一文全面了解分类分析和聚类分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一文全面了解分类分析和聚类分析

当我们面对大量数据的时候,总试图将大量的数据进行划分,然后依次划分的数据群组进行分析,而分类和聚类就是我们常用的两种数据划分技术。在我们的应用中,我们常常没有过多的去区分这两个概念,觉得聚类就是分类,分类也差不多就是聚类。然而这两者之间有着本质的区别,接下来,我们就具体来探讨下分类与聚类之间在数据挖掘中的区别。

所谓分类(Classification),就是按照某种标准给对象贴标签(label),再根据标签来区分归类;而聚类,则是在是指事先没有“标签”的情况下,通过某种聚集分析,找出事物之间存在聚集性原因的过程。

从机器学习上看,分类作为一种监督学习方法,它的目标在于通过已有数据的确定类别,学习得到一个分类函数或分类模型(也常常称作分类器),该模型能把数据库中的数据项映射到给定类别中的某一个类中。简单的说,就是我们在进行分类前,得到的数据已经标示了数据所属的类别,分类的目标就是得到一个分类的标准,使得我们能够更好的把不同类别的数据区分出来。就如下图所示,分类分析的目的就是要找出区分红色数据和绿色数据的标准,分类分析的过程就是算法不断递进,使得标准更为准确的过程。

图:分类分析的过程

与分类技术不同,在机器学习中,聚类是一种无指导学习。即聚类是在预先不知道分类的情况下,根据信息相似度原则进行信息聚类的一种方法。聚类的目的是将大量的数据通过“属于同类别的对象之间的差别尽可能的小,而不同类别上的对象的差别尽可能的大”的原则进行分类;因此,聚类的意义就在于将观察到的内容组织成类分层结构,把类似的事物组

织在一起。通过聚类分析,人们能够识别密集的和稀疏的区域,因而发现全局的分布模式,以及数据属性之间的有趣的关系。

图:聚类分析的过程

分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应。但是很多时候,我们在进行数据分析的时候,事前并不能得到各个类别的信息。那么在这个时候,我们就需要使用聚类分析的方法,通过聚类分析,将数据进行分类,去识别全局的分布模式,更好的去探索不同类别数据属性之间的区别和联系,从而找到数据的区分标识,并以此来进行更好的数据分类分析工作。

相关文档
最新文档