二次根式ppt课件

合集下载

二次根式ppt课件

二次根式ppt课件
3. 代数式的概念是什么?
用基本运算符号把数或表示数的字母连接起来的式子,称为代数式.
随堂检测
1.计算( 0.04)2 的值是(
A.0.2
B.0.04
C.-0.2
B
).
D.-0.04
2.二次根式− ( 10 − 11)2 的值是(
A. 10 − 11
B.-1
A
C. 11 − 10
).
D.1
随堂检测
乘方和开方)把数或表示数的字母连接起来的式子,我们称这样
的式子为代数式.
课堂小结
1. 二次根式的性质有哪些?
平方在里面,夹上绝对值,分类来讨论.
( )2 =a(a≥0);
2 =a(a≥0)
平方在外面,直接去根号;
2 = ||.
2.运用二次根式的性质进行化简,需要注意什么?
取值a的取值范围,( )2 =a(a≥0); 2 =a(a≥0).
2.从以上的结论中你能发现什么规律?你能用一个式子表示这
个规律吗?
= ( ≥ )
典型例题
化简:
(1) 16
(2) (−5)2
解:(1) 16= 42 =4;
(2) ( − 5)2 = 52 =5.
= ( ≥ )
= ||
跟踪训练
1.计算:
(1) 9=
3
(3) ( − 7)2 =
7

(2) ( − 4)2 =
4

(4) (3 − )2 =
π-3
2.如果 (3 − )2 =x-3,那么x的取值范围是
x≥3
.

.
探究活动3


回顾我们学过的式子,如 5,, + ,−, ,− 3 , 3, ( ≥ 0)

第十六章 二次根式 单元解读 课件(共14张PPT)2024-2025学年人教版八年级数学下册

第十六章 二次根式 单元解读 课件(共14张PPT)2024-2025学年人教版八年级数学下册
了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数) 的加、减、乘、除运算法则,会用它们进行有关的简单四则运算.
教材分析
本章主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、 减、乘、除运算.通过本章学习,学生将建立起比较完善的代数式及其运算的知 识结构,并为勾股定理、一元二次方程、二次函数等内容的学习作好准备.
本章教学建议
02 加强归纳法,使学生经历从特殊到一般的认识过程
前已指出,教材对本章内容的处理,一以贯之地用“从具体数字的算术平方根的运算 中观察规律,归纳得出二次根式的性质、运算法则”的方式展开.因此,教学时一定要根据 教材的这一编写意图,让学生通过观察、思考、讨论等,经历从特殊到一般的过程,归纳 得出有关结论.例如,对于二次根式的乘法法则和除法法则,都应该先让学生利用二次根式 的概念和性质进行一些具体数字的计算,并观察所得结果,发现二次根式相乘(除)与积(商) 的算术平方根之间的关系;然后让学生自己举例,利用发现的规律进行验证性计算;最后 归纳出二次根式的乘法、除法法则.
单元解读
第十六章 二次根式
R·八年级下册
课标分析
“数与式”是代数的基本语言,初中阶段关注用字母表述代数式,以及代数 式的运算,字母可以像数一样进行运算和推理,通过字母运算和推理得到的结论 具有一般性.
数与代数领域的学习,有助于学生形成抽象能力、推理能力和模型观念,发 展几何直观和运算能力.
课标要求
加强符号意识、运算能 力的培养
教材分析
设计思路 概念
性质
运算
介绍二次根式的性质,包括一 通过观察、操作、归纳、
个非负数的平方的算术平方根 类比等方法,给出二次
根式的概念
的性质、积的算术平方根和商

二次根式的乘除法PPT课件

二次根式的乘除法PPT课件

二次根式的乘除法PPT 课件contents •二次根式基本概念与性质•二次根式乘法运算规则•二次根式除法运算规则•乘除混合运算及简化方法•在实际问题中应用举例•错题集锦与答疑环节目录二次根式基本概念与01性质二次根式定义及表示方法定义形如$sqrt{a}$($a geq0$)的式子叫做二次根式。

表示方法对于非负实数$a$,其算术平方根表示为$sqrt{a}$。

乘法定理$sqrt{a} times sqrt{b} = sqrt{a times b}$($a geq 0$,$bgeq 0$)。

非负性$sqrt{a} geq 0$($a geq 0$)。

除法定理$frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$($a geq 0$,$b > 0$)。

二次根式性质介绍例1解析例3解析例2解析计算$sqrt{8} times sqrt{2}$。

根据乘法定理,$sqrt{8} times sqrt{2} = sqrt{8 times 2} = sqrt{16} = 4$。

计算$frac{sqrt{20}}{sqrt{5}}$。

根据除法定理,$frac{sqrt{20}}{sqrt{5}} = sqrt{frac{20}{5}} = sqrt{4} = 2$。

化简$sqrt{18}$。

首先将18进行质因数分解,得到$18 = 2 times 9 = 2 times 3^2$,然后根据二次根式的性质,$sqrt{18} = sqrt{2 times 3^2} = 3sqrt{2}$。

典型例题解析二次根式乘法运算规02则同类二次根式乘法法则两个同类二次根式相乘,把他们的系数相乘,根式部分不变,再根据根式的乘法法则,化简得到结果。

如:√a ×√a = a (a≥0)同类二次根式相乘,结果仍为同类二次根式。

不同类二次根式乘法法则两个不同类二次根式相乘,先把他们的系数相乘,再根据乘法公式展开,化简得到结果。

浙教版八年级下册 1.3 二次根式的运算 课件(共26张PPT)

浙教版八年级下册 1.3 二次根式的运算 课件(共26张PPT)

拓展提升
如图,一张边长为22cm的等边三角形彩色纸,CD⊥AB,小明在
等边三角形纸片中裁出三条宽度相同的长方形纸条,其中最上面的那
个长方形恰好为正方形,分别求出三张长方形纸条的长度.
解:

22
22
22
巩固练习
在Rt△ABC中,∠C=Rt∠,AB=c,BC=a,AC=b.
(1)若: =
1
,则:
( 3) 2 3
(1 2) 2 1 2
(1 2)
2 1
三. 性质复习
最简二次根式
1.根号内是一个不含平
方因数的整数
例1 计算
1
3
(2)
4
12 24 化成最简二次根式
2.分母中不含根号
8
2
1
2
2
2


解:原式=
6 -12 2
2 2
2
2
2
1
3
3 2
3
AB=_______m.
B

A

2
C
斜坡的竖直高度和对应的水平距离的比叫做坡比.
例题分析
例6 如图,扶梯AB的坡比为1:0.8,滑梯CD的坡比为1:1.6,AE=
BC=

.一男孩从扶梯走到滑梯的顶部,然后从滑梯滑下,

A
E
C
F
D
m,
经过的总路
程为多少米(要求先化简,再取近似值,结果精确到0.01m)?
方法总结:
二次根式的运算
直角三角形三边计算
A
C
感悟提升
一个概念
斜坡的竖直高度和对应的水平宽度的比叫做坡比

二次根式ppt课件

二次根式ppt课件

02
二次根式的化简与求值
化简二次根式的方法
因式分解法
将被开方数进行因式分解,提取 完全平方数。例如,√(24) = √(4×6) = 2√6。
分母有理化
当分母含有二次根式时,通过与其 共轭式相乘使分母变为有理数。例 如,1/(√3 + 1) = (√3 - 1)/[(√3 + 1)(√3 - 1)] = (√3 - 1)/2。
计算$(sqrt{3} + sqrt{2})(sqrt{3} - sqrt{2})$。
利用平方差公式进行计算,即 $(sqrt{3} + sqrt{2})(sqrt{3} sqrt{2}) = (sqrt{3})^2 (sqrt{2})^2 = 3 - 2 = 1$。
04
二次根式在方程中的应用
二次根式与一元二次方程的关系
二次根式ppt课件
目录
• 二次根式基本概念与性质 • 二次根式的化简与求值 • 二次根式的运算与变形 • 二次根式在方程中的应用 • 二次根式在不等式中的应用 • 二次根式在函数中的应用
01
二次根式基本概念与性质
二次根式的定义
01
02
03geq 0$)的式子叫做二次根式 。
二次根式的变形技巧
分母有理化
利用平方差公式将分母化为有理 数,同时保持分子的形式不变。
提取公因式
将多项式中相同的部分提取出来 ,简化计算过程。
完全平方公式
将某些二次根式化为完全平方的 形式,便于进行开方运算。
典型例题解析
例题1
解析
例题2
解析
计算$sqrt{8} + sqrt{18}$。
先将$sqrt{8}$和$sqrt{18}$化 为最简二次根式,即$sqrt{8} = 2sqrt{2}$,$sqrt{18} = 3sqrt{2}$,然后根据同类二次 根式的加法法则进行计算,即 $2sqrt{2} + 3sqrt{2} = 5sqrt{2}$。

八年级数学下册教学-16.2 二次根式的乘除 课件(共16张PPT).ppt

八年级数学下册教学-16.2 二次根式的乘除 课件(共16张PPT).ppt

02
练一练
1.(2019·海口市丰南中学初三期末)已知: 是整数,则满足条件
的最小正整数为(
A.2
)
B.3
C.4
D.5
【答案】D
【解析】
∵ 20 = 4 × 5 = 2 5 ,且 20 是整数,
∴2 5是整数,即5n是完全平方数,
∴n的最小正整数为5.
故选D.
02
练一练
2.已知 = , = ,则 = (
PA R T
02
练一练
02
练一练
计算:
1) 14 × 7 = 14 × 7 = 2 × 72 = 7 2
2)2 10 × 3 5 = 2 × 3 × 10 × 5
= 6× 2×5×5
= 6 × 52 × 2=30 2
3) 3 ×
1

3
= 3 × 1 =
3
× 2= = 2 × =
A.2a
B.ab
C.
)
D.
【答案】D
【详解】
解: 18 = 2 × 3 × 3 = 2 × 3 ×
3 = ⋅ ⋅ = 2 .
故选D.
3.(2019·肇庆市端州区南国中英文学校初二期中)下列
各数中,与2 的积为有理数的是(
A.2
B.3
C.
)
【答案】D
【详解】
解:A、2×2 3=4 3为无理数,故不能;
01
二次根式的乘法法则变形
注意公式成立条件
ab = • ≥ 0,b ≥ 0
在本章中,如果没有特别说明,所有的字母都表示正数.
计算:
1) 16 × 81 =
=

二次根式ppt课件

二次根式ppt课件

通过案例讲解二次根式在实际问 题中的应用
分析数学模型和实际问题之间的 关系
课程安排
4. 课堂练习和总结(10分钟)
提供课堂练习,检验学生对所 学内容的掌握情况
总结本节课的重点和难点,进 行回顾和总结
PART 02
二次根式的基本概念
二次根式的定义
总结词:非负数
详细描述:二次根式是指根号内含有未知数的数学表达式,它必须满足被开方数为非负数,否则没有 意义。
要点二
培养学生的数学思维和解决问题 的能力,例如
让学生自己设计一个与二次根式相关的问题并解决它等。
PART 06
总结与回顾
主要知识点回顾
二次根式的定义
二次根式是一种可以用来解决各 种实际问题的数学工具,它表示 一个非负数通过开方得到的平方
根。
二次根式的性质
二次根式具有非负性、有界性、正 值性等性质,这些性质在解决实际 问题时具有重要的应用价值。
PART 04
二次根式的应用
代数领域的应用
01
02
03
根式与方程的解
通过二次根式,我们可以 求解一元二次方程的解, 确定其实数根和虚数根。
根式的化简
在代数运算中,对根式进 行化简可以简化表达式, 提高运算效率。
根式与不等式
利用根式可以求解一元二 次不等式,通过确定不等 式的解集,解决实际问题 。
- \sqrt{3}$等。
解决与二次根式相关的实际问题,例如 :计算圆的面积或周长等。
掌握和运用二次根式的运算法则和公式 ,例如:$(a+b)\sqrt{a} = a\sqrt{a}
+ b\sqrt{a}$等。
综合练习题
要点一
通过综合题目,考察学生对二次 根式的全面理解和运用,例如

15.1 二次根式 - 第1课时课件(共17张PPT)

15.1 二次根式 - 第1课时课件(共17张PPT)
新知探究
知识点1 二次根式的概念
一起究
1.(1)2,18,(2)非负数m,p+q,t2-1的算术平方根又是怎样表示的?
2.学校要修建一个占地面积为S ㎡的圆形喷水池,它的半径应为多少米?如果在这个圆形喷水池的外围增加一个占地面积为a ㎡的环形绿化带,那么所成的大圆的半径应为多少米?
一般地,我们把形如 的式子叫做二次根式.
15.1 二次根式第1课时
第十五章 二次根式
学习目标
1.了解二次根式的概念.2.能根据二次根式的意义确定被开方数中字母的取值范围.3.掌握二次根式的双重非负性及其应用.
学习重难点
掌握二次根式的概念.
难点
重点
掌握二次根式的双重非负性及其应用.
复习巩固
一个正数有两个平方根,它们互为相反数.0只有一个平方根,是0本身.负数没有平方根.正数a的算术平方根是
二次根式特征
1.外貌特征:含有“ ”.2.内在特征:被开方数3.内在特征:a可以是数,也可以是含有字母的式子.
知识点2 二次根式的几个性质
例题解析
例1 化简:
随堂练习
C
A
A
3.下列计算正确的是( ).
拓展提升
D
3.做一个面积为300 cm3的长方形镜框,使它长与宽的比为3:2.镜框的宽应为多少厘米?
归纳小结
二次根式
定义
性质
同学们再见!
授课老师:
时间:2024年9月15日

《二次根式》PPT课件 (共31张PPT)

《二次根式》PPT课件 (共31张PPT)

练习:
x取何值时,下列二次根式有意义?
(1) x 1
x 1 (2) 3x
x0
(3) 4 x
2 x为全体实数
(5) x
3
x0
1 a< 2
1 (4) x
x0
1 (7) 1 2a
1 (6) x0 2 x 3 x (8) | x | 4
求二次根式中字母的取值范围的基本依据: ①被开方数大于等于零; ②分母中有字母时,要保证分母不为零。
2 2
x=5,y=11
(2 x - y)
2011
=- 1
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
1、( a) =a (a 0)
2
2、( a )=|a| =
2
a (a>0) 0 (a=0)
-a (a<0)
( a ) 与 a 有区别吗?
2
2
( a) 与 a
1:从运算顺序来看,
2
2
a
a
2
2
先开方,后平方
先平方,后开方
2.从取值范围来看, 2 a≥0 a

a
2
a取任何实数
3.从运算结果来看:
①被开方数大于等于零; ②分母中有字母时,要保证分母不为零。 ③多个条件组合时,应用不等式组求解
二次根式的双重非负性
a 吵0, a 0.
二次根式的性质

人教版八年级数学下册《二次根式》PPT课件

人教版八年级数学下册《二次根式》PPT课件
求此三角形的周长.
3 a≥0,
解:由题意得
2a 6≥0,
∴a=3,
∴b=4.
当a为腰长时,三角形的周长为3+3+4=10;
当b为腰长时,三角形的周长为4+4+3=11.
课堂检测
拓 广 探 索 题
先阅读,后回答问题:
当x为何值时, x x 1 有意义?
解:由题意得x(x-1)≥0
解得 m≥2且m≠-1,m≠2, ∴m>2.
(2)无论x取任何实数,代数式
x2 6x m 都有意义,求
m的取值范围.
解:由题意得x2+6x+m≥0,即(x+3)2+m-9≥0.
∵(x+3)2≥0, ∴m-9≥0,即m≥9.
课堂检测
能 力 提 升 题
已知a,b为等腰三角形两条边长,且a,b满足b 3 a 2a 6 4,
双重非负性
二次根式的被开方数非负
二次根式的值非负
a ≥0.
探究新知
考 点 1 利用二次根式的双重非负性求字母的值
若 a 3 b 2 (c 1)2 0 ,求2a -b+3c的值.
提示:多个非负数的和为零,则可得每个非负数均为零.
初中阶段学过的非负数主要有绝对值、偶次幂及二次根式.
人教版 数学 八年级 下册
16.1 二次根式
第1课时
导入新知
电视塔越高,从塔顶发射的电磁波传播得越远,从而能收
看到电视节目的区域越广,电视塔高h(单位:km)与电视节
目信号的传播半径 r(单位:km)之间存在近似关系r= Rh ,
其中地球半径R≈6 400 km.如果两个电视塔的高分别是h1 km、

《最简二次根式》二次根式PPT课件

《最简二次根式》二次根式PPT课件

2.被开方数是分数的二次根式化简
例 2 化简 1125. 分析:因为,125=5×5×5=52×5,所以,只需 分子、分母同乘以 5 就可以了.
解法一: 1125= 513××55=255.
3.被开方数是小数的二次根式化简
例 3 化简 1.5.
分析:被开方数是小数时,常把小数化成相 应的分数,然后进行求解.
1 8x3
x
0
0.8 4 45 2 5 5 55 5
4 1 9 92 3 2 2 2 22 2
20a2b 4a2 5b c 2 a 5bc 2a 5bc
c
cc
c
c
x2
1 8x3
x2
1 2x x2 8x3 2x 4x2
2x
2x 4
1.最简二次根式的概念.
满足下列条件的二次根式,叫做最简二次根式。
(2) 1 6x 9x2 (x 1) 3
(2)3x 1
(3) x 32 1 x2 1 x 3 (3)2
2、如果 a3 a2 a a 1, 那么a的取值范围是 ( D )
A. a 0 C. a 1
B. a 1
D. 1 a 0
3.化简 1 x3 x
错解:原式 1 x x2 x
18
32
被开方数不 含开得尽方 的因数
a 3
b2
(b 0)
9a
3a 3
ba
(b 0)
3a
被开方数 不含分母
(1)被开方数各因式的指数都为1. (2)被开方数不含分母.
被开方数满足上述两个条件的二次根式,叫 做最简二次根式.
如:1 x2 y √
4
6m(a2 b2 ) √
1 4
x2 y x 4

初中数学二次根式PPT课件图文

初中数学二次根式PPT课件图文
【解析】选C.若二次根式 有意义,则2x+6≥0, 解得x≥-3,在数轴上时从表示-3的点向右画,且用实心 圆点.
3.(2014·南通中考)若 在实数范围内有意义, 则x的取值范围是 ( ) A.x≥ B.x≥- C.x> D.x≠
【解析】选C.由题意得 解得x>
一、二次根式的相关概念 1.二次根式:一般地,形如 (_____)的式子. 2.最简二次根式:同时满足:(1)被开方数不含_____. (2)被开方数中不含能开得尽方的___________.
a≥0
字母
因数或因式
二、二次根式的性质
两个重要性质
( )2=__(a≥0).
=|a|=
【名师点津】理解二次根式的性质需注意的两个问题 (1) (a≥0)的双重非负性: ①被开方数a非负; ② 本身非负.
(2) 与( )2的异同: 中的a可以取任何实数,而( )2中的a必须取非负 数,只有当a取非负数时, =( )2.
【题组过关】 1.(2016·潍坊中考)实数a,b在数轴上对应点的位置如 图所示,化简|a|+ 的结果是 ( ) A.-2a+b B.2a-b C.-b D.b
【解析】选A.由题干图知:a<0,a-b<0, 则|a|+ =-a-(a-b)=-2a+b.
2.(2015·资阳中考)已知:(a+6)2+ =0,则 2b2-4b-a的值为________. 【解题指南】首先根据非负数的性质可求出a的值和 b2-2b=3,进而可求出2b2-4b-a的值.
3.二次根式的混合运算:与实数的运算顺序相同,先算 乘方,再算_____,最后算加减,有括号的先算括号里面 的(或先去括号).

《二次根式的概念》课件

《二次根式的概念》课件
2023-2026
ONE
KEEP VIEW
《二次根式的概念》 ppt课件
REPORTING
CATALOGUE
目 录
• 二次根式的定义 • 二次根式的简化 • 二次根式的运算 • 二次根式的应用 • 总结与回顾
PART 01
二次根式的定义
平方根的定义
总结词
理解平方根是二次根式的基础
详细描述
平方根的定义是,对于非负实数a,若某数的平方等于a,则这个数称为a的平方 根。例如,4的平方根是±2,因为2^2=4和(-2)^2=4。
详细描述
在进行二次根式简化时,首先观察根号内的表达式是否 可以提取平方因子或进行因式分解,以消去根号。如果 无法直接提取平方因子或进行因式分解,可以尝试使用 配方法,将表达式转化为完全平方形式,从而消去根号 。接下来观察各项是否为同类项,如果是,则合并同类 项。最后化简各项的系数和根指数,使二次根式达到最 简形式。通过综合运用这些方法,可以逐步化简二次根 式,使其达到最简形式。
PART 04
二次根式的应用
二次根式在几何学中的应用
二次根式在勾股定理中的 应用
勾股定理是几何学中的重要定理,而二次根 式是解决勾股定理问题的重要工具。通过使 用二次根式,我们可以计算直角三角形的斜 边长度。
二次根式在面积和周长计 算中的应用
在几何学中,许多形状(如矩形、圆形、椭 圆形等)的面积和周长可以通过使用二次根
PART 02
二次根式的简化
根号的简化
总结词
根号的简化主要是通过因式分解、配方法等手段,将根号内的表达式化简为最简二次根式。
详细描述
在进行二次根式简化时,首先观察根号内的表达式是否可以提取平方因子或进行因式分解,以消去根号。如果无 法直接提取平方因子或进行因式分解,可以尝试使用配方法,将表达式转化为完全平方形式,从而消去根号。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 : (1) 16 81 16 81 49 36
(2) 4a2b3 4 a2 b3
2a b2 b
2a b2 b 2ab b
7
练习:
1.化简:
(1) 49121 (3) 4 y
(2) 225 (4) 16ab2c3
8
a a a 0,b 0
2 40 4 10 2 10;
的条件是:1 被开方数 不含分母,2 被开方数
3 1.5 3
2
3 3 2 2 2 2
4 4
3
4 3 2 3.
3 3
3
6; 2
中不含能开得尽的因数 或因式。这两个条件缺
一不可。
6 a 2 a 2b 2 a2 (1 b2 ) a 2 1 b 2 a 1 b 2
x

0
(3)
16b2c a2
a

0,
b
ቤተ መጻሕፍቲ ባይዱ
0
(4)
0.09 ×169 0.64 ×196
解:
(1)
2
7=
9
25= 9
25 = 5 (2)
93
81 25x 2
=
81 9 =
25x 2 5x
16b2c 16b2c 4b c 4b
(3) a 2 =
=
=c
a2
a
a
0.09 ×169 0.09 ×169 0.3 ×13 39
9
把下列各根式化简
23 43 32 52
2 42 35 23
2
3
10
练习:下面的式子是不是最简二次根式,把不
是的二次根式化成最简二次根式:
1 32; 2 40; 3 1.5; 4 4. 5 x2 y2
3
6 a 2 a 2b 2
解: 1 32 16 2 16 2 4 2; 最简二次根式必须满足
b
b
商的算术平方根等于被除式的算术平方根
除以除式的算术平方根。
例2:化简 (1) 3 100
(2) 1 3 16
3 25x
9y2
解: 1 3 3 3
100 100 10
(2) 1 3 =
19

19 =
19
16 16 16 4
3 25x 25x 5 x
9y2 9y2 3y
注意: 如果被开方数是 带分数,应先化 成假分数。
(1) x 3 (5) x 2
x 1
(2) 3 2x (6) 3
3 2x
(3) x2
(4) x2
(7) 3 (8) 5 2x 1 x 1
考查: a (a 0)
6
ab a b(a 0,b 0)
例1.化简积方:根的的算积术。平方根等于各因式算术平 (1)16 81;(2) 4a2b3 ;
(4)
=
=
=
0.64 ×196 0.64 ×196 0.8 ×14 112 15
16
什么?用公式如何表示? 3 什么叫最简二次根式? 4. 最简二次根式必须满足的条件是什么?
3
知识梳理
如图所示的值表示正方形的面
积,则正方形的边长是 b 3
b-3
你认为所得的各代数式有哪些共同特点?
(其中b=24,c=25),
a2 2500 b 3
表示一些正数的算术平方根.
形如 a (a 0) 的式子叫做二次根式.
10 (3)2 ( 3)2
10 27
17
13
1
1
2
2
2 1
x 1 2 x 1 2 x y2 (x>0 )
3 x2 2xy y2 (x﹤y) yx 14
练习:
7 (1) 2
9
(2)
81 25x2
7. 二次根式(第1课时)
1
1 会叙述二次根式的概念并弄清被开方数的取值范 围。
2 叙述二次根式的性质。 3 弄清最简二次根式的概念并会做简单的化简。
2
自学课本第41---42页回答下列问题: 1 什么叫二次根式?请你举例说明。被开方数的取
值范围。 2 积的算术平方根等于什么?商的算术平方根等于
11
根号内字母的取值范围
(1)已知y 2 x x 2 5,求 x 的值; y
思考题: (2)若1995 a b 2000 0,求a b的值;
考查:a(a 0)
12
练习
( a )2 a(a≥0)
计算: ( 10 )2 (3 3)2
解: ( 10 )2 (3 3)2
a叫被开方数。a可以是一个数也可以是 一个代数式。
4
二次根式的概念
说一说:
下列各式是二次根式吗?
(1) 32, (2) 6, (3) 12, (4) - m (m≤0), (5) xy (x,y 异号), (6) a2 1 , (7) 3 5
在实数范围内,负数没有平方根
5
根号内字母的取值范围
相关文档
最新文档