应法则是,根据映射的定义,集合M中的任何一个元素在N中都要有唯一的元素和他对应,而D选项中的2,,,不满足定义,所以不正确,故选D.【考点】映射的定义7.已知函数(1)若,求的值;(2)求的值.【答案】(1)1;(2)1006【解析】(1)因为.所以可以计算出的值为1,即表示两个自变量的和为1的函数值的和为1.(2)由(1)可知两个自变量的和为1的函数值的和为1.所以令…①.利用倒序又可得到…②.所以由①+②可得2S=2012.所以S=1006.试题解析:. 5分(2). 10分【考点】1.函数的表示法.2.倒序求和法.8.如果两个函数的对应关系相同,值域相同,但定义域不同,则这两个函数为“同族函数”,那么函数的“同族函数”有()A.3个B.7个C.8个D.9个【答案】D【解析】1的原象是;2的原象是.值域为{1,2},定义域分别为{1,},{,-1},{,-1},{,1},{,-1,1},{,-1,1},{,,-1},{,,1},{,,1,-1},共9个.故答案为:9.【考点】函数的概念及构成要素.点评:1的原象是正负1;2的原象是正负.值域为{1,2},由此来判断解析式为y=x2,值域为{1,2}的“同族函数”的个数.9.下列各组函数中,表示同一函数的是()A.B.C.D.【答案】C【解析】本小题考查了构成函数的三要素等知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学函数的表示法练习题题型一 求函数值【例1】若函数()f x 满足(21)1f x x -=+,则(1)f = .【例2】(2006年安徽高考)函数()f x 对于任意实数x 满足条件1(2)()f x f x +=,若(1)5f =-,则((5))f f = .【例3】若函数2(21)2f x x x +=-,则(3)f = .【例4】已知函数22(),1x f x x R x =∈+.(1)求1()()f x f x +的值;(2)计算:111(1)(2)(3)(4)()()()234f f f f f f f ++++++.【例5】已知,a b 为常数,若22()43,()1024,f x x x f ax b x x =+++=++求5a b -的值.【例6】若函数2()f x x =,则对任意实数12,x x ,下列不等式总成立的是( )A .12()2x x f +≤12()()2f x f x + B .12()2x x f +<12()()2f x f x + C .12()2x x f +≥12()()2f x f x + D .12()2x x f +>12()()2f x f x +典例分析【例7】(2006.台湾)将正整数18分解成两个正整数的乘积有:118⨯,29⨯,36⨯三种,又36⨯是这三种分解中两数的差最小的,我们称36⨯为18的最佳分解.当p q ⨯()p q ≤ 是正整数n 的最佳分解时,我们规定函数()p F n q =,例如31(18)62F ==,下列有关函数()F n 的叙述,正确的序号为 (把你认为正确的序号都写上) ⑴(4)1F =;⑵3(24)8F =;⑶1(27)3F =;⑷若n 是一个质数,则()F n 1n=;⑸若n 是一个完全平方数,则()1F n =【例8】设函数3(100)(),(89).[(5)](100)x x f x f f f x x -≥⎧=⎨+<⎩求【例9】(2001上海理,1)设函数f (x )=812,(,1]log ,(1,)x x x -⎧∈-∞⎪⎨∈+∞⎪⎩,则满足f (x )=14的x 值为 。
【例10】(2006山东 文2)设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为,( ) A .0 B .1 C .2 D .3题型二 求函数解析式一、定义法:【例11】设23)1(2+-=+x x x f ,求)(x f .【例12】设函数()23,(2)()f x x g x f x =++=,则()g x 的表达式是( )A .21x +B .21x -C .23x -D .27x +【例13】设21)]([++=x x x f f ,求)(x f .【例14】设33221)1(,1)1(xx x x g x x x x f +=++=+,求)]([x g f .【例15】设)(sin ,17cos )(cos x f x x f 求=.二、待定系数法:【例16】如果反比例函数的图象经过点(1,2)-,那么这个反比例函数的解析式为【例17】在反比例函数ky x=的图象上有一点P ,它的横坐标m 与纵坐标n 是方程2420t t --=的两个根,则k =【例18】已知1392)2(2+-=-x x x f ,求)(x f .三、换元(或代换)法:【例19】已知函数1()1xf x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式【例20】(1)已知1)f x =+()f x 及2()f x ;(2)已知()3()21f x f x x +-=+,求()f x .【例21】已知22111(),x x f x x x++=+求()f x .【例22】设x x f 2cos )1(cos =-,求)(x f .【例23】设()f x 满足1()()af x bf cx x+=(其中,,a b c 均不为0,且a b ≠±),求()f x .四、反解函数法:【例24】已知2)(21+=-x a f x ,求)(x f .五、特殊值法:【例25】设)(x f 是定义在N 上的函数,满足1)1(=f ,对于任意正整数y x ,,均有xy y x f y f x f -+=+)()()(,求)(x f .六、累差法:【例26】若af 1lg)1(=,且当),0(,lg )()1(,21*∈-=-≥-N x a a x f x f x x φ满足时,求)(x f .七、归纳法:【例27】已知a f N x x f x f =*∈+=+)1()(),(212)1(且,求)(x f .八、微积分法:【例28】设2)1(,cos )(sin 22=='f x x f ,求)(x f .九、其他综合问题【例29】(1)已知3311()f x x x x +=+,求()f x ;(2)已知2(1)lg f x x+=,求()f x ;(3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;(4)已知()f x 满足12()()3f x f x x+=,求()f x 。
【例30】(2006重庆理21)已知定义域为R 的函数f (x )满足f (f (x )-x 2+x )=f (x )-x 2+x 。
(Ⅰ)若f (2)=3,求f (1);又若f (0)=a ,求f (a );(Ⅱ)设有且仅有一个实数x 0,使得f (x 0)= x 0。
求函数f (x )的解析表达式。
【例31】已知函数()y f x =的图象关于直线1x =-对称,且当(0,)x ∈+∞时,有1(),f x x=则当(,2)x ∈-∞-时,()f x 的解析式为( )A .1x -B .12x --C .12x +D .12x -+【例32】(05全国卷I )已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >-的解集为(1,3).⑴方程()60f x a +=有两个相等的根,求()f x 的解析式; ⑵若()f x 的最大值为正数,求a 的取值范围.题型三 分段函数【例33】画出下列函数的图象:(1)|2|y x =-;(2)|1||24|y x x =-++.【例34】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当( 2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.【例35】画出下列函数的图象.(1)y =x 2-2,x ∈Z 且|x |2≤;(2)y =-22x +3x ,x ∈(0,2];(3)y =x |2-x |; (4)3232232x y x x x ⎧⎪⎨⎪⎩≤≥<-,=--<-..【例36】已知函数22()2x f x x x +⎧⎪=⎨⎪⎩(1)(12)(2)x x x --<<≤≥,⑴ 求()f π; (2) 若()3f a =,求a ; ⑶ 作出此函数的图象.【例37】作出函数()|2||1|f x x x=--+的图象.【例38】已知1,0()1,0xf xx≥⎧=⎨-<⎩,则不等式(2)(2)5x x f x++⋅+≤的解集是.【例39】函数xy xx=+的图象是()【例40】设2,(10)()[(6)],(10)x xf xf f x x-≥⎧=⎨+<⎩,则(5)f的值为()A.10B.11C.12D.13【例41】设函数11(0),2()1(0).x xf xxx⎧-≥⎪⎪=⎨⎪<⎪⎩,若()f a a>,则实数a的取值范围是.【例42】若函数234(0)()(0)0(0)x xf x xxπ⎧->⎪==⎨⎪<⎩,则((0))f f= .【例43】已知函数21(0)()2(0)x xf xx x⎧+≤=⎨->⎩,若()10f x=,则x=.【例44】由函数的解析式,求函数值⑴已知函数2()352f x x x =-+,求(1)f ,1f a ⎛⎫⎪⎝⎭,(1)f x +;⑵已知1(0)()π(0)0(0)x x f x x x +>⎧⎪==⎨⎪<⎩,求{}[(1)]f f f -; ⑶已知()f x 的定义域为{}0x x >,且()()()f xy f x f y =+,若(9)8f =,求(3)f .【例45】已知f (x)=33x x-+⎪⎩ (,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.题型三 实际应用问题【例46】经市场调查,某商品在近100天内,其销售量和价格均是时间t 的函数,且销售量近似地满足关系g(t )=-13 t +1093 (t ∈N *,0<t ≤100),在前40天内价格为f (t )=14 t +22(t∈N *,0≤t ≤40),在后60天内价格为f (t )=-12 t +52(t ∈N *,40<t ≤100),求这种商品的日销售额的最大值(近似到1元).【例47】某中学高一年级学生李鹏,对某蔬菜基地的收益作了调查,该蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示,试解答下列问题. (1)写出图一表示的市场售价间接函数关系P =f (t ).写出图二表示的种植成本与时间的函数关系式Q =g (t );(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102kg,时间单位:天)【例48】季节性服装当季节即将来临时,价格呈上升趋势,设某服装开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售;10周后当季节即将过去时,平均每周削价2元,直到16周末,该服装已不再销售.(1)试建立价格P与周次t之间的函数关系式.(2)若此服装每件进价Q与周次t之间的关系为Q=-0.125(t-8)2+12,t∈[0,16],t∈N*试问该服装第几周每件销售利润L最大?【例49】如图,有一块边长为a的正方形铁皮,将其四个角各截去一个边长为x的小正方形,然后折成一个无盖的盒子,写出体积V以x为自变量的函数式是_____,这个函数的定义域为_______.【例50】某商场做活动,某款玩具小熊的单价是5元,买x (x ∈{1,2,3,4,5})个玩具小熊需要y 元.试用函数的三种表示法表示函数()y f x =.【例51】如图,在边长为4的正方形ABCD 的边上有一动点P ,从点B 开始,沿折线BCD 向点A 运动.设点P 移动的距离为x ,ABP ∆的面积为y ,求函数()y f x =及其定义域,并根据所求函数画出函数图象.xyPABCD【例52】如右图所示,在平行四边形ABCD 中,60DAB ∠=︒,5AB =,3BC =,点P 从起点D 出发,沿DC ,CB 向终点B 匀速运动,设点P 所走过的路程为x ,点P 所经过的线段与线段AD 、AP 所围成的图形的面积为y ,y 随x 变化而变化,在下列图象中,能正确反映y 与x 的函数关系的是( )PCDCB【例53】如图,铁路线上AB长100千米,工厂C到铁路的距离CA为20千米.现打算从AB上某一点D处向C修一条公路,已知铁路每吨每千米的运费与公路每吨每千米的运费之比为3:5.为了使原料从供应站B到工厂C的运费最少,D点应选在何处?【例54】如图,动点P从单位正方形ABCD顶点A开始,顺次经C、D绕边界一周,当x表示点P的行程,y表示PA之长时,求y关于x的解析式,并求f(52)的值.【例55】(2003北京春,理文21)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出。