液体表面张力系数的测量
液体表面张力系数的测定

实验名称:液体表面张力系数的测定实验目的:1. 了解焦利氏秤的测量原理和测量方法。
2.学习利用拉脱法测量自来水的表面张力系数。
实验仪器:焦利氏秤、砝码托盘、金属环、金属框、镊子、砝码、游标卡尺、螺旋测微器、烧杯。
原始数据记录:表1:悬挂不同数量的砝码时,焦利氏称的读数主要仪器:焦利氏秤、砝码托盘、金属环、金属框、镊子、砝码、游标卡尺、螺旋测微器、烧杯。
精度:0.1表2:金属框拉脱液膜时,焦利氏称的读数主要仪器:焦利氏秤、砝码托盘、金属环、金属框、镊子、砝码、游标卡尺、螺旋测微器、烧杯。
表3:金属环拉脱液膜时,焦利氏称的读数主要仪器:焦利氏秤、砝码托盘、金属环、金属框、镊子、砝码、游标卡尺、螺旋测微器、烧杯。
数据处理:1.用逐差法求弹簧的倔强系数2.用金属框测量液体的表面张力系数3.用金属环测量液体的表面张力系数实验原理:1. 液体分子受力情况液体表面层中分子的受力情况与液体内部不同。
在液体内部,分子在各个方向上受力均匀,合力为零。
而在表面层中,由于液面上方气体分子数较少,使得表面层中的分子受到向上的引力小于向下的引力,合力不为零,这个合力垂直于液体表面并指向液体内部,如图1所示。
所以,表面层的分子有从液面挤入液体内部的倾向,从而使得液体的表面自然收缩,直到达到动态平衡(即表面层中分子挤入液体内部的速率与液体内部分子热运动而达到液面的速率相等)。
这时,就整个液面来说,如同拉紧的弹性薄膜,这种沿着表面,使液面收缩的力称为表面张力。
图1 液体分子受力示意图2.液体表面张力系数将一表面清洁的长度为l 、金属丝直径为d 的矩形金属框竖直浸入水中,使其底面水平并轻轻提起。
当金属框底面与水面相平,或略高于水面时,由于液体表面张力的作用,金属框的四周将带起一部分水,使水面弯曲,呈图2所示的形状。
这时,金属框在竖直方向上受到三个力:金属框的重力mg 、向上的拉力F 以及水表面对金属框的表面张力ϕcos f ,φ为水面与金属框侧面的夹角,称为接触角。
液体表面张力系数的测量

液体表面张力系数的测定表面张力是液体表面的重要特性,它类似于固体内部的拉伸应力,这种应力存在于极薄的表面层内,是液体表面层内分子力作用的结果。
液体表面层的分子有从液面挤入液内的趋势,从而使液体有尽量缩小其表面的趋势,整个液面如同一张拉紧了的弹性薄膜,我们把这种沿着液体表面,使液面收缩的力称为表面张力。
作用于液面单位长度上的表面张力,称为液体的表面张力系数,测定液体表面张力系数的方法有:拉脱法、毛细管法、最大气泡压力法等。
本实验采用拉脱法测定表面张力系数。
实验目的:1、了解液体表面性质。
2、熟悉用拉脱法测定表面张力系数的方法。
3、熟悉用焦利弹簧秤测量微小力的方法。
实验仪器:焦利弹簧秤,被测液体,游标卡尺,矩形金属框,烧杯,砝码及托盘等实验原理:1、面张力的由来假设液体表面附近分子的密度和内部一样,它们的间距大体上在势能曲线的最低点,即相互处在平衡的位置上。
由图(1)可以看出,分子间的距离从平衡位置拉开时,分子间的吸引力先加大后减小,在这儿只涉及到吸引力加大的一段,如图(2)所示,设想内部某个分子A欲向表面迁徙,它必须排开分子1、2,并克服两侧分子3、4和后面分子5对它的吸引力。
用势能的概念来说明,就是它处在图(3)左边的势阱中,需要有大小为d E 的激活能才能越过势垒,跑到表面去。
然而表面某个分子B 要想挤向内部,它只需排开分子''21、和克服两侧分子''43、的吸引力即可,后面没有分子拉它。
所以它所处的势阱(图(3)中右边的那个)较浅,只要较小的激活能'dE 就可越过势垒,潜入液体内部。
这样一来,由于表面分子向内扩散比内部分子向表面扩散来得容易,表面分子会变得稀疏了,其后果是它们之间的距离从平衡位置稍为拉开了一些,于是相互之间产生的吸引力加大了,这就是图(3)右边所示的情况。
此时分子B 需克服分子''43、对它的吸引力比刚才大,从而它的势阱也变深了,直到'dE 变得和d E 一样时,内外扩散达到平衡。
液体表面张力系数的测定

实验原理液体表面层内分子相互作用的结果使得液体表面自然收缩,犹如紧张的弹性薄膜。
由于液面收缩而产生的沿着切线方向的力称为表面张力。
设想在液面上作长为L 的线段,线段两侧液面便有张力f 相互作用,其方向与L 垂直,大小与线段长度L 成正比。
即有:f =L (1)比例系数称为液体表面张力系数,其单位为Nm -1。
将一表面洁净的长为L、宽为d 的矩形金属片(或金属丝)竖直浸入水中,然后慢慢提起一张水膜,当金属片将要脱离液面,即拉起的水膜刚好要破裂时,则有F = mg +f (2)式中F为把金属片拉出液面时所用的力;mg 为金属片和带起的水膜的总重量;f 为表面张力。
此时,f 与接触面的周围边界2(L + d ),代入(2)式中可得本实验用金属圆环代替金属片,则有αα式中d 1、d 2 分别为圆环的内外直径。
实验表明,与液体种类、纯度、温度和液面上方的气体成分有关,液体温度越高,值越小,液体含杂质越多,值越小,只要上述条件保持一定,则是一个常数,所以测量时要记下当时的温度和所用液体的种类及纯度。
实验仪器焦利秤,砝码,烧杯,温度计,镊子,蒸馏水,游标卡尺等。
焦利秤的主要结构如图所示:1 弹簧,2 配重圆柱体,3 小指针,4 游标尺,5 砝码托盘,6 载物平台,7 调节平台高度的小螺钉,8 调节平台高度的微调旋钮,9水平调节螺丝,10 调节游标高度的微调旋钮,11 调节游标高度的小螺钉,12 小镜子, 13 主尺。
ααααα仪器的实物图调平底盘,将仪器依次挂好;调底盘高度和游标高度,使指针位于游标中心“0”刻度测表面张力实验内容1.安装好仪器,挂好弹簧,调节底板的三个水平调节螺丝,使焦利秤立柱竖直。
在主尺顶部挂入吊钩再安装弹簧和配重圆柱体,使小指针被夹在两个配重圆柱中间,配重圆柱体下端通过吊钩钩住砝码托盘。
调整小游标的高度使小游标左侧的基准线大致对准指针,锁紧固定小游标的锁紧螺钉,然后调节微调螺丝使指针与镜子框边的刻线重合,当镜子边框上刻线、指针和指针的像重合时(即称为“三线对齐”),读出游标0线对应刻度的数值L0。
液体表面张力系数的测定实验报告数据

液体表面张力系数的测定实验报告数据液体表面张力系数的测定实验报告数据引言:液体表面张力是指液体分子表面层内部的相互吸引力。
它是液体分子间的一种特殊力,决定了液体在表面上的性质和行为。
本实验旨在通过测定液体表面张力系数,探究液体分子间的相互作用力,并分析实验数据。
实验仪器与试剂:1. 测量液体表面张力的仪器:纸片法测量仪2. 实验液体:蒸馏水、乙醇、甲苯实验步骤:1. 实验前准备:a. 将实验室温度调至恒定,避免温度变化对实验结果的影响。
b. 清洗测量仪器,确保无杂质干扰。
2. 测定蒸馏水的表面张力系数:a. 将测量仪器放置于水平台上,调整纸片的位置,使其悬垂于平台边缘。
b. 缓慢地将蒸馏水滴入纸片上,观察纸片的形态变化,直至纸片完全沉没。
c. 记录滴入蒸馏水的体积,并根据纸片的形态变化确定表面张力系数。
3. 测定乙醇的表面张力系数:a. 重复步骤2中的操作,将乙醇滴入纸片上。
b. 记录滴入乙醇的体积,并根据纸片的形态变化确定表面张力系数。
4. 测定甲苯的表面张力系数:a. 重复步骤2中的操作,将甲苯滴入纸片上。
b. 记录滴入甲苯的体积,并根据纸片的形态变化确定表面张力系数。
实验结果与分析:根据实验数据,我们计算得到了蒸馏水、乙醇和甲苯的表面张力系数。
以下是实验结果的总结:1. 蒸馏水的表面张力系数为X N/m。
通过对纸片的形态变化观察,我们发现蒸馏水的表面张力较大,纸片在滴入水滴后能够悬垂一段时间,表明水分子间的相互作用力较强。
2. 乙醇的表面张力系数为Y N/m。
与蒸馏水相比,乙醇的表面张力系数较小,纸片在滴入乙醇后迅速沉没,表明乙醇分子间的相互作用力较弱。
3. 甲苯的表面张力系数为Z N/m。
与蒸馏水和乙醇相比,甲苯的表面张力系数更小,纸片在滴入甲苯后几乎立即沉没,表明甲苯分子间的相互作用力非常弱。
结论:通过本实验,我们成功测定了蒸馏水、乙醇和甲苯的表面张力系数,并分析了实验数据。
实验结果表明,不同液体的表面张力系数与其分子间的相互作用力有关。
液体表面张力系数的测定

仪器使用注意事项
1. 金属吊环和盛待测液体的器皿须严格处理干净。 可用 NaOH 溶液洗净油污或杂质后, 用清洁水冲洗干净,并用热吹风烘干。 2.吊环水平须调节好,吊环倾斜会带来较大的误差。 3.仪器开机需预热 15 分钟。 4.在旋转升降台时,尽量使液体的波动要小。 5.工作室不宜风力较大,以免吊环摆动致使零点波动,影响测量。 6.力敏传感器使用时用力不宜大于 0.098N。过大的拉力传感器容易损坏。 7.实验结束须将吊环和玻璃器皿用清洁纸擦干,用清洁纸包好,放入干燥缸内。
思考题
1.实验中要求测量液膜即将拉断前一瞬间的电压值 U1 和拉断后的电压值 U 2 以得 到表面张力,为什么? 2.实验过程中金属吊环不是水平拉出水面, 而是出现倾斜现象, 对实验结果有无影响? 应如何避免? 3.如果金属吊环沾有油污,对测量结果会产生什么样的影响? 4.分析本实验的系统误差和随机误差,提出减少误差的改进方法。
3.12 液体表面张力系数的测定
液体表面张力是表征液体性质的一个参数,在表面物理、表面化学、医学等领域中有 重要的意义。测量液体表面张力系数的方法有多种,如拉脱法、毛细管法、滴定法等等。 本实验利用硅压阻式力敏传感器采用拉脱法测量。
实验目的
1.用拉脱法测量室温下液体的表面张力系数; 2.了解硅压阻式力敏传感器的工作原理,学习力敏传感器的定标方法。
U KF
(3.12-3)
式中, F 为外力的大小, K 为硅压阻式力敏传感器的灵敏度, U 为传感器输出电压 的大小。 实验中,液体表面张力可以由下式得到:
f (U 1 U 2 ) / K
(3.12-4)
K 为力敏传感器灵敏度,单位 V/N。U 1 , U 2 分别为即将拉断液柱时数字电压表读数以 及拉断时数字电压表的读数。
液体表面张力系数测定实验原理

液体表面张力系数测定实验原理一、引言液体表面张力系数是指液体表面分子间相互作用力的强度。
它是液体的一个重要性质,对于很多科学领域都具有重要意义,如物理学、化学、材料科学等。
因此,测定液体表面张力系数具有很高的实用价值。
二、实验原理1. 液体表面张力系数概述液体分子间存在着相互作用力,这种相互作用力使得液体分子在表面处受到一个向内的合力,从而使得表面分子排列更加密集。
这种现象被称为“表面张力”。
液体表面张力系数是测量一定温度下单位长度内所需施加的外界作用力以克服该液体自身分子间吸引作用所需的能量。
通常用γ表示。
2. 测定方法(1)测量降低表面张力法(垂直法)将一根平滑而细长的金属棒或玻璃棒插入被测液中,并将其缓慢地升起。
当棒从液中抬出时,在棒与液交界处会形成一个凹陷区域,这个凹陷区域的大小与液体表面张力有关。
(2)测量降低表面张力法(水平法)将一根平滑而细长的金属棒或玻璃棒插入被测液中,并将其缓慢地升起。
当棒从液中抬出时,在棒与液交界处会形成一个环状凹陷区域,这个凹陷区域的大小与液体表面张力有关。
(3)测量上升管法在一根细长的玻璃管中充满被测液体,然后将玻璃管垂直放置于水池中。
当外部施加一个向上的拉力时,由于液面弯曲,导致管内压强变化。
通过测量这个压强变化,可以计算出液体表面张力系数。
三、实验步骤1. 准备工作(1)清洗实验器材:用去离子水和无灰纸擦拭干净实验器材。
(2)准备试样:选取需要测定表面张力系数的液体,并将其倒入干燥且干净的容器中。
2. 测定降低表面张力法(垂直法)(1)将一根细长的金属棒或玻璃棒插入被测液中。
(2)将棒缓慢地升起,观察并记录液体在棒与液交界处形成的凹陷区域大小。
(3)重复上述步骤多次,取平均值作为测量结果。
3. 测定降低表面张力法(水平法)(1)将一根细长的金属棒或玻璃棒插入被测液中。
(2)将棒缓慢地升起,观察并记录液体在棒与液交界处形成的环状凹陷区域大小。
(3)重复上述步骤多次,取平均值作为测量结果。
实验报告-液体表面张力系数的测定

实验3-3 液体表面张力系数的测定一、实验目的:测量室温下水的表面张力系数。
二、实验原理:液体表面张力的存在,液体表面具有收缩的趋势,在液体表面上作一条曲线,则曲线受两侧平衡的、并与液体表面相切的表面张力的作用。
在线性近似下,表面张力的大小与曲线的长度成正比,表面张力的大小与曲线长度的比值即为液体的表面张力系数。
根据这一规律,可以用液体表面张力系数测定液体的表面张力。
在实验中用一个金属圆环固定在传感器中,该环浸没于液体中,把圆环慢慢拉起,金属圆环会受到液体表面膜的拉力作用。
表面膜拉力的大小为f=α△l=α(2πr1+2πr2)=π(D1+D2)α在页面拉脱的瞬间,膜的拉力小时。
拉力差为f=π(D1+D2)α(1)并以数字式电压表输出显示为f=(U1-U2)/B (2)由(1)、(2),我们可以得到水的表面张力系数为α=(U1-U2)/[Bπ(D1+D2)]因此,只要测量出(U1-U2),B,D1和D2,就能得到液体的表面张力系数α三、实验器材:液体表面张力系数测定仪、垂直调解台、硅压阻力敏传感器、铝合金吊环、吊盘、砝码、玻璃皿、镊子和游标卡尺。
四、实验步骤:(1)力敏传感器的定标(表3-3-1)物体质量m/g 0.500 0.100 1.500 2.000 2.500 3.000 3.500 输出电压U/mV(2)测量金属圆环的外径D1和内径D2。
(3)记录吊环即将拉断液柱前一瞬间数字电压表的读数值U1和拉断时瞬间数字电压表的读数U2。
并用温度计测出水的温度。
利用所测数据计算出α(表3-3-2)。
表3-2-2 水的表面张力系数测量测量次数D1/mm D2/mm U1/mV U2/mV △U/mV f/10-3N α/(10-3N/m)123456水的温度:_____℃(4)求出在此温度下的水的表面张力系数,查询资料获得水的表面张力系数的标准值,与实验值测得值相比较,对测量结果进行误差分析。
五、数据记录将所得实验数据填入《表3-3-1 力敏传感器定标》和《表3-3-2 水的表面张力系数测量》中。
(完整版)液体表面张力系数的测定实验报告

液体表面张力系数的测定一实验目的1学习用界面张力仪测微小力的原理和方法。
2深入了解液体表面张力的概念,并测定液体的表面张力系数二实验原理1液体表面张力由于液体分子之间存在作用力,使每个位于表面层内的分子都受到一个指向液体内部的力,这就使每个分子都有从液体表面进入液体内部的倾向,所以液体表面积有收缩的趋势,在没有外力的情况下,液滴总是呈球形,致使其表面积缩到最小,这种使液体表面收缩的力叫做液体的表面张力。
2液体表面张力系数的测量原理图1如图1,将一表面洁净的矩形金属薄片浸入水中,使其底边保持水平,然后将其轻轻提起,则其附近液面呈现如图示的形状,则0时,f方向趋向垂直向下。
在金属片脱离液体前,受力平衡条件为F f mg (1)而f 2 (l d)(2)则(3)F mg2(l d)若用金属环替代金属片,则(3)式变为(3)即为液体表面张力系数。
三实验仪器液体界面张力仪、标准砝码、环形测件、玻璃杯、镊子、纯净水、小纸片四实验内容及步骤1仪器调整。
调整仪器水平,刻度盘归零。
2调零。
将小纸片放在金属环上,调整调零旋扭,通过放大镜观察,指针、指针的像及红线 三线重合。
3绘制质量标准曲线分别在小纸片上放 100mg 、300 mg 、500 mg 、700 mg 、 1000 mg 的砝码,记下对应的刻度盘的示数。
以所加砝码的质量作为横坐标, 刻度盘的示数作为纵坐标,绘制质量标准 曲线。
4测量纯净水的表面张力系数调零。
用玻璃杯盛大约 2/3的水,放在样品座上,调节样品座的高度,使金属环刚好浸 过水面。
左手调节样品座下面的螺丝,使样品座缓慢的下降,右手调节蜗轮旋扭。
两手调节的同时,眼睛观察三线始终重合,直到环把水膜拉破为止。
记下刻度盘示数 M '为了消除随机误差,共测五次。
6将M '在质量标准曲线上查得水作用在金属环上的表面张力f mg ,按式(5)计算出水的表面张力系数。
五数据记录及处理F mg (H d 2)(4)式中di , d2为圆环的内外直径。
液体表面张力系数的测定实验报告数据

液体表面张力系数的测定实验报告数据一、实验目的1、掌握用拉脱法测量液体表面张力系数的原理和方法。
2、学习使用焦利秤测量微小力的原理和方法。
3、加深对液体表面张力现象的理解。
二、实验原理液体表面层内分子相互作用的结果使得液体表面犹如一张拉紧的弹性膜,具有收缩的趋势。
这种沿着液体表面,垂直作用于单位长度上的力称为表面张力。
设想在液面上作一长为$L$ 的线段,那么表面张力的大小$f$ 就与线段长度$L$ 成正比,即:\f =\alpha L\其中,比例系数$\alpha$ 称为液体的表面张力系数,其单位为$N/m$。
在本实验中,我们采用拉脱法测量液体的表面张力系数。
将一洁净的金属圆环水平地浸没于液体中,然后缓慢地拉起圆环,当圆环即将脱离液面时,表面张力垂直向下作用于圆环,且大小为:\F =(m_{1} + m_{2})g + f\其中,$m_{1}$为圆环的质量,$m_{2}$为圆环所沾附液体的质量,$g$ 为重力加速度。
当圆环刚刚脱离液面时,$f$ 达到最大值,此时:\F =(m_{1} + m_{2})g\由于所沾附液体的质量$m_{2}$不易直接测量,可通过测量圆环内外直径$D_{1}$、$D_{2}$,由公式:\m_{2} =\pi (D_{1} + D_{2})\sigma h\计算得出,其中$\sigma$ 为液体的密度,$h$ 为拉起的液膜高度。
三、实验仪器焦利秤、砝码、游标卡尺、金属圆环、纯净水、温度计等。
四、实验步骤1、安装好焦利秤,调节底座水平,使秤框能上下自由移动。
2、测量金属圆环的内外直径$D_{1}$、$D_{2}$,各测量六次,取平均值。
3、挂上砝码盘,调节焦利秤的零点。
4、将金属圆环洗净,用纯净水冲洗后,挂在焦利秤的小钩上。
5、调节升降旋钮,使圆环缓慢下降,浸没于水中,注意保持水平。
6、然后缓慢上升,观察圆环即将脱离液面时的示数,记录此时的拉力$F$。
7、测量水温,记录温度值。
[复习]液体表面张力系数的测定
![[复习]液体表面张力系数的测定](https://img.taocdn.com/s3/m/b582ff210a4c2e3f5727a5e9856a561252d321e5.png)
液体表面张力系数的测定【实验目的】1.掌握用毛细管升高法测液体表面张力系数的原理和方法。
2.学习用读数显微镜测量微小长度。
【实验原理】当液体和固体接触时,若固体和液体分子间的吸引力大于液体分子间的吸引力,液体就会沿固体表面扩展,这种现象焦润湿。
若固体和液体分子间的吸引力小于液体分子间的吸引力,液体就不会在固体表面扩展,叫不润湿。
润湿与不润湿取决于液体、固体的性质,如纯水能完全润湿干净的玻璃,但不能润湿石蜡;水银不能润湿玻璃,却能润湿干净的铜、铁等。
润湿性质与液体中杂质的含量、温度以及固体表面的清洁程度密切相关,实验中要予以特别注意。
液体表层内分子力的宏观表现,使液面具有收缩的趋势。
想象在液面上划一条线,表面张力就表现为直线两侧的液体以一定的拉力相互作用。
这种张力垂直与改直线且与线的长度成正比,比例系数称为表面张力系数。
把金属丝AB弯成如图5.2.1-1(a)所示的形状,并将器悬挂在灵敏的测力计上,然后把它浸到液体中。
当缓缓提起测力计时,金属丝就会拉出一层与液体相连的液膜,由于表面张力的作用,测力计的读数逐渐达到一最大值(超过此值,膜即破裂),则应当是金属丝重力与薄膜拉引金属丝的表面张力之和。
由于液膜有两个表面,若每个表面的力为,则由得(1)显然表面张力是存在于液体表面上任何一条分界线两侧间的液体的相互作用拉力,其方向沿着液体表面,且垂直于改分界线。
表面张力的大小与分界线的长度成正比。
即(2)式中称为表面张力系数,单位是N/m。
表面张力系数与液体的性质有关,密度小而易挥发的液体小,反之较大;表面张力系数还与杂质和温度有关,液体中掺入某些杂质可以增加,而掺入另一些杂质可能会减少;温度升高,表面张力系数将降低。
测定表面张力系数的关键是测量表面张力。
用普通的弹簧称是很难迅速测出液膜即将破裂时的的,应用焦力氏称则克服了这一困难,可以方便地测量表面张力。
【实验仪器】焦利氏称由固定在底座上的秤框、可升降的金属杆和锥形弹簧秤等部分组成,如图5.2.1-2所示。
液体表面张力系数测定的实验原理

液体表面张力系数测定的实验原理引言液体表面张力是液体分子间的相互作用力在表面处形成的一种力,是导致液体表面上产生“膜状”的现象。
表面张力的大小与液体的性质有关,可以通过实验测定来确定。
本文将详细讨论液体表面张力系数的测定原理及相应的实验方法。
一、实验原理液体表面张力系数是在单位长度上作用垂直于液体表面的力所引起的能量变化,可以用下式进行表示:γ=F l其中,γ表示表面张力系数,F表示作用在液体表面上的力,l表示力的作用长度。
液体表面张力系数的单位是N/m。
二、测定方法液体表面张力系数可以通过静水压力法、杯法和浮物法等多种方法来测定。
其中,静水压力法是最常用的方法之一。
1. 静水压力法静水压力法是利用压强与高度成反比的关系,通过测量液柱高度差来间接计算液体表面张力系数。
实验步骤1.准备两个玻璃杯,并用实验器皿将它们连通。
2.在一个杯子中注入待测液体,使其液面与连通的另一个杯子上的液面保持水平。
3.测量两个液面的高度差ℎ0。
4.在注入液体的杯子中挂一个重物,使液面下降一段距离ℎ。
5.再次测量液面的高度差ℎ′。
6.计算液体表面张力系数γ,公式如下:γ=2(d−D)Vgπℎ其中,d为液体密度,D为水的密度,V为液体体积,g为重力加速度。
2. 杯法杯法是利用液体表面张力对液体表面的收缩力来测定表面张力系数。
实验步骤1.准备一个悬臂杯,并用注射器将它装满待测液体。
2.将注射器与悬臂杯连通,调整注射器,使悬臂杯上的液面与注射器上的液面保持水平。
3.记录注射器中液面下降的长度ℎ。
4.计算液体表面张力系数γ,公式如下:γ=mg 2πR其中,m为注射器中液体的质量,g为重力加速度,R为悬臂杯的半径。
3. 浮物法浮物法是利用液体表面张力对物体浮力的影响来测定表面张力系数。
实验步骤1.选择一个物体,并将其浸入待测液体中,使其浸入深度变为ℎ。
2.测量物体浸入液体前后液面的高度差ℎ′。
3.计算液体表面张力系数γ,公式如下:γ=2gdΔρℎ−ℎ′其中,g为重力加速度,d为液体密度,Δρ为物体的相对密度。
液体表面张力系数的测定

液体表面张力系数的测定实验内容1.测定焦利氏弹簧的倔强系数。
2.测定水的表面张力系数。
教学要求1.了解焦利氏秤测微小力的原理、结构和方法。
2.学习拉脱法测定水的表面张力系数。
3.掌握用逐差法处理数据。
4.了解弹簧平衡位置的选取对所研究问题的作用。
实验器材焦利氏秤,Π型金属丝框,0.5g法码10只,游标卡尺,玻璃杯,酒精,金属镊子,温度计。
许多涉及液体的物理现象都与液体的表面性质有关,液体表面的主要性质就是表面张力。
例如液体与固体接触时的浸润与不浸润现象、毛细现象、液体泡沫的形成等,工业生产中使用的浮选技术,动植物体内液体的运动,土壤中水的运动等都是液体表面张力的表现。
液体表面是具有厚度为分子有效半径(约m)的液体薄层。
根据分子运动论,液体表面层内的液体分子与液体内部分子比较,缺少一半能对其起吸收作用的液体分子,因而受到一个指向液体内部的力,这样,液体表面在宏观上就好像一张绷紧的橡皮膜,存在沿着表面并使表面趋于收缩的应力,这种力称为表面张力。
用表面张力系数来描述。
因此,对液体表面张力系数的测定,可以为分析液体表面的分子分布及结构提供帮助。
液体的表面张力系数与液体的性质、杂质情况、温度等有关。
当液面与其蒸汽相接触时,表面张力仅与液体性质及温度有关。
一般来讲,密度小,易挥发液体小;温度愈高,愈小。
测量液体表面张力系数有多种方法,如拉脱法,毛细管法,平板法,最大工业气泡压力法等。
本实验是用拉脱法测定水的表面张力系数。
实验原理,那么,表面张力就表现为线段两边的的如果在液体表面想象一条直线段液面会以一定的拉力相互作用,此拉力方向垂直于线段,大小与此线段的长度成正比,即(6-1)其中,为液体表面张力系数,国际制中单位为牛顿/米,记为N•M-1,数值上等于作用在液体表面单位长度上的力的大小。
拉脱法测定液体表面张力系数是基于液体与固体接触时的表面现象提出的。
由分子运动论可知,当液体分子和与其接触的固体分子之间的吸引力大于液体分子的内聚力时,就会产生液体浸润固体的现象。
液体表面张力系数的测量实验步骤

液体表面张力系数的测量实验步骤嗨,小伙伴们!今天咱们就来好好捣鼓一下这个超级有趣的液体表面张力系数的测量实验。
这就像是一场探索液体微观世界奥秘的奇妙之旅呢!一、实验器材准备咱们得先把家伙事儿都找齐咯。
首先,要有一个表面张力仪,这可是咱们的主力军啊。
它就像是一个能看穿液体表面秘密的小侦探一样。
然后呢,还得有不同的液体,就像水啊、酒精之类的。
这些液体就像是一个个等待被解开密码的小宝藏。
当然,不能少了测量工具,像游标卡尺,用来测量相关物件的尺寸,这游标卡尺就像是一个超级精确的小尺子,一丝一毫都不放过。
还有砝码,砝码那可是有分量的家伙,它们在这个实验里就像是一个个小砝码士兵,用来改变拉力的大小呢。
二、仪器的调试把表面张力仪放在一个平稳的桌面上,这就好比给咱们的小侦探找了个安稳的家。
然后呢,仔细检查仪器的各个部件是不是都完好无损。
这就像检查一个即将出征的战士的装备一样,可不能有一点马虎。
看看金属丝环有没有变形,如果变形了,那这个实验可就像是在歪歪扭扭的路上开车,准得出岔子。
调整仪器的水平,怎么调整呢?就好像你在调整跷跷板一样,让两边都平平稳稳的。
这时候,心里可得有点小激动,因为马上就要和神秘的液体表面张力来一场亲密接触啦。
三、测量液体表面张力1. 先把要测量的液体,比如说水,小心翼翼地倒入一个干净的容器里。
这容器得像一个小泳池一样,能让液体舒舒服服地待在里面。
把容器放在表面张力仪的平台上,就像是把小泳池放在舞台的正中央。
2. 接下来,用镊子轻轻地把金属丝环浸入到液体中。
这个过程得慢一点,就像你在轻轻地抚摸一只小猫咪一样。
当金属丝环完全浸入液体后,再慢慢地往上提。
这时候,你会感觉到一种小小的阻力,就像有一双无形的小手在拉着金属丝环,不让它轻易离开。
这双小手就是液体的表面张力啦。
这感觉是不是很奇妙呢?就好像你发现了一个隐藏在液体里的小魔法。
3. 在提拉金属丝环的过程中,要同时观察表面张力仪上的读数。
这个读数就像是一个小密码,它会告诉我们液体表面张力的大小呢。
液体表面张力系数测定

液体表面张力系数测定液体表面张力系数是描述液体分子之间相互作用强度的物理量,也是评价液体表面性质的重要参数。
在实验室中,常采用不同方法对液体表面张力系数进行测定。
本文将介绍几种常用的测定方法和实验步骤,以及一些注意事项。
1. 原理液体表面张力系数是液体表面单位长度的表面能,通常用符号 $\\gamma$ 表示。
在液体表面张力作用下,液体表面形成一个具有弹性的薄膜,趋向减小其表面积。
表面张力系数的测定可以了解液体分子之间的相互作用程度和表面性质。
2. 测定方法2.1. 动态方法动态方法是通过测定液体在不同外界条件下的动力学行为来确定表面张力系数。
常用的动态方法包括颤动法、旋转法和挂滴法等。
2.2. 静态方法静态方法是通过测定液体在平衡状态下的力学行为来确定表面张力系数。
常用的静态方法包括测量法、悬浮法和蒸发法等。
3. 实验步骤3.1. 颤动法测定1.准备一定容量的实验液体和振荡器。
2.将实验液体倒入振荡器,使液体表面光滑平整。
3.开启振荡器,记录液体的振荡频率和振幅。
4.根据实验结果计算表面张力系数。
3.2. 挂滴法测定1.准备一定容量的实验液体和测量仪器。
2.将液体滴在指定的位置,并记录滴下液滴的时间。
3.根据液滴的时间和液体的密度计算表面张力系数。
4. 注意事项1.实验环境应保持稳定,避免外界因素干扰。
2.操作仪器时应注意安全,避免液体溅出或器具损坏。
3.在测定过程中,应根据实际情况采取相应的校正方法,确保实验结果的准确性。
5. 结论通过以上实验方法的测定,我们可以得到液体表面张力系数的定量值,进一步了解液体的特性和表面性质。
液体表面张力系数的测定对于科研和实际应用具有重要意义,有助于推动液体力学研究的发展。
以上就是液体表面张力系数测定的相关内容,希望对您有所帮助。
液体表面张力系数的测定

实验十六液体表面张力系数的测定实验目的:1.学会用拉脱法测定液体的表面张力系数;2.了解焦利氏秤的构造和使用方法;3.通过实验加深对液体表面现象的认识。
实验仪器:焦利秤、形金属丝、砝码、镊子、玻璃皿、温度计、游标卡尺实验原理:液体表面层(其厚度等于分子的作用半径,约10m)内的分子所处的环境跟液体内部的分子是不同的。
在液体内部,每个分子四周都被同类的其他分子所包围,它所受到的周围分子的作用力的合力为零。
由于液体上方的气相层的分子数很少,表面层内每一个分子受到的向上的引力比向下的引力小,合力不为零,这个合力垂直于液面并指向液体内部,如图16-1所示,所以分子有从液面挤入液体内部的倾向,并使液体表面自然收缩,直到处于动态平衡,即在同一时间内脱离液面挤入液体内部的分子数和因热运动而到达液面的分子数相等时为止。
图16-1液体表面层和内部分子受力示意图将一表面洁净的金属丝框竖直地浸入水中,使其底边保持水平,然后轻轻提起,则其附近的液面将呈现出如图16-2所示的形状,即丝框上挂有一层水膜。
水膜的两个表面沿着切线方向有作用力f,称为表面张力,φ为接触角,当缓缓拉出金属丝框时,接触角φ逐渐减小而趋向于零。
这时表面张力f 垂直向下,其大小与金属丝框水平段的长度l 成正比,故有式中,比例系数称为表面张力系数,它在数值上等于单位长度上的表面张力。
在国际单位制中,的单位为N ·m 。
表面张力系数与液体的种类、纯度、温度和它上方的气体成分有关。
实验表明,液体的温度越高,值越小;所含杂质越多,值也越小。
因此,在测定值时,必须注明是在什么温度下测定的,并且要十分注意被测液体的纯度,测量工具(金属丝框、盛液器皿等)应清洁不沾污渍。
图16-2 液体表面张力受力分析在金属丝框缓慢拉出水面的过程中,金属丝框下面将带起一水膜,当水膜刚被拉断时,诸力的平衡条件是:(16-1)式中,F 为弹簧向上的拉力,W 为水膜被拉断时金属丝框的重力和所受浮力之差,l 为金属丝框的长度,d 为金属丝的直径,即水膜的厚度,h 为水膜被拉断时的高度,ρ为水的密度,g 为重力加速度,ldh ρg 为水膜的重力,由于金属丝的直径很小,所以这项值不大。
液体表面张力系数的测定实验报告数据

液体表面张力系数的测定实验报告数据一、实验目的测定液体的表面张力系数,了解表面张力的性质和影响因素,掌握用拉脱法测量表面张力系数的原理和方法。
二、实验原理液体表面层内分子受到指向液体内部的拉力,使得液体表面具有收缩的趋势。
这种沿着液体表面,垂直作用于单位长度上的力称为表面张力。
当一金属框(如矩形框)在液面上缓慢拉起时,液膜将在金属框上形成。
若要使液膜破裂,拉力需克服表面张力的作用。
根据胡克定律,在弹性限度内,弹簧的伸长量与所受拉力成正比。
在本实验中,我们将一个洁净的金属圆环水平地悬挂在力敏传感器上,然后将圆环浸没在待测液体中,缓慢拉起圆环,当液膜即将破裂时,拉力达到最大值。
此时,拉力 F 等于表面张力系数σ 与圆环内外周长之和 l 的乘积,即 F =σl 。
通过力敏传感器测量拉力 F ,并测量圆环的内外直径,计算出周长l ,就可以求得液体的表面张力系数σ 。
三、实验仪器力敏传感器、数字电压表、铁架台、升降台、镊子、游标卡尺、纯净水、待测液体(如酒精)、玻璃皿、金属圆环。
四、实验步骤1、仪器调整将力敏传感器固定在铁架台上,调整其高度,使其与升降台的上表面平行。
将数字电压表与力敏传感器连接好,打开电源,预热 15 分钟。
对数字电压表进行调零。
2、测量金属圆环的内外直径用游标卡尺分别测量金属圆环的内外直径,各测量 5 次,取平均值。
3、测量纯净水的表面张力系数将玻璃皿中装入适量的纯净水,放在升降台上。
用镊子将金属圆环挂在力敏传感器的挂钩上,并使其完全浸没在纯净水中。
缓慢升起升降台,使金属圆环逐渐脱离水面,观察数字电压表的示数变化,当液膜即将破裂时,记录下拉力的最大值 F1 。
重复测量 5 次,取平均值。
4、测量待测液体的表面张力系数倒掉玻璃皿中的纯净水,用待测液体(如酒精)清洗玻璃皿和金属圆环。
重新在玻璃皿中装入适量的待测液体,按照测量纯净水表面张力系数的方法,测量待测液体的拉力最大值 F2 ,重复测量 5 次,取平均值。
液体表面张力的测定方法

液体表面张力的测定方法液体表面张力是描述液体分子之间相互作用力的重要参数,它对各种自然现象和工程应用都有着重要的影响。
本文将介绍几种常见的液体表面张力测定方法。
一、方法一:差压法差压法是一种简单且常用的液体表面张力测定方法。
其基本原理是利用液体表面张力引起的液体升降差压来推导液体表面张力的大小。
实验步骤:1. 准备两个不同直径的玻璃垂直毛细管,将其底部浸入待测液体中。
较细的毛细管称为试管,较粗的毛细管称为玻璃导管。
2. 通过调节导管的高度,使试管和导管中的液面保持水平。
3. 记录试管和导管中的液面高度差h。
4. 根据设备的尺度系数和导管的半径,计算液体表面张力。
二、方法二:浮标法浮标法是另一种简便易行的液体表面张力测定方法。
基本原理是利用液体表面张力对浮体的影响来间接测定液体表面张力。
实验步骤:1. 准备一片液体浸没的浮体,如洗净的蚊香炉片。
2. 将浮体轻轻放在液体表面上,并调整其位置,使其平衡浮在液面上。
3. 加入小量表面活性剂或改变液体温度,观察浮体的变化。
4. 根据浮体在不同条件下的浮动情况,推导液体表面张力的大小。
三、方法三:滴下法滴下法是一种常见的液体表面张力测定方法。
其原理是通过测量液体滴下的速度来计算液体表面张力。
实验步骤:1. 准备一段合适长度的毛细管,并将一端封闭。
2. 将封闭端插入待测液体中,使液体能够顺利吸入毛细管。
3. 将封闭端从液体中取出,并封闭另一端。
4. 将封闭端从液体中取出,并立即将其指向一个垂直的带刻度的支架上,并观察液滴自由下落的时间。
5. 根据液滴下落时间和支架刻度,计算液体表面张力。
综上所述,差压法、浮标法和滴下法是几种常见的液体表面张力测定方法。
通过合理选择方法并进行实验,可以准确测定液体表面张力的数值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【思考题】
1. 实验前,为什么要清洁吊环? 2.为什么吊环拉起的水柱的表面张力为
f ( D1 D2 )?
3.当吊环下沿部分均浸入液体中后,旋转大螺帽使得液面往下降,数 字电压表的示数如何变化?
1.3 表面张力产生的原因(从分子间的相互作用力f ):
(平衡位置: r0=10-10 m)
r < r0 r = r0
斥力> 引力 斥力= 引力 斥力< 引力 无分子力
r > r0
r>分子作用 球半径
r= 10-8m 分子作用球半径:
r
A是液内分子;B和C是液体表面层分子。 空气 表面层 液体 A 液内分子A受力分析: A分子受到的分子作用力的合力为零:fi=0 表面层分子B和C的受力分析: 处于表面层的分子受到一个指向液体内部的分子吸引 力作用;宏观上表面层表现为一个被拉紧的弹性薄膜。
C
B
1.4 表面张力系数的定义(两个角度)
由于液面处于紧张状态,在液面上存在
着起收缩作用的表面张力。这些表面张力都 与液面相切,并且与线段AB 垂直;它们大 小相等,方向相反,分别作用在两部分液面 上。 实验表明: 表面张力的大小正比于 线段AB的长度。 A
f l
f l
B
f f
f ( N / m) ★表面张力系数定义1: l
测量次数 1 2 3 4
U1(mV)
U2(mV)
U(mV) f( 10-3N) ɑ(( 10-3N/m)
5
6
三、实验数据处理
●由公式
(U 1 U 2 ) F i L B( D1 D2 )
可计算得到:α1 ,α2 ,α3 ,α4 ,α5,α6 ●求其平均值:
=
1 2 5 6
【实验原理】
1、表面张力的相关基础知识
1.1 表面与表面层: 液体表面: 液体与气体或固体的接触面。
液体表面层:液体表面下厚度等于分子作用球半径的一层液层。
r r
8
r 10 m
water Water drop
1.2 生活中液体表面现象举例:
液体具有尽可能缩小其表面的趋势,在宏 观上,液体表面就好像是一张拉紧了的弹性膜, 处在沿着表面的并使表面具有收缩趋势的张力 作用之下,这种张力叫做液体的表面张力。
1
拉脱前
拉脱后
T2
环状金属吊片
F
W1 mg 液膜
W2
(mg)’
T1、T2为向上的作用力,W1、W2为环金属吊片所受
重力和浮力之差,因为环状金属吊片在脱离液体表面前
就已经离开了液体表面, W1≈W2 。 mg 、( mg)’ 为液膜所 受的重力, mg≈(mg)’ ,T1、T2之差就是表面张力F。据 表面张力系数的定义有:
T1 T2 F L ( D1 D2 )
我们用的 测力计是硅压阻力敏传感器,该传 感器灵敏度高,线性和稳定性好,以数字式 电压表输出显示。当拉力为F时,数字式电压 表的示数为U。
若吊环拉断液柱的前一瞬间数字电压表的读数值为U1(
对应T1),拉断时瞬间数字电压表的读数值为U2(对应
液体表面张力系数的测量
【实验目的】
1.学习用拉脱法测定室温下液体的表面张力系数;
2.熟悉FD—NST—I型液体表面张力系数测定仪的使 用方法;
3.学习力敏传感器的定标方法。
【实验仪器】
FD-NST-I型液体表面张力系数测定仪、片码、铝 合金吊环、吊盘、玻璃器皿、镊子
数字电压表
调零旋钮
环状金属吊片
T2),则有
U1 U 2 F T1 T2 B
故表面张力系数为:
(B 传感器灵敏度系数)
U1 U 2 B ( D1 D2 )
【实验内容及步骤】
一、力敏传感ቤተ መጻሕፍቲ ባይዱ定标
1.开机预热15分钟 2.仪器调零 3.在力敏传感器上加不同质量的砝码,测出相应的电压输出值, 计算灵敏度系数。
6
●读取温度计的液体温度T,查表(书中第312页)找出环
境温度下的表面张力系数标准值α0 。
●α的平均值与α0作百分差运算。
P =
0 0
100%
【注意事项】
1. 吊环应严格处理干净。可用NaOH溶液洗净油污或杂质后, 用清洁水冲洗干净,并用热吹风烘干。 2. 必须使吊环保持竖直,以免测量结果引入较大误差。 3. 在旋转升降台时,尽量不要使液体产生波动。 4. 玻璃器皿放在平台上,调节平台时应小心、轻缓,防止打破玻璃器皿。 5. 调节升降台拉起水柱时动作必须轻缓,应注意液膜必须充分地被拉伸 开,不能使其过早地破裂,实验过程中不要使平台摇动而导致测量 失败或测量不准。 6. 使用力敏传感器时用力不大于0.098N。过大的拉力传感器容易损坏。 7. 实验结束后须将吊环用清洁纸擦干并包好,放入干燥缸内。
D1/mm
1
2
3
4
5
6
7
D2/mm
2.测定水的表面张力系数 ①. 将盛水的玻璃器皿放在平台上,并将洁净的 吊环挂在力敏传感器的小钩上,并对电压表清零;
②. 以逆时针转动升降台大螺帽时液体液面上升,当圆环下沿部
分均浸入液体中时,改为顺时针转动,这时液面往下降(或者说
相对圆环往上提起),观察圆环浸入液体中及从液体中拉起时的 物理过程和现象。圆环即将拉断液柱前一瞬间数字电压表的读数 值为U1,拉断时瞬间数字电压表的读数为U2,重复测量6次。计算 表面张力系数。
增加单位表面积所作的功: A D D′
W f x f S 2l x 2l
2l ( J .m 2 ) 2l
l
2l 液体薄膜 B C
ΔS F
f
△x
C′
表面张力系 数等于液体增 加单位表面积 所作的功。
【实验原理】 2、表面张力的测定
将一表面洁净,外径为D1,内径为D2的金属圆环竖直 的浸入水中,缓慢将其从水中拉起,液膜破裂前后圆环 受 力分析如下: T
U B mg
砝码质量mi /g 重力Fi (10-3N) 0.500 4.897 1.000 9.794 1.500 2.000 2.500 3.000 3.500 14.691 19.588 24.485 29.382 34.279
电压Ui /mV
二、蒸馏水的表面张力系数的测定
1.环状金属吊片的内外直径的测量和清洁 ◆测量金属圆环的内外直径D1、D2(6~10次取平 均) ◆清洗环状金属吊片和器皿 n
★表面张力系数定义2:
A D 平衡时:
f 2 l
l 2l 液体薄膜 B C f *表面张力系数:
f 2l
(1)表面张力系数是液体本身的固有性,与液体的种类相关。 (2)与液体的温度有关。温度愈高,液体的表面张力系数愈小。 (3)与液体的纯度有关。 (4)与相邻的介质有关。
1.5 表面张力系数与表面能: