第二章函数教案

合集下载

高考数学一轮复习 第二章 函数2.3函数的奇偶性与周期性教学案 理

高考数学一轮复习 第二章 函数2.3函数的奇偶性与周期性教学案 理

2.3 函数的奇偶性与周期性考纲要求1.结合具体函数,了解函数奇偶性的含义.2.会运用函数图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. 1.函数的奇偶性奇偶性 定义 图象特点 偶函数 如果对于函数f (x )的定义域内任意一个x ,都有________,那么函数f (x )是偶函数关于____对称 奇函数 如果对于函数f (x )的定义域内任意一个x ,都有________,那么函数f (x )是奇函数 关于______对称2.周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=______,那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中____________的正数,那么这个____正数就叫做f (x )的最小正周期.3.对称性若函数f (x )满足f (a -x )=f (a +x )或f (x )=f (2a -x ),则函数f (x )关于直线__________对称.1.函数f (x )=1x-x 的图象关于( ). A .y 轴对称 B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称2.若函数f (x )=x 2x +1x -a为奇函数,则a =( ).A.12B.23C.34D .1 3.函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(-5,-3)上( ).A .先减后增B .先增后减C .单调递减D .单调递增4.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=( ).A .-1B .1C .-2D .25.若偶函数f(x)是以4为周期的函数,f(x)在区间[-6,-4]上是减函数,则f(x)在[0,2]上的单调性是__________.一、函数奇偶性的判定【例1】判断下列函数的奇偶性.(1)f(x)=3-x2+x2-3;(2)f(x)=(x+1)1-x 1+x;(3)f(x)=4-x2|x+3|-3.方法提炼判定函数奇偶性的常用方法及思路:1.定义法2.图象法3.性质法:(1)“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;(2)“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;(3)“奇·偶”是奇,“奇÷偶”是奇.提醒:(1)分段函数奇偶性的判断,要注意定义域内x取值的任意性,应分段讨论,讨论时可依据x的范围取相应地化简解析式,判断f(x)与f(-x)的关系,得出结论,也可以利用图象作判断.(2)“性质法”中的结论是在两个函数的公共定义域内才成立的.(3)性质法在选择题和填空题中可直接运用,但在解答题中应给出性质推导的过程.请做演练巩固提升1二、函数奇偶性的应用【例2-1】设偶函数f(x)满足f(x)=x3-8(x≥0),则{x|f(x -2)>0}=( ).A.{x|x<-2,或x>0} B.{x|x<0,或x>4} C.{x|x<0,或x>6} D.{x|x<-2,或x>2}【例2-2】设a,b∈R,且a≠2,若定义在区间(-b,b)内的函数f(x)=lg 1+ax1+2x是奇函数,则a+b的取值范围为__________.【例2-3】设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-f ′(x )是奇函数.(1)求b ,c 的值;(2)求g (x )的单调区间与极值.方法提炼函数奇偶性的应用:1.已知函数的奇偶性求函数的解析式,往往要抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性产生关于f (x )的方程,从而可得f (x )的解析式.2.已知带有字母参数的函数的表达式及奇偶性求参数,常常采用待定系数法:利用f (x )±f (-x )=0产生关于字母的恒等式,由系数的对等性可得知字母的值.3.奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.4.若f (x )为奇函数,且在x =0处有定义,则f (0)=0.这一结论在解决问题中十分便捷,但若f (x )是偶函数且在x =0处有定义,就不一定有f (0)=0,如f (x )=x 2+1是偶函数,而f (0)=1.请做演练巩固提升3,4三、函数的周期性及其应用【例3-1】已知定义在R 上的函数f (x )满足f (x )=-f ⎝⎛⎭⎪⎫x +32,且f (1)=3,则f (2 014)=__________.【例3-2】已知函数f (x )满足f (x +1)=1+f x 1-f x,若f (1)=2 014,则f (103)=__________.方法提炼抽象函数的周期需要根据给出的函数式子求出,常见的有以下几种情形:(1)若函数满足f (x +T )=f (x ),由函数周期性的定义可知T 是函数的一个周期;(2)若满足f (x +a )=-f (x ),则f (x +2a )=f [(x +a )+a ]=-f (x +a )=f (x ),所以2a 是函数的一个周期;(3)若满足f (x +a )=1f x,则f (x +2a )=f [(x +a )+a ]=1f x +a=f (x ),所以2a 是函数的一个周期;(4)若函数满足f(x+a)=-1f x,同理可得2a是函数的一个周期;(5)如果T是函数y=f(x)的周期,则①kT(k∈Z且k≠0)也是y=f(x)的周期,即f(x+kT)=f(x);②若已知区间[m,n](m<n)的图象,则可画出区间[m+kT,n+kT](k∈Z且k≠0)上的图象.请做演练巩固提升5没有等价变形而致误【典例】函数f(x)的定义域D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性,并证明;(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.错解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)f(x)为偶函数,证明如下:令x1=x2=-1,有f[(-1)×(-1)]=f(-1)+f(-1),解得f(-1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),∴f(-x)=f(x).∴f(x)为偶函数.(3)f(4×4)=f(4)+f(4)=2,f(16×4)=f(16)+f(4)=3,由f(3x+1)+f(2x-6)≤3,得f[(3x+1)(2x-6)]≤f(64).又∵f(x)在(0,+∞)上是增函数,∴(3x+1)(2x-6)≤64.∴-73≤x≤5.分析:(1)从f(1)联想自变量的值为1,进而想到赋值x1=x2=1.(2)判断f(x)的奇偶性,就是研究f(x),f(-x)的关系,从而想到赋值x1=-1,x2=x.即f(-x)=f(-1)+f(x).(3)就是要出现f(M)<f(N)的形式,再结合单调性转化为M<N或M>N的形式求解.正解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)f(x)为偶函数,证明如下:令x 1=x 2=-1,有f [(-1)×(-1)]=f (-1)+f (-1),解得f (-1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ).∴f (x )为偶函数.(3)f (4×4)=f (4)+f (4)=2,f (16×4)=f (16)+f (4)=3.由f (3x +1)+f (2x -6)≤3,变形为f [(3x +1)(2x -6)]≤f (64).(*)∵f (x )为偶函数,∴f (-x )=f (x )=f (|x |).∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).又∵f (x )在(0,+∞)上是增函数,∴|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0.解得-73≤x <-13或-13<x <3或3<x ≤5. ∴x 的取值范围是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-73≤x <-13,或-13<x <3,或3<x ≤5. 答题指导:等价转化要做到规范,应注意以下几点:(1)要有明确的语言表示.如“M ”等价于“N ”、“M ”变形为“N ”.(2)要写明转化的条件.如本例中:∵f (x )为偶函数,∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).(3)转化的结果要等价.如本例:由于f [|(3x +1)(2x -6)|]≤f (64) ⇒|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0.若漏掉(3x +1)(2x -6)≠0,则这个转化就不等价了.1.下列函数中既不是奇函数,又不是偶函数的是( ).A .y =2|x |B .y =lg(x +x 2+1)C .y =2x +2-xD .y =lg 1x +12.已知函数f (x )对一切x ,y ∈R ,都有f (x +y )=f (x )+f (y ),则f (x )为( ).A .偶函数B .奇函数C .既是奇函数又是偶函数D .非奇非偶函数3.函数f (x )的定义域为R ,且满足:f (x )是偶函数,f (x -1)是奇函数,若f(0.5)=9,则f(8.5)等于( ).A.-9 B.9 C.-3 D.04.设偶函数f(x)满足f(x)=2x-4(x≥0),则不等式f(x-2)>0的解集为( ).A.{x|x<-2,或x>4} B.{x|x<0,或x>4}C.{x|x<0,或x>6} D.{x|x<-2,或x>2}5.已知定义在R上的奇函数f(x)的图象关于直线x=1对称,f(-1)=1,则f(2 008)+f(2 009)+f(2 010)+f(2 011)+f(2 012)+f(2 013)=__________.参考答案基础梳理自测知识梳理1.f (-x )=f (x ) y 轴 f (-x )=-f (x ) 原点2.(1)f (x ) (2)存在一个最小 最小3.x =a基础自测1.C 解析:判断f (x )为奇函数,图象关于原点对称,故选C.2.A 解析:∵f (x )为奇函数,∴f (x )=-f (-x ),即:x(2x +1)(x -a )=x(-2x +1)(-x -a )恒成立,整理得:a=12.故选A. 3.D 解析:当m =1时,f (x )=2x +3不是偶函数,当m ≠1时,f (x )为二次函数,要使其为偶函数,则其对称轴应为y 轴,故需m =0,此时f (x )=-x 2+3,其图象的开口向下,所以函数f (x )在(-5,-3)上单调递增.4.A 解析:∵f (3)=f (5-2)=f (-2)=-f (2)=-2,f (4)=f (5-1)=f (-1)=-f (1)=-1,∴f (3)-f (4)=-1,故选A.5.单调递增 解析:∵T =4,且在[-6,-4]上单调递减, ∴函数在[-2,0]上也单调递减.又f (x )为偶函数,故f (x )的图象关于y 轴对称,由对称性知f (x )在[0,2]上单调递增.考点探究突破【例1】 解:(1)由⎩⎪⎨⎪⎧ 3-x 2≥0,x 2-3≥0,得x =-3或x = 3.∴函数f (x )的定义域为{-3,3}.∵对任意的x ∈{-3,3},-x ∈{-3,3},且f (-x )=-f (x )=f (x )=0,∴f (x )既是奇函数,又是偶函数.(2)要使f (x )有意义,则1-x 1+x≥0, 解得-1<x ≤1,显然f (x )的定义域不关于原点对称,∴f (x )既不是奇函数,也不是偶函数.(3)∵⎩⎪⎨⎪⎧4-x 2≥0,|x +3|≠3, ∴-2≤x ≤2且x ≠0. ∴函数f (x )的定义域关于原点对称. 又f (x )=4-x 2x +3-3=4-x 2x , f (-x )=4-(-x )2-x =-4-x 2x, ∴f (-x )=-f (x ),即函数f (x )是奇函数.【例2-1】 B 解析:当x <0时,-x >0,∴f (-x )=(-x )3-8=-x 3-8.又f (x )是偶函数,∴f (x )=f (-x )=-x 3-8.∴f (x )=⎩⎪⎨⎪⎧ x 3-8,x ≥0,-x 3-8,x <0.∴f (x -2)=⎩⎪⎨⎪⎧ (x -2)3-8,x ≥2,-(x -2)3-8,x <2.由f (x -2)>0得:⎩⎪⎨⎪⎧ x ≥2,(x -2)3-8>0或⎩⎪⎨⎪⎧ x <2,-(x -2)3-8>0.解得x >4或x <0,故选B.【例2-2】 ⎝ ⎛⎦⎥⎤-2,-32 解析:∵f (x )在(-b ,b )上是奇函数,∴f (-x )=lg 1-ax 1-2x =-f (x )=-lg 1+ax 1+2x =lg 1+2x 1+ax , ∴1+2x 1+ax =1-ax 1-2x对x ∈(-b ,b )成立,可得a =-2(a =2舍去). ∴f (x )=lg 1-2x 1+2x.由1-2x 1+2x >0,得-12<x <12. 又f (x )定义区间为(-b ,b ),∴0<b ≤12,-2<a +b ≤-32. 【例2-3】 解:(1)∵f (x )=x 3+bx 2+cx ,∴f ′(x )=3x 2+2bx +c ,∴g (x )=f (x )-f ′(x )=x 3+(b -3)x 2+(c -2b )x -c .∵g (x )是一个奇函数,∴g (0)=0,得c =0,由奇函数定义g (-x )=-g (x )得b =3.(2)由(1)知g (x )=x 3-6x ,从而g ′(x )=3x 2-6,由此可知,(-∞,-2)和(2,+∞)是函数g (x )的单调递增区间;(-2,2)是函数g (x )的单调递减区间.g (x )在x =-2时,取得极大值,极大值为42;g (x )在x =2时,取得极小值,极小值为-4 2.【例3-1】 3 解析:∵f (x )=-f ⎝ ⎛⎭⎪⎫x +32, ∴f (x +3)=f ⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫x +32+32 =-f ⎝⎛⎭⎪⎫x +32=f (x ). ∴f (x )是以3为周期的周期函数.则f (2 014)=f (671×3+1)=f (1)=3.【例3-2】 -12 014 解析:∵f (x +1)=1+f (x )1-f (x ), ∴f (x +2)=1+f (x +1)1-f (x +1)=1+1+f (x )1-f (x )1-1+f (x )1-f (x )=-1f (x ). ∴f (x +4)=f (x ),即函数f (x )的周期为4.∵f (1)=2 014,∴f (103)=f (25×4+3)=f (3)=-1f (1)=-12 014.演练巩固提升1.D 解析:对于D,y=lg 1x+1的定义域为{x|x>-1},不关于原点对称,是非奇非偶函数.2.B 解析:显然f(x)的定义域是R,它关于原点对称.令y=-x,得f(0)=f(x)+f(-x),又∵f(0)=0,∴f(x)+f(-x)=0,即f(-x)=-f(x).∴f(x)是奇函数,故选B.3.B 解析:由题可知,f(x)是偶函数,所以f(x)=f(-x).又f(x-1)是奇函数,所以f(-x-1)=-f(x-1).令t=x+1,可得f(t)=-f(t-2),所以f(t-2)=-f(t-4).所以可得f(x)=f(x-4),所以f(8.5)=f(4.5)=f(0.5)=9,故选B.4.B 解析:当x≥0时,令f(x)=2x-4>0,所以x>2.又因为函数f(x)为偶函数,所以函数f(x)>0的解集为{x|x<-2,或x>2}.将函数y=f(x)的图象向右平移2个单位即得函数y=f(x-2)的图象,故f(x-2)>0的解集为{x|x<0,或x>4}.5.-1 解析:由已知得f(0)=0,f(1)=-1.又f(x)关于x=1对称,∴f(x)=f(2-x)且T=4,∴f(2)=f(0)=0,f(3)=f(3-4)=f(-1)=1,f(2 008)=f(0)=0,f(2 009)=f(1)=-1,f(2 010)=f(2)=0,f(2 011)=f(3)=1,f(2 012)=f(0)=0,f(2 013)=f(1)=-1.∴f(2 008)+f(2 009)+f(2 010)+f(2 011)+f(2 012)+f(2 013)=-1.。

中职数学函数的概念教案

中职数学函数的概念教案

中职数学函数的概念教案第一章:函数的概念与性质1.1 函数的定义引入函数的概念,通过实例让学生理解函数的定义。

讲解函数的表示方法,包括函数表格、函数图像和函数表达式。

1.2 函数的性质讲解函数的单调性、奇偶性、周期性等基本性质。

通过实例让学生理解函数的性质,并学会如何判断函数的性质。

第二章:函数的图像2.1 函数图像的绘制讲解如何绘制函数的图像,包括直线、二次函数、指数函数等。

通过实例让学生学会绘制函数图像,并理解函数图像与函数性质的关系。

2.2 函数图像的性质讲解函数图像的性质,包括对称性、单调性、极值等。

通过实例让学生理解函数图像的性质,并学会如何分析函数图像。

第三章:一次函数与二次函数3.1 一次函数讲解一次函数的定义和性质,包括斜率和截距的概念。

通过实例让学生理解一次函数的图像和性质,并学会解一次方程组。

3.2 二次函数讲解二次函数的定义和性质,包括开口方向、顶点、对称轴等。

通过实例让学生理解二次函数的图像和性质,并学会解二次方程。

第四章:函数的极限与连续性4.1 函数的极限讲解函数极限的概念,包括左极限和右极限。

通过实例让学生理解函数极限的性质,并学会计算函数极限。

4.2 函数的连续性讲解函数连续性的概念,包括连续函数的性质和判定条件。

通过实例让学生理解函数连续性的重要性,并学会判断函数的连续性。

第五章:函数的导数与微分5.1 函数的导数讲解函数导数的概念和计算方法,包括导数的定义和导数的计算规则。

通过实例让学生理解函数导数的意义,并学会计算常见函数的导数。

5.2 函数的微分讲解函数微分的概念和计算方法,包括微分的定义和微分的计算规则。

通过实例让学生理解函数微分的应用,并学会计算函数的微分。

第六章:函数的积分与累积6.1 定积分的概念讲解定积分的定义和性质,包括定积分的几何意义和计算方法。

通过实例让学生理解定积分的概念,并学会计算常见函数的定积分。

6.2 定积分的应用讲解定积分在几何和物理中的应用,包括面积和体积的计算。

基本初等函数教案

基本初等函数教案

基本初等函数教案第二章基本初等函数(ⅰ)§2.1指数函数§2.1.1指数与指数幂的运算(1)[平静地说]指数是学习指数函数的预备知识,初中学生已经学习了整数指数幂的概念及运算性质。

为了讲解指数函数,需要把指数的概念扩充到有理数指数幂、实数指数幂;为了完成这个扩充,必须先学习分数指数幂的概念和运算性质,以及无理数指数幂的概念;为了学习分数指数幂的概念。

首先要介绍根式的概念,本课主要学习根式的概念以及n次方根的性质。

学生们已经学会了数字的平方根和立方根,而根形式的内容就是这些内容的推广。

因此,在介绍部首的概念时,我们应该结合这些学习内容,列出多个具体的例子供学生理解。

根式na的讲解要分n是奇数和偶数两种情况来进行,每种情况中,都要分a?0,a?0,a?0三种情况介绍,并结合具体例子讲解,其中要强调na(a?0,n是偶数)表示一个正数,抓住这一点,理解次方根的性质就容易了。

当n为偶数时,Nan | A |(因为Nan总是一个非负数),这是本课的难点。

你可以在解释的时候先回顾一下a2?|a|这一性质,并结合具体例子加以讲解,有助于学生理解nan?|a|这一性质。

[学习目标]理解根式的概念,掌握n次方根的性质。

[教学重点]1.激进的概念。

2.n次方根的性质。

[教学困难]1、根式概念的理解;2.理解n次方根的性质。

【教学过程】一、课程介绍由p52面的考古例子中的p1??2?t5753,10000,100000时的数:这个式子,当t?6000?12?60005753?1?,???2?100005753?1?,???2?1000005753的意义究竟是什么?来导出下来要学习的内容。

数(自然数)的认知规律→ 整数→ 分数(有理数)→ 实数)可以比作对数字指数幂的认知:整数指数幂→ 分数指数幂(有理数指数幂)→ 无理数指数幂。

2、解释新课程(1)并探索n次平方根的概念。

22?4,32?9,42?16,52?25,?x2?a;其中“?”左右两边的关系是什么?另一个例子:2?8,3? 27,4? 64,5? 125,? 十、A.“在哪里?”左右之间的关系是什么?-1-33333,24?16,34? 81,44? 256,54? 625,? x4?A.“在哪里?”左右之间的关系是什么?等等:?,十、a、 X被称为a的n根。

第二章二次函数-二次函数的图象与系数的关系(教案)

第二章二次函数-二次函数的图象与系数的关系(教案)
(1)二次函数的一般形式:y=ax^2+bx+c(a≠0),以及系数a、b、c对函数图象的影响。
- a决表图象与y轴的交点。
(2)二次函数图象的顶点坐标、对称轴和开口方向。
-顶点坐标为(-b/2a,(4ac-b^2)/4a),是图象的最高点或最低点。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数的图象与系数的关系,包括开口方向、对称轴、顶点坐标和实数根等基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-对称轴x=-b/2a,是图象的对称中心。
-开口方向由a的正负决定。
(3)二次函数实数根的判定:通过判别式Δ=b^2-4ac来判断实数根的个数。
- Δ>0,有两个实数根;
- Δ=0,有一个实数根;
- Δ<0,无实数根。
2.教学难点
(1)理解系数a、b、c对二次函数图象的综合影响。
-难点举例:当a、b、c同时变化时,如何判断图象的开口方向、对称轴和顶点坐标的变化。
第二章二次函数-二次函数的图象与系数的关系(教案)
一、教学内容
本节课选自教材第二章“二次函数”中的“二次函数的图象与系数的关系”。教学内容主要包括以下三个方面:
1.二次函数的一般形式:y=ax^2+bx+c,其中a、b、c为常数,a≠0。
2.二次函数图象的开口方向、对称轴和顶点坐标与系数的关系:
- a>0时,图象开口向上;a<0时,图象开口向下。

第二章二次函数-二次函数与几何综合(教案)

第二章二次函数-二次函数与几何综合(教案)
5.培养学生的合作交流能力,通过小组讨论和问题探究,让学生在合作中发现问题、解决问题,培养团队协作精神。
三、教学难点与重点
1.教学重点
(1)二次函数图像的几何变换:重点理解图像的平移、伸缩、对称等几何变换的规律及其对函数表达式的影响。
-平移变换:掌握二次函数图像向左、向右、向上、向下平移的规律,理解平移变换对函数解析式中常数项的影响。
-难点举例:在图像的平移、伸缩、对称变换中,如何正确调整函数解析式中的常数项和系数。
-解决方法:通过动态演示和实际操作,帮助学生直观地理解图像变换规律,并学会应用于实际问题。
(2)二次函数与几何关系的综合应用:学生对二次函数图像与坐标轴、直线、圆的交点的理解可能不深刻。
-难点举例:如何确定二次函数图像与坐标轴、直线、圆的交点,以及如何利用这些交点解决几何问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次函数与几何综合》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算抛物线与坐标轴围成图形面积的情况?”(如篮球投篮的抛物线)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次函数与几何综合的奥秘。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次函数与几何综合在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-解决方法:通过典型例题的分析和讲解,使学生掌握求解交点的方法,并运用这些交点解决几何问题。

函数的单调性教案概要

函数的单调性教案概要

必修一第二章函数2.1.3 函数的单调性一、课程标准要求理解函数的单调性、最大值、最小值及其几何意义.二、教学目标1.学生通过观察一些函数图象的特征,能够说出图像的共同点,初步形成增(减)函数的直观认识,明确单调性是函数局部上的一个性质;2.学生通过比较函数值的大小,认识函数值随自变量的增大而增大(减小)的规律;3.学生通过合作交流,在教师的指导下,讨论得出增(减)函数的定义;4.学生根据函数的图象判断或说明单调性;5.通过师生合作,总结出用定义证明函数单调性的步骤;6.学生参照证明函数单调性的步骤,解决一些简单的函数单调性的证明,提高推理论证能力.三、评价设计1.学生经过自主观察,共同回答出图像的共同点,从左向右看图像是上升(下降)的;2.学生经过独立思考后用自然语言叙述函数的增减性质;3.学生在教师的指导下,小组讨论后,小组代表用数学语言准确简洁的叙述增(减)函数的定义;4.学生根据函数的图象写出单调区间;5.师生互动完成例题之后,总结出用定义证明函数单调性的步骤;6.学生独立完成当堂课的练习.四、教学方法引导学生独立思考后进行小组间的合作交流,分析归纳、形成概念.每个环节的实施采用问题探究的模式,教师提出问题,学生独立思考后进行小组间的合作交流,然后进行成果展示,师生共同合作解决问题.这节课主要采用问题探究的模式,通过创设情景,提出问题,教师启发点拨,学生合作探究学习.教学过程中,使学生经历数学概念抽象的各个阶段,体会数学的“数形结合”和“从一般到特殊”的思想方法,引导学生独立自主地开展思维活动,合作探究,最终形成概念,掌握方法,解决问题,提升逻辑思维能力.五、教学流程设计(一)创设情境——引入课题为了预测伦敦奥运会开幕式当天的天气情况,数学兴趣小组研究了2008年到2012年每年这一天的天气情况,下图是伦敦市今年7月28日一天24小时内气温随时间变化的曲线图.【学生活动设计】引导学生识图,捕捉信息,启发学生思考.观察图像,能得到什么信息?【教师活动设计】展示学生得到的信息,引导学生分析数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.进一步提问,还能举出生活中其他的数据变化情况吗?(燃油价格、股票价格等),教师归纳:用函数观点看,其实这些例子反映的就是随着自变量的变大,函数值是变大还是变小.这就是我们今天所要研究的函数的一个重要性质——函数的单调性(引出课题).【设计意图】由生活情境引入新课,激发兴趣.(二)问题探究——形成概念【问题探究1】请同学们观察下面三组在相应区间上的函数图像,然后指出前两组图像各自的共同点,以及这三组图像有什么区别?它们分别反映了相应函数的哪些变化规律?(多媒体显示下面三组图像)第一组:第二组:第三组:y x 1 -11 -1 y x 1 -1 1 -1 y x 1 -1 1 -1图3【学生活动设计】学生先进行独立思考,然后共同回答.【教师活动设计】根据学生的结论,引导学生进行分类描述(增函数、减函数),同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.【设计意图】新课标十分注重初中与高中的衔接,注重通过函数的图像,研究函数的基本性质.以学生们容易接受的函数图像为切入点,做到从直观入手,顺应同学们的认知规律.第三组函数图像的上升与下降要分段说明,通过讨论使学生明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.此环节是对教学目标1的落实与检测.【问题探究2】能否根据自己的理解说说什么是增函数、减函数.【学生活动设计】学生经过独立思考后用自然语言叙述函数的增减性质.【教师活动设计】展示学生的答案(预案:图象是上升的,函数是增函数;图象是下降的,函数是减函数.点评:不符合数学所具有的严密性、逻辑性等特点);提问:同学们能否通过运用自变量和函数值之间的关系叙述函数的增减性质?(预案:如果函数()f x在某个区间上随自变量x的增大,y也越来越大,我们说函数()f x在某个区间上随自变量x的f x在该区间上为增函数;如果函数()增大,y越来越小,我们说函数()f x在该区间上为减函数),教师点评:这种认识是从图象的角度得到的,是对函数单调性的直观、描述性的认识.【设计意图】通过提问,实现学生从“图形语言”到“文字语言”的转换,完成对函数单调性的第一次认识.此环节是对教学目标2的落实与检测.【问题探究3】用自然语言表述增减性,不利于表达图像更为复杂的函数的性质,更不利于深入地研究函数的性质和利用函数的性质.请同学们用更为严密准确、科学简练的数学语言来描述出增函数和减函数的概念.【学生活动设计】学生小组讨论交流,展示成果,进一步探究出更为准确地增、减函数的概念.【教师活动设计】展示不同小组的最终结论,与学生共同找出最贴切的一种描述并与课本上的概念对比得出增(减)函数的概念:一般地,设函数y=f(x)的定义 .域为A,区间M A如果取区间M中的任意两个值x1和x2,改变量⊿x= x2- x1>0,则当⊿y=f(x2)-f(x1) >0时,就称函数y=f(x)在区间M上是增函数;当⊿y=f(x2)-f(x1) <0时,就称函数y=f(x)在区间M上是减函数.如果一个函数在某个区间M上是增函数或是减函数,就说这个函数在这个区间M上具有单调性,区间M称为单调区间.【设计意图】实现学生从“文字语言”到“符号语言”认识函数的单调性,实现“形”到“数”的转换,完成对函数单调性的第二次认识.此环节是对教学目标3的落实与检测.【问题探究4】对“任意”的理解,去掉是否可以?举例说明.【学生活动设计】学生独立思考,交流展示,其他同学评价.【教师活动设计】组织学生展示反例,点评.【设计意图】通过对学生的举例辨析,加深学生对定义的理解,达到突破难点,突出重点的目的,完成对概念的第三次认识.此环节是对教学目标3的巩固.(三)典例精析——应用概念例1 : 如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?【学生活动设计】学生口答完成例题.【教师活动设计】点评:要注意两个或两个以上不同的单调增或减区间的正确写法,比如此题的两个单调增区间要写成[)[]2,13,5-,.【设计意图】学生加深对定义的理解,强调:单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.此环节是对教学目标4的落实与检测.【问题探究5】从函数图象上观察函数的单调性是最直观的,但如果每次都要画出函数图像就太麻烦了,而且有些函数不容易画出它的图像,因此我们应该学会根据解析式和定义来证明函数的单调性。

函数的单调性教案

函数的单调性教案

函数的单调性教案第一章:函数单调性的基本概念1.1 引入:引导学生回顾初中阶段学过的函数概念,复习一次函数、二次函数的图像和性质。

提问:函数的图像是否具有单调性?如何描述函数的单调性?1.2 单调性的定义:讲解函数单调性的定义,引导学生理解单调递增和单调递减的概念。

举例说明:如y=x,y=2x+1等函数的单调性。

1.3 单调性的判断:教授如何判断函数的单调性,引导学生掌握利用导数或图像判断单调性的方法。

第二章:单调递增函数的性质2.1 单调递增的定义:复习单调递增的定义,强调函数值随着自变量的增加而增加的特点。

举例说明:如y=x,y=2x+1等函数的单调递增性质。

2.2 单调递增函数的图像:讲解单调递增函数的图像特点,引导学生理解函数图像随着x的增加而上升的趋势。

2.3 单调递增函数的性质:教授单调递增函数的性质,如凹凸性、极值等。

第三章:单调递减函数的性质3.1 单调递减的定义:复习单调递减的定义,强调函数值随着自变量的增加而减少的特点。

举例说明:如y=-x,y=-2x-1等函数的单调递减性质。

3.2 单调递减函数的图像:讲解单调递减函数的图像特点,引导学生理解函数图像随着x的增加而下降的趋势。

3.3 单调递减函数的性质:教授单调递减函数的性质,如凹凸性、极值等。

第四章:单调性的应用4.1 最大值和最小值:讲解如何利用函数的单调性求解最大值和最小值问题。

4.2 函数的单调区间:讲解如何确定函数的单调递增区间和单调递减区间。

4.3 函数的单调性与方程的解:讲解如何利用函数的单调性来解决方程的解的问题。

第五章:单调性的综合应用5.1 函数图像的变换:讲解如何利用单调性来分析和理解函数图像的平移、翻折等变换。

5.2 函数的单调性与实际问题:引导学生将函数的单调性应用于解决实际问题,如优化问题、经济问题等。

5.3 单调性的进一步探讨:引导学生思考单调性的局限性,如非单调函数的特殊情况。

第六章:复合函数的单调性6.1 复合函数的概念:引导学生回顾复合函数的定义,理解复合函数是由两个或多个基本函数通过函数运算组合而成的。

示范教案(函数的表示法

示范教案(函数的表示法

示范教案(函数的表示法)第一章:函数的基本概念1.1 函数的定义教学目标:1. 了解函数的定义及功能;2. 掌握函数的表示方法。

教学内容:1. 函数的定义:函数是一种关系,在数学中,我们称一个非空数集A到另一个非空数集B的规则f:x→y(x属于A,y属于B)为从A到B的一个函数,简称函数。

2. 函数的表示方法:(1)列表法:将函数的输入值和输出值一一对应地列出来;(2)解析法:用数学公式表示函数的关系;(3)图象法:在平面直角坐标系中,将函数的输入值和输出值对应的点依次连接起来,得到函数的图象。

教学活动:1. 引入函数的概念,引导学生理解函数的定义及功能;2. 讲解函数的表示方法,并通过实例让学生掌握列表法、解析法和图象法的具体应用;3. 布置练习题,让学生巩固所学知识。

教学评价:1. 课堂问答:检查学生对函数定义的理解程度;2. 练习题:评估学生对函数表示方法的掌握情况。

第二章:函数的列表法2.1 列表法的概念及应用教学目标:1. 掌握列表法的概念;2. 学会使用列表法表示函数。

教学内容:1. 列表法的概念:将函数的输入值和输出值一一对应地列出来,称为列表法;2. 列表法的应用:通过列表法表示函数,可以直观地了解函数的值域和函数的单调性等性质。

教学活动:1. 引导学生回顾上一章的内容,了解函数的表示方法;2. 讲解列表法的概念,并通过实例让学生掌握列表法的具体应用;3. 布置练习题,让学生巩固所学知识。

教学评价:1. 课堂问答:检查学生对列表法概念的理解程度;2. 练习题:评估学生对列表法的掌握情况。

第三章:函数的解析法3.1 解析法的概念及应用教学目标:1. 掌握解析法的概念;2. 学会使用解析法表示函数。

教学内容:1. 解析法的概念:用数学公式表示函数的关系,称为解析法;2. 解析法的应用:通过解析法表示函数,可以方便地研究函数的性质和变化规律。

教学活动:1. 引导学生回顾上一章的内容,了解函数的表示方法;2. 讲解解析法的概念,并通过实例让学生掌握解析法的具体应用;3. 布置练习题,让学生巩固所学知识。

函数的单调性教案(获奖)

函数的单调性教案(获奖)

函数的单调性教案(获奖)第一章:函数单调性的概念及定义1.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如商品价格的变化、物体运动的速度等。

1.2 讲解:单调性的定义,函数单调递增和单调递减的概念。

1.3 练习:判断几个简单函数的单调性,如f(x)=x, f(x)=-x, f(x)=x^2等。

第二章:函数单调性的判断方法2.1 引入:通过实际例子,让学生理解单调性判断的重要性。

2.2 讲解:利用导数、图像、定义等方法判断函数的单调性。

2.3 练习:判断一些复杂函数的单调性,并进行验证。

第三章:函数单调性的应用3.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如最优化问题、不等式的证明等。

3.2 讲解:函数单调性在解决最优化问题、不等式证明等方面的应用。

3.3 练习:解决一些实际问题,如求函数的最值、证明不等式等。

第四章:函数单调性的性质与定理4.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如函数的周期性、奇偶性等。

4.2 讲解:函数单调性的性质与定理,如拉格朗日中值定理、柯西中值定理等。

4.3 练习:运用性质与定理解决一些实际问题。

第五章:函数单调性与导数的关系5.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如函数的极值点。

5.2 讲解:函数单调性与导数的关系,如单调递增的充分必要条件是导数大于0,单调递减的充分必要条件是导数小于0。

5.3 练习:判断函数的单调性,并找出其极值点。

第六章:复合函数的单调性6.1 引入:通过实际例子,让学生感受复合函数单调性在实际生活中的应用,如温度随高度和纬度的变化。

6.2 讲解:复合函数单调性的定义和判断方法。

6.3 练习:判断复合函数的单调性,并进行验证。

第七章:反函数的单调性7.1 引入:通过实际例子,让学生感受反函数单调性在实际生活中的应用,如坐标系的转换。

7.2 讲解:反函数单调性的性质和判断方法。

数学北师大版九年级下册第二章二次函数图像和性质教案

数学北师大版九年级下册第二章二次函数图像和性质教案

2.2二次函数的图像和性质(第二课时)教学目标知识与技能1、能作出2ax y =和c ax y +=2的图像||,并研究它们的性质.2、比较2ax y =和c ax y +=2的图像与2x y =的异同.理解a 与c 对二次函数图像的影响. 过程与方法1、经历探索二次函数2ax y =和c ax y +=2的图像的作法和性质的过程||,进一步获得将表格、表达式、图像三者联系起来的经验.2、通过比较2ax y =||, c ax y +=2与2x y =的图像和性质的比较||,培养学生的比较、鉴别能力.情感、态度与价值观让学生积极投身于数学学习活动中||,有助于培养他们的好奇心与求知欲.经过自己的努力得出的结论||,不仅使他们记忆犹新||,还能建立自信心.由学生自己思考在经过合作交流完成的数学活动||,不仅能使学生学到知识||,还能使他们互相增进友谊.教学重点、难点教学重点:描点法画出二次函数c ax y +=2的图象||,理解二次函数c ax y +=2的性质||,理解函数c ax y +=2与函数2ax y =的相互关系是教学重点会用描||。

教学难点:正确理解二次函数c ax y +=2的性质||,理解抛物线c ax y +=2与抛物线2ax y =的关系是教学的难点||。

关键:掌握2ax y =和c ax y +=2的图像与2x y =的异同.理解a 与c 对二次函数图像的影响. 突破方法: 根据设问层层深入逐个破解||,然后进行类比、归纳、总结的探索模式学习||,最后得出2ax y =和c ax y +=2的图像与2x y =的异同及a 与c 对二次函数图像的影响教学准备:教师准备:多媒体课件(用于展示操作过程||,引导讨论||,出示答案).学生准备:课前预习||,两张坐标纸画图工具.教学过程(一)创设问题情景||,引入新课知识回顾:1.二次函数2x y =的图象是____||,它的开口向_____||,顶点坐标是_____;对称轴是______||,在对称轴的左侧||,y 随x 的增大而______||,在对称轴的右侧||,y 随x 的增大而______||,函数2ax y =与x =______时||,取最______值||,其最______值是______||。

必修1第二章指数和指数函数教案(7个课时)

必修1第二章指数和指数函数教案(7个课时)

(2)5x 4,5y 2,则52xy _______
练 2、用分数指数幂的形式表示下列各式(a>0)
7
(1) 3 a2 a3
(2) 3 a8 3 a15

解:(1)原式=a
7 2
1 3
31
a 23
7
a6
1
a2
2
a3;

(2)原式=a
(

8 ) 3
1 2
15 1

an

1 an
(a 0)
5
观察归纳,讲授新课
观察以下式子,并总结出规律: a >0
10
① 5 a10 5 (a2 )5 a2 a 5

8
a8 (a4 )2 a4 a2
12
③ 4 a12 4 (a3 )4 a3 a 4
10
④ 5 a10 5 (a2 )5 a2 a 5
a3 2
45
a 3 2
7
a6.


7
教学内容
第3课 (单元)
主题
分数指数幂及其性质 2
1 课时
1、理解分数指数幂的概念;

知识 与技能
2、掌握分数指数幂和根式之间的互化;
3、掌握分数指数幂的运算性质.

过 程 从整数指数幂到分数指数幂,再推广到无理指数幂,将指数范围扩充到实数,
目 与方法 进而学习分数指数幂以及指数幂的性质.
图象特征函数性质轴正负方向无限延伸函数的定义域为r图象关于原点和y轴不对称非奇非偶函数函数图象都在x轴上方函数的值域为r自左向右图象逐渐上升自左向右图象逐渐下降增函数减函数在第一象限内的图象纵坐标都大于1在第一象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都大于1学习目标

函数的单调性和奇偶性的综合应用教案

函数的单调性和奇偶性的综合应用教案

函数的单调性和奇偶性的综合应用教案第一章:函数的单调性1.1 单调性的定义引导学生理解函数单调性的概念,了解函数单调递增和单调递减的定义。

通过示例来说明函数单调性的判断方法。

1.2 单调性的性质引导学生了解单调性的几个重要性质,如单调性的传递性、复合函数的单调性等。

通过示例来演示这些性质的应用。

第二章:函数的奇偶性2.1 奇偶性的定义引导学生理解函数奇偶性的概念,了解奇函数和偶函数的定义。

通过示例来说明函数奇偶性的判断方法。

2.2 奇偶性的性质引导学生了解奇偶性的几个重要性质,如奇偶性的对称性、奇偶性与单调性的关系等。

通过示例来演示这些性质的应用。

第三章:单调性和奇偶性的综合应用3.1 单调性和奇偶性的关系引导学生了解单调性和奇偶性之间的关系,如奇函数的单调性、偶函数的单调性等。

通过示例来说明单调性和奇偶性在解决问题时的综合应用。

3.2 单调性和奇偶性的应用实例给出一些实际问题,引导学生运用单调性和奇偶性的知识来解决这些问题。

通过示例来说明单调性和奇偶性在实际问题中的应用。

第四章:函数的单调性和奇偶性的判断4.1 单调性和奇偶性的判断方法引导学生了解判断函数单调性和奇偶性的方法,如导数法、图像法等。

通过示例来说明这些方法的运用。

4.2 单调性和奇偶性的判断实例给出一些具体的函数,引导学生运用判断方法来确定这些函数的单调性和奇偶性。

通过示例来说明单调性和奇偶性的判断过程。

第五章:函数的单调性和奇偶性的综合应用练习5.1 单调性和奇偶性的综合应用练习题提供一些练习题,引导学生运用单调性和奇偶性的知识来解决问题。

通过练习来巩固学生对单调性和奇偶性的理解和应用能力。

5.2 练习题解答和解析对练习题进行解答和解析,帮助学生理解和巩固解题思路和方法。

通过解答和解析来提高学生对单调性和奇偶性的应用能力。

第六章:函数的单调性和奇偶性在图像分析中的应用6.1 图像的单调区间引导学生如何通过函数图像来判断函数的单调区间。

高中数学 第二章 函数 一元二次函数的图象和性质(1)教案 苏教版必修1-苏教版高一必修1数学教案

高中数学 第二章 函数 一元二次函数的图象和性质(1)教案 苏教版必修1-苏教版高一必修1数学教案
教学思考(实际教学效果及改进设想)
3.函数y=-3(x+2)2+5的图象的开口向,对称轴为,顶点坐标为;当x=时,函数取最值y=;当x满足时,y随着x的增大而减小.
4.求抛物线y=x2-2x-3的开口方向、对称轴、顶点坐标、最大(小)值及y随x的变化情况,并画出其图象.
活动三:想一想
例1求二次函数y=-3x2-6x+1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x取何值时,y随x的增大而增大(或减小)?并画出该函数的图象
变式训练
已知函数y=x2,-2≤x≤a,其中a≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x的值.
特殊补充
当堂检测
1.函数y=-x2+x-1图象与x轴的交点个数是
2.求抛物线y=1+6x-x2的开口方向、对称轴、顶点坐标、最大(小)值及y随x的变化情况,并画出其图象
小结与作业
变式训练
求把二次函数y=x2-4x+3的图象经过下列平移变换后得到的图象所对应的函数解析式:(1)向右平移2个单位,向下平移1个单位; (2)向上平移3个单位,向左平移2个单位.
例2.已知函数y=-x2-2x+3,当自变量x在下列取值范围内时,分别求函数的最大值或最小值,并求当函数取最大(小)值时所对应的自变量x的值:(1)x≤-2;(2)x≤2;(3)-2≤x≤1;(4)0≤x≤3.
二次函数的图象和性质1
学习目标
1.掌握二次函数的图像和性质
2.体会数形结合的思想
学习重难点
二次函数的图像和性质
学生活动
教师活动
活动一:知识回顾
1、图像画法
2、解析式求解
活动二:练一练
1.二次函数y=2x2-mx+ቤተ መጻሕፍቲ ባይዱ图象的顶点坐标为(1,-2),则m=,n=.

函数的基本性质单调性教案

函数的基本性质单调性教案

函数的基本性质-单调性教案第一章:函数单调性的概念与定义1.1 引入:通过实际例子,让学生感受函数单调性的存在。

1.2 单调性的定义:函数单调递增和单调递减的定义。

1.3 单调性的表示:用符号表示函数的单调性。

1.4 单调性的性质:单调性的一些基本性质,如传递性、复合函数的单调性等。

第二章:函数单调性的判断与证明2.1 单调性的判断方法:通过导数或者图像来判断函数的单调性。

2.2 单调性的证明:利用导数或者定义来证明函数的单调性。

2.3 单调性的应用:利用单调性解决一些实际问题,如最值问题、不等式问题等。

第三章:函数单调性与极值的关系3.1 极值的概念:函数的极大值和极小值的定义。

3.2 极值与单调性的关系:函数在极值点附近的单调性变化。

3.3 利用单调性求极值:通过单调性来确定函数的极值点。

第四章:函数单调性与图像的关系4.1 图像的单调性:函数图像的单调递增和单调递减。

4.2 单调性与图像的交点:函数图像的交点与单调性的关系。

4.3 利用图像判断单调性:通过观察函数图像来判断函数的单调性。

第五章:函数单调性的应用5.1 函数的单调区间:确定函数的单调递增或单调递减区间。

5.2 单调性与函数值的关系:函数值的变化与单调性的关系。

5.3 应用实例:利用单调性解决实际问题,如最大值、最小值问题等。

第六章:单调性在实际问题中的应用6.1 引言:通过实际问题引入单调性的应用。

6.2 单调性在优化问题中的应用:如最短路径问题、最大收益问题等。

6.3 单调性在经济学中的应用:如市场需求、价格调整等。

第七章:函数单调性的进一步探讨7.1 函数的严格单调性:严格单调递增和严格单调递减的定义。

7.2 单调性的不变性:函数单调性在坐标变换下的性质。

7.3 单调性与连续性的关系:连续函数的单调性性质。

第八章:复合函数的单调性8.1 复合函数的定义:两个函数的组合。

8.2 复合函数的单调性:复合函数单调性的判定方法。

高中数学第二章基本初等函数§2.1.1指数(第1—2课时)教案新人教A版必修1

高中数学第二章基本初等函数§2.1.1指数(第1—2课时)教案新人教A版必修1

第二课时
提问: 1.习初中时的整数指数幂,运算性质?
an a a a a, a0 1 (a 0) ,0 0无意义
an
1 an
(a 0)
a m a n a m n ; (a m )n a mn
(an )m a mn, (ab) n a nb n
什么叫实数?
有理数,无理数统称实数 . 2.观察以下式子,并总结出规律:
三.学法与教具 1 .学法:讲授法、讨论法、类比分析法及发现法 2.教具:多媒体
四、教学设想:
第一课时
一、复习提问:
什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?
归纳:在初中的时候我们已经知道:若
x2 a ,则 x 叫做 a 的平方根 . 同理,若 x3 a ,则 x 叫做 a
的立方根 .
3、教材对反函数的学习要求仅限于初步知道概念, 目的在于强化指数函数与对数函数这两种函数模
型的学习,教学中不宜对其定义做更多的拓展
.
4. 教材对幂函数的内容做了削减, 仅限于学习五种学生易于掌握的幂函数, 并且安排的顺序向后调
整,教学中应防止增加这部分内容,以免增加学生学习的负担
.
5. 通过运用计算机绘制指数函数的动态图象
思考: a n n ( n a ) n 是否成立,举例说明 .
课堂练习: 1. 求出下列各式的值
(1) 7 ( 2)7
(2) 3 (3a 3)3 ( a 1)
4
(3) (3a
3)4
2.若 a2 2a 1 a 1,求 a的取值范围 .
3.计算 3 ( 8)3 4 (3 2)4 3 (2 3)3
三.归纳小结:
即: a n
1
m

九年级数学下册 第二章 二次函数教案 (新版)北师大版 教案

九年级数学下册 第二章 二次函数教案 (新版)北师大版 教案

第二章 二次函数一、学生知识状况分析学生的知识技能基础:学生在前面几节课已经学习过并能够独立作出一个二次函数的图像,掌握了二次函数y =ax 2和y=ax 2+c 的一般性质。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了二次函数y=ax 2和y=ax 2+c 的性质的探索过程,在探究过程中体会到了由特殊到一般的辩证规律,积累了解决数学问题的经验和方法。

学生愿意动手操作,乐于和同伴交流意见,形成不同的意见,积极参加探索解决问题的活动,在活动中感受数学的严密性、严谨性。

同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

二、教学任务分析第2.4节将讨论一般形式的二次函数)0(2≠++=a c bx ax y 的图象和性质。

它和学生前面几节课学习的2ax y =、c ax y +=2的图象之间有什么区别和联系?如何在已经学习过的类型上通过变化学习新的类型?如何探索一般二次函数的性质等等都是这一节需要关注的。

具体的,本节课的教学目标是:知识与技能1.能够作出y=a (x-h )2和y=a (x-h )2+k 的图象,并能够理解它与y=ax 2的图象的关系,理解a,h 和k 对二次函数图像的影响。

2.能正确说出y=a (x-h )2+k 的图象的开口方向、对称轴和顶点坐标。

过程与方法1.经历探索二次函数y=a (x-h )2+k 的图象的作法和性质的过程。

情感态度与价值观1.在小组活动中体会合作与交流的重要性。

2.进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识。

教学难点:理解y=a (x-h )2和y=a (x-h )2+k 的图象与y=ax 2的图象的关系,理解a 、h 和k 对二次函数图像的影响。

教学重点:y=a (x-h )2和y=a (x-h )2+k 与y=ax 2的图象的关系,y=a (x-h )2+k 的图象性质三、教学过程分析本课设计了5个教学环节:复习引入、合作探究、练习提高、课堂小结、布置作业。

第二章 函数的应用举例教材分析二 人教版 教案

第二章 函数的应用举例教材分析二 人教版 教案

第二章 函数的应用举例教材分析二一、教学任务的分析1.函数的应用是函数内容里的一个重要方面.学生学习函数的应用,目的就是利用已有的函数知识分析问题解决问题.在初中学习了一次函数、二次函数和反比例函数的基础上,本章又学习了指数函数和对数函数,这就为学生函数的应用奠定了一定的知识基础.通过函数的应用,对学生完善函数的思想、激发应用数学的意识、培养分析问题解决问题的能力、增强进行实践的能力等,都有很大的帮助.2.例2作为函数的应用举例这一节的一个主要内容,它源于实际,取材于学生身边的买房和购车,背景又是学生熟悉的消费贷款.解答该题和解答教科书中的许多函数应用题一样,都需要经历一个建立函数模型并利用所得模型解决问题的过程.但是,由于该题的信息量大、变量多,需要筛选(特别是两个还本付息表有较多的干扰因素,这与过去要用到几个量已知条件就有且只有几个量的题就完全不同),且建模的方向不明,在推理、计算和对问题的回答上都有一定的难度,学生难以直接通过题目得到暗示,从而到一条解决问题的途径,所以在解决问题的过程中一定会遇到不少困难.然而,正因为如此,例2才更贴近实际,才更有可能让学生参与到深层的思维和推理活动中去,才更能体现数学建模的思想,也才更具有挑战性和探索、研究的价值.3.例2是本小节第二堂课的内容,通过上一堂课对例1和练习、习题中部分问题的解决,学生已经初步学习了用数学模型方法解决问题.在此基础上,根据问题的实际情况,例2的教学就应着眼于学生可能遇到的困难,围绕建立函数模型并利用模型解决问题这一重点展开.这样,课堂教学活动就可以依据下列环节来设计:实际问题 函数模型 实际问题的解 函数模型的解还原说明 推理演算抽象概括在以上每一个环节的具体教学活动中,教师都要力求自始至终保持让学生“做数学”的认知要求,从教师和学生两方面来组织和实施解决例2问题的双边活动,从而达到函数应用的目的.二、教学情景的设计每一位学生都清楚,这堂课就是要解决例2的问题.通过上一堂课的教学,学生应该了解了用数学模型方法解决问题的步骤,教师就应当按照这条主线来设计教学任务.但考虑到学生认知发展水平的不同,可能依然会有部分学生没有将这些步骤内化,使得他们在解决问题时不知所措.对此,教师要有充分的准备,使教学情景的设计建立在学生可能遇到的困难之上,以此引导学生按照这些步骤去解决问题,从而进一步地提高对问题解决的认识,而不应该事先告诉学生将要做什么,甚至教他怎么去做.1.尝试回答题目中的问题学生一开始就会主动地阅读题目,迫切地想了解问题情景.教师可以借此鼓励学生尝试回答题目中的问题,以激发学生探索的热情.(1)阅读题目题目信息量大,要留给学生一定的阅读时间.教师可以通过下列问题来了解学生对题意的理解.1)你认为题目要解决的问题是什么?学生可能会有下列不同的回答:A.为该家庭设计一个尽快购到车和房的合理贷款方案;B.先购房后买车快,还是先买车后购房快;C.建立函数模型来选择贷款方案,等.不同的回答反映了对题意理解的不同层次.2)你能解决你的问题吗?教师可以让学生尝试回答自己认为需要解决的问题,当学生陷入困境时,让他们进行讨论,在交流中将学习引向建立函数模型的思考上.思维遇到障碍就会渴望帮助,但教师不能包办代替.3)究竟我们现在需要去解决哪个问题?此时,学生看到了需要解决的数学问题.从实际中提出数学问题是由学生完成的,这就是一种数学意识的培养.(2)尝试建立函数关系式,帮助正确地选择方案学生的思考再次陷入困境,应让他们展开讨论,相互得到启发.教师从中了解学生对问题认识的情况.2.将实际问题概括为函数模型学生要通过下列活动来达到对这一任务的认识和实施.(1)带着问题审题根据学生讨论中暴露出来的困难,引导学生围绕如何建立函数关系式这一问题,从题目中获取所需信息.当明确了实际问题转化的方向后,带着数学问题积极地去题目中扑捉所需的信息才是有效的审题.1)题目中哪些信息对你建立函数关系式有帮助?当教师为学生搭了这个“脚手架”之后,学生就能够主动地从题目中提取有关的数据,发现存在的变量.由学生去建立变量、常量与函数关系式的联系,保持了高水平的认知要求.2)能不能把你获取的信息归归类?由于学生的分类标准不同,他们可能会作出如下分类:A.变量与常量,B.买车与购房数据,C.汽车与住房消费贷款数据,D.积蓄、收入与支出,等.对信息的检索与整理,拉近了与函数关系式的距离,为后面的推理提供了方便,其中蕴含着分类的思想.3)应该从哪一类信息中寻找函数?让学生发表不同的意见,在对比中达成共识.学生发表意见,就会有高水平行为的示X,这就使得教学任务从组织到实施都保持着较高的认知水平;从形成个人意见,到对比不同意见,再到达成共识,就是一个概括的具体过程.4)建立哪个变量的函数对选择方案有利?它是随着哪个变量的变化而变化的?这个问题也许是学生自己提出来的,因为此时他们急切地想建立起这个函数关系式.能否购房买车,关键要看家庭积累的资金够不够,找到家庭积累资金与时间的等量关系自然就变成了他们自己确立的下一阶段的任务.通过教师在学生原有的认知基础上不断地搭“脚手架”,学生始终保持着高水平的认知活动,并在积极的思维过程中发现问题内在的联系,函数关系式开始浮出水面.(2)建立方案一中家庭积累资金关于时间的函数关系式只要能解决其中的一个方案,另一个方案就不再难了.不妨先让学生解决方案一.要留给学生适量的思考时间,并让他们把想法告诉大家.然后,在教师的引导下,将大家的思路进行整理,逐渐得出建立函数关系式的如下几个步骤.先由教师将问题分解为若干个子问题后再让学生去解决(即先告诉学生要做什么只需做什么…,然后再让学生倒过来做),和先由学生发现解决问题所涉及到的若干个子问题再在教师引导下去解决,这两者的认知要求是不同的.前者的认知要求没有保持在“做数学”的水平,教师要求学生用教师认为是最正确的方法去得到正确答案,学生未能探究问题情景,也未能思考多种解题策略,从而使教学任务的实施处于“无联系的程序”水平;而后者则不同,学生是先通过对问题情景的亲身探究,自己提出解题策略,然后才在教师的引导下形成合理的解题方法,教学任务的实施自始至终都保持在“做数学”的认知要求水平上.1)选择贷款期限,并计算出首付房款后家庭的剩余资金.根据表1、表2学生容易想到,贷款期限越长,每月的还款数就越少,家庭的积累资金就增长得越快,于是就能尽快购房买车,所以住房贷款选30年期.容易算得,按70%的比例可贷住房款21万元,首付30%后家中还剩资金1万元.2)建立买车前的家庭积累资金y关于买车时间x的函数关系式.只有得到买车前的家庭积累资金y关于买车时间x的函数关系式后,才有可能知道何时有资金买车.通过审题,这一点学生是能够想到的.在建立函数关系式时,应该反映出学生由一个实际的等量关系式转化为一个抽象的函数关系式的过程,即yx, (x ∈N) .得到实际的等量关系并将其转化为数学模型,是数学建模的核心,是抽象概括能力的具体体现.购房后买车前增加的资金3)建立首付汽车款y关于买车时间x的函数关系式.只有再得到首付汽车款y关于买车时间x的函数关系式后,才能求出买车后的结余资金,从而最终了解何时有资金能力买车.然而,能考虑到首付汽车款是一个影响资金积累的变量,并通过建立函数关系式将其纳入资金积累的函数关系式中,对学生来说可能是一个困难.教师可以让学生讨论,“根据买车前的家庭积累资金y关于买车时间x的函数关系式,能否算出何时有能力买车?”若学生认为求出y=0时的x值即为所求,则再让他们讨论,“此时的首付车款是多少?”让学生在计算中发现自己认识上的不足,从而建立多个量之间的联系.认识的提高是一个循环往复螺旋上升的过程.由于车价每月都在下降,所以首付车款y就存在一个关于买车时间x的函数关系式,即 y = 30%×15(1-1%)x,亦即y×x (x∈N) .4)建立刚买车后家庭的结余资金y1关于买车时间x的函数关系式.-,即y1×x x+1 (x∈N).学生也许会想,求出y1=0时的x值就应该是买车的最早时间了.这是教学过程的一个转折点,应该给学生适量的时间讨论.在学生难以发现存在的问题时,教师不能因此而降低认知要求,应再次为学生搭“脚手架”,让学生思考,“买车后家庭还能维持正常的开支吗?”以此来启发大家.当学生发现了决策存在的漏洞时,会真正感觉到方案选择的复杂和难度.此时最需要教师做的是鼓励大家,因为这离问题的解决只有一步之遥.由于解决问题的途径不可预见,学生会有不同程度的焦虑,这就需要他们有相当大的认知努力,并在任务的完成过程中对自己的认知过程进行自我调控.这样才能保持高水平的认知要求.5)建立买车后月支出y关于买车时间x的函数关系式.由于买车后的月支出所包含的几个量中,只有月偿还汽车贷款是变量,而它是与买车时间有关,所以函数关系式中的自变量应为买车时间.对此,可以让学生在建立函数关系式的过程中得到认识.即y×x+0.370288 (x∈N) .6)建立还清汽车贷款时的家庭结余资金y2关于买车时间x的函数关系式.即,y2 =×x x +8.78272 (x∈N).至此,就得到了解决问题所需的函数.3.利用所得函数关系式求方案一买车所需的最短时间学生从前面的分析已经认识到,y1=0时的x值只说明了何时有资金能力买车,而最快买车的时间应该是由y2 =0时的x值来确定.要认识到这一步是有困难的.教学中,可以让学生利用信息技术工具进行实验,当他们通过自己的探索获得结果后,就能加强对问题的理解.(1)求出y1=0时的x值如何求出y1=0时的x×x x+1=0求x的值;2)通过图形计算器或计算机中相应软件的解方程功能直接求出x的值;3)通过图形计算器或计算机中相应软件的作图功能,作出函数y1×x x+1和y=0的图象,并求出它们的交点坐标,从而求出x的值.若采取第一种策略,显然难以求出x的值,教师就应该引导他们利用图形计算器或计算机进行探索;若采取第二种策略,虽然可以很快地求出x的值,但超出了学生的认知水平;若采取第三种策略,就可以使学生在已学过的利用图象解简单的绝对值方程和一元二次方程的基础上,得到对求x值的认识.所以,教师应该引导学生最终采取第三种策略,利用信息技术工具进行实验,通过探索得到x=13.引入信息技术工具,就为学生提供了一个新的情景,实现了方程-函数-图象的联系,使学生能够利用已有知识解决未知问题.学生的这种实践就是一种创造性的活动.(2)求出y2=0时的x值同样,用图形计算器或计算机中作出函数y2=-16.68864 ×x xy=0的图象,并求出它们的交点坐标,便可求出x=21.这说明,购房后13个月该家庭有资金能力买车,但此时买车就不能保证家庭的收支平衡.所以按照方案一,该家庭购房后至少需要21个月才能买车.然而,这是不是购房买车所需的最短时间呢?这就要求学生还需对所得的解进行验证.4.验证21个月是不是购房买车所需的最短时间这其实就是对两个方案作出抉择.学生们都明白,解决了方案一的问题,同理就可以解决方案二的问题.但是,还需要经过同样多的过程吗?教师可以让学生先讨论,然后在解决问题的过程中得到认识.买车后为了能尽快购房,汽车和住房贷款同样分别选5年期和30年期.按的70 % 比例可贷汽车款10.5万元,首付30 % 后,家中还剩5.5万元.同方案一理,可建立在汽车贷款期内购房前的积累资金y关于购房时间x的函数关系式.汽车贷款期内购房前的积累资金=买车后的剩余资金+,即y x (x ∈N) .由于尚不知在汽车贷款期内是否能购房,而21个月就能实现方案一,所以只需在汽车贷款期内验证方案二是否有可能在21个月内实现即可.这就是在解题过程中得到的认识.令=21,则y ×21=6.483997.而此时购房需首付30%×30×(1+0.8%)21 =10.639315(万元)> 6.483997 (万元).这说明,方案二购房买车所需的时间比方案一的长,应该选择方案一.对方案一结果的验证,就是用数学模型的解还原说明实际问题的解的过程.具有数学模型方法解决问题思想的学生,就能意识到采取验证的策略对两种方案作出选择;相反,不具备这这段时间增加的资金种思想的学生,就很可能采取模仿方案一的方法再次研究方案二的策略.对后者,让他们讨论和实践,就会促进数学模型方法解决问题的思想形成.5.小结当最终找到实际问题的解之后,教师完全有必要让学生对这个复杂的解决问题的过程进行回顾与反思,形成评价.在这里可以通过本道题的第2个问题来创设情景,从而使整个学习活动自始至终都保持在高水平的认知要求上.没有问题情景的回顾,不易调动学生积极的思维活动,常常流于形式,可能下降为低认知水平的简单重复.要最终得到家庭积累资金关于所经过时间的函数关系式,就要根据不同的时间段来划分家庭积累资金的情况,并从中找到不同阶段函数自变量的取值X围.因购房后21个月买车,汽车贷款期限为60个月,住房贷款期限为360个月,所以根据前面得到的函数关系式,分别列出以下函数关系式.(1)购房后买车前的家庭积累资金关于时间的函数关系式为y x (x∈N 且1≤x≤21) ;(2)购车后但还清汽车贷款前,= +( x∈N 且21< x≤81) ,即 y x+2.910535 (x∈N 且21< x≤81) ;(3)还清汽车贷款后,= +刚买车后家庭的结余资金购房后还清汽车贷款前增加的资金还清汽车贷款时的结余资金还清汽车贷款后增加的资金( x∈N 且81< x≤360) ,即 y x+10.413236 (x∈N 且81< x≤360) .综上所述,便可得到家庭积累资金关于所经过时间的函数关系式通过进一步的概括,学生得到了一个完整的数学模型,并在此过程中对应用函数模型方法解决问题的思想有了更深刻的体会,认识过程更加系统了.6.开展课外研究性学习从教材中挖掘素材并结合实际进行探究性活动,是研究性学习的一种方式.教师可以让学生课外在例2的基础上,继续探索.如,提出其它方案,并与例2的方案比较,说明哪种方案更利于尽快地买到车和房;进行实际调查后,改变题目中的一些条件,再来进行相应的研究.研究性学习把课堂学习任务延伸到了课外,使学生的课外学习能够继续保持在高水平的认知要求上.三、使用信息技术的设想1.本题源于实际,特别是题中大量的数据更是来自现实.但是,如果没有信息技术工具的支持,这些复杂数据的处理是比较麻烦的,所以在教学中,学生必须利用科学计算器或图形计算器、计算机,才能处理这些数据,并且要求能熟练地进行运算操作.否则,数据的处理就会变成教学中新的难点,从而影响学生高水平认知活动的持续,破坏了学生思维的连续性.而在处理本题数据上,三种工具的选择应该是平等的,只是对科学计算器的选择,要尽可能选择有保留运算过程、修改、预置小数位数、常数模式等功能的机型,特别要注意的是,简单计算器是不支持本题运算的.2.本题涉及到求函数y×x x+1 (x∈N) 和y =×xx+8.78272 (x∈N) 在y=0时的x值.对于学生来说,这无疑是一个难度很高的问题,只有建立在信息技术支持的基础上才能得到解决.学生可以利用图形计算器或计算机分别作出这两个函数的图象,然后求出它们与直线y=0交点的横坐标,便可得解.但是,这里存在着几个问⎪⎩⎪⎨⎧≤<∈-≤<∈+-≤≤∈+.)36081(413236.10129712.0,)8121(910535.2034779.0,)211(229712.01xNxxxNxxxNxxy且且且=题.(1)机器作出的是连续的图象,而这两个函数的图象应该是散点图,这如何看待?(2)机器求出的交点的横坐标并不是自然数,又该怎么看待?首先我们要认识到,在本道例题的教学中,利用信息技术并不仅仅是为了得到结果.如果是复杂繁琐的数字运算,运算法则学生已很清楚,那么就可以运用信息技术直接得到结果,因为学生把时间花费在这些问题上,对能力的培养没有帮助;如果象该问题,它涉及到学生刚刚学过的指数函数,又是形式比较陌生的初等函数,通过解决它对学生能力的培养有帮助,那么利用信息技术就不仅仅是为了得到结果,更要给学生一个实验的机会,帮助他们用已有的知识来提高认识.既然如此,尽管机器作出的不是要研究的函数图象,但要研究的函数图象却在机器作出的图象上,那么就完全可以利用机器作出的图象来研究这两个函数值的情况.另外,正是通过机器作出图象并求出交点,才了解到交点的横坐标不是自然数,从而才使学生能够认识到,要研究的函数图象与直线y×x x+1 =0 和×x x+8.78272=0并无整数解.这样,才为学生解决问题找到方法,使他们在交点横坐标的基础上结合实际得到一个有效的整数解.四、整合信息技术后对教和学带来的影响1.传统应用题由于受信息技术条件的约束,背景不丰富,远离时代,和学生的实际结合得不紧密,大量数据需要人为加工,题目还常常有明显的解题途径的暗示,所以学生难以通过解这些题,提高自己数学建模的能力,领会问题解决的思想.由于有图形计算器和计算机这些信息技术工具,就使得学生解决象例2这样贴近实际并能体现建模思想的问题成为可能.学生在信息技术的帮助下解决这样的问题,必然带来学习方式的重大变革,对培养分析问题解决问题的能力也有较大的帮助.2.例2的学习与信息技术整合最突出的一点就是,利用图形计算器或计算机作函数图象.具体表现在如下几点.(1)在解决例2问题的过程中,建立函数关系式对学生来说会是最大的困难,而这一困难又主要表现在,建立函数关系式的方向不明,且需要建立的函数关系式又太多.利用机器的函数作图功能,就可以作出学生已经求出的函数的图象,学生一方面就可以对图象上点的坐标进行跟踪研究,将多个量联系起来,对函数(特别是那些不通过机器就难以作出图象的复合函数)会有更深刻的认识;另一方面还可以通过函数图象,从一个局部看到问题的发展规律.这些对学生建立函数关系式是会有积极帮助的.但这种帮助又有别于教师告诉学生应该从哪方面考虑word的“帮助”.二者本质的区别在于,一种是由学生自主探索而获得,另一种则是被动地去走教师指好的路,自然对能力培养的结果就不一样.(2)在分别求函数y×x x+1 (x∈N) 和y=×x x+8.78272 (x∈N) 的y=0对应的x×x x×x x+8.78272=0的解,那么就超出了学生的认知水平.即使是利用图形计算器或计算机的解方程功能直接得解,学生也不易认识.如果是看作求两个函数的自变量值,尽管学生对其很陌生,但它们都是由学生熟悉的函数复合而得的,没有超出学生的认知水平,借助机器作出它们的图象并求出与直线y=0交点的横坐标,就可以探索出所需的x的值.在这里,机器能做的都是学生会做但又不方便做的事.这就不会影响学生能力的发展,相反,还可以促进学生积极的思维,形成数、形、式等多元的.这对帮助学生认识问题的本质,保持高水平的认知活动,都有不可替代的作用.(3)在本题的计算中出现了大量的近似值,特别是在分别求函数y×x x+1 (x∈N) 和y=×x x+8.78272 (x∈N) 的y=0对应的x值时,用机器得到的不是一个自然数值,而是一个近似的非自然数值.这一方面反映了机器并不能替代学生的思维,它主要是通过解决一些单调而繁杂的工作,让学生看到一些不易看到的问题,来发展学生深刻的思维;另一方面又反映了,借助信息技术,可以使学生有机会接触实际生活中常见的近似值,对培养学生合理处理数据的能力是会有帮助的.11 / 11。

九年级数学下册 第2章 二次函数复习教案 (新版)北师大版 教案

九年级数学下册 第2章 二次函数复习教案 (新版)北师大版 教案
二次函数




知识与技能目标
过程与方法目标
情感与态度目标
1.通过对本章知识的梳理,使学生深刻理解二次函数的概念、图象与性质。
2.能灵活运用二次函数的概念与性质解决有关数学问题。
通过练习掌握基本知识和基本技能,体会不同的数学思想方法解决实际问题
积极参与交流,并积极发表意见,体验与他人交流合作的重要性。
二、典型题型
1.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是( )
2.已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。求a、b、c。
4、已知二次函数y=ax2-5x+c的图象如图。
(1)、当x为何值时,y随x的增大而增大;
教学重点
二次函数的概念、图象与性质
教学难点
二次函数图象与性质的运用
教 学 过 程
教学内容设计
个性补充
一、知识回顾
1.归纳: 知识结构
教学内容设计
个性补充
3.二次函数关系式的三种表示方式:
一般式、
顶点式、
两根式、y=a(x-m)(x-n)
4.抛物线y=ax2+bx+c(a≠0)的特征与系数a,b,c,的关系:
(2)、当x为何值时,y<0。
(3)、求它的解析式和顶点坐标
三、练习
四、小结作业教源自札记

函数的基本性质(教案)

函数的基本性质(教案)

函数的基本性质教学目标:1. 了解函数的定义和基本概念。

2. 掌握函数的域和值域的概念。

3. 理解函数的单调性、连续性和可导性的概念。

4. 学会运用函数的基本性质解决实际问题。

教学内容:第一章:函数的定义与域1.1 函数的定义1.2 函数的域第二章:值域2.1 值域的概念2.2 确定函数的值域第三章:函数的单调性3.1 单调性的定义3.2 单调性的判定第四章:函数的连续性4.1 连续性的定义4.2 连续性的判定第五章:函数的可导性5.1 可导性的定义5.2 可导性的判定教学方法:1. 采用问题驱动的教学方法,引导学生通过实例来理解函数的基本性质。

2. 使用多媒体辅助教学,通过动画和图形来直观展示函数的单调性、连续性和可导性。

3. 组织小组讨论和实践活动,培养学生的合作能力和解决问题的能力。

教学评估:1. 课堂讨论和提问,评估学生对函数基本性质的理解程度。

2. 布置课后习题和作业,巩固学生对函数基本性质的掌握。

3. 进行定期的测验和考试,检验学生对函数基本性质的掌握情况。

教学资源:1. 教科书和参考书籍,提供详细的知识点和实例。

2. 多媒体课件和教学软件,提供直观的图形和动画展示。

3. 在线学习平台和论坛,提供额外的学习资源和交流平台。

教学计划:1. 第一章:2课时2. 第二章:2课时3. 第三章:2课时4. 第四章:2课时5. 第五章:2课时教学总结:通过本章的教学,学生应该能够理解函数的定义和基本概念,掌握函数的域和值域的概念,理解函数的单调性、连续性和可导性的概念,并能够运用函数的基本性质解决实际问题。

函数的基本性质(续)教学内容:第六章:函数的极值与最值6.1 极值的概念6.2 函数的最值第七章:函数的周期性7.1 周期性的定义7.2 周期函数的性质第八章:函数的奇偶性8.1 奇偶性的定义8.2 奇偶函数的性质第九章:函数的图像9.1 图像的性质9.2 图像的变换第十章:函数的极限10.1 极限的概念10.2 极限的计算教学方法:1. 采用问题驱动的教学方法,引导学生通过实例来理解函数的极值、周期性、奇偶性、图像和极限的基本性质。

复变函数教案第二章

复变函数教案第二章

章节名称:第二章 解析函数学时安排:4学时教学要求:使学生熟悉复变函数导数与解析函数的概念;掌握判断复变函数可导与解析的方法;熟悉复变量初等函数的定义和主要性质教学内容:1,复变函数导数与解析函数的概念以及可导与解析的判别方法;2,复变初等函数定义及其主要性质教学重点:复变函数的导数与解析函数等基本概念,判断复变函数可导与解析的方法;复变量初等函数的定义和主要性质教学难点:函数解析的概念及判定方法教学手段:课堂讲授教学过程:一、第二章 解析函数§1、解析函数的概念1,复变函数的导数与微分:(1)导数的定义;设函数)(z f =ω定义在区域D 内,0z 为D 中的一点,点z z ∆+0不出D 的范围。

如果极限z z f z z f z ∆-∆+→∆)()(lim 000存在,那么就说)(z f =ω在0z 可导。

这个极限值称为)(z f =ω在0z 的导数,记作z z f z z f dz d z f z z z ∆-∆+==→∆=)()(lim )(0000'0ω注意:1)定义中的)0(00→∆→∆+z z z z 即的方向是任意的;2)如果)(z f =ω在区域D 内处处可导,就说)(z f =ω在D 内可导。

例1,求2)(z z f =的导数解 因为=∆-∆+→∆zz f z z f z )()(lim 0z z z z z z z z z 2)2(lim )(lim 0220=∆+=∆-∆+→∆→∆ 所以 z z f 2)('=思考题,问yi x z f 2)(+=是否可导?(2)可导与连续1)连续不一定可导。

(解答上述思考题可得这一结论)2)可导一定连续。

由函数)(z f =ω在0z 可导,则z z f z z f z f z ∆-∆+=→∆)()(lim )(0000' 即对于任给的0>ε,相应有一个0>δ,使得当δ<∆<z 0时,有ε<-∆-∆+)()()(0'00z f zz f z z f 令 )()()()(0'00z f zz f z z f z -∆-∆+=∆ρ 那么 0)(lim 0=∆→∆z z ρ由此得z z z z f z f z z f ∆∆+∆=-∆+)()()()(0'00ρ所以 )()(lim 000z f z z f z =∆+→∆ 即函数)(z f =ω在0z 连续。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章第一课时函数的概念和图象(1) 总序9【学习导航】知识网络学习目标1.理解函数概念;23 .会求一些简单函数的定义域与值域; 自学评价变式:求函数 f (x)= 的定义域。

.了解构成函数的三个要素;4 .培养理解抽象概念的能力.1.函数的定义:设A,B是两个非空数集,如果按某种对应法则f,对于集合A中的每追踪训练二1.函数f(X)=3的定义域为I X 1| -2个元素x,在集合B中都有惟一的元素y和它对应,这样的对应叫做从A到B的一个函数, 2 .函数f(X)二、:1「X2X2匚1的定义域为_____________________ 记为.其中输入值x组成的集合A叫做函数y = f(x)的定义域,所有输出值y的取值集合叫做函数y = f (x)的值域。

【精典范例】例1:判断下列对应是否为函数:X T y,其中y为不大于x的最大整数,x R, y 2Z;x—y, y x,x N, y R ;x「y x , x{x|0 x 6} , y {y|0_y_3};1x「y x, x {x|0二x^6}, y {y|0^y二3}. 6 例3:比较下列两个函数的定义域与值域:2(1)f(x)=(x+2) +1, x € { —1,0,1,2,3};(2) f (x)二(X-1)2 1 .(1)(2)(3)(4)追踪训练一对于集合A={x|0_x_6} , B1 1 Xry x ;② x— y x2 3 例2 :求下列函数的定义域:/、Jx +4(1) f (x)二二{y|0_y_3},有下列从A到B的三个对应:①③x—;y = x ;其中是从A到B的函数的对应的序号追踪训练三函数f(x)=x — 1 ( x z且x [-1,4])的值域为________________________________ .例4:已知函数f(x)=|x-1卜1 的定义域为{-2,-1,0,1,2,3,4},求f(-1),f(f (-1))的值.___ ______ . 1;(2) f(x)= x 3-1;(3) f (x)八x 1 —x 2 2 - x 追踪训练四若f(x) = (x-1)2 1,x {-1,0,1,2,3},则f(f(0))= _________________ ;例5: (1)若设函数f(x)= R , 则此函数的定义域为_________________ , f(x+1) = __________【教学后记】:函数y = f (x 1)的定义域为___________________ 。

(2)若函数y = f(X)的定义域为[1,3),则函数y = f(x • 1)的定义域为________________________追踪训练五已知函数y = f (x)的定义域为[—2,3],则函数f (x • 1)的定义域为 ________________________为____________ 。

6.已知一个函数的解析式为f(x)=2x・3 ,它的值域为{一1,2,5,8},贝U函数y二f (x)的定义域为_________________ 。

7 .已知f(x) = 2x2 _ 1,则f (a) = ____________ , f (x 1) = ___________ , f[f (x)] =_★★★ &如果f (x) = x 1,贝U f(f(x)) = __________ , f(f (f (x))) = ______________ ,由此猜想,f (f(f(f (III f(x.)ll)))))(n • N)的表达式为 __________________________________ 。

n个f课后作业:1.有下列对应1① x x,x R :② x > y,其中,y=|x|, x R, y R ;2③t > s,其中S =t2, r R,s・R :④x > y,其中,y为不大于x的最大整数,R, y Z。

其中是函数的对应的序号为 _____________________________ 。

2•判断下列对应f是否为从集合A到集合B的函数:①A ={1,2,3}, B ={7,8,9} , f(1)=f (2)=7 , f(3)=8 ;②A =B ={1,2,3} , f(x)=2x-1;③A = B ={x |x _ -1} , f (x) =2x 1 ;④A二Z,B ={-1,1},当n为奇数时,f(n) - -1 ;当n为偶数时,f(n)=1。

其中是从集合A到集合B的函数对应的序号为_________________ 。

3•函数f (x) =1 -4x的定义域为_____________ 。

2 14 •若f(X)二X -X ,贝y f(0)= ;f (1)= ;f ( )=;f(n 1) _ f(n)二_______________ 。

11 •求下列函数的定义域:(1 )(3)(5)f (x) = . 2x-4 (2)f(x)二1- x|x1|-3 f(x)4xX2-4g(x) =(4)f(x)=-^x+ 2【教学后记】:第二章 第二课时 函数的概念和图象(2)总序10追踪训练一2 2直线X = 1与抛物线y =x 1的交点有 ________ 个;直线x =a(a ・R)与抛物线y =x 1的交 点可能有 ________ 个;1 •理解函数图象的意义;2•能正确画出一些常见函数的图象;3 •会利用函数的图象求一些简单函数的值域、判断函数值的变化趋势;4 •从“形”的角度加深对函数的理解.自学评价2•函数y 二f (x)的图象与其定义域、值域的对应关系:函数 y 二f (x)的图象在x 轴上的射影构成的集合对应着函数的定义域,在 y 轴上的射影构成的集合对应着函数的值域.【精典范例】例1:画出下列函数的图象: (1) f(x)=x 1;(2) f(x)=(x-1)2 1,x [1,3);(3) f(x) =2x , x {1,2,3,4};例2 :画出函数f (x^x 2 1的图象,并根据图象回答下列问题:(1) 比较 f ( -2), f(1), f(3)的大小;(2) 若 0 :: X 」X 2 (或 X 1 ::: X 2 : 0,或 |X 1 卜:|X 2 |)比较 f(xj 与 f (X 2)的大小;2例3:已知函数y = 3x - 6x 1,禾U 用函数图象分别求它在下列区间上的值域:1 •函数的图象:将函数 f(x)自变量的一个值x 0作为横坐标,相应的函数值作为纵坐标,就 得到坐标平面上的一个点 (x 0,f(x 0)),当自变量取遍函数定义域内的每一个值时,所有这些 点组成的图形就是函数 y 二f(x)的图象.(1) x [-1,2]; (2) x [-4,0]; (3) x [2,5] •追踪训练二1. 分别写出函数 f(x)=x 2+1 ((-1,2]), f(x)=x 2+1 ((1,2])的值域.2. 函数 f (x) = (x-1)2 • 1,x ・ [1,3)的值域为 __________ ;【学习导航】 知识网络学习目标启东市吕四中学2013-2014高一数学学案课后作业:1 •若二次函数y =x2• bx • C的图象的对称轴是直线X = 2,则f(1),f(2),f(4) 的大小是2 •郑强去上学,先跑步,后步行,如果y表示郑强离学校的距离,x表示出发后的时间,则下列图象中符合郑强走法的是 __________________3•函数y = x|x|的图象大致是(4)若-1 ::: % <x2 1,贝U f(Xj与f(X2)的大小关系为 __________5. 已知函数f (x) = x - 2, x • [ -1,2),则其值域为 ___________________________ ;6、 __________________________________________________ 下列各组函数表示同一函数的是!_x(x 一0) X2 - 4 —2①f(x)=|x| , g(x)= ②f(x)= , g(x)=x+2 ③f(x)= : x2,2 2g(x)=x+2 ④f(x)= .1「x x T g(x)=0 x € { —1, 1} A.①③ B.① C.②④ D.①④7 •求下列函数的定义域并画出图象,利用图像求出值域:1 1 (1) f (x) ; (2) f (x) 1 •& 求函数f(x)二x2 2x,x {0,1,2}的值域:(1) f(0)二___________(2) f(1)=;(3) f(2)二___________ 9.分别画出下列函数的图像,并利用图像求值域;2(1) f(X)--(X-1) 1,① x € (-2,0) ②x € [-1,2]③x€( 1,4 )(2) ^x-6x 7(X [T,7])启东市吕四中学2013-2014高一数学学案卜x(xv0) x-2【教学后记】:第二章 第三课时 函数的表示方法(一) 总序11(2)已知二次函数g(x)满足 g(1)=1, g(-1)=5,图象过原点,求 g(x);(3) 已知二次函数h(x)与x 轴的两交点为(-2,0) , (3,0),且h(0)- -3,求h(x); (4) 已知二次函数 F(x),其图象的顶点是(_1,2),且经过原点.【学习导航】 1 •掌握表示两个变量之间的函数关系的方法一一列表法、解析法、图象法; 2•能选用恰当的方法来求出两个变量之间的函数关系; 3 •培养抽象概括能力和解决问题的能力. 自学评价 1•用 ______ 来表示两个变量之间的函数关系的方法叫列表法,其优点是函数的 _______ 与 一目了然;用_来表示两个变量之间的函数关系的方法叫解析法 (这个等式通常叫函数 的解析表达式,简称_______ ),其优点是函数关系清楚,容易从 ______ 求出其对应的 _______ , 便于 ___________________ ;用 __________ 来表示两个变量之间的函数关系的方法叫图象法, 其优点是能直观地反映函数值随_________________ 变化的趋势. 追踪训练一(1) 已知 f(x)是二次函数,且满足 f(0)=1 , f(x+1)— f(x)=2x ,求 f(x).(2) 已知 a,b 为常数,若 f(x)=x 2+4X +3, f(ax+b)=x 2+10x+24,贝U 5a — b= ___________2.购买某种饮料x 听,所需钱数y 元•若每听2元,试分别用列表法、 解析法、图象法将y 表示成x(x ・{1,2,3,4})的函数,并指出函数的值域. 解:解析法: 例 3: (1)已知 f (x) = x 2 - 4x 3 , f (x 1);(2) 已知 f(x 1)= X 2-2X ,求 f (x);”1—J -(3) 已知 f( x +1)=x+2x ,求 f (x)。

相关文档
最新文档