1_负载敏感泵自动调节原理
自动压力水泵控制原理
自动压力水泵控制原理
自动压力水泵控制的原理是通过监测和调节水泵的进出水压力来实现水泵的自动开启和关闭。
自动压力水泵控制系统通常包括水泵、压力传感器、控制器和电磁阀。
压力传感器安装在水泵进水管道上,用于实时检测水泵进水管道中的水压。
控制器根据压力传感器的信号来判断当前的水压情况,并通过控制电磁阀来控制水泵的开启和关闭。
工作原理如下:
1. 当水泵关闭时,压力传感器监测到的进水管道中的水压低于设定的最低压力阈值。
控制器接收到信号后,启动电磁阀开启进水管道,水泵开始工作。
2. 水泵工作后,压力传感器监测到的进水管道中的水压逐渐升高。
当水压达到设定的最高压力阈值时,控制器接收到信号后,关闭电磁阀停止进水管道供水,水泵停止工作。
3. 当水泵停止工作后,压力传感器检测到的进水管道中的水压开始下降。
当水压低于最低压力阈值时,控制器再次启动电磁阀开启进水管道,使水泵重新启动。
通过不断检测和调节进出水管道的水压,自动压力水泵控制系统能够保持水压在一个设定的范围内,实现自动化的水泵控制。
这种控制方式可以根据用户的需要,灵活调整水泵的启停,提高水泵的工作效率,节省能源。
负载敏感多路阀的工作原理
负载敏感多路阀的工作原理
负载敏感多路阀是一种用于控制液压系统的阀门,它能够根据负载的变化实时调整流量和压力。
下面是负载敏感多路阀的工作原理:
1. 压力传感器:负载敏感多路阀通常配备有压力传感器。
压力传感器会实时监测系统中的液压压力变化。
2. 液压流量调节:负载敏感多路阀根据压力传感器的反馈信号来调节系统中的液压流量。
当系统中的负载增加时,压力传感器会检测到压力的变化并将这一信号传递给阀门。
3. 比例阀控制:根据压力传感器的反馈信号,负载敏感多路阀中的比例阀会自动调整阀门的开度。
比例阀的开度变化会影响液压系统中的液压流量和压力。
4. 系统调节:当负载增加时,阀门会自动打开以增加液压流量和压力,从而满足系统的需求。
当负载减少时,阀门会自动关闭以减少流量和压力。
总的来说,负载敏感多路阀通过压力传感器检测系统中的液压压力变化,并根据这些变化自动调节阀门的开度,从而实现对液压流量和压力的控制。
这种阀门能够根据系统的需求实时调整工作参数,提高系统的效率和性能。
负载敏感变量泵的工作原理
负载敏感变量泵的工作原理
(总1页)
-CAL-FENGHAI.-(YICAI)-Company One1
-CAL-本页仅作为文档封面,使用请直接删除
附图图是负载敏感变量泵的工作原理图,此原理图是最基本的LS型变量控制方式:泵出口压力是P,执行元件的负载压力是Pls。
泵输出的流量Q通过主阀节流口被引入到执行元件(马达或油缸),主阀节流口两端的压差ΔP=P-Pls;P作用在变量阀芯的左端,负载压力Pls和弹簧预设压力Pk共同作用在变量阀芯的右端。
当变量阀受力平衡时,即Pk= P –Pls=ΔP。
此时泵维持在一个稳定的排量。
(通常Pk设置2Mpa)当节流口变化时,动态的ΔP将会大于或小于弹簧预设压力Pk,此时变量滑阀受力处于不平衡状态,为了恢复到受力平衡状态,变量滑阀会向左或向右移动,变量阀的左右移动就会改变泵的排量,从而使输出流量Q变大或变小,重新使ΔP= Pk =定值。
(压差ΔP变大,说明主阀节流口开度变小,此时变量阀芯向右移动,压力油被引到变量活塞的大腔,压力油的作用下,变量柱塞左移,泵的斜盘倾角变小,流量变小,压差变小,直到压差ΔP=P k时,滑阀受力平衡,泵的斜盘倾角不再变化,此时泵输出与节流口相匹配的流量;压差ΔP变小,说明主阀节流口开度变大,此时变量阀芯左移,变量活塞的大腔油被接回油箱,泵的斜盘倾角变大,输出流量变大,直到直到压差ΔP=P k时,滑阀受力平衡,泵的斜盘倾角不在变化,此时泵输出与节流口相匹配的流量。
负载敏感泵是外部节流且压差ΔP为定常,通过外部节流口的开度进行泵的斜盘倾角控制,节流口变小,泵的输出流量变小;节流口变大,泵的输出流量变大。
)
2。
负载敏感(LS)控制系统工作原理与操作
Eaton®中等负载柱塞泵(斜盘-轴向)负载敏感(LS)控制系统工作原理与操作——Load Sensing Sytem-Principle and Operation王清岩[译]CCE(JLU,CHINA)15-09-2005Load Sensing Principle of OperationPage序言 (3)何谓负载敏感? (4)负载敏感系统是如何工作的 (5)采用负载敏感控制的优点 (14)开发与调试 (25)系统比较 (26)应用 (27)负载敏感控制技术的前景 (27)Load Sensing Principle of Operation序言早在二十世纪六十年代后期,一些年轻的工程师对液压传动技术的优缺点进行了仔细的分析。
中位开放式液压系统,采用了一个定排量的齿轮泵,提供恒定的流量,系统压力是由作用于工作介质上的载荷决定的。
为限制系统的最高工作压力,必须设置一个高压溢流阀。
当系统工作压力达到设定值,液压泵近乎全部流量将通过溢流阀流回油箱,因而导致极高的功率损失,并在系统中产生大量的热损耗致使系统效率极低。
相比之下中位封闭的液压系统具有排量可调的优点,排量调节的范围可从最小排量至最大排量,甚至正向最大排量至反向最大排量;并且无需在系统中设置溢流阀。
其最大工作压力的控制是通过液压泵内部的补偿器实现的。
此类补偿器可在系统因负载超出额定范围导致系统受到阻滞的状态下通过限压变量活塞使泵卸荷即液压泵处于高压运转状态、但排量近乎为零。
此时液压泵将进入等待状态,并保持较高的工作压力,直至负载被克服或恢复操作阀的控制状态。
中位闭式系统的缺点是液压泵试图在所有的工况下均实现所限定的最高工作压力附近的排量调节。
但是液压系统还有这样一类工况,即期望获得较大的流量而所要求的工作压力却很低。
中位闭式的系统在此种工况下导致了较高的压力降并在能量损失过程中产生大量的热。
工程师们于是设想,若能将两种系统的优点进行合并将得到最佳的性能。
CASAPPA LVP 负载敏感泵工作原理 中文
78
76
50
50
0 400 600 800
65
70
73
1000 1200 1400 1600 1800 2000 2200 2400 2600
Velocità [rpm]
Pump LVP 48 (46 cm3/rev) – 50°C – mineral oil arnica 46
Page 11
泵的输出
控制阀
通过回路的流量取决于用户指令而不是负载
可控性 压力降 p*FC 是一个预先调定值
LS
p
p*FC
控制系 统
X
p*FC 设置成一个较低值 (约为 14 bar), 这样 只有一个小功率(Q x p*FC)通过控制阀被浪费
泵+调节器
通过回路的流量直接正比于用户指令 u
Page 20
负载敏感原理
Page 2
PLATA 技术参数
用HL或者 HLP矿物型液压油 泵的类型
LVP 30 LVP 48 LVP 75
Vmax 46 73 0.8 最小 [bar abs.] 25 最大 280 连续的 [bar] 315 间歇的 350 最高 [bar abs] 1.5 [rpm] @ Vmax (*) 3000 2600 2200 @ nmax 87 119.6 160.6 [l/min] @ 1500 rpm 43.5 69 109.5 @ nmax 39.8 54.7 73.5 [kW] @ 1500 rpm 19.9 31.6 50.1 @ 280 bar 129.3 205.1 325.5 [Nm] @ 100 bar 46.2 73.2 116.2 2 [kgm ] 0.0020 0.0030 0.0080 Fax 1000 1500 2000 [N] Frad 1500 1500 3000 [l] 0.7 0.9 1.5 [kg] 18 24 33 丁纳橡胶(N) – 氟胶 (V) -25 ÷+90° 用丁纳橡胶 [° C] -10 ÷+90° 用氟胶 [cm3/rev] 29
负载敏感泵
实际使用中,负载敏感泵通常不是与节流阀,而是与负载敏感阀或比例换向阀配合使用。
为介绍其原理,此处先假设负载有流量需求,即P口有通路。
当节流阀通径足够大且全开时,节流阀前后压力基本相等。
由于流量阀左右腔压力分别是节流前和节流后的压力,所以此时流量阀左右腔压力也基本相等。
流量阀在弹簧力的作用下处于初始位置,泵变量活塞腔与回油相通,泵工作在最大排量。
当节流阀开度逐渐减小,如果泵输出流量不变,则节流阀前后压差逐渐增大,即流量阀两端压差越来越大。
当节流阀开度减小到一定程度以下,如果泵输出流量还是不变,必然会造成节流阀的前后压差超过流量阀的设定压差(A10V产品中流量阀的标准设定压差Δp=1.4MPa),于是流量阀右移,泵出口油进入变量活塞腔,将斜盘向小角度方向推动。
斜盘角度稍有减小,泵输出流量随即减小,于是节流阀因过流量减小而压差降低。
当油液流经节流阀产生的压差正好与流量阀设定压差相等时,流量阀达到平衡状态,泵斜盘稳定在某个位置,使泵的输出流量与节流阀开度相匹配,即所谓的要多少流量给多少流量。
待机时,对于中位闭芯式负载敏感阀或比例换向阀而言,节流口处于关闭状态。
此时节流阀的前后压差即为泵的待机压力,待机压力一般比Δp高0.2MPa左右,一般与系统管阻、泵结构等有关。
当待机压力超过流量阀的设定压差(A10V产品中流量阀的标准设定压差Δp=1.4MPa),于是流量阀右移,泵出口油进入变量活塞腔,将斜盘向小角度方向推动,直到泵流量到最小约等于零(大于零的部分用于维持泵及系统泄漏)。
当油液流经节流阀产生的压差正好与流量阀设定压差相等时,流量阀达到平衡状态,泵斜盘稳定在某个位置,使泵的输出流量与节流阀开度相匹配,即所谓的要多少流量给多少流量”是否理解为为维持此时泵的输出流量,流量阀在平衡状态是在不断调整开度的?。
负载敏感技术原理
负载敏感技术原理1)关于负载敏感控制,从基本类型来讲可以区分为两大类:阀控系统与泵控系统。
楼主的示例是泵控系统。
2)在阀控系统中,如果只考虑用途比较广泛的传统方式,区分为比例方向阀前串联定差减压阀的负载补偿型,和比例方向阀并联定差溢流阀的负载敏感型。
在一般工业系统中,或者使用前者,或者使用后者,两者不可兼得。
3)第二点中,串联定差减压阀的负载敏感系统,其基本优点是所控制负载速度只与输入信号有关,不受负载压力变化的影响。
其缺点在于这是个定压系统,还存在较大的能量损失。
4)第二点中,并联定差溢流阀的负载敏感系统,除了所控制负载速度只与输入信号有关,不受负载压力变化的影响之外,其基本优点是节能,即不是定压系统,泵的出口压力仅仅比负载高一个固定的数值,例如5-10bar。
同时,阀内可配置先导压力阀,当系统压力达到其调定值时,就与主阀构成系统安全阀,限于系统的最高压力,省去另设系统安全阀。
在第3、第4中,有些产品还通过设置附加液压半桥,获得比例方向阀阀口压差的小范围可调,以适应用户的要求。
5)如前所述,上述第3、第4所讲的定差减压型,与定差溢流型在一般的比例方向阀系统中,两者只能选一。
这种负载补偿情况,在多路阀控制的多负载系统中,得到了新的发展(在多路阀中能够构成负载敏感系统的只有4通型多路阀,一般的6通型多路阀是无法实现的)。
这就是:多路阀中每一联配置定差减压阀,同时通过梭阀网络将同时动作各联的最高负载压力(LS信号)引到泵出口的定差溢流阀,总体上构成负载敏感适应系统。
也就是说,这种配置的负载敏感系统中各联之间互不干扰,速度只与各联输入信号相关;而且泵的出口压力不是一个定值,它随时随刻都只是比当时的最高负载压力高出一个固定的数值。
6)就以多路阀为例,介绍泵控负载敏感系统。
实际上就是上面第5点的LS信号不是引到定差溢流阀,而是引到负载敏感泵就成了(即以负载敏感泵代替第5点的定量泵和定差溢流阀)。
7)对于多路阀系统,第5点的系统一般称为开中心负载敏感系统,它还是有一定的能量损失。
负载敏感多路阀工作原理
负载敏感多路阀工作原理负载敏感多路阀(Load Sensitive Multiple Valve)是一种常见的液压传动元件,它可以根据系统的负载情况自动调节液压流量和压力。
它主要应用于液压系统中,可以有效地控制和调节工作装置的运动速度,提高系统的工作效率。
负载敏感多路阀的工作原理是基于流量和压力的反馈控制。
它由多个节点和一个控制器组成。
每个节点都有一个单向或双向阀门,用于控制液压流量和压力。
控制器通过感知系统的负载情况,通过调节阀门的开关状态,以达到控制液压流量和压力的目的。
当负载敏感多路阀工作时,首先需要测量系统的负载情况。
这可以通过安装传感器来实现,传感器可以测量液体的流速、压力和温度等参数。
这些数据将传输给控制器,控制器将分析这些数据并根据负载情况做出相应的调节。
根据系统的负载情况,控制器会判断是否需要增加或减少液压流量。
当系统负载较小时,控制器会适当地增加阀门的开度,以增加液压流量。
当系统负载较大时,控制器会相应地减少阀门的开度,以减少液压流量。
这样,就可以在不同的负载情况下保持适当的液压流量,以达到最佳工作状态。
另外,负载敏感多路阀还可以自动调节液压压力。
在系统负载较小的情况下,控制器会增加阀门的压力限制,以增加液压压力。
而在系统负载较大的情况下,控制器会减小阀门的压力限制,以减少液压压力。
这样,就可以在不同的负载情况下保持适当的液压压力,以确保系统的安全和稳定运行。
负载敏感多路阀还可以通过组合和联动控制多个阀门,以实现更复杂的液压系统控制。
通过调节不同阀门的开关状态和流量限制,可以精确控制工作装置的运动速度和位置。
总之,负载敏感多路阀通过感知系统的负载情况,自动调节液压流量和压力,从而提高液压系统的工作效率。
它是现代液压系统中不可或缺的重要元件,广泛应用于工程机械、农业机械、船舶等领域。
随着科技的不断进步,负载敏感多路阀将进一步发展和应用,为更多行业带来更高效、更安全的液压系统。
在现代工程领域,负载敏感多路阀扮演着举足轻重的角色。
负载敏感泵工作原理
负载敏感泵工作原理
负载敏感泵是一种根据系统载荷需求自动调整流量和压力输出的液压泵。
其工作原理可分为以下几个步骤:
1. 接收信号:负载敏感泵通过传感器或其他控制装置接收系统负载状态的信号。
这些信号可以是流量、压力、转矩或速度等。
2. 反馈信号:接收到负载信号后,泵将信号反馈给控制系统。
控制系统分析反馈信号,并根据系统需求调整泵的输出。
3. 调节泵输出:根据控制系统的指令,负载敏感泵通过改变输出来满足系统需求。
这意味着泵会调整流量和压力输出以适应不同负载。
4. 恢复信号:负载敏感泵会持续监测系统负载状态,并将新的信号反馈给控制系统。
这种反馈机制使得泵能够实时调整输出以适应任何变化的负载需求。
通过以上的工作原理,负载敏感泵可以根据系统负载的变化自动调整自身的输出,提供所需的流量和压力。
这种自适应性能使得负载敏感泵在各种液压系统中得到了广泛应用。
负载敏感泵工作原理
负载敏感泵工作原理
负载敏感泵是一种根据系统负载需求自动调整流量的液压泵,
其工作原理基于对系统负载变化的实时感知和响应。
在液压系统中,负载敏感泵的工作原理起着至关重要的作用,下面将详细介绍其工
作原理。
首先,负载敏感泵通过感知系统的负载变化来调整输出流量。
当系统负载增加时,负载敏感泵会感知到这一变化,并相应地增加
输出流量,以满足系统对液压能量的需求;反之,当系统负载减小时,负载敏感泵会减小输出流量,以避免能量浪费。
其次,负载敏感泵的工作原理还包括对系统压力的感知和调节。
当系统压力超过设定值时,负载敏感泵会自动减小输出流量,以维
持系统压力在安全范围内;反之,当系统压力低于设定值时,负载
敏感泵会增加输出流量,以提高系统压力。
此外,负载敏感泵还能通过调整液压泵的转速来实现流量的调节。
当系统负载增加时,负载敏感泵会增加液压泵的转速,以提高
输出流量;反之,当系统负载减小时,负载敏感泵会减小液压泵的
转速,以降低输出流量。
最后,负载敏感泵的工作原理还包括对液压油的节流调节。
通
过调节液压油的流量,负载敏感泵能够实现对系统流量的精确控制,以满足不同工况下的需求。
综上所述,负载敏感泵的工作原理是基于对系统负载、压力、
转速和液压油流量的感知和调节,以实现对液压系统流量的自动调整。
这种智能化的工作原理使得负载敏感泵在液压系统中具有重要
的应用前景和市场需求。
负载敏感
一、负载敏感和压力补偿概念(一)负载敏感(Load Sensing)和压力补偿(Pressure Compensation)是60年代提出的液压传动和控制的新概念。
以往液压系统在使用操纵过程中,存在着以下需解决的问题:1. 节能要求,适应负载变化提供负载所需要的液压功率(流量和压力),尽量减少流量和压力损失,将节流调速改变为以容积调速为主,特别按负载需要提供负载所需的流量。
2. 操纵阀调速控制时,调速受负载压力变化和油泵流量变化的影响,难以操纵控制。
3. 单泵供多执行器:当多执行器同时动作时,要求相互不干涉,能够操纵各执行器按所需流量供油。
合理地分配流量,实现理想复合动作。
4. 液压泵和原动机的匹配问题,能充分利用原动机的功率,保持在发动机最大功率点工作,同时能防止发动机熄火,为了减少能耗节能,要求液压泵和发动机在联合工作最经济点上工作。
为了解决以上问题,60年代提出液压传动控制新概念—负载敏感和压力补偿。
目前液压传动仍存在问题有待解决。
例如液压传动遵循帕斯卡原理,一个泵供多个执行器时,系统压力由克服各负载中所需最大压力来确定,因此供给负载较低的执行器时必然存在压力损失。
目前人们正在研究采用电路中变压器这类东西,来解决这个问题。
(二)负载敏感和压力补偿的定义:负载敏感是一个系统概念,因此应称为负载敏感系统,可把它看作是一个意义广泛的名词。
(即广义的负载敏感和压力补偿)。
负载敏感通过感应检测出负载压力,流量和功率变化信号,向液压系统进行回馈,实现节能控制、流量和调速控制、恒力矩控制、力矩限制、恒功率控制、功率限制、转速限制、同时动作和与原动机动力匹配等控制的总称。
负载敏感系统所采用的控制方式包括液压控制和电子控制。
从负载敏感系统的液压组件来看可分:负载敏感阀:将压力、流量和功率变化信号,向阀进行回馈,实现控制功能的阀。
负载敏感泵:将压力、流量和功率变化信号,向泵进行回馈,实现控制功能的泵和马达。
泵调节器工作原理
泵调节器工作原理
泵调节器是一种用于调节水泵输出流量和压力的装置。
它通过控制泵体的进出口阀门来实现调节。
下面将介绍泵调节器的工作原理。
泵调节器通常由一个电动阀、一个控制系统和一个传感器组成。
传感器用于测量流量、压力和温度等参数,并将这些参数传输给控制系统。
控制系统根据传感器的反馈信息来判断当前的水流情况,并通过控制电动阀的开启程度来调节进出口阀门的开闭情况。
当需要增加泵的流量和压力时,控制系统会收到传感器的信号,此时控制系统会打开电动阀,使进出口阀门的开度增大,从而增加泵的进出口流量。
反之,当需要减小流量和压力时,控制系统会关闭电动阀,使进出口阀门的开度减小。
泵调节器还可以根据设定的参数来自动控制泵的工作状态。
比如,当系统的流量达到设定值时,控制系统会收到传感器的信号,此时控制系统会自动关闭电动阀,从而保持流量在设定值附近。
当系统的流量低于设定值时,控制系统会自动打开电动阀,增加流量至设定值。
此外,泵调节器还可以根据传感器测量到的压力信号来判断泵的出水情况。
如果压力过高,控制系统会减小进出口阀门的开度,以降低压力。
如果压力过低,控制系统会增大进出口阀门的开度,以增加压力。
总之,泵调节器通过传感器测量的参数和控制系统的反馈机制,实现对泵的流量和压力的精确控制。
它可以提高泵的工作效率,保证系统的正常运行,并延长泵的使用寿命。
负载敏感多路阀工作原理
负载敏感多路阀工作原理负载敏感多路阀(Load Sensitive Multiport Valve)是一种可以根据负载变化自动调节流量的阀门。
它在液压系统中具有重要作用,可以有效地平衡流体的压力,降低系统的能量消耗,提高系统的响应速度和稳定性。
负载敏感多路阀由阀体、阀芯、弹簧、调节阀、负载敏感元件等组成。
当液压系统中有负载变化时,负载敏感元件会感知负载的变化,并通过调节阀控制阀芯的移动,进而改变液压系统的流量。
具体工作原理如下:当液压系统中没有负载作用时,阀芯处于初始位置,流体通过阀体的中心通道直接流过,不受阀芯控制,流量较大。
同时,弹簧的压力将阀芯保持在初始位置。
当液压系统中有负载作用时,负载敏感元件会感知到负载的变化。
如果负载增加,负载敏感元件会发出信号,通过调节阀补充液压系统中的压力。
增加液压系统中的压力可以推动阀芯的运动。
阀芯的运动会改变阀体中通道的截面积,从而改变液体的流量。
负载敏感多路阀会根据负载的变化,自动调整阀芯的位置,控制液体的流量。
当液压系统中的负载减少时,负载敏感元件会感知到负载的变化,并通过调节阀降低液压系统中的压力。
降低压力可以使阀芯回到初始位置,恢复到较大的流量状态。
通过以上工作原理,负载敏感多路阀可以根据负载的变化自动调节流量,从而使液压系统能够更好地适应实际的工作状态。
它可以实时监测负载的变化,并迅速响应,及时调整流量,平衡系统的压力,提高系统的工作效率和稳定性。
负载敏感多路阀在液压系统中的应用非常广泛。
例如,在挖掘机、起重机、农机等大型设备中,负载敏感多路阀可以根据负载变化,精确控制液压系统的流量,从而实现平稳的工作,减少能量消耗,延长设备的使用寿命。
负载敏感多路阀的工作原理简单而可靠,它通过监测负载的变化,自动调节流量,提高了液压系统的工作效率和稳定性。
同时,它还可以降低系统的能源消耗,节约成本。
因此,负载敏感多路阀在液压系统中具有重要作用,为现代工程机械的发展提供了有力的支撑。
负载敏感液压泵原理
负载敏感液压泵原理负载敏感液压泵是一种能够根据负载情况自动调整输出压力和流量的液压泵。
它利用负载敏感元件和控制系统实现对液压泵输出的精确调节,从而实现对液压系统的动态控制。
在工业生产和机械设备中,负载敏感液压泵被广泛应用,为系统提供高效、稳定的液压能源。
负载敏感液压泵的工作原理可以简单地描述为:根据负载情况自动调节输出压力和流量。
具体来说,当液压系统的负载增加时,负载敏感元件感应到负载的变化,并通过控制系统调整液压泵的输出压力和流量,使其能够满足系统的要求。
而当负载减少时,液压泵也能够相应地减小输出压力和流量,以节约能源和降低系统的运行成本。
负载敏感液压泵的关键在于负载敏感元件和控制系统。
负载敏感元件通常采用压力控制阀或流量控制阀,用于感应和反馈负载的变化。
当负载增加时,压力或流量控制阀会感应到负载的增加,并通过控制系统发送信号给液压泵,要求增加输出压力和流量。
控制系统根据负载的变化信号,调节液压泵的工作状态,使其能够满足系统对压力和流量的需求。
负载敏感液压泵的优点在于其高效、节能的特性。
由于能够根据负载情况自动调节输出压力和流量,负载敏感液压泵能够实现能源的有效利用。
当负载较轻时,液压泵会自动减小输出压力和流量,以减少能源的消耗。
而当负载较重时,液压泵会自动增加输出压力和流量,以满足系统对液压能源的需求。
这种自动调节的能力能够保证系统在不同负载下的稳定运行,提高系统的效率和可靠性。
负载敏感液压泵在工业生产和机械设备中的应用非常广泛。
例如,在机床行业中,负载敏感液压泵能够根据切削负载的变化,自动调整切削液的压力和流量,使机床能够在不同工况下保持稳定的切削质量和加工效率。
在冶金、矿山等行业中,负载敏感液压泵能够根据负载的变化,自动调整工作液的压力和流量,以满足不同工艺的要求。
在工程机械和汽车行业中,负载敏感液压泵能够根据负载的变化,自动调整液压系统的工作状态,以提高机械设备的工作效率和安全性。
负载敏感液压泵是一种能够根据负载情况自动调节输出压力和流量的液压泵。
工程机械负载敏感技术节能原理及应用_耿令新
工程机械负载敏感技术节能原理及应用
85
文章编号: 1004- 2539( 2008) 05- 0085- 03
工程机械负载敏感技术节能原理及应用
( 同济大学机械工程学院, 上海 201804) 耿令新 刘 钊 吴仁智 ( 河南科技大学, 河南 洛阳 471003) 张利娟
摘要 通过对液压系统节流调速回路进行能耗分析, 说明了变量泵的节能原理, 并就负载敏感变量 泵节能技术及其应用进行了较详细的分析和阐述, 为工程机械节能设计提供参考。
º 当负载压力 pL 变化时, 例如 pL 减小, 则 $p 增
大, 由于阀 2 开口面积不变, 通过阀 2 的流量增加。由
于
pbAF> pLA F+ Fs
( 12)
此时阀 5 的阀芯将右移, A 、O 口接通, 变量油缸 6
的右腔与油箱接通, 油缸活塞在弹簧推动下右移, 使变
量泵 1 的排量减小, 阀 2 流量减小, $p 减小, p b 降低, 直至重新达到式( 10) 的平衡条件, $p 恢复到平衡状态
参考文献
[ 1] 耿宗亮, 史书平, 秦海港, 等. 皮带 传动试验 台地微机 化测量系 统
设计[ J] . 机电产品开发与创新, 2007, 20 ( 4) : 138- 139. [ 2] 骆庆. 基于 LabVIEW 的蜗杆减速器测试系统[ J] . 机电工程, 2007,
24( 8) : 109- 110. [ 3] 刘平, 施保华. 基于 LabVIEW 的园锯片平面度检测系统[ J ] . 微 计
pbAF< pLA F+ Fs
( 11)
此时阀 5 的阀芯将左移, B 、O 口接通, 压力油进
负载敏感变量泵的动态特性研究
负载敏感变量泵的动态特性研究液压传动具有无级变速、传动环节少、操作简单、对外界载荷适应能力强和易于实现自动化控制等优点,被广泛地应用。
但液压传动能量损失大,效率低,是其系统的一大缺陷。
为了解决此问题,人们提出许多解决方法,负载敏感技术就是其中之一。
负载敏感技术是指系统能够按照负载的需求来控制泵输出压力与流量,使液压系统效率提高,增加其使用寿命。
负载敏感技术有阀控与泵控两种,泵控负载敏感系统主要依靠负载敏感变量泵完成相应工作,本文主要分析该泵的工作原理与动态特性的影响因素。
1 负载敏感变量泵工作原理负载敏感变量泵的工作原理如图1所示,由变量泵、负载敏感阀、恒压阀和变量活塞等组成。
负载敏感变量泵根据负载所需的压力PL 调节恒压阀与负载敏感阀的阀芯的位移,使变量活塞受力发生变化,进而改变泵的排量,实现泵的输出压力PP、输出流量与负载的压力PL、流量相匹配。
负载敏感变量泵中的恒压阀2控制优先级高于负载敏感阀1的控制优先级。
负载敏感变量泵有三种状态:待机状态、正常工作状态和过载状态。
(1)待机状态,节流阀5处于关闭状态。
负载敏感阀1和恒压阀2的阀芯在弹簧作用下处于左位,变量泵4的出口压力油进入变量活塞3的两腔,推动变量活塞3,从而减小泵斜盘倾角,使得泵的排量减小到最小值,泵出口压力PP降到与负载敏感阀1中调整弹簧预紧力相等的值。
变量泵输出一定的流量,用于补偿泵自身的内泄漏。
(2)正常工作时。
启动负载敏感变量泵,变量泵4提供压力PP 小于负载所需压力PL,负载敏感阀1的阀芯右移,阀口开度逐渐增大,变量活塞3右侧的油液流回油箱,变量泵4的斜盘倾角变大,从而排量增大。
当泵完全启动后,泵的出口压力及流量会随着负载的变化而变化。
负载PL稳定时,负载敏感阀1受力平衡时,方程为:式中:A——负载敏感阀的弹簧腔压力油作用面积,Fs——弹簧预紧力。
当PL减小,ΔPFs/A,负载敏感阀1的弹簧作用力产生的压力大于负载压力,从而推动负载敏感阀1的阀芯向左移动,阀口开度减小,变量活塞3右侧流回油箱的油液减少,压力逐渐增大,从而使斜盘倾角减小,泵出口压力与排量减小,直到负载所需求的压力。
负载敏感多路阀原理
负载敏感多路阀原理引言:负载敏感多路阀(Load-Sensitive Multiple Orifice Valve)是一种在流体系统中广泛使用的控制元件,其原理基于负载敏感的特性,可以实现对流体流量的精确调节和分配。
本文将介绍负载敏感多路阀的原理、工作方式以及在实际应用中的优势。
一、负载敏感多路阀的原理负载敏感多路阀的原理基于流体在通过阀体时的压力差异,通过调节阀口的大小和数量,实现对流体流量的控制。
该阀在不同负载条件下能够自动调节阀口的开启程度,从而保持稳定的流量输出。
二、负载敏感多路阀的工作方式负载敏感多路阀由多个阀口组成,每个阀口都可以独立地控制流体的通断。
当系统中的负载增加时,流体通过阀体的压力降将增大,这会导致阀口自动调整以增加流量输出。
相反,当系统中的负载减少时,流体通过阀体的压力降将减小,阀口会自动调整以减少流量输出。
通过这种方式,负载敏感多路阀能够实时监测系统的负载情况,并自动调节流量以适应负载的变化。
三、负载敏感多路阀的优势1. 精确控制:负载敏感多路阀通过自动调节阀口的大小和数量,能够实现对流体流量的精确控制。
无论负载变化多大,都能够保持稳定的流量输出。
2. 高效能耗:负载敏感多路阀能够根据负载的变化自动调节流量,避免流体过量或不足的情况,从而提高能源利用效率。
3. 系统稳定:负载敏感多路阀能够实时监测系统的负载情况,并根据负载的变化调节流量,保持系统的稳定性和可靠性。
4. 安全可靠:负载敏感多路阀在设计上考虑了各种负载情况,并能够自动调节流量以适应负载的变化,确保系统的安全运行。
5. 适应性强:负载敏感多路阀可以根据不同的应用需求进行调整和配置,适用于各种流体系统,具有较强的通用性和适应性。
结论:负载敏感多路阀作为一种流体控制元件,在现代工业自动化系统中具有重要的应用价值。
其原理基于负载敏感的特性,通过调节阀口的大小和数量实现对流体流量的精确调节和分配。
负载敏感多路阀具有精确控制、高效能耗、系统稳定、安全可靠和适应性强等优势,能够满足不同流体系统的需求。
负载敏感变量泵的工作原理
负载敏感变量泵的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
附图图是负载敏感变量泵的工作原理图,此原理图是最基本的LS型变量控制方式:泵出口压力是P,执行元件的负载压力是Pls。
泵输出的流量Q通过主阀节流口被引入到执行元件(马达或油缸),主阀节流口两端的压差ΔP=P-Pls;P作用在变量阀芯的左端,负载压力Pls和弹簧预设压力Pk共同作用在变量阀芯的右端。
当变量阀受力平衡时,即Pk= P –Pls=ΔP。
此时泵维持在一个稳定的排量。
(通常Pk设置2Mpa)当节流口变化时,动态的ΔP将会大于或小于弹簧预设压力Pk,此时变量滑阀受力处于不平衡状态,为了恢复到受力平衡状态,变量滑阀会向左或向右移动,变量阀的左右移动就会改变泵的排量,从而使输出流量Q变大或变小,重新使ΔP= Pk =定值。
(压差ΔP变大,说明主阀节流口开度变小,此时变量阀芯向右移动,压力油被引到变量活塞的大腔,压力油的作用下,变量柱塞左移,泵的斜盘倾角变小,流量变小,压差变小,直到压差ΔP=P k时,滑阀受力平衡,泵的斜盘倾角不再变化,此时泵输出与节流口相匹配的流量;压差ΔP变小,说明主阀节流口开度变大,此时变量阀芯左移,变量活塞的大腔油被接回油箱,泵的斜盘倾角变大,输出流量变大,直到直到压差ΔP=P k时,滑阀受力平衡,泵的斜盘倾角不在变化,此时泵输出与节流口相匹配的流量。
负载敏感泵是外部节流且压差ΔP为定常,通过外部节流口的开度进行泵的斜盘倾角控制,节流口变小,泵的输出流量变小;节流口变大,泵的输出流量变大。
)
2。
1负载敏感泵自动调节原理
1 负载敏感泵自动调节原理负载敏感泵控系统原理图如图1所示,PL 为负载需要的压力,通过流量控制阀5泵的流量QL 为负载需要的流量。
当阀5的开度减小,表明负载需求流量减小,此时泵输出的流量大于负载所要求的流量,则阀5进出口压力降LS p p p -=∆增大,推动敏感阀1阀芯向右运动,使泵出口通过阀1左位与变量缸的大腔,由于变量缸大腔、小腔之间的面积差,推动变量斜盘角减小,使泵的流量减小,直到达到负荷所需求的流量为止。
反之,阀5的开度增大,泵输出流量小 于负载所要求的流量,则LS p p p -=∆减小,阀1阀芯向左运动,变量缸大腔经过阀12345XP SP L1、负载敏感阀,2、恒压阀,3、变量缸大腔,4、变量缸小腔,5、外接流量控制阀图1 负载敏感泵控系统原理图1右位通油箱,泵的斜盘角增大,流量增大。
当负载保压时,L S p p =,这时负载敏感阀1无法开启,P S 推动恒压阀2阀芯向右运动,油液通过阀2左位进入变量缸的大腔,使泵的流量减小到仅能维持系统的压力,斜盘角近零偏角,泵的功耗最小。
当阀5关死,即负载停止工作,泵出口压力仅需为阀1弹簧设置压力,一般只有14bar 左右,流量接近为零。
以上的分析说明:(1)该泵的输出压力和流量完全根据负载的要求变化。
(2)保压时,泵的输出流量仅维持系统的压力。
(3)空运转时,泵的流量在低压、零偏角下运转。
2 负载敏感泵数学建模为了进一步深入的分析研究负载敏感泵,首先必须要对负载敏感泵进行数学建模。
从上部分的原理分析得知,负载敏感泵有三种状态,即一般工作状态、保压工作状态、和空运转状态,其中一般工作状态和空运转状态由负载敏感阀感应负载需求产生阀芯运动使泵流量变化来满足负载要求,保压工作状态由恒压阀感应负载敏感阀感应负载需求产生阀芯运动使泵流量变化来满足负载要求,系统模型需要分开建立。
由于负载敏感阀和恒压阀结构相似运动过程也类似,本文下面将只建立负载敏感阀动作时的数学模型。
负载敏感液压泵原理
负载敏感液压泵原理液压泵是液压系统中的核心元件,负载敏感液压泵是一种根据外部负载要求来调整工作压力和流量的液压泵。
它可以根据负载的变化自动调整输出压力和流量,从而实现对液压系统的精确控制和能量的有效利用。
负载敏感液压泵的原理是通过感应负载变化来调整输出压力和流量。
当负载增加时,液压泵会自动增加输出压力和流量,以满足负载要求;当负载减少时,液压泵会自动降低输出压力和流量,以节约能量。
这种负载敏感的调节方式可以在不同工况下保持合适的工作压力和流量,提高液压系统的工作效率和稳定性。
负载敏感液压泵的工作原理主要包括以下几个方面:1. 感应负载压力:负载敏感液压泵通过感应负载的压力变化,来调整输出压力。
当负载增加时,负载敏感液压泵会感应到负载压力的增加,并通过相应的调节机构来增加输出压力。
当负载减少时,负载敏感液压泵会感应到负载压力的减少,并通过相应的调节机构来降低输出压力。
2. 调节输出流量:负载敏感液压泵还可以根据负载的要求来调节输出流量。
当负载增加时,负载敏感液压泵会增加输出流量,以满足负载的需求;当负载减少时,负载敏感液压泵会减少输出流量,以节约能量。
这种调节流量的方式可以使液压系统在不同负载下保持恰当的流量,提高系统的工作效率。
3. 负载敏感器:负载敏感液压泵中的负载敏感器是实现负载感应的关键部件。
负载敏感器可以感应到负载的压力变化,并将这些信号传递给液压泵的调节机构。
调节机构根据负载信号来调整输出压力和流量,以满足负载的要求。
负载敏感液压泵的优点在于能够根据负载的变化来调整输出压力和流量,从而提高液压系统的工作效率和能量利用率。
它适用于需要精确控制和能量节约的液压系统,如工程机械、冶金设备、船舶等领域。
负载敏感液压泵通过感应负载变化来调整输出压力和流量,实现对液压系统的精确控制和能量的有效利用。
它的工作原理是通过感应负载压力和调节输出流量来实现的,其中负载敏感器是实现负载感应的关键部件。
负载敏感液压泵的优点在于能够根据负载的变化自动调整输出压力和流量,提高系统的工作效率和能量利用率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 负载敏感泵自动调节原理
负载敏感泵控系统原理图如图1所示,PL 为负载需要的压力,通过流量控制阀5泵的流量QL 为负载需要的流量。
当阀5的开度减小,表明负载需求流量减小,此时泵输出的流量大于负载所要求的流量,则阀5进出口压力降L S p p p -=∆增大,推动敏感阀1阀芯向右运动,使泵出口通过阀1左位与变量缸的大腔,由于变量缸大腔、小腔之间的面积差,推动变量斜盘角减小,使泵的流量减小,直到达到负荷所需求的流量为止。
反之,阀5的开度增大,泵输出流量小于负载所要求的流量,则
L S p p p -=∆减小,阀1阀芯向左运动,变量缸大
腔经过阀 1
2
34
5
X
P S
P L
1、负载敏感阀,
2、恒压阀,
3、变量缸大腔,
4、变量缸小腔,
5、外接流量控制阀
图1 负载敏感泵控系统原理图 1右位通油箱,泵的斜盘角增大,流量增大。
当负载保压时,L S p p =,这时负载敏感阀1无法开启,P S 推动恒压阀2阀芯向右运动,油液通过阀2左位进入变量缸的大腔,使泵的流量减小到仅能维持系统的压力,斜盘角近零偏角,泵的功耗最小。
当阀5关死,即负载停止工作,泵出口压力仅需为阀1弹簧设置压力,一般只有14bar 左右,流量接近为零。
以上的分析说明:
(1)该泵的输出压力和流量完全根据负载的要求变化。
(2)保压时,泵的输出流量仅维持系统的压力。
(3)空运转时,泵的流量在低压、零偏角下运转。