关于卢柯课题组纳米材料的综述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于卢柯课题组纳米材料的综述
摘要:本文对卢柯教授所在的纳米材料研究团队的主要成员、研究方向、所获奖项及研究成果等方面进行了总结。卢柯教授所在的纳米材料研究团队的研究方向之一为金属纳米材料的制备与加工,微观结构的表征,力学性能,物理性能,热稳定性,以及相变。
关键词:卢克课题组、微观结构表征、力学性能、物理性能、热稳定性、相变1、引言
卢柯教授所在的纳米研究团队的研究方向是金属纳米材料的制备与加工,微观结构的表征,力学性能,物理性能,热稳定性,以及相变。卢柯,生于1965年5月,九三学社社员。原籍河南汲县,生于甘肃华池。研究生学历,工学博士学位,著名材料科学专家,中国科学院院士,中国科学院金属研究所原所长、研究员,上海交通大学材料科学与工程学院院长。主要从事金属纳米材料及亚稳材料等研究。获国家专利6项,国际专利1项;多次在国际会议上作特邀报告;国际《材料科学与工程评论杂志》特邀为其撰写长篇综述论文并发表了专刊。在国际重要学术刊物上发表论文150余篇;2010年在Nature上发表了一篇关于金属的未来的一篇文章;并且在science上也发表了多篇文章,2003年,《科学》上发表了卢柯等人的一项最新科研成果:将铁表层的晶粒细化到纳米尺度,其氮化温度显著降低,从而为氮化处理更多种材料和器件提供了可能。这是卢柯科研小组取得的又一个突破性进展,被评为 2003 年中国十大科技进展之一。2004年,在《科学》杂志上发表了采用纳米尺寸的生长孪晶强化金属的新途径获得了同时具有超高强度和高导电性的铜。而按照以往的经验,对铜进行强化以后,会使其导电率有所下降。这一成果的创新性在于,把难以统一在一起的性能统一在了一起。2013年又在《科学》杂志上发表了在金属中发现超硬超高稳定性新型纳米层片结构。他杰出的研究工作已经使他获得了无数的奖项。其中包括:2013年入选“万人计划”杰出人才。 2011年荣获德国洪堡研究奖(Humboldt Research Award);获国际亚稳及纳米材料年会金质奖章和青年科学家奖;第三世界科学院技术奖;国家自然科学奖三等奖;中国科学院自然科学奖一等奖、二等奖;中国科学院青年科技奖;全国劳动模范和先进工作者;何梁何利基金技术科学奖;香港求是基金会杰出青年学者奖等荣誉。身为中科院金属所所长的卢柯把他的工作描述成:我是个班长,领着团队在做事。卢柯认为,现在是中国各个领域发展
的最好时期,也给材料学的研究创造了最好的机会。中国工业化的进程对材料学科提出了许多严峻的、亟待解决的问题。面临资源减少、原材料价格上涨、环境污染等问题,如果不发展更先进的材料,中国工业化的成本将是惊人地巨大。能不能拿出更新的技术,少消耗资源,少消耗能源,少污染环境?能不能做出环境友好的材料,研制出少产生或不产生二氧化碳的能源,来保护我们的环境?能不能研制出高质量、低成本的加工技术?能不能研制出更先进的材料制造我们自己的火星探测器,制造我们自己的航天飞机?卢柯和他的团队任重道远[1]。该团队在其研究领域取得了巨大的成就,在Natures和Science上发表了多篇文章。发展了一种制备无微孔隙和界面污染金属纳米材料的新方法—非晶完全晶化法,系统研究了金属纳米材料的结构性能关系及结构稳定性,揭示了纳米材料的本质结构特征和性能,发现了纳米金属铜在室温下具有超塑延展性。深入研究了非晶态合金的晶化微观机制和纳米晶体的熔化行为及过热机制,建立了过热晶体熔化的动力学极限理论,并获得了金属纳米薄膜的稳定过热。发展了利用表面机械变形处理实现金属材料表面纳米化的新技术,并大幅度降低了铁的表面氮化温度。本文主要介绍了该团队在金属纳米材料的微观结构表征、力学性能、物理性能等的研究工作及发表的文章的部分内容。
2、金属纳米材料有关成果
2.1 在金属中发现超硬超高稳定性新型纳米层片结构
对金属材料进行严重塑性变形可显著细化其微观组织,使晶粒细化至亚微米(0.1~1微米)尺度从而大幅度提高其强度。但进一步塑性变形时晶粒不再细化,材料微观结构趋于稳态达到极限晶粒尺寸,形成三维等轴状超细晶结构,绝大多数晶界为大角晶界。出现这种极限晶粒尺寸的原因是位错增殖主导的晶粒细化与晶界迁移主导的晶粒粗化相平衡,其实质是超细晶结构的稳定性随晶粒尺寸减小而降低所致。如何突破这一晶粒尺寸极限,进一步细化微观组织,在继续提高金属材料强度的同时提高其结构稳定性,是当今纳米金属材料研究面临的一个重大科学难题。
中国科学院金属研究所沈阳材料科学国家(联合)实验室卢柯研究组在这一科学难题研究上取得重大突破,他们利用自行研发的新型塑性变形技术(表面机械碾磨处理)在金属镍表层成功突破了这一晶粒尺寸极限,获得纳米级厚度并具有小角晶界的层片结构,同时发现这种纳米层片结构兼具超高硬度和热稳定性,
如图1所示。这种新型超硬超高稳定性金属纳米结构突破了传统金属材料的强度-稳定性倒置关系,为开发新一代高综合性能纳米金属材料开辟了新途径。
研究表明,塑性变形过程中提高变形速率和变形梯度可有效提高位错增殖及储存位错密度,从而促进晶粒细化进程。为此,卢柯研究组利用表面机械碾磨处理在金属纯镍棒表层实现了高速剪切塑性变形,这种塑性变形可在材料最表层同时获得大应变量、高应变速率和高应变梯度。随着距表面深度增加,应变量、应变速率和应变梯度呈梯度降低,形成呈梯度分布的微观结构。在距离表面10~50微米深度形成了具有小角晶界的纳米层片结构,层片平均厚度约为20nm,比纯镍中的变形晶粒尺寸极限小一个数量级,其硬度高达 6.4GPa,远远超过其他变形方式细化的纯镍硬度。测量表明,纳米层片结构的结构粗化温度高达506℃,比同成分材料超细晶结构晶粒粗化温度高40℃。纳米尺度的层片厚度是超高硬度的本质原因,而高热稳定性源于其中的平直小角晶界和强变形织构。这种新型超硬超高稳定性金属纳米结构有望在工程材料中得到应用以提供其耐磨性和疲劳性能。[2]
2.2 孪晶促进强度和塑性的同时提高
如果两个相邻晶体(或同一晶体的两个部分)之间沿一个公共晶面形成镜面对称的位向关系,那么这两个晶体就互称为孪晶,公共晶面即为孪晶界面。一般说来,孪晶界面可以通过阻碍位错运动使材料得到一定程度的强化。但是,微米或亚微米尺度的孪晶,其强化效果并不显著,只有当孪晶片层细化至纳米量级时才开始表现出显著的强化效果和其他的特性。
纳米孪晶结构能够显著提高材料的强度而不损失其塑性与韧性,在脉冲电解沉积制备的纳米孪晶铜中,随孪晶片层厚度减小,材料屈服强度的增加趋势与纳