信号与系统分析PPT全套课件
[课件]第1章信号与系统分析导论PPT
信号处理
对信号进行某种加工或变换。 目的: 消除信号中的多余内容; 滤除混杂的噪声和干扰; 将信号变换成容易分析与识别的形式,便于估计 和选择它的特征参量。 信号处理的应用已遍及许多科学技术领域。
系统(System)
系统(system):由若干相互作用和相互依赖的事物组 合而成的,具有特定功能的整体。如通信系统、控制 系统、经济系统、生态系统等。 系统三要素:IOP:输入、输出、处理加工 系统可以看作是信号的变换器、处理器。 电系统具有特殊的重要地位,某个电路的输入、 输出是完成某种功能,如微分、积分、放大,也可 以称系统。 在电子技术领域中,“系统”、“电路”、“网 络”三个名词在一般情况下可以通用。
第1章信号与系统分 析导论
课程性质
– 电子信息类专业重要的专业基础 课; – 教学对象:电子信息、自动控制、电子技术 、电气工程、计算机技术、生物医学工程等;
课程性质
先修课 后续课程 《高等数学》 《通信原理》 《线性代数》 《数字识领域引入信号 处理与传输领域的关键性课程,在教学环节中起着承 上启下的作用 。
信号与系统之间的关系 信号与系统是相互依存的整体。
1. 信号必定是由系统产生、发送、传输与 接收,离开系统没有孤立存在的信号; 2. 系统的重要功能就是对信号进行加工、 变换与处理,没有信号的系统就没有存在 的意义
输出信号 输入信号 系统 响应 激励
信号理论与系统理论
信号分析:研究信号的基本性能,如信号 的描述、性质等。 信号理论 信号传输 信号处理
系统分析:给定系统,研究系统对于输入 激励所产生的输出响应。 系统理论 系统综合:按照给定的需求设计(综合) 系统。 重点讨论信号的分析、系统的分析,分析是综合的基础。 分析的目的:认识世界;综合的目的:改造世界。
信号与系统分析导论课件
信号与系统分析导论
信号的描述及分类 系统的描述及分类 信号与系统分析概述
信号的描述与分类
信号的基本概念 信号的分类
确定信号 与 随机信号 连续信号 与 离散信号 周期信号 与 非周期信号 能量信号 与 功率信号
一、信号的基本概念
1.信号:消息的运载工具和表现形式
2.表示: 函数:f(t)=Amcos(t+) 波形:
抽样信号——
时间离散 幅值连续
数字信号——
时间离散 幅值离散
f (t )
f (n)
f (n)
抽样
t O
n
n
判断下列波形是连续时间还是离散时间信号,若是 离散时间信号是否为数字信号?
f (t) sint (t)
值域连续 t
0
f(t)
0
值域不连续 t
连续时间信号
连续时间信号(可包含不连续点)
t<0时,ff((tn))=0的信号称为有始信号
f(n)
(2)
(1)
(1)
0 12 345
n
0 12 34
n
离散时间信号(抽样信号)
数字信号
二、信号的分类
3. 周期信号 与 非周期信号
➢ 连续时间周期信号定义: t R,存在正数T,使得
f (t T ) f (t) 成立,则 f (t) 为周期信号。
➢ 离散时间周期信号定义: kI , 存在正整数N,使得
[例] 判断下列系统是否为线性系统。
(1) y(t) t 2 f (t) (2) y(t) 3 f (t) 4
(3) y(t) 4 df (t) dt
解: (2) y(t) 3 f (t) 4
f1(t) 3 f1(t) 4 Kf1(t) 3Kf1(t) 4 不满足均匀特性,该系统为非线性系统。
信号与系统全套课件
滤波器设计和应用
滤波器的概念和分类
根据滤波器的频率响应特性,可分为低通、高通、带通和带阻滤 波器等。
滤波器设计方法
包括巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器等设计方法, 以及数字滤波器的设计等。
滤波器的应用
在通信、音频处理、图像处理等领域广泛应用,如信号去噪、平 滑处理、频率选择性传输等。
04 信号与系统复频域分析
状态变量分析法概述
1
状态变量分析法是一种基于系统内部状态变量描 述系统动态行为的方法。
2
它适用于线性时不变系统,可以方便地分析系统 的稳定性、能控性、能观性等重要特性。
3
状态变量分析法通过引入状态变量的概念,将高 阶微分方程转化为一阶微分方程组,从而简化系 统分析和设计的复杂性。
状态方程和输出方程建立
系统函数的性质
系统函数具有因果性、稳定性、频率 响应等性质,这些性质决定了系统的 基本特性和性能指标。
稳定性判据和稳态误差分析
稳定性判据
通过系统函数的极点分布来判断系统的 稳定性,常用的稳定性判据有劳斯判据 、奈奎斯特判据等。
VS
稳态误差分析
稳态误差是指系统对输入信号响应的稳态 分量与期望输出之间的差值,通过分析系 统函数和输入信号的特性,可以对系统的 稳态误差进行定量评估。
信号与系统全套课件
目 录
• 信号与系统基本概念 • 信号与系统时域分析 • 信号与系统频域分析 • 信号与系统复频域分析 • 离散时间信号与系统分析 • 状态变量分析法在信号与系统中的应用
01 信号与系统基本概念
信号定义与分类
信号定义
信号是传递信息的函数,它可以是时间的函数,也可以是其 他独立变量的函数。在信号处理中,通常将信号表示为时间 的函数,即s(t)。
信号与系统(全套课件557P)
f [k ] y f [k ]
f [k n] y f [k n]
线性时不变系统可由定常系数的线性微分方程式 或差分方程式描述。
4.因果系统与非因果系统
•因果系统:当且仅当输入信号激励系统时才产 生系统输出响应的系统。 •非因果系统:不具有因果特性的系统称为非因 果系统。
离散信号 频域:信号分解为不同频率正弦序列的线性组合
复频域:信号分解为不同频率复指数的线性组合
系统的概念
系统是指由相互作用和依赖的若干事物组成的、 具有特定功能的整体。
系统分析的主要内容
建立与求解系统的数学模型 系统的描述
系统响应的求解
输入输出描述法:N阶微分方程 系统的描述
连续系统
系 统 分 析
y[k]=f1[k]+f2[k]
f[ k]
D
y[k]=f[k-1]
f [ k]
a
y[k]=af[k]
二、系统的分类
1.连续时间系统与离散时间系统
•连续时间系统:系统的输入激励与输出响应都 必须为连续时间信号 •离散时间系统:系统的输入激励与输出响应都 必须为离散时间信号 •连续时间系统的数学模型是微分方程式。 •离散时间系统的数学模型是差分方程式。
f (t) 连续系统 y(t) f[ k] 离散系统 y[ k]
2.线性系统与非线性系统
• 线性系统:具有线性特性的系统。线性特性包括
均匀特性与叠加特性。
(1)均匀特性:
若f1 (t ) y1 (t )
则Kf1 (t ) Ky1 (t )
(2)叠加特性:
若f1 (t ) y1 (t ), f 2 (t ) y2 (t )
信号与系统(郑君里)ppt
t
f(t)
t/2
f(t/2)
0
1
0
1
T
2
T
2
时间尺度压缩:t t 2 ,波形扩展
求新坐标
t
f(t/2)
0
1
2T
2
f(t)f(2t)
f t
2 1
O
Tt
宗量相同,函数值相同
t
f(t)
2t
f(2t)
0
1
0
1
T
2
T
2
求新坐标
t
f(2t)
0
1
T/2
2
t2t,时间尺度增加,波形压缩。
比较
f t
2 1
O
Tt
•三个波形相似,都是t 的一次 函数。 •但由于自变量t 的系数不同, 则达到同样函数值2的时间不同。 •时间变量乘以一个系数等于改 变观察时间的标度。
a 1 压缩,保持信号的时间缩短 f (t) f (at)0 a 1 扩展,保持信号的时间增长
4.一般情况
f t f at b f at b a 设a 0
f (t) K sin(t )
f
t
T
K
2π
O
2π
衰减正弦信号:
K et sint
f (t) 0
振幅:K 周期:T
2π
1
f
频率:f
角频率: 2 π f t 初相:
t0 0
t0
欧拉(Euler)公式
sin t 1 ejt ejt 2j
cos t 1 ejt ejt 2
t
间为,t0时函数有断点,跳变点
宗量>0 函数值为1 宗量<0 函数值为0
信号与系统ppt
3t) 3 (t
3) dt
0
(6)(t 3 2t 2 3) (t 2) (23 2 22 3) (t 2) 19 (t 2)
(7)e4t (2 2t) e4t 1 (t 1) 1 e4(-1) (t 1) 1 e4 (t 1)
2
2
2
(8)e2t u(t) (t 1) e2(-1)u(1) (t 1) 0 (t 1) 0
表征作用时间极短,作用值很大的物理现象的数学模型。
④ 冲激信号的作用:A. 表示其他任意信号
B. 表示信号间断点的导数
二、奇异信号
2. 冲激信号
(4) 冲激信号的极限模型
f (t) 1
g (t) 1
2
t
t
h (t) 2
t
1/
(t) lim f (t) lim g (t) lim h (t)
(t
π )dt 4
(2)23e5t (t 1)dt
(3)46e2t (t 8)dt (4)et (2 2t)dt
(5)22(t 2
3t) ( t
3
1)dt
(6)(t 3 2t 2 3) (t 2)
(7)e4t (2 2t) (8)e2t u(t) (t 1)
1. 在冲激信号的抽样特性中,其积分区间不一定 都是(,+),但只要积分区间不包括冲
激信号(tt0)的t=t0时刻,则积分结果必为零。
2.对于(at+b)形式的冲激信号,要先利用冲激信 号的展缩特性将其化为(t+b/a) /|a|形式后,
方可利用冲激信号的抽样特性与筛选特性。
二、奇异信号
3. 斜坡信号
定义:
r(t
)
t 0
信号与系统PPT全套课件
T T
T
f (t ) dt
f (t ) dt
2
2
(1.1-1)
1 P lim T 2T
T
T
( 1.1-2 )
上两式中,被积函数都是f ( t )的绝对值平方,所以信号能量 E 和信号功率P 都是非负实数。 若信号f ( t )的能量0 < E < , 此时P = 0,则称此信号 为能量有限信号,简称能量信号(energy signal)。 若信号f ( t )的功率0 < P < , 此时E = ,则称此信 号为功率有限信号,简称功率信号(power signal)。 信号f ( t )可以是一个既非功率信号,又非能量信号, 如单位斜坡信号就是一个例子。但一个信号不可能同时既是 功率信号,又是能量信号。
1.3 系统的数学模型及其分类
1.3.1 系统的概念 什么是系统( system )?广义地说,系统是由若干相互作用 和相互依赖的事物组合而成的具有特定功能的整体。例如, 通信系统、自动控制系统、计算机网络系统、电力系统、水 利灌溉系统等。通常将施加于系统的作用称为系统的输入激 励;而将要求系统完成的功能称为系统的输出响应。 1.3.2 系统的数学模型 分析一个实际系统,首先要对实际系统建立数学模型,在数 学模型的基础上,再根据系统的初始状态和输入激励,运用 数学方法求其解答,最后又回到实际系统,对结果作出物理 解释,并赋予物理意义。所谓系统的模型是指系统物理特性 的抽象,以数学表达式或具有理想特性的符号图形来表征系 统特性。
2.连续信号和离散信号 按照函数时间取值的连续性划分,确定信号可分为连续时 间信号和离散时间信号,简称连续信号和离散信号。 连续信号( continuous signal)是指在所讨论的时间内,对 任意时刻值除若干个不连续点外都有定义的信号,通常用f ( t ) 表示。 离散信号(discrete signal)是指只在某些不连续规定的时刻 有定义,而在其它时刻没有定义的信号。通常用 f(tk) 或 f(kT) [简写 f(k )] 表示,如图1.1-2所示。图中信号 f (tk) 只在t k = -2, -1, 0, 1, 2, 3,…等离散时刻才给出函数值。
信号与系统第二版PPT
系统的稳定性分析
定义
如果一个系统在所有可能的输入下都保持稳定,则称该系 统为稳定系统。
判断方法
通过分析系统的极点和零点分布,判断系统的稳定性。如 果所有极点都位于复平面的左半部分,则系统是稳定的。
稳定性分析的重要性
稳定性是系统设计和应用的重要考虑因素,不稳定的系统 无法在实际应用中实现。
系统的频率响应分析
优点
时域分析方法直观、物理意义明 确,可以方便地处理系统的瞬态 响应和稳态响应。
缺点
对于高阶系统或复杂系统,求解 微分方程或差分方程可能变得非 常复杂。
系统的频域分析方法
定义
频域分析方法是将系统的频率特性作为研究对象,通过傅里叶变换、拉普拉斯变换等数学工具将 时间域的信号或系统转换为频域进行分析。
时不变系统
系统的特性不随时间 变化。
时变系统
系统的特性随时间变 化。
信号与系统的重要性及应用领域
重要性
信号与系统是信息传输和处理的基础, 是通信、控制、图像处理、音频处理 等领域的重要理论基础。
应用领域
信号与系统理论广泛应用于通信、雷 达、声呐、遥感、生物医学工程、自 动控制等领域。
02 信号的特性与表示方法
定义
频率响应是描述系统对不同频率输入信号的响应特性。
分析方法
通过傅里叶变换或拉普拉斯变换等方法,将时域信号转换为频域信 号,然后分析系统的频率响应特性。
频率响应的重要性
频率响应是信号处理、控制系统等领域的重要概念,通过分析频率响 应可以了解系统的性能和特性,如传递函数、带宽、相位失真等。
06 信号处理技术与应用
物联网与边缘计算在系统设计中的应用
利用物联网和边缘计算的技术,实现系统的远程监控和管理,提高系 统的可靠性和响应速度。
《信号与系统教案》课件
《信号与系统教案》PPT课件第一章:信号与系统概述1.1 信号的概念与分类信号的定义信号的分类:连续信号、离散信号、随机信号等1.2 系统的概念与分类系统的定义系统的分类:线性系统、非线性系统、时不变系统、时变系统等1.3 信号与系统的研究方法解析法数值法图形法第二章:连续信号及其运算2.1 连续信号的基本性质连续信号的定义与图形连续信号的周期性、奇偶性、能量与功率等性质2.2 连续信号的运算叠加运算卷积运算2.3 连续信号的变换傅里叶变换拉普拉斯变换Z变换第三章:离散信号及其运算3.1 离散信号的基本性质离散信号的定义与图形离散信号的周期性、奇偶性、能量与功率等性质3.2 离散信号的运算叠加运算卷积运算3.3 离散信号的变换离散时间傅里叶变换离散时间拉普拉斯变换离散时间Z变换第四章:线性时不变系统的特性4.1 线性时不变系统的定义与性质线性时不变系统的定义线性时不变系统的性质:叠加原理、时不变性等4.2 线性时不变系统的转移函数转移函数的定义与性质转移函数的绘制方法4.3 线性时不变系统的响应输入信号与系统响应的关系系统的稳态响应与瞬态响应第五章:信号与系统的应用5.1 信号处理的应用信号滤波信号采样与恢复5.2 系统控制的应用线性系统的控制原理PID控制器的设计与应用5.3 通信系统的应用模拟通信系统数字通信系统第六章:傅里叶级数6.1 傅里叶级数的概念傅里叶级数的定义傅里叶级数的使用条件6.2 傅里叶级数的展开周期信号的傅里叶级数展开非周期信号的傅里叶级数展开6.3 傅里叶级数的应用周期信号分析信号的频谱分析第七章:傅里叶变换7.1 傅里叶变换的概念傅里叶变换的定义傅里叶变换的性质7.2 傅里叶变换的运算傅里叶变换的计算方法傅里叶变换的逆变换7.3 傅里叶变换的应用信号分析与处理图像处理第八章:拉普拉斯变换8.1 拉普拉斯变换的概念拉普拉斯变换的定义拉普拉斯变换的性质8.2 拉普拉斯变换的运算拉普拉斯变换的计算方法拉普拉斯变换的逆变换8.3 拉普拉斯变换的应用控制系统分析信号的滤波与去噪第九章:Z变换9.1 Z变换的概念Z变换的定义Z变换的性质9.2 Z变换的运算Z变换的计算方法Z变换的逆变换9.3 Z变换的应用数字信号处理通信系统分析第十章:现代信号处理技术10.1 数字信号处理的概念数字信号处理的定义数字信号处理的特点10.2 现代信号处理技术快速傅里叶变换(FFT)数字滤波器设计数字信号处理的应用第十一章:随机信号与噪声11.1 随机信号的概念随机信号的定义随机信号的分类:窄带信号、宽带信号等11.2 随机信号的统计特性均值、方差、相关函数等随机信号的功率谱11.3 噪声的概念与分类噪声的定义噪声的分类:白噪声、带噪声等第十二章:线性系统理论12.1 线性系统的状态空间描述状态空间模型的定义与组成线性系统的性质与方程12.2 线性系统的传递函数传递函数的定义与性质传递函数的绘制方法12.3 线性系统的稳定性分析系统稳定性的定义与条件劳斯-赫尔维茨准则第十三章:非线性系统13.1 非线性系统的基本概念非线性系统的定义与特点非线性系统的分类13.2 非线性系统的数学模型非线性微分方程与差分方程非线性系统的相平面分析13.3 非线性系统的分析方法描述法映射法相平面法第十四章:现代控制系统14.1 现代控制系统的基本概念现代控制系统的定义与特点现代控制系统的设计方法14.2 模糊控制系统模糊控制系统的定义与原理模糊控制系统的结构与设计14.3 神经网络控制系统神经网络控制系统的定义与原理神经网络控制系统的结构与设计第十五章:信号与系统的实验与实践15.1 信号与系统的实验设备与原理信号发生器与接收器信号处理实验装置15.2 信号与系统的实验项目信号的采样与恢复实验信号滤波实验信号分析与处理实验15.3 信号与系统的实践应用通信系统的设计与实现控制系统的设计与实现重点和难点解析信号与系统的基本概念:理解信号与系统的定义、分类及其研究方法。
信号与系统PPT课件
-2 o
2 t t → 0.5t 扩展
f (2 t ) 1
-1 o 1
t
f (0.5 t )
1
-4
o
4t
对于离散信号,由于 f (a k) 仅在为a k 为整数时才有意义, 进行尺 度变换时可能会使部分信号丢失。因此一般不作波形的尺度变换。
平移与反转相结合举例
例 已知f (t)如图所示,画出 f (2 – t)。 解答 法一:①先平移f (t) → f (t +2)
结论
由上面几例可看出: ①连续正弦信号一定是周期信号,而正弦序列不一定是 周期序列。 ②两连续周期信号之和不一定是周期信号,而两周期序 列之和一定是周期序列。
4.能量信号与功率信号
将信号f (t)施加于1Ω电阻上,它所消耗的瞬时功率为| f (t) |2, 在区间(–∞ , ∞)的能量和平均功率定义为
(1)信号的能量E (2)信号的功率P
def
E
f(t )2 d t
P
def
lim
T
1
T
T
2
T
f(t )2 d t
2
若信号f (t)的能量有界,即 E <∞ ,则称其为能量有限信号, 简称能量信号。此时 P = 0
若信号f (t)的功率有界,即 P <∞ ,则称其为功率有限信号, 简称功率信号。此时 E = ∞
解 (1)sin(3πk/4) 和cos(0.5πk)的数字角频率分别为 β1 = 3π/4 rad, β2 = 0.5π rad 由于2π/ β1 = 8/3, 2π/ β2 = 4为有理数,故它们的周期 分别为N1 = 8 , N2 = 4,故f1(k) 为周期序列,其周期为 N1和N2的最小公倍数8。 (2)sin(2k) 的数字角频率为 β1 = 2 rad;由于2π/ β1 = π为无理数,故f2(k) = sin(2k)为非周期序列 。
信号与系统课件ppt
4.能量信号与功率信号
信号可看作是随时间变化的电压或电流,信号 f (t)在1欧姆的电阻上的瞬时功率为| f (t)|²,在时间
区间所消耗的总能量和平均功率分别定义为:
能量信号:信号总能量为有限值而信号平均功率为零。 功率信号:平均功率为有限值而信号总能量为无限大。
特点:
信号 f (t)可买的VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
如果包含有(t)及其各阶导数,说明相应的0-状态到0+状态 发生了跳变。
0+ 状态的确定 已知 0- 状态求 0+ 状态的值,可用冲激函数匹配法。 求 0+ 状态的值还可以用拉普拉斯变换中的初值定理求出。
各种响应用初始系统零输入响应时,用的是 0- 状态初始值。 在求系统零状态响应时,用的是 0+ 状态初始值,这时的零状态是 指 0- 状态为零。
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
年VIP
月VIP
连续包月VIP
VIP专享文档下载特权
享受60次VIP专享文档下载特权,一 次发放,全年内有效。
产生的响应。 LTI的全响应:y(t) = yx(t) + yf(t)] 2、零输入响应 (1)即求解对应齐次微分方程的解 3、零状态响应 (1)即求解对应非齐次微分方程的解
《信号与系统 》PPT课件
1.6 系统的描述
一、连续系统 二、离散系统
1.7 LTI系统分析方法概
述
二、冲激函数
点击目录 ,进入相关章节
a
10
第1-10页
■
信号与系统 电子教案
第一章 信号与系统
1.1 绪言
思考问题:什么是信号?什么是系统?为什么把这两 个概念联系在一起?
一、信号的概念
1. 消息(message):
a
26
第1-26页
■
信号与系统 电子教案
1.2 信号的描述和分类
4.能量信号与功率信号
将信号f (t)施加于1Ω电阻上,它所消耗的瞬时功率 为| f (t) |2,在区间(–∞ , ∞)的能量和平均功率定义为
(1)信号的能量E
def
E
f (t) 2 dt
(2)信号的功率P
def
Pl
i
m1
TT
29
第1-29页
■
信号与系统 电子教案
1.3 信号的基本运算
二、信号的时间变换运算
1. 反转
演示
将 f (t) → f (– t) , f (k) → f (– k) 称为对信号f (·) 的反转或反折。从图形上看是将f (·)以纵坐标为轴反 转180o。如
f (t) 1
反转 t → - t
1
f (- t )
看成系统。它们所传送的语音、音乐、图像、文字
等都可以看成信号。信号的概念与系统的概念常常
紧密地联系在一起。 系统的基本作用是对输入 输入信号
信号进行加工和处理,将其转 换为所需要的输出信号。
激励
系统
演示
信号与系统 课件 ppt
02
信号的基本性质
信号的时域特性
信号的幅度
描述信号在某一时刻的强度。
信号的频率
描述信号周期性变化的快慢程度。
信号的相位
描述信号在某一时刻相对于参考相位的偏移 。
信号的周期
描述信号重复变化的时间间隔。
信号的频域特性
01
02
03
幅度谱
描述信号在不同频率下的 幅度大小。
相位谱
描述信号在不同频率下的 相位偏移。
信号的叠加原理线性性质若两个信号来自足线性性质,则它们的和也是信号 。
独立性
两个信号之和的图形与它们各自的图形没有交点 。
叠加原理的应用
在电路中,多个信号源共同作用产生的电流可以 叠加。
信号的相加与相乘
信号相加
两个信号的图形在时间上对齐,求和后得到一个新的信号。
信号相乘
两个信号相乘得到一个新的信号,称为卷积。
感谢您的观看
THANKS
卷积的性质
两个信号相乘后,其卷积的图形与两个信号分别作图形变换后的 图形有类似形状。
信号的频谱合成与分解
频谱的概念
01
一个周期信号可以分解为多个不同频率的正弦波的和。
傅里叶级数
02
将周期信号分解为正弦波的级数,其中每个正弦波都有一个特
定的频率。
频谱分析
03
通过傅里叶变换将时域信号转换为频域信号,可以观察到信号
信号与系统 课件
目录
CONTENTS
• 信号与系统概述 • 信号的基本性质 • 系统的基本性质 • 信号与系统的基本分析方法 • 信号的合成与分解 • 系统的响应与稳定性分析
01
信号与系统概述
信号的定义与分类
信号与系统分析PPT全套课件可修改全文
1.系统的初始状态
根据各电容及电感的状态值能够确定在 t 0
时刻系统的响应及其响应的各阶导数
( y(0 ) k 1, 2 , , n 1)
称这一组数据为该系统的初始状态。
2.系统的初始值
一般情况下,由于外加激励的作用或系统内 部结构和参数发生变化,使得系统的初始值与 初始状态不等,即:
y(0 ) y(0 )
自由响应又称固有响应,它反映了系统本身 的特性,取决于系统的特征根; 强迫响应又称强制响应,是与激励相关的响 应。 利用经典法可以直接求得自由响应与强迫响 应,强迫响应即特解
先求得系统的零输入响应和零状态响应,并 获得系统的全响应;
然后利用系统特性与自由响应、激励与强迫 响应的关系可以间接得到自由响应和强迫响应。
t
f (t) (t)dt f (0) (t)dt
f (0) (t)dt f (0)
(1)
0
t
ห้องสมุดไป่ตู้(3)偶函数
(4)
(at)
1 a
(t)
f (t) (t) ( f (0))
(5) (t)与U (t)的关系
0
t
1.2 基本信号及其时域特性
单位冲激偶信号 '(t)
f (t) 1/
f ' (t) (1/ )
第2章 连续系统的时域分析
2.1 LTI连续系统的模型 2.2 LTI连续系统的响应 2.3 冲激响应与阶跃响应 2.4 卷积与零状态响应
2.1 LTI连续系统的模型
2.1.1 LTI连续系统的数学模型 2.1.2 LTI连续系统的框图
返回首页
2.1.1 LTI连续系统的数学模型
对于任意一个线性时不变电路,当电路结构 和组成电路的元件参数确定以后, 根据元件的伏安关系和基尔霍夫定律,可以 建立起与该电路对应的动态方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f e (t ) 1 2 f (t ) f (t )
例1-12
f o (t ) 1 2 f (t ) f (t )
1.5 信号时域分解
第1章 信号与系统 的基本概念
1.1 信号的定义与分类
1.1.1 信号的定义 1.1.2 信号的分类
1.1.1 信号的定义
1.信号 信号是信息的载体,信息是信号的内容。 2.信号的特性 信号的时间特性: 信号的频率特性:
1.1.2 信号的分类
1.确定性信号和随机信号 2.连续时间信号和离散时间信号 3.周期信号和非周期信号 4.正弦信号和非正弦信号 5. 一维信号和多维信号 6. 能量信号和功率信号
(t )
(1)
f (0) (t )dt f (0)
0
t
(3)偶函数
(4) (at) 1 a (t )
f (t ) (t ) ( f (0))
(5) (t ) 与U (t )的关系
t
0
1.2 基本信号及其时域特性
单位冲激偶信号 (t )
'
f (t )
1.确定性信号和随机信号
f1 (t ) 1 0
t f 2 (t )
f 3 (t ) 1
t
2
0
0
2
t
(a)
f 4 (t )
(b)
f 5 (t )
(c)
0
t
0
t
(d)
(e)
2.连续时间信号和离散时间信号
连续时间信号
-2 -1 0 -2
f (n )
f (t ) 2 1 1 2 3 4 t
离散时间信号
7 6 5 4 3 2 1 1 5
(b)有终信号
(c)无始无终信号
因果信号与反因果信号
因果信号
----有始信号
当t 0时,f (t ) 0, t 0时f (t ) 0
反因果信号
----有终信号
当t 0时,f (t ) 0, t 0时f (t ) 0
1.2 基本信号及其时域特性
直流信号
f (t ) A
0
t
正弦信号
1.2 基本信号及其时域特性
单位阶跃信号
1
u (t )
0
t
f (t )
f (t )U (t )
f (0)
0
f (0 )
t
0
t
非因果信号 例:画出函数 f (t )的波形
因果信号
1.2 基本信号及其时域特性
单位门信号
G (t )
1
/ 2
0
/2
t
U (t / 2)
数乘
f (t )
a
d dt
y(t ) af (t )
微分
f (t )
df (t ) y (t ) dt
1.4 信号时域运算
积分
f (t )
y (t ) f (t )
t
例1-9
1.5 信号时域分解
化复杂为简单,先分解再综合
一、f (t ) f D (t ) f A (t ) 二、f (t ) f e (t ) f o (t )
U (t / 2)
1
1
/ 2
0tBiblioteka 0 /2t
1.2 基本信号及其时域特性
单位冲激信号
(t )
(1) f (t )
1/
(t ) lim f (t )
t 0
0
t 0 t 0
0
t
/ 2
0
/2
t
(t )dt lim f (t )dt
sin t 1 t
(2) lim f (t ) 0
t
(3) f (t ) f (t )
1.3 信号时域变换
折叠
f (t )
f (t )
时移
f (t 1)
f (t )
f (t 1)
1.3 信号时域变换
展缩
f (1 2 t)
f (t )
f (2t )
倒相
f (t )
f (t )
1.3 信号时域变换
例1-8
1.4 信号时域运算
相加
f1 (t ) f 2 (t )
y(t ) f1 (t ) f 2 (t ) f n (t )
f n (t )
相乘
f1 (t ) y(t ) f1 (t ) f 2 (t ) f 2 (t )
1.4 信号时域运算
7
4 3 1 n
0
1
2
3
4
5
6
3.周期信号和非周期信号
f (t )
连续周期信号
1 -3 -2 -1 0 1 -1 2 3 4 t
离散周期信号
f (n )
2 1 ... -4 -3 -2 -1 0 1 1 1
2 1 2 3 4 5 1 6
2 1 ... 7 8 n
4.正弦信号和非正弦信号 5.一维信号和n维信号
r (t ) U ( )d
t
1
dr(t ) U (t ) dt
0
1
t
f (t )
单边衰减指数信号
f (t ) Ae U (t )
t
A
0
t
1.2 基本信号及其时域特性
抽样信号
sin t f (t ) Sa (t ) t tR
(1) f (0) lim
t
6.能量信号和功率信号
按信号的可积性划分 能量信号:
0 E , P 0
功率信号:
E ,0 P
时限信号和非时限信号
时限信号
f1 (t ) 1 0 3 t
非时限信号
f3 (t ) 1 t 0 3 t 0 f 4 (t ) 1 t
f 2 (t ) 1 0
(a)有始信号
1/
f ' (t )
' (t )
求导
/ 2
(1 / )
0
/2
0
( )
0
/2
t
/ 2
t
(1 / )
0
t
( )
(3) (4)
f (t ) ' (t ) f (0) ' (t ) f ' (0) (t )
(1) ' (t ) ' (t ) (2)
f (t ) (t )dt f (0)
' '
' (t )dt 0
1.2 基本信号及其时域特性
符号信号
1
sgn(t )
0
1
t
例:画出函数 f (t ) sgn(cos 2 t ) 的波形
1.2 基本信号及其时域特性
单位斜坡信号
r (t ) tU (t )
t 0
lim f (t )dt 1
t 0
(t t0 )
(1) (1)
(t t0 )
0
t0
t
t0
0
t
单位冲激信号的主要性质
f (t )
(1)
f (0)
0
(2)抽样性
t
f (t ) (t )dt f (0) (t )dt