七年级下册图形的平移
华东师大版七年级下册数学:10.图形的平移课件
感受新知
平移的基本性质
1. 平移是指 整个图形 平行移动,包括图形的 每一条线段,每一个点.
2. 平移不改变图形的 大小和形状,只改变图 形的.位置
我思考,我进步! 请看图片,平移是由什么决定的?
平移的方向和平移的距离是决定平移的 两个要素。
1、图形的平移是由(
)和(
)
决定的。
2、平移不改变图形的( )与( ), 它只改变图形在平面中的( )。
△ABC平移的方 向就是由点B到点B′ 的方向,平移的距离 就是线段B B′ 的长度。
平移的方向是对应点确定的 射线的方向,平移的距离是 对应点间的线段的长度。
我思考,我进步!
如图所示,三角形ABC沿射线XY方向平移一定距离后, 找出图中存在平行且相等的线段
Y A′
X
A
B′
C′
B
C
心灵手巧
M′ N′ 你知道线段CA的中点M以及线段BC上的 点N平移到什么地方去了吗?请在图上标出 它们的对应点M′和N′的位置。
运 动 员 在 平白 坦茫 雪茫 地的 上 滑 行
高 楼 大 厦 里 运 转 的 电 梯
火车在笔直的铁轨上飞驰而过
天上飞着的飞机 公路上跑着的汽车
各抒己见
你能找到它 们的共同特
征吗?
平面图形在它所在的平面上的平
行移动,简称为平移。
在生活中,你还知 道哪些平移的例子
吗?
小小法官 下列运动情势是平移吗?
心灵手巧
如图,小船经过平移到了新的位置, 你发现缺少什么了吗?请补上。你能描述 出小船的平移路线吗?
我的反应最快
△ DEF是由△ ABC平移得到的 点A的对应点是_____ AB的对应线段是______
【核心素养目标】数学人教版七年级下册5.4 平移 教案含反思(表格式)
5.4平移一、创设情境导入新知思考图片中拉抽屉、开窗户这一运动有何特点?师生活动:学生独立思考,选几名先举手的学生回答问题.预设:抽屉和窗户只会向着某一方向来回移动.二、探究新知知识点一:平移的相关概念探究1如何在一张半透明的纸上,画出一排形状和大小如图所示雪人呢?师生活动:学生独立完成绘图(用事先准备好的半透明纸,盖在课本的图案上先描出一个雪人,如何安同一方向抽动这张纸,描出第二个第三个...),完成后教师播放课件,让学生观察几个雪人的位置关系,顺势总结定义.定义总结:平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.例1请欣赏埃舍尔的作品,并举例生活中平移的运用.师生活动:学生精进观察欣赏,感受平移的特征与美感;教师选几名学生回答问题.练习 1. 下列现象中不属于平移的是( )A. 滑雪运动员在平坦的雪地上滑雪B. 火车在一段笔直的铁轨上行驶C. 高楼的电梯在上上下下D. 时针的旋转师生活动:学生独立思考.知识点二:平移的性质探究2把画出的这些雪人和第一个雪人相比较,什么改变了,什么没改变?设计意图:感受数学在绘画方面的艺术美,体会平移知识在实际生活中的价值与作用.设计意图:在做题过程中加深学生对平移的概念的理解.设计意图:培养观察、总结能力,在小组讨论中发展发散性思维和交流能力.师生活动:学生独立思考后小组讨论,选派代表回答,教师总结讨论结果——形状不变,大小不变,位置改变.定义总结:平移的性质1:把一个图形整体沿着某一直线方向的移动会得到一个新的图形,新图形与原图形形状和大小完全相同.探究3分组探究位置不同的具体原因以及对应点所连接的线段有什么关系.师生活动:学生独立思考后小组讨论,选派代表回答,教师总结讨论结果(顺势补充:A和A′叫做对应点);师生根据讨论结果共同总结定义.预设1:AA′= BB′= CC′预设2:AA′∥BB′∥CC′定义总结:平移的性质2:连接各组对应点的线段平行(或都在同一条直线上)且相等.追问平移方向不同,结论是否仍成立?师生活动:学生独立思考分析,共同作答——成立.例2 (1) 如图,图中哪条线段可以由线段b经过平移得到?如何进行平移?设计意图:学生在自主观察中总结定义,加深对定义的理解,培养自主学习能力.设计意图:充分调动学生的主观能动性和学习积极性,平移的性质和内容相对都比较浅显,可以让学生自己发掘.设计意图:锻炼学生推理意识与能力.设计意图:通过该例题,进一步掌握平移的性质,师生活动:学生独立思考分析,选学生回答第1问,其他同学判断正误;选学生板书第2问,教师巡视.(2) 如下图,在网格中有△ABC,将点A平移到点P,画出△ABC平移后的图形.①将点A向___平移___格,再向___平移___格,得到点P;②点B,C与点A平移的____一样,得到B′,C′;③连接____,得到△ABC平移后的三角形____.师生活动:学生独立思考完成填空,并根据填空画出△ABC平移后的图形.问题你能总结出画平移后的图形的方法吗?师生活动:学生独立思考,回顾例2中图形的画法,小组讨论选派代表回答,教师总结讨论结果——找出平移轨迹,再根据轨迹画出其他平移后的点,最后描图.练习2. 如图,经过平移,三角形ABC的顶点A 移到了点D处,作出平移后的三角形.师生活动:学生独立思考,选一名学生板书作图,教师指点作图步骤.教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.本节课体现了平行线知识在实际生活中的应用,其目的在于用平移把几何和数。
苏科版数学教学课件七年级下册图形的平移
解:连接AA'. 过点B作AA'的平行线l, 在l上截取BB'=AA',则点B' 就 是点B的对应点. 类似地作出点C的对应点C', 顺次连接点A',B',C', 得到三角形A'B'C'.
B' l B
A' C'
A
C
平移作图
平移作图的步骤: 1.找关键点(一般是图形的顶点); 2.根据平移的距离和方向作出这些点经过平移后的对应点; 3.将所作对应点按本来已知图形的连接方式连接起来,所得图
图形平移的方向,不限于是水平或是垂直方向的.如下图所示:
平移的概念及性质
练一练: 下列属于平移现象的有( C ) ①水平运输带上的砖的运动;
②高楼电梯上上下下迎送来客;
③健身做呼拉圈运动;
④火车飞驰在一段笔直的铁轨上.
A.1种
B.2种
C.3种D.4种源自平移作图例 如图,平移三角形ABC,使点A移动到点A'. 画出平移后的三角形A'B'C'.
平移的概念及性质
想一想:雪人的形状、大小、位置在运动前后是否产生了变化? 形状不变,大小不变,位置改变.
定 义: 在平面内,将一个图形沿着某个方向移动一定的距离,
这种图形运动叫做图形的平移. 平移时,原图形上的所有点 都沿同一个方向移动相同的距离.原图形上一点A平移后成 为A',这样的两点叫做对应点.
平移的概念及性质
问题2 在所画出的相邻两个雪人中,找出三组对应点(例如,它们的
鼻尖A与A',帽顶B与B',纽扣C与C'),连接这些对应点,视察得出的
线段,它们的位置、长短有什么关系?
苏教版七年级数学下册 7.3 图形的平移 知识点
7.3 图形的平移知识点一、平移的概念1、平移的定义:在平面内,把一个图形沿着一定的方向平行移动而达到另一个位置,这种图形的平行移动简称为平移。
2、平移的两个要素:(1)平移方向;(2)平移距离。
3、对应点、对应线段、对应角一个图形经过平移后得到一个新的图形,这个新图形与原图形是能够互相重合的全等形,我们把互相重合的点称为对应点,互相重合的线段称为对应线段,互相重合的角称为对应角。
4、平移方向和距离的确定(1)要对一个图形进行平移,在平移前必须弄清它的平移方向和平移距离,否则将无法实现平移,那么怎样确定这两点呢?A.若给出带箭头的线段:从箭尾到箭头的方向表示平移方向,而带箭头的线段的长度,表示平移距离,也有时另给平移距离的长度。
B.若给出由小正方形组成的方格纸:在方格中的平移,从方向上看往往是要求用横纵两次平移来完成(有特殊要求例外),而移动距离是由最终要达到的位置确定的。
C.具体给出从某点P到另一点P’的方向为平移方向,线段PP’的长度为平移距离。
D.给出具体方位(如向东或者西北等)和移动长度(如10cm)(2)图形平移后,平移方向与平移距离的确定。
图形平移后,原图形与新图形中的任意一对前后对应点的射线方向就是原平移方向,这对对应点间的线段长度就是原平移距离。
例:如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的()A.B.C.D.【分析】根据平移的性质,图形只是位置变化,其形状与方向不发生变化,进而得出即可.【解答】解:如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的C.故选:C.【点评】此题主要考查了生活中的平移现象,正确根据平移的性质得出是解题关键.知识点二、平移的性质图形平移的实质是图形上的每一点都沿着同一个方向移动了相同的距离。
平移后的图形与原图形①对应线段平行(或在同条一直线上)且相等;②对应点连线平行(或在同一条直线上)且相等;③图形的形状与大小都不变(全等);④图形的顶点字母的排列顺序的方向不变。
七年级数学下册平移知识点整理
七年级数学下册平移知识点整理
1、概念:把图形的整体沿着某一方向移动一定的距离,得到一个新的图形,这种图形的移动,叫平移。
2、特征:
① 发生平移时,新图形与原图形的形状、大小完全相同(即:对应线段、对应角均相等);
② 对应点之间的线段互相平行(或在同一直线上)且相等,均等于平移距离。
确定平移,关键是要弄清平移的方向(并不一定是水平移动或垂直移动哦)与平移的距离。
如果是斜着平移的,则需把由起始位置至最终位置拆分为先水平移动,再上下移动,或拆分为先上下移动,再水平移动。
当然,如果是在格点图内平移,则可利用已知点的平移距离是某一矩形的对角线这一特点来对应完成其它顶点的平移。
3、画法:掌握平移方向与平移距离,利用对应点(一般指图形的顶点)之间连线段平行、连线段相等性质描出原图形顶点的对应点,再依次连接,就形成平移后的新图形。
(1)确定平移后图形的基本要素有两个:平移方向、平移距离.
(2)作图时要先找到图形的关键点,分别把这几个关键点按照平移的方
向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案。
5-4 平移-七年级下册人教版数学课件
课后习题
图5.4-46
5.如图5.4-47所示,在高为3米,水平距离为4米楼梯的表面铺 地毯,地毯的长度至少需( D )米. A.4 B.5 C.6 D.7
课后习题
图5.4-47
6.如图5.4-48所示,将周长为7的△ABC沿BC方向平移1个单位
得到△DEF,则四边形ABFD的周长为( B ).
【解析】根据平移的定义与特征可知,平移后的图形的形状、大小不改变, 对应线段平行(或在同一直线上)且相等,对应角相等,故选A.
知识梳理
A
B
C
D
【方法小结】判断是不是平移,主要看对应点所连的线段是否平行(或在 同一直线上)且相等,或根据平移的定义,看它的形状、大小是否发生变 化,位置是不是因平移改变的.
实战演练 1.下列图形中,由图5.4-26经过一次平移得到的图形是( C ).
图5.4-26
知识梳理
A
B
C
D
2. 在6×6方格中,将图5.4-27中的图形N平移后位置如图5.4-28所 示,则图形N的平移方法中,正确的是( D ). A.向下移动1格 B.向上移动1格 C.向上移动2格 D.向下移动 2格
图5.4-41
课堂练习
【讲评】本题考查了平移的性质,属于基础应用题,解决此题的关键是要 利用平移的知识,把要求的所有线段平移到一条直线上进行计算.根据题意, 结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积, 则购买地毯的钱数可求.
3.如图5.4-42所示,在方格中平移三角形ABC,使点A移到点M, 点B,C应移动到什么位置?再将A由点M移到点N?分别画出两 次平移后的三角形.如果直接把三角形ABC平移,使A点移到点 N,它和前面先移到M后移到N的位置相同吗?
七年级数学下册平移
平行线的同旁内角互补
如果两条直线被第三条直线所截,同旁内角互补,则这两条直线平 行。
平行四边形的判定定理
01
02
03
一组对边平行
如果一个四边形有一组对 边平行,则它是平行四边 形。
两组对边分别平行
如果一个四边形的两组对 边分别平行,则它是平行 四边形。
平移不改变图形的形状和大小, 只改变图形的位置。
在平移过程中,对应线段、对应 角分别相等,对应点的坐标变化
规律相同。
平移可以是图形的整体移动,也 可以是图形的局部移动,但图形 内部对应点的坐标变化规律相同。
平移的作图方法
确定平移的方向和距离
验证平移的正确性
根据题目要求,确定图形需要沿哪个 方向移动以及移动的距离。
平移不改变直线的方向
总结词
平移不会改变直线或线段的方向。
详细描述
在进行平移时,直线或线段上的所有点都沿着同一方向移动相同的距离,因此 直线的方向不会发生变化。这一性质在几何学中非常重要,因为它确保了图形 的基本属性在平移后保持不变。
平移不改变直线的长度
总结词
平移不会改变直线或线段的长度。
详细描述
构造辅助线
在几何证明中,通过平移可以将分 散的点或线段集中到同一方向上, 构造辅助线,简化证明过程。
形成对称图形
将图形进行平移,可以形成对称图 形,如等腰三角形、平行四边形等。
平移在解决实际问题中的应用
移动物体
在日常生活中,平移常用 于描述物体的移动,如车 辆、行人等在平面上的移 动。
图像处理
在计算机图像处理中,平 移用于调整图像的位置, 实现图像的缩放、旋转等 操作。
图形的平移(课件)七年级数学下册精品课件(苏科版)
AD BE
解:(1)由图形平移的性质可知: ∠ACB=∠F=26°. 因为∠B=74°, 所以∠A=180°-(∠ACB+∠B) =180°-(26°+74°)=80°.
(2)因为BC=4.5 cm,EC=3.5 cm,
C
F 所以BE=BC-EC=-=1(cm),
所以△ABC平移的距离为1 cm.
新知巩固
感受生活中的运动 平移
你知道以上这是什么运动现象吗? 它们有什么共同特点? 向一个方向移动一定的距离.
观察思考
你能发现图形在运动过程中,对于运动主体(图形)哪些因素发生了 变化,哪些保持不变?
发生变化的是: 位置 保持不变的是:形状大小
在平面内,将一个图形沿着某个方向移动一定的距离,这样 的图形运动叫做图形的平移.
2.如图,小船经过平移到了新的位置,你发现缺少什么了吗?请补上.
课堂小结
本节课你有什么收获?
定义:
两要素
性质1: 一变二不变
性质2:
对应点连线的位 置和数量关系
课堂检测
1.下面图形,如果右上角A移到A' ,B点相应的要移到( )
. 向右平移8格
向 下
平
移
3
格
. 向右平移8格
向 下
平
移
3
格
D' B'
C' E'
课堂检测
2.将A图案剪成若干小块,再分别平移后能够得到B、C、D中的( ) A.0个 B.1个 C.2个 D.3个
课堂检测
3. 如图,四边形EFGH是由四边形ABCD平移得到的,已知AD=5, ∠B=70°,则下列结论正确的是( B )
A. FG=5,∠G=70° B. EH=5,∠F=70° C. EF=5,∠F=70° D. EF=5,∠E=70°
人教版数学七年级下册5.4平移 课件
感悟新知
解题秘方:找准对应元素,根据平移的性质求出各 个未知量. 解:根据平移后的新图形与原图形的形状、大小完 全相同,得到BC=EF=2,三角形DEF 的面积= 三角 形ABC 的面积=3,∠ DEF= ∠ B=48°,平移的距离 为BE=BC+CE =2+5=7.
感悟新知
2-1. 如图, 将三角形ABC 沿射线AB 的方向移动到三角形 DEF 的位置,移动距离为2 cm.
感悟新知
解:如图5.4-6,找到小船的7 个关键点,并依次标上字母 A,B,C,D,E,F,G. 把点A 向右平移6 个单位长度, 到达点A1,然后把点A1 向上平移3 个单位长度,到达点A′, 用同样的方法分别将小船的其 他关键点B,C,D,E,F,G 平移,得到各自的对应点,顺 次连接对应点即可得到平移后 的图形.
感悟新知
特别提醒 平移图形中,原图形上的点到它对应点的方向
就是平移的方向;任意一对对应点所连线段的长度 就是平移的距离.
感悟新知
例 1 在以下现象中:①用打气筒打气时,打气筒里活塞的 运动;②传送带上瓶装饮料的移动;③旗帜的随风摆 动;④钟摆的摆动. 属于平移的是( B ) A. ① B. ①② C. ①②③ D. ①②③④
课堂小结
平移
定义 平移
性质 依据
作图
感悟新知
(1)AB ∥ A′B′,AC ∥ A′C ′,BC ∥ B′C ′,AA′ ∥ BB′ ∥CC ′;
(2)AB=A′B′,AC=A′C′,BC=B′C′,AA′ =BB′ =CC′; (3)∠ BAC= ∠ B ′A ′C ′, ∠ ABC= ∠ A ′B ′C ′,∠ ACB=
∠ A′C ′B ′.
感悟新知
华东师大版数学七年级下册10.2.1《图形的平移》优秀教学案例
一、案例背景
本案例背景基于华东师大版数学七年级下册10.2.1《图形的平移》一节内容。在经历了一年级对平面图形的认识和二年级对简单几何图形的操作学习后,学生已具备一定的图形感知和动手操作能力。但对于七年级的学生而言,图形的平移仍是一个较为抽象的概念,需要借助具体的情境和实例来引导学生理解和掌握。
3.小组合作学习:在学生小组讨论环节,我组织学生进行小组合作,共同探究平移性质。让学生在小组内进行动手操作,分享操作心得,提高学生的实践能力。同时,鼓励小组成员相互评价、相互学习,提升小组整体的学习效果。这种方式培养了学生的团队合作能力和交流沟通能力,同时也提高了学生的学习效果。
4.总结与评价:在总结归纳环节,我引导学生回顾学习过程,总结平移性质,提高学生的自我反思能力。设计评价量表,让学生对自己和他人的学习情况进行评价,培养学生的评价能力。同时,关注学生的学习进步,给予积极的反馈,激发学生的学习动力。通过总结与评价,使学生更加深入地理解平移知识,提高学生的数学素养。
本节课内容主要引导学生认识图形的平移性质,理解平移在实际问题中的应用。通过观察、操作、思考、交流等活动,让学生体会平移在几何变换中的地位,培养学生的空间想象能力和几何思维。同时,结合生活实际,让学生感受平移在现实生活中的运用,提高学生解决实际问题的能力。
在教学设计上,我以“情境导入——探究平移性质——应用拓展”为主线,借助多媒体展示、实物演示、小组合作等教学手段,让学生在轻松愉快的氛围中掌握图形的平移知识。在教学过程中,关注学生的个体差异,提倡学生主动参与、积极探究,使学生在实践中学会学习,提高自主学习能力。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示实际生活中的平移现象,如滑滑梯、升国旗等,让学生感受平移在现实生活中的运用。
浙教版数学七年级下册1.5《图形的平移》教学设计
浙教版数学七年级下册1.5《图形的平移》教学设计一. 教材分析《图形的平移》是浙教版数学七年级下册第1.5节的内容,本节课的主要内容是让学生理解平移的性质,学会用平移的方法来作图,并能够运用平移的知识解决一些实际问题。
教材通过丰富的实例,引导学生探究平移的性质,培养学生的空间想象能力和动手操作能力。
二. 学情分析学生在七年级上册已经学习了图形的旋转,对图形的变换已经有了一定的认识。
但是,对于平移的性质和应用,学生可能还比较陌生。
因此,在教学过程中,需要通过具体的实例和操作,让学生加深对平移的理解。
三. 教学目标1.知识与技能目标:让学生理解平移的性质,学会用平移的方法来作图。
2.过程与方法目标:通过观察、操作、交流,培养学生探究问题的能力。
3.情感态度与价值观目标:让学生体验数学与生活的联系,培养学生的学习兴趣。
四. 教学重难点1.教学重点:平移的性质和应用。
2.教学难点:对平移的理解和运用。
五. 教学方法1.情境教学法:通过具体的实例,让学生感受平移的存在,激发学生的学习兴趣。
2.动手操作法:让学生通过实际操作,加深对平移性质的理解。
3.讨论法:让学生在小组内进行讨论,培养学生的合作意识。
六. 教学准备1.教具准备:多媒体课件、几何图形、直尺、圆规等。
2.学具准备:学生每人一份几何图形、直尺、圆规等。
七. 教学过程导入(5分钟)教师通过多媒体展示一些生活中的平移现象,如电梯的运动、滑滑梯等,引导学生观察并思考这些现象与数学中的平移有什么联系。
学生通过观察,可以发现平移是一种图形变换,它不改变图形的形状和大小,只改变图形的位置。
呈现(10分钟)教师通过几何图形的平移,引导学生探究平移的性质。
教师可以选取一些简单的图形,如正方形、三角形等,让学生观察在平移过程中,对应点、对应线段、对应角的变化情况。
学生通过观察,可以发现平移具有保持图形形状和大小不变的性质。
操练(10分钟)教师让学生利用直尺、圆规等工具,实际操作一些图形的平移。
人教版七年级数学下册《平移》相交线与平行线PPT优质教学课件
新课导入
感受并观察这些复杂、漂亮的图案,你能否绘制出这些图案?
课前预习
如何把一个图形平移变换后的图形表示出来? 1.确定平移方向; 2.确定移动距离; 3.根据平移的基本性质确定对应点; 4.顺次连接对应点.
预习检测
1. 下列哪个图形是由左图平移得到的(C
)
AA
BB
CC
DD
预习检测
2.如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得
随堂检测
1.如图,△ABC沿线段BA方向平移得到△DEF,若AB=6,AE=2. 则
平移的距离为 ( B)
A.2
B.4
C.6
D.8
平移的距离
随堂检测
2.如图,△ABC沿BC所在的直线平移到△DEF的位置,且C点是
线段BE的中点,若AB=5,BC=2,AC=4,则AD的长是( B )
A.5
B.4
C.3
巩固练习
讨论并画出下列图案是由什么图形平移而成?
(1)
是由
平移而成;
(2)
是由
平移而成;
(3)
是由
平移而成.
例题分析
例1 如图是一块长方形的草地,长为21m,宽为15m. 在草地上有两条宽为1米
的小道,长方形的草地上除小道外长满青草. 求长草部分的面积为多少?
1m A
D A
D
1m
15m
15m
B
21m
B
C
作法1:以局部带整体,作图时应确定图形的关键点.
新知讲解
如图 ,经过平移,线段AB的端点 A移到了点 D ,
你能做出线段 AB平移后的图形吗?
A
Dቤተ መጻሕፍቲ ባይዱ
七年级下册平移的知识点
七年级下册平移的知识点平移是初中数学中的一个重要知识点,也是初中代数学的基础,它与中学数学与几何学密切相关。
在七年级下册的数学教材中,平移是一个重要的章节,学习平移的知识点能够帮助我们更好地理解几何学的基本概念,同时也能够为以后学习代数和几何学打下基础。
一、平移的定义平移是指将一个几何图形沿着一个方向移动一定的距离,而不改变其大小和形状的操作。
平移的结果是一个与原图形完全相同的新图形。
平移的基本要素有两个:方向和距离。
二、平移的符号表示平移的符号表示为“T”,后跟一个括号,括号中的第一个数表示平移的横向距离,第二个数表示平移的纵向距离。
例如T(2,3)表示平移的横向距离为2,纵向距离为3.三、平移的性质1. 平移保持图形的大小和形状不变。
2. 平移保持相邻两点之间的距离和角度不变。
3. 平移把一条直线变成与原有直线平行的直线。
4. 平移把一条射线变成与原有射线相同的射线。
5. 平移把一个线段变成另一个相同长度的线段。
6. 平移把平行线段变成平行线段。
四、平移的解题方法平移的解题方法通常分为以下三类:1. 用图形进行分析。
使用图形进行分析,可以更加直观地理解问题,找到规律。
2. 使用向量法。
使用向量法,可以将平移问题转化为向量的加法。
3. 使用坐标法。
使用坐标法,可以将平移问题转化为坐标系中的问题,通过计算坐标的变化来解决问题。
五、平移的应用平移的应用非常广泛,例如算术、几何、物理等方面。
在几何学中,平移被广泛应用于图形的变形、对称、相似和全等等问题中。
在物理学中,平移被应用于描述各种运动的规律。
六、结语平移是一个基础且重要的几何运算,学习平移的知识点对于学习初中数学和几何学至关重要。
同时,掌握平移的应用也是我们理解和掌握其他领域的知识的基础。
因此,学生们在学习平移的知识点时,一定要认真理解,并运用到实际问题中去。
苏科版数学七年级下册7.3《图形的平移》教学设计
苏科版数学七年级下册7.3《图形的平移》教学设计一. 教材分析《图形的平移》是苏科版数学七年级下册第七章第三节的内容。
本节课主要让学生理解平移的性质,学会用平移的方法对图形进行变换,培养学生的动手操作能力和空间想象能力。
教材通过例题和练习题,使学生掌握平移的定义、平移的方向和距离、平移的性质,并能够运用平移解决实际问题。
二. 学情分析学生在七年级上学期已经学习了图形的旋转,对图形的变换有了一定的认识。
但平移与旋转有很大的区别,平移不改变图形的方向,而旋转则会改变图形的方向。
因此,在教学过程中,教师需要引导学生区分平移和旋转,并理解平移的性质。
三. 教学目标1.知识与技能:让学生理解平移的定义,掌握平移的方向和距离,了解平移的性质,学会用平移的方法对图形进行变换。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和动手操作能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神,使学生感受到数学与生活的紧密联系。
四. 教学重难点1.重点:平移的定义、平移的方向和距离、平移的性质。
2.难点:理解平移与旋转的区别,运用平移解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入平移的概念,让学生在实际情境中感受平移的意义。
2.互动教学法:引导学生进行小组讨论,培养学生的团队协作能力和交流能力。
3.启发式教学法:教师提问,学生思考,引导学生主动探索平移的性质。
4.实践操作法:让学生动手操作,实际操作中掌握平移的方法。
六. 教学准备1.教具:多媒体课件、图形卡片、练习题。
2.学具:学生用书、练习本、文具。
七. 教学过程1.导入(5分钟)教师通过展示生活中的平移现象,如电梯上升、滑滑梯等,引导学生思考:这些现象有什么共同特点?学生回答后,教师总结平移的定义。
2.呈现(10分钟)教师用多媒体课件展示平移的性质,引导学生观察、思考:平移是如何改变图形的位置和方向的?学生回答后,教师总结平移的方向和距离、平移的性质。
人教部编版七年级下册数学《平移》ppt课件
位置,除了对应线段平行且相等外,你还发现了什么
现象?
P A
R
Q
A
A'
A
BC的中点M平 移B到什么地方 B'
去了?
B M
B
M`
C
C
C'
C AA'//__B_B_'//_A_C_C_'
S
AA'=_B_B__' =_C_C__'
B
C
图形平移的基本性质:
① 平移的两个图形形状和大小完全相同
②对应线段平行(或在同一直
与数量关系.
F
AC=DF AC//DF
Q
规律发现 1.平移后的图形与原来的图形的对应线段平行 且相等;
2.在平移过程中,对应线段也可能在一条直线 上,如BC与EF;
3.平移后图形的形状与大小都没有变化;
4.平移的方向是直尺PQ倾斜放置的方向,平移 的距离是BE的长度.
问题:三角形ABC沿着PQ的方向平移到 △A`B`C`的
工厂里传输带上的物品
归纳总结 1.图形的平移不一定是水平的,也不一定是竖直的. 2.图形的平移由移动的方向和距离决定.
试一试:如图,平移三角形ABC,得到△A′B′C′. 分
析两个图形中的对应关系.
点 A、B、C的对应点分别是A'、B'、C'; 线段AB、AC、BC的对应线段分别是A'B'、A'C'、B'C';
线上)且相等;
A
D
几何符号语言:
B
E
∵三角形ABC平移得到三角
C A
F D
形DEF ∴AB∥DE,AC∥DF,
平移的概念和特征七年级数学下册
1. 平移的定义:“三要素”
一个图形、一个方向、一个距离。 2. 平移的性质:“四特征” • 图形的形状和大小不改变; • 对应点所连的线段平行(或在一条直线上)且相等; • 对应线段平行(或在一条直线上)且相等; • 对应角相等;
观察与思考
1.雪人甲运动的雪人乙的 位置时,雪人甲的鼻尖A 是怎样运动的?它运动到 了什么位置?帽顶B呢?
对应点
雪人甲
雪人乙
观察与思考
2.连接几组对应点(如:A 与A‘,B与B’,C与C‘) 观察得到的线段,它们的位 置、长短有什么关系?
平行且相等
雪人甲
雪人乙
观ቤተ መጻሕፍቲ ባይዱ与思考
△ABC经过平移得到△A’B’C’
1.对于平移后,对应点所连的线段,下列说法正确的是( ) ①对应点所连的线段一定平行,但不一定相等; ②对应点所连的线段一定相等,但不一定平行,有可能相交; ③对应点所连的线段平行且相等,也有可能在同一条直线上; ④有可能所有对应点的连线都在同一条直线上. A.①③ B.②③ C.③④ D.①②
1.如图将△ABC沿射线BC向右平移8cm后得到△DEF,若BC=12cm,则 CF=______cm。
谢谢观看!
解分:析(1:)线段AE,BF,CG,DH的长度相等,都为2 cm。
(2根)A据B平与移EF的,性BC质与可FG知,:C平D移与只GH改,变A图D形与的EH位平置行,且不相等。
(3改)∠变B图AD形与的∠大FE小H;,平∠A移B得C与到∠的EF图G形,与∠B原C来D的与图∠形F是GH,
∠完AD全C一与样∠E的H,G所对以应对相应等的。线段之间是平行且相等的.
七年级下册的平移知识点
七年级下册的平移知识点平移,也叫做移动或者平移变换,是几何学中的一种常见的变换方式。
在数学中,表示一个图形沿着平面内的一个向量移动,从而生成另一个所需的几何图形,新的图形与原图形具有相同的形状和大小,只是位置不同。
一、平移的定义平移就是把几何图形沿着一个固定方向的一条线段上移动一定的距离,使图形中所有点移动到一个新的位置,平移的过程中保持图形大小和形状不变。
二、平移的性质1. 平移保持图形大小和形状不变;2. 平移前后图形在平面上的位置发生改变,但是图形的方向、形状、大小、面积等性质不变;3. 平移的过程中,所有的点都是平移相同的距离和相同的方向。
三、平移的步骤平移的基本步骤如下:1. 确定平移向量,即平移方向和距离;2. 选择一个参考点,任意一个点都可以;3. 沿着平移向量方向,以参考点为基础,将原图形上的所有点平移相同的距离到相应的位置。
四、平移的应用平移是几何变换中最为常见的一种,应该说几乎所有的几何图形都可以通过平面移动来实现变换。
1. 平移可以用于解决数学问题,如计算角平分线、中垂线等问题;2. 平移可以用于解决实际问题,如建筑、制图、数控加工等中的布局、对称、找定位点等问题;3. 平移对于学习几何和计算机图形学都非常重要,可以用于模拟、计算机辅助设计等。
五、平移的小技巧1. 选择一个容易计算的点作为原点,使之在移动过程中保持不变;2. 在移动前需要较为熟练地掌握各类平移的步骤和技巧;3. 在移动时可以使用类似轮廓的方式,先确定顶点位置,再确定直线等。
总之,平移是数学和几何学中一个非常重要的概念,需要我们在学习过程中认真掌握,灵活运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
E
F
生活中的平移
例题3; 如下图△ABE沿射线XY的方向平移一定距离后成为△CDF.
找出图中存在的平行且相等的三条线段和一组全等三角形。
Y X C
A B
A′
B′
解:如图,过B′点做AA′的平行线L,在 直线L上截取BB ′=AA′,连接A′B′,则 线段A′B′就是所求画的线段。
L
平移三角形的作法
例 2: 经过平移,三角形ABC的顶点A移到了点 D. 画出平移 后的三角形.
分析:设顶点 B,C分别平移 到 了E,F, 根据“经过平移,对应点所 连的线段平行且相等”,可知线 段 BE,CF与AD平行且相等.
平移的定义:一个图形沿着某个方向移动一定的距离,图形的这种
移动,叫做平移变换,简称平移。
平移特征:
1,把一个图形整体沿某一个方向移动,会得到一个新的图 形.新图形与原图形的形状和大小完全相同.
2、新图形中的每一点,都是由原图形中的某一点移动后 得到的,这两个点就是对应点。连接各组对应点的线段平行且相等
简单的说: (1)平移不改变图形的形状和大小;
(2)对应点连线平行且相等.
想一想
• 1、下图中线段AE,BF,CG,DH有怎样的位置关系? • 2、下图中每对对应线段之间有怎样的位置关系? 平移的 基本性 • 3、下图中有哪些相等的线段、相等的角? 质
经过平移,对应点所连
E A D F B C
H
的线段平行且相等;对 应线段平行且相等,对 应角相等。
线段和一组全等三角形。
A E
B
C
F
G
练习二
如下图∠ ABC 是∠O经过平移而得的角, 若∠O=65°,则∠ABC等于多少度?
A B O D C
练习三
在下面的八幅图案中,②③④⑤⑥⑦⑧中的
哪个图案可以通过平移图案①得到?
①
②
③
④
⑤
⑥
⑦
⑧
练习四
由△ABC平移而得的三角形共有多少 个? 解:
共有5个。
A
B
C
练习五
能由△AOB平移而得的图形是哪个?
F A
o B
E
解: 能由△AOB平移 而得的图形是: △FOE、
C
D D
闯关题
1:
平移中的生活应用
求零件(!)的周长
2: 楼梯的高度6米,水平宽度8米,现要在楼梯的表面铺 地毯,地毯 每米16元,求购买地毯至少需花多少钱 j
A
P1 k
4m 8m
6 m
5.4
图形的平移
你知道这几幅图案中的运动的现象有什么共 同的特点吗
讨论与交流
如何在一张纸上画出一排和书上第
27页图5.4-2开形状、大小都一样的雪人 三思而行,请先分组讨 论一下!动手画一画,你就 是未来的大画家! 你画的雪人和书上的 一样吗?你是怎么画的?
可以把一张半透明的纸盖在图5.4-2上, 先描出一个雪人,然后按同一方向陆续移动 这张纸,再描出第二个、第三个……(如图 5.4-3)
A
B E
D
F
解:点A、B、E的对应点分别为 点C、D、F,因为经过平移, 对 应 点所连的线段平行且相等 , 所以 AC∥BD ∥ EF,且AC=BD=EF. 由于平移不改变图形的形状和 大小,所以△ABE全等△CDF.ຫໍສະໝຸດ 生活中的平移练习一
如下图△EFG是将△ABC沿箭头方向平
移一定距离而得. 试找出图中平行且相等的
雪人的大小和形状改变了吗? 位置哪?
观察与思考
1、雪人甲运动的雪人乙 的位置时,雪人甲的鼻 尖A是怎样运动的?它 运动到了什么位置?帽 顶B呢?
A运动到A′ B运动到B′ C运动到C′ 它们之间是对应点
雪人甲 雪人乙
c ,
,
可以发现:AA′∥BB′∥CC′,
并且AA′=BB′= CC′ 有
请你在作出连接其他对应点的线段,它们是否仍有前面的关系?
G
课堂练习
• 在下面的六幅图案中,(2)(3)(4)(5)(6)中的 哪个图案可以通过平移图案(1)得到?
√
下面 2,3,4,5 幅图中那 幅图是由1平移得到的?
(1)
1 2
√
3 2
4
5
(2)
1
3
4
√
5
平移线段画法
例1:如右图,平移线段AB,使点A移动到点A′。画 出平移后的线段A′B′
分析:“点A移到点A′”这 句话告诉我们图形平移的方 向是A到A′的方向, 平移的 距离为线段AA′的长,根据这 两个要素就可以确定点B′。
l
m
n
B 8m
生活中的平移
本课小结
平移的定义
在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移的性质
平移不改变图形的形状和大小。经过平移,对应点所连的线段平行
且相等;对应线段平行且相等,对应角相等。