数字电路实验 计数器(外接)

合集下载

计数器实验报告

计数器实验报告

计数器实验报告计数器实验报告引言:计数器是数字电路中常见的一种重要组件,它能够按照一定的规则对输入的信号进行计数,并输出对应的计数结果。

在数字电路设计与实验中,学习和掌握计数器的工作原理和应用是非常重要的。

本实验旨在通过设计和实现一个4位二进制同步计数器,加深对计数器的理解和应用。

一、实验目的:1. 学习计数器的基本工作原理;2. 掌握计数器的设计与实现方法;3. 理解同步计数器的概念和特点;4. 通过实验验证计数器的正确性和稳定性。

二、实验器材与方法:1. 实验器材:- 电路实验箱- 逻辑门集成电路:74LS74、74LS08- 电源、示波器、信号发生器等2. 实验方法:- 按照给定的电路原理图,进行电路的布线与连接;- 使用信号发生器提供时钟信号,并连接到计数器的时钟输入端;- 使用示波器观察计数器的输出波形,并记录实验数据;- 根据实验数据,分析计数器的工作情况,并进行验证。

三、实验过程与结果分析:1. 电路连接:根据给定的电路原理图,将74LS74和74LS08等逻辑门集成电路按照正确的引脚连接方式进行布线。

2. 时钟信号设置:使用信号发生器提供适当的时钟信号,并将其连接到计数器的时钟输入端。

3. 观察输出波形:使用示波器观察计数器的输出波形,并记录实验数据。

4. 数据分析与验证:根据实验数据,对计数器的工作情况进行分析和验证。

检查输出波形是否按照预期进行计数,是否存在错误或不稳定的情况。

实验结果显示,计数器能够按照预期的规则进行计数,并输出正确的计数结果。

通过改变时钟信号的频率和占空比,可以观察到计数器的计数速度和稳定性的变化。

四、实验总结:通过本次实验,我们深入了解了计数器的工作原理和应用。

计数器作为数字电路中常见的组件,广泛应用于各种计数和定时任务中。

同步计数器能够实现多位的二进制计数,并具有较高的稳定性和可靠性。

然而,在实验过程中也发现了一些问题。

例如,当时钟信号频率较高时,计数器可能出现计数错误或不稳定的情况。

数字电路实验-光电计数器

数字电路实验-光电计数器

课程综合设计课程名称:《数字电路实验》实验名称:《光电计数器》学院:应用科技学院专业:电子信息工程年级:2012级学号:____________姓名:____________设计意义及实现功能:工厂生产线或某些设备上(如打印机)常装有自动计数器,以便计算产量或为生产过程自动化合计算机管理系统提供数据,计数器种类很多,光电计数器是常见的一种。

设计并制作一个光电计数器,要求如下:(1)光源采用聚焦白炽灯,电压为6.3V,自行选择光敏器件。

当有光照到光敏器件上时,计数器不计数,当光照有亮突变到暗的一瞬间,产生一个脉冲沿,对这个脉冲沿进行技术,光照由暗突变到亮不计数。

(2) 计数器范围:00~99。

用两只LED数码管作显示组件,可显示00~99。

(3)定数控制功能:当需要定数时,事先预置一个定数值,显示器同时显示这个定数值。

每光照一次,计数器减“1”,当定数值减至:“00”,发出声、光报警。

(4)当计数器作“累加”功能时,需先清零。

计数器从“00”累加到“99”。

当光照次数大于99次时,发出声,光报警。

实验原理CD4511引脚图及功能CD4511是一个用于驱动共阴极 LED (数码管)显示器的 BCD 码—七段码译码器,特点如下:具有BCD转换、消隐和锁存控制、七段译码及驱动功能的CMOS 电路能提供较大的拉电流。

可直接驱动LED显示器。

器中的字形消隐。

其功能介绍如下:BI:4脚是消隐输入控制端,当BI=0 时,不管其它输入端状态如何,七段数码管均处于熄灭(消隐)状态,不显示数字。

LT:3脚是测试输入端,当BI=1,LT=0 时,译码输出全为1,不管输入DCBA 状态如何,七段均发亮,显示“8”。

它主要用来检测数码管是否损坏。

LE:锁定控制端,当LE=0时,允许译码输出。

LE=1时译码器是锁定保持状态,译码器输出被保持在LE=0时的数值。

A1、A2、A3、A4、为8421BCD码输入端。

a、b、c、d、e、f、g:为译码输出端,输出为高电平1有效。

EDA实验报告——计数器

EDA实验报告——计数器

EDA实验报告——计数器一、实验目的本实验主要是通过搭建计数器,了解计数器的基本原理和使用方法,掌握数字电路的设计方法及仿真分析方法。

二、实验原理计数器是数字电路的重要组成部分,在数字电路的多个应用中都有着广泛的应用。

计数器可以实现多种数字处理功能,如二进制计数、定量计数、计时、频率分频等。

三、实验材料1. Protues软件2. 74LS90集成电路3. 7段数码管4. 4位拨动开关5. 4个LED灯6. 电路板、杜邦线等。

四、实验内容1. 给定 74LS90 计数器数据手册,分析本实验使用到的 74LS90 芯片的接口及特性。

2. 根据实验需求,用 Protues 软件搭建计数器电路图。

3. 在计数器电路图中连通 74LS90 芯片的译码器输出端口,设置与四个拨动开关相连的输入端口以及 LED 显示器输出端口,实现计数器的计数。

4. 在计数器的输出端口增加 7 段数码管,通过数码管显示计数值。

5. 根据实验需求搭建模电流源电路,对实验电路进行仿真分析,并对仿真结果进行评估。

五、实验步骤2. 从库中拖动 74LS90 芯片、7 段数码管、拨动开关、LED 灯等元件到设计图中。

4. 在 74LS90 芯片工作模式的选择端口接上拨动开关,选择计数器的计数方式。

5. 配置模电流源电路,并设置仿真参数。

6. 进行仿真并记录仿真结果。

七、实验结果本实验搭建的计数器能够正确地进行计数,并且将计数结果通过数码管和 LED 灯显示出来。

在进行仿真分析时,根据仿真数据评估实验电路的合理性。

本实验通过搭建计数器,了解计数器的基本原理和使用方法,掌握数字电路的设计方法及仿真分析方法。

实验中主要学习了数字计数器的结构、性能和工作原理,在搭建计数器电路时主要包括了 74LS90 芯片的接口和设置以及输入输出端口的设置。

通过本实验,我进一步了解了计数器的基本知识和原理,也学习了如何使用 Protues 软件进行电路的搭建和仿真。

国开作业《数字电子电路》实验3集成计数器设计参考40

国开作业《数字电子电路》实验3集成计数器设计参考40

实验3 集成计数器设计实验报告
实验目的:
1.熟悉任意进制计数器的工作原理及其设计方法。

2.熟悉中规模集成电路计数器74LS161、74LS290的逻辑功能及使用方法
实验仪器与设备:
1.数字电路实验箱。

2.集成电路计数器74LS161两片、74LS290一片
实验原理:
1. 二进制同步加法计数器74LS161
图3-1 74LS161管脚图和逻辑功能示意图
集成芯片74LS161是由四个主从J-K触发器构成二进制同步加法计数
器,图中:D
3、D
2
、D
1
、D
为触发器输入端,Q
3
、Q
2
、Q
1
、Q
为触发器输出
端;CP时钟上升沿有效;R
D 为异步清零端,低电平有效;L
D
为同步预置
端,低电平有效;EP、ET为两个使能端,便于多片级联;RCO为输出进位端。

表3-1 二进制同步加法计数器74LS161功能表。

数电实验报告计数器

数电实验报告计数器

数电实验报告计数器计数器是数字电路中常见的一种电路元件,用于计数和显示数字。

在数电实验中,我们通常会设计和实现各种类型的计数器电路,以探究其工作原理和性能特点。

本文将介绍数电实验中的计数器的设计和实验结果,并探讨其应用和改进。

一、设计和实现在数电实验中,我们通常使用逻辑门和触发器来实现计数器电路。

逻辑门用于控制计数器的输入和输出,而触发器则用于存储和更新计数器的状态。

以4位二进制计数器为例,我们可以使用四个触发器和适当的逻辑门来实现。

触发器的输入端连接到逻辑门的输出端,而逻辑门的输入端连接到触发器的输出端。

通过适当的控制信号,我们可以实现计数器的正向计数、逆向计数、清零和加载等功能。

在实验中,我们需要根据设计要求选择适当的逻辑门和触发器,并将其连接起来。

然后,通过给逻辑门和触发器提供适当的输入信号,我们可以观察计数器的输出结果,并验证其正确性和稳定性。

二、实验结果在实验中,我们设计了一个4位二进制计数器,并通过适当的输入信号进行了测试。

实验结果表明,计数器能够正确地进行正向计数和逆向计数,并能够在达到最大计数值或最小计数值时自动清零。

此外,我们还观察到计数器的输出信号在计数过程中保持稳定,并且能够及时响应输入信号的变化。

这说明计数器具有较高的稳定性和响应速度,适用于各种计数应用场景。

三、应用和改进计数器在数字电路中有广泛的应用,例如频率分频、时序控制、计时器等。

通过适当的设计和连接,我们可以实现各种复杂的计数功能,满足不同的应用需求。

在实验中,我们还可以对计数器进行改进和优化,以提高其性能和功能。

例如,我们可以增加计数器的位数,以扩大计数范围;我们还可以添加输入输出接口,以实现与其他电路元件的连接和通信。

此外,我们还可以使用更高级的计数器电路,如同步计数器、环形计数器等,以实现更复杂的计数功能。

这些改进和扩展将进一步提高计数器的灵活性和实用性。

总结:通过数电实验,我们了解了计数器的设计和实现原理,并验证了其在实际应用中的性能和功能。

数字电路 实验 计数器及其应用 实验报告

数字电路 实验 计数器及其应用 实验报告

实验六计数器及其应用一、实验目的1.学习用集成触发器构成计数器的方法2.掌握同步计数的逻辑功能、测试方法及功能扩展方法3.掌握构成任意进制计数器的方法二、实验设备和器件1.+5V直流电源2.双踪示波器3.连续脉冲源4.单次脉冲源5.逻辑电平开关6.逻辑电平显示器7.译码显示器8.CC4013×2(74LS74)CC40192×3(74LS192)CC4011(74LS00)CC4012(74LS20)三、实验原理计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。

计数器种类很多。

计数器计数时所经历的独立状态总数为计数器的模(M)。

计数器按模可分为二进计数器(M=2n)、十进计数器(M=10n)和任意进制计数器(M≠2n、M≠10n)。

按计数脉冲输入方式不同,可分为同步计数和异步计数。

按计数值增减趋势分为:加法计数器、减法计数器和可逆(加/减)计数器。

1.用D触发器构成异步二进制加/减计数器图6-1是用四只D触发器构成的四位二进制异步加法计数器,它的连接特点是将每只D触发器接成T 触发器,再由低位触发器的Q端和高一位的CP端相连接。

若将图6-1稍加改动,即将低位触发器的Q端与高一位的CP端相连接,即构成了一个4位二进制减法计数器。

2.中规模十进制计数器、十六进制计数器(1)CC40192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能。

当清除端CR为高电平“1”时,计数器直接清零;CR置低电平则执行其它功能。

当CR为低电平,置数端LD也为低电平时,数据直接从置数端D0、D1、D2、D3置入计数器。

当CR为低电平,LD为高电平时,执行计数功能。

执行加计数时,减计数端CP D接高电平,计数脉冲由CP U输入;在计数脉冲上升沿进行8421码十进制加法计数。

执行减计数时,加计数端CP U接高电平,计数脉冲由减计数端CP D 输入,表6-2为8421码十进制加、减计数器的状态转换表。

计数器实验总结

计数器实验总结

计数器实验总结
在这个计数器实验中,我使用了一个数字电路设计来构建一个简单的4位二进制计数器。

计数器使用正脉冲信号来触发计数,并且可以通过一个复位信号来将计数器复位为0。

通过这个实验,我学到了许多关于数字电路设计和计数器的知识。

我了解了计数器的基本原理和工作方式,并学会了使用计数器来进行计数。

在设计过程中,我注意了时序问题,确保计数器在正确的时钟信号下进行计数,并且能够正确地复位。

在实际搭建和测试计数器时,我遇到了一些问题并解决了它们。

一开始,我发现计数器的输出不稳定,经过检查我发现这是因为计数器电路中的电线连接不牢固导致的。

我重新连接了电线,并确保所有连接都牢固可靠。

此外,我还发现计数器在达到最大计数值时没有复位为0。

我检查了复位信号的连接,并确认其正常工作。

最后,我调整了计数器的时钟频率,以确保计数器可以在给定的时间内进行计数。

通过这个实验,我不仅学到了数字电路设计的基本知识,还提高了问题解决的能力。

我学会了如何检查和调试电路,并且明白了对数字电路进行正确连接和时序控制的重要性。

我相信这些知识和经验将对我的进一步学习和研究产生积极的影响。

数字电路实验3 计数器

数字电路实验3 计数器

实验八计数器一、实验目的1.熟悉由集成触发器构成的计数器电路及其工作原理。

2.熟悉掌握常用中规模集成电路计数器及其应用方法。

二、实验原理和电路所谓计数,就是统计脉冲的个数,计数器就是实现“计数”操作的时序逻辑电路。

计数器的应用十分广泛,不仅用来计数,也可用作分频、定时等。

计数器种类繁多。

根据计数体制的不同,计数器可分成二进制(即2”进制)计数器和非二进制计数器两大类。

在非二进制计数器中,最常用的是十进制计数器,其它的一般称为任意进制计数器。

根据计数器的增减趋势不同,计数器可分为加法计数器—随着计数脉冲的输入而递增计数的;减法计数器—随着计数脉冲的输入而递减的;可逆计数器—既可递增,也可递减的。

根据计数脉冲引入方式不同,计数器又可分为同步计数器—计数脉冲直接加到所有触发器的时钟脉冲(CP)输入端;异步计数器—计数脉冲不是直接加到所有触发器的时钟脉冲(CP)输入端。

1.异步二进制加法计数器异步二进制加法计数器是比较简单的。

图 1.8.1(a)是由4个JK(选用双JK74LS112)触发器构成的4位二进制(十六进制)异步加法计数器,图1.8.1(b)和(c)分别为其状态图和波形图。

对于所得状态图和波形图可以这样理解:触发器FF O(最低位)在每个计数沿(CP)的下降沿(1 → 0)翻转,触发器FF1的CP端接FF0的Q0端,因而当FF O(Q O)由1→ 0时,FF1翻转。

类似地,当FF1(Q1)由1→0时,FF2翻转,FF2(Q2)由1→0时,FF3翻转。

4位二进制异步加法计数器从起始态0000到1111共十六个状态,因此,它是十六进制加法计数器,也称模16加法计数器(模M=16)。

从波形图可看到,Q0 的周期是CP周期的二倍;Q1 是Q0的二倍,CP的四倍;Q2是Q1 的二倍,Q0的四倍,CP的八倍;Q3是Q2的二倍,Q1的四倍,Q0的八倍,CP的十六倍。

所以Q0 、Q1、Q2、Q3分别实现了二、四、八、十六分频,这就是计数器的分频作用。

数字逻辑电路实验报告

数字逻辑电路实验报告

一、实验目的1. 熟悉数字逻辑电路的基本原理和基本分析方法。

2. 掌握常用逻辑门电路的原理、功能及实现方法。

3. 学会使用数字逻辑电路实验箱进行实验操作,提高动手能力。

二、实验原理数字逻辑电路是现代电子技术的基础,它由逻辑门电路、触发器、计数器等基本单元组成。

本实验主要涉及以下内容:1. 逻辑门电路:与门、或门、非门、异或门等。

2. 组合逻辑电路:半加器、全加器、译码器、编码器等。

3. 时序逻辑电路:触发器、计数器、寄存器等。

三、实验仪器与设备1. 数字逻辑电路实验箱2. 示波器3. 信号发生器4. 万用表5. 逻辑笔四、实验内容及步骤1. 逻辑门电路实验(1)与门、或门、非门、异或门原理实验步骤:1)按实验箱上的逻辑门电路原理图连接电路;2)使用信号发生器产生输入信号,用逻辑笔观察输出信号;3)分析实验结果,验证逻辑门电路的原理。

(2)组合逻辑电路实验步骤:1)按实验箱上的组合逻辑电路原理图连接电路;2)使用信号发生器产生输入信号,用逻辑笔观察输出信号;3)分析实验结果,验证组合逻辑电路的原理。

2. 时序逻辑电路实验(1)触发器实验步骤:1)按实验箱上的触发器原理图连接电路;2)使用信号发生器产生输入信号,用示波器观察输出信号;3)分析实验结果,验证触发器的原理。

(2)计数器实验步骤:1)按实验箱上的计数器原理图连接电路;2)使用信号发生器产生输入信号,用示波器观察输出信号;3)分析实验结果,验证计数器的原理。

五、实验结果与分析1. 逻辑门电路实验实验结果:通过实验,我们验证了与门、或门、非门、异或门的原理,观察到了输入信号与输出信号之间的逻辑关系。

2. 组合逻辑电路实验实验结果:通过实验,我们验证了半加器、全加器、译码器、编码器的原理,观察到了输入信号与输出信号之间的逻辑关系。

3. 时序逻辑电路实验实验结果:通过实验,我们验证了触发器、计数器的原理,观察到了输入信号与输出信号之间的时序关系。

计数器的实验原理

计数器的实验原理

计数器的实验原理
计数器是一种电子设备,用于对输入信号的数量进行计数。

它通常由一个或多个触发器和组合逻辑电路构成。

触发器是计数器的基本构建单元,它可以在输入信号的上升沿或下降沿触发状态的改变。

触发器可以存储一个二进制位,常用的触发器有RS触发器、D触发器、JK触发器等。

组合逻辑电路用于控制触发器的状态转换。

通过逻辑门(如与门、或门、非门等)以及触发器之间的互连,可以实现复杂的计数逻辑。

例如,一个4位二进制计数器可以通过四个D触
发器和若干逻辑门组成。

当计数器接收到一个时钟脉冲信号时,逻辑电路会根据当前触发器的状态和逻辑控制信号来决定是否进行状态转换。

这样,计数器就可以记录输入信号的数量。

计数器的输出可以表示为二进制数,可以用来显示或进一步处理。

比如,可以将计数器连接到数码显示器上,以实时显示当前计数值。

实验中,可以通过给计数器的输入引脚接上一个外部信号源,如一个定时器或按钮开关。

然后观察计数器输出的变化,验证计数器是否按照预期进行计数。

需要注意的是,计数器的位数决定了最大可计数的数量。

当计数器达到最大数值后,可以通过递增到最小数值(如从15递
增到0,称为循环计数)或通过某种逻辑来选择性地保持计数
器在某个特定值上。

计数器广泛应用于数字电子技术领域,常见的应用包括计时器、频率计数器、信号发生器、编码器等。

数电项目实验报告(3篇)

数电项目实验报告(3篇)

第1篇一、实验目的1. 理解数字电路的基本概念和组成原理。

2. 掌握常用数字电路的分析方法。

3. 培养动手能力和实验技能。

4. 提高对数字电路应用的认识。

二、实验器材1. 数字电路实验箱2. 数字信号发生器3. 示波器4. 短路线5. 电阻、电容等元器件6. 连接线三、实验原理数字电路是利用数字信号进行信息处理的电路,主要包括逻辑门、触发器、计数器、寄存器等基本单元。

本实验通过搭建简单的数字电路,验证其功能,并学习数字电路的分析方法。

四、实验内容及步骤1. 逻辑门实验(1)搭建与门、或门、非门等基本逻辑门电路。

(2)使用数字信号发生器产生不同逻辑电平的信号,通过示波器观察输出波形。

(3)分析输出波形,验证逻辑门电路的正确性。

2. 触发器实验(1)搭建D触发器、JK触发器、T触发器等基本触发器电路。

(2)使用数字信号发生器产生时钟信号,通过示波器观察触发器的输出波形。

(3)分析输出波形,验证触发器电路的正确性。

3. 计数器实验(1)搭建异步计数器、同步计数器等基本计数器电路。

(2)使用数字信号发生器产生时钟信号,通过示波器观察计数器的输出波形。

(3)分析输出波形,验证计数器电路的正确性。

4. 寄存器实验(1)搭建移位寄存器、同步寄存器等基本寄存器电路。

(2)使用数字信号发生器产生时钟信号和输入信号,通过示波器观察寄存器的输出波形。

(3)分析输出波形,验证寄存器电路的正确性。

五、实验结果与分析1. 逻辑门实验通过实验,验证了与门、或门、非门等基本逻辑门电路的正确性。

实验结果表明,当输入信号满足逻辑关系时,输出信号符合预期。

2. 触发器实验通过实验,验证了D触发器、JK触发器、T触发器等基本触发器电路的正确性。

实验结果表明,触发器电路能够根据输入信号和时钟信号产生稳定的输出波形。

3. 计数器实验通过实验,验证了异步计数器、同步计数器等基本计数器电路的正确性。

实验结果表明,计数器电路能够根据输入时钟信号进行计数,并输出相应的输出波形。

基于数字电路两位计数器的设计与实现的实验原理

基于数字电路两位计数器的设计与实现的实验原理

基于数字电路两位计数器的设计与实现的实验原理
基于数字电路的两位计数器的设计与实现实验原理是利用数字电路中的触发器、门电路和计数器等组件,通过逻辑设计和电路布线的方式,实现对二进制数的计数功能。

实验原理包括以下几个主要步骤:
1. 设计计数器逻辑:根据需要设计一个二进制的两位计数器。

计数器的设计需要确定计数的范围和计数方式,如可以选择一个周期为4(二进制00、01、10、11)的自然计数器或者倒计数器。

2. 选择触发器类型:根据计数器的设计要求,选择合适的触发器类型。

常见的触发器有D触发器、JK触发器和T触发器等。

根据具体要求,可以选择不同类型的触发器来实现计数器的功能。

3. 连接触发器和门电路:根据计数器逻辑设计和触发器类型,连接相应的触发器和门电路。

例如,D触发器可以通过外部引脚连接一个与门电路来实现计数器的逻辑。

4. 连接时钟信号:为计数器提供一个稳定的时钟信号,使得计数器能够按照指定的频率进行计数。

时钟信号可以通过一个独立的时钟源或者其他数字电路模块提供。

5. 进行电路布线:根据计数器的逻辑设计和连接方式,进行电路布线。

布线过程要保证连接准确,电路的信号传输可靠。

6. 进行实验验证:完成电路的布线后,将电路接通电源,观察计数器输出是否符合预期。

通过改变时钟信号的频率或者其他输入条件,验证计数器的功能和性能。

通过以上实验原理,可以实现对二进制数的计数功能,可以用于电子计算机的时序控制、频率分频器等应用中。

数电实验报告:计数器及其应用-计数器应用实验报告

数电实验报告:计数器及其应用-计数器应用实验报告

数字电子技术实验报告实验四:计数器及其应用一、实验目的:1、熟悉常用中规模计数器的逻辑功能。

2、掌握二进制计数器和十进制计数器的工作原理和使用方法。

二、实验设备:1、数字电路实验箱;2、74LS90。

三、实验原理:1、计数是一种最简单基本运算,计数器在数字系统中主要是对脉冲的个数进行计数,以实现测量、计数和控制的功能,同时具有分频功能。

计数器按计数进制分有:二进制计数器,十进制计数器和任意进制计数器;按计数单元中触发器所接收计数脉冲和翻转顺序分有:异步计数器,同步计数器;按计数功能分有:加法计数器,减法计数器,可逆(双向)计数器等。

2、74LS90是一块二-五-十进制异步计数器,外形为双列直插,NC表示空脚,不接线,它由四个主从JK触发器和一些附加门电路组成,其中一个触发器构成一位二进制计数器;另三个触发器构成异步五进制计数器。

在74LS90计数器电路中,设有专用置“0”端R0(1),R0(2)和置“9”端S9(1)S9(2)。

其中前两个为异步清0端,后两个为异步置9端。

CP1, CP2为两个时钟输入端;Q0~Q3为计数输出端。

当R1=R2=S1=S2=0时,时钟从CP1引入,Q0输出为二进制;从CP2引入,Q3输出为五进制。

时钟从CP1引入,二Q0接CP1,则Q3Q2Q1Q0输出为十进制(8421码);时钟从CP2引入,而Q3接CP1,则Q0Q3Q2Q1输出为十进制(5421码)。

四、实验原理图及实验结果:1、实现0~9十进制计数。

1)实验原理图如下:(函数信号发生器:5V 3Hz 偏移2.5V方波)2)实验结果:解码器上依次显示0~9十个数字。

2、实现六进制计数。

1)实验原理图如下:(函数信号发生器:5V 3Hz 偏移2.5V方波)2)实验结果:解码器上依次显示0~5六个数字。

3、实现0、2、4、6、8、1、3、5、7、9计数。

1)实验原理图如下:(函数信号发生器:5V 3Hz 偏移2.5V方波)2)实验结果:解码器上依次显示0、2、4、6、8、1、3、5、7、9十个数字。

计数器显示电路实训报告

计数器显示电路实训报告

一、实验目的1. 理解和掌握计数器的基本原理和工作方式。

2. 学习计数器显示电路的设计与搭建方法。

3. 熟悉计数器在数字电路中的应用。

4. 培养实际操作能力和问题解决能力。

二、实验原理计数器是一种用于实现计数功能的数字电路,其基本原理是利用触发器进行计数。

常见的计数器有异步计数器和同步计数器两种。

异步计数器采用触发器级联的方式,计数过程中各个触发器的翻转时间不同,因此存在一定的延迟;同步计数器则采用统一的时钟信号,使得各个触发器同时翻转,计数速度快。

计数器显示电路主要由计数器、译码器和显示器三部分组成。

计数器负责计数,译码器将计数器的输出转换为对应的显示信号,显示器则将译码器的信号转换为数字显示。

三、实验仪器与材料1. 数字逻辑实验箱2. 计数器芯片(如74LS90、74LS161等)3. 译码器芯片(如74LS48、CD4511等)4. 显示器(如七段数码管)5. 电源、导线、连接器等四、实验步骤1. 搭建计数器电路(1)根据实验要求选择合适的计数器芯片,如74LS90。

(2)按照计数器芯片的引脚功能,将计数器的输入端、输出端和时钟信号分别连接到实验箱的相应接口。

(3)检查电路连接是否正确,确保无短路或接触不良现象。

2. 搭建译码器电路(1)根据实验要求选择合适的译码器芯片,如74LS48。

(2)将译码器的输入端连接到计数器的输出端。

(3)将译码器的输出端连接到显示器的输入端。

(4)检查电路连接是否正确,确保无短路或接触不良现象。

3. 搭建显示器电路(1)将显示器的各个段分别连接到译码器的输出端。

(2)检查电路连接是否正确,确保无短路或接触不良现象。

4. 电源连接(1)将实验箱的电源连接到计数器、译码器和显示器的电源接口。

(2)确保电源电压符合实验要求。

5. 电路调试(1)打开实验箱电源,观察显示器是否正常显示数字。

(2)通过实验箱的按键或开关控制计数器的计数方向和速度。

(3)观察显示器显示的数字是否与计数器的计数值一致。

数字电路实验的实验报告(3篇)

数字电路实验的实验报告(3篇)

第1篇一、实验目的1. 理解和掌握数字电路的基本原理和组成。

2. 熟悉数字电路实验设备和仪器的基本操作。

3. 培养实际动手能力和解决问题的能力。

4. 提高对数字电路设计和调试的实践能力。

二、实验器材1. 数字电路实验箱一台2. 74LS00若干3. 74LS74若干4. 74LS138若干5. 74LS20若干6. 74LS32若干7. 电阻、电容、二极管等元器件若干8. 万用表、示波器等实验仪器三、实验内容1. 基本门电路实验(1)验证与非门、或非门、异或门等基本逻辑门的功能。

(2)设计简单的组合逻辑电路,如全加器、译码器等。

2. 触发器实验(1)验证D触发器、JK触发器、T触发器等基本触发器的功能。

(2)设计简单的时序逻辑电路,如计数器、分频器等。

3. 组合逻辑电路实验(1)设计一个简单的组合逻辑电路,如4位二进制加法器。

(2)分析电路的输入输出关系,验证电路的正确性。

4. 时序逻辑电路实验(1)设计一个简单的时序逻辑电路,如3位二进制计数器。

(2)分析电路的输入输出关系,验证电路的正确性。

5. 数字电路仿真实验(1)利用Multisim等仿真软件,设计并仿真上述实验电路。

(2)对比实际实验结果和仿真结果,分析误差原因。

四、实验步骤1. 实验前准备(1)熟悉实验内容和要求。

(2)了解实验器材的性能和操作方法。

(3)准备好实验报告所需的表格和图纸。

2. 基本门电路实验(1)搭建与非门、或非门、异或门等基本逻辑电路。

(2)使用万用表测试电路的输入输出关系,验证电路的功能。

(3)记录实验数据,分析实验结果。

3. 触发器实验(1)搭建D触发器、JK触发器、T触发器等基本触发电路。

(2)使用示波器观察触发器的输出波形,验证电路的功能。

(3)记录实验数据,分析实验结果。

4. 组合逻辑电路实验(1)设计4位二进制加法器电路。

(2)搭建电路,使用万用表测试电路的输入输出关系,验证电路的正确性。

(3)记录实验数据,分析实验结果。

计数器及其应用实验报告实验总结

计数器及其应用实验报告实验总结

计数器及其应用实验报告实验总结下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言计数器作为数字电路中常见的元件,在数字电子技术中有着广泛的应用。

数字电路技术实验之计数器

数字电路技术实验之计数器

实验七计数器一、实验目的1. 熟悉中规模集成计数器的逻辑功能及使用方法。

2. 掌握用中规模集成计数器构成任意进制计数器的方法。

3. 学习用集成触发器构成计数器的方法。

二、实验原理计数器是一个用以实现计数功能的时序部件,它不仅可以用来对脉冲计数,还常用作数字系统的定时、分频和执行数字运算以及其他特定的逻辑功能。

计数器是由基本的计数单元和一些控制门所组成,计数单元则由一系列具有存储信息功能的各类触发器构成,这些触发器有RS触发器、T触发器、D触发器及JK触发器等。

计数器在数字系统中应用广泛,如在电子计算机的控制器中对指令地址进行计数,以便顺序取出下一条指令,在运算器中作乘法、除法运算时记下加法、减法次数,又如在数字仪器中对脉冲的计数等等。

计数器种类很多,按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器;根据计数进制的不同,分为二进制计数器、十进制计数器和任意进制计数器;根据计数的增减趋势,又分为加法、减法和可逆计数器;如按预置和清除方式来分,则有并行预置、直接预置、异步清除和同步清除等;按权码来分,则有“8421”码,“5421”码、余“3”码等计数器及可编程序功能计数器等等。

目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数电路。

使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。

1.十进制计数器74LS90(二、五分频)74LS90是模二-五-十异步计数器。

具有计数、清除、置9功能。

74LS90包含M=2和M=5两个独立的下降沿触发计数器,清除端和置9端两计数器公用,没有预置端。

模2计数器的时钟输入端为A(CP1),输出端为Q A;模5计数器的时钟输入端为B(CP2)。

输出端由高位到低位为Q D、Q C、Q B;异步置9端为S91和S92,高电平有效。

即只要S91·S92=1,则输出Q D Q C Q B Q A为1001;异步清除端为R01和R02,当R01·R02=1,且S91·S92=0时,输出Q D Q C Q B Q A=0000;只有R01·R02=0,S91·S92=0,即两者全无效时,74LS90才能执行计数操作。

实验五 计数器的设计——实验报告

实验五 计数器的设计——实验报告

实验五计数器的设计——实验报告一、实验目的本次实验的主要目的是设计并实现一个计数器,通过实际操作深入理解计数器的工作原理和逻辑电路的设计方法,提高对数字电路的分析和设计能力。

二、实验原理计数器是一种能够对输入脉冲进行计数的数字电路。

它可以按照不同的计数方式,如加法计数、减法计数或可逆计数,来记录脉冲的个数。

在本次实验中,我们采用的是基于数字逻辑芯片的设计方法。

通过组合逻辑门(如与门、或门、非门等)和时序逻辑元件(如触发器)来构建计数器的电路。

常见的计数器类型有二进制计数器、十进制计数器等。

二进制计数器每输入一个脉冲,计数值就增加 1,当计数值达到最大值(如 4 位二进制计数器的最大值为 15)时,再输入一个脉冲就会回到 0 重新开始计数。

十进制计数器则是按照十进制的规律进行计数。

三、实验设备与材料1、数字电路实验箱2、 74LS161 计数器芯片3、 74LS00 与非门芯片4、 74LS04 非门芯片5、导线若干四、实验内容与步骤1、设计一个 4 位二进制加法计数器首先,将 74LS161 芯片插入实验箱的插槽中。

按照芯片的引脚功能,将时钟脉冲输入端(CLK)连接到实验箱的脉冲源,将清零端(CLR)和置数端(LD)连接到高电平,使计数器处于正常计数状态。

将计数器的输出端(Q3、Q2、Q1、Q0)连接到实验箱的指示灯,以便观察计数结果。

打开脉冲源,观察指示灯的变化,验证计数器是否正常进行加法计数。

2、设计一个 4 位十进制加法计数器在上述 4 位二进制加法计数器的基础上,通过使用与非门和非门等芯片对输出进行译码,将二进制计数值转换为十进制。

具体来说,当二进制计数值达到 1001(即十进制的 9)时,产生一个进位信号,将计数器清零,从而实现十进制计数。

3、设计一个可逆计数器(可加可减)为了实现可逆计数,需要增加一个控制端(U/D)来决定计数器是进行加法计数还是减法计数。

当 U/D 为高电平时,计数器进行加法计数;当 U/D 为低电平时,计数器进行减法计数。

数电实验7——计数器. 报告docx

数电实验7——计数器. 报告docx

深圳大学实验报告课程名称:数字电子技术实验项目名称:计数器学院:光电工程学院专业:光源与照明指导教师:**报告人:黄学号:2016 班级:实验时间:2018年12月19日实验报告提交时间:教务处制三、实验原理:计数器器件是应用较广的器件之一,它有很多型号,各自完成不同的功能,可根据不同的需要选用。

本实验选用74LS162做实验器件。

74LS162引脚图见图1。

74LS162是十进制BCD同步计数器。

Clock是时钟输入端,上升沿触发计数触发器翻转。

允许端P和T都为高电平时允许计数,允许端T为低时禁止Carry产生。

同步预置端Load加低电平时,在下一个时钟的上升沿将计数器置为预置数据端的值。

清除端Clear为同步清除,低电平有效,在下一个时钟的上升沿将计数器复位为0。

74LS162的进位位Carry在计数值等于9时,进位位Carry为高,脉宽是1个时钟周期,可用于级联。

四、实验内容与步骤:(一)实验内容:1、用1片74LS162和1片74LS00采用复位法构一个模7计数器。

用单脉冲做计数时钟,观测计数状态,并记录。

用连续脉冲做计数时钟,观测并记录Q D,Q C,Q B,Q A的波形。

2、用1片74LS162和1片74LS00采用置位法构一个模7计数器。

用单脉冲做计数时钟,观测并记录Q D,Q C,Q B,Q A的波形。

3、用2片74LS162和1片74LS00构成一个模60计数器。

2片74LS162的Q D,Q C,Q B,Q A分别接两个译码显示的D,B,C,A端。

用单脉冲做计数时钟,观测数码管数字的变化,检验设计和接线是否正确。

(二)实验接线及测试结果:1、复位法构成的模7计数器接线图及测试结果(1)复位法构成的模7计数器接线图图9.1 复位法7进制计数器接线图1 图9.2 复位法7进制计数器接线图2 图中,AK1是按单脉冲按钮,LED0,LED1,LED2和LED3是逻辑状态指示灯,100kHz 是连续脉冲源。

eda实验报告计数器

eda实验报告计数器

eda实验报告计数器EDA实验报告-计数器引言:计数器是数字电路中常用的基本模块之一,它在各个领域都有着广泛的应用。

本实验旨在通过EDA(电子设计自动化)软件进行计数器的设计与仿真,探索计数器的原理和功能。

一、计数器的基本原理计数器是一种能够按照规定的顺序改变其输出状态的电子电路。

它通过内部的触发器和逻辑门实现数字信号的计数功能。

常见的计数器有二进制计数器、十进制计数器等。

二、实验设计与仿真1. 实验目标本次实验的目标是设计一个4位二进制计数器,并通过EDA软件进行仿真验证。

计数器的功能是在每个时钟脉冲到来时,输出的二进制数加1。

2. 设计思路计数器的设计需要考虑以下几个方面:- 选择适当的触发器:本实验选择了D触发器作为计数器的基本单元,因为D触发器具有简单、易于控制的特点。

- 确定计数器的位数:本实验设计了一个4位计数器,即可以表示0~15的二进制数。

- 连接逻辑门:通过逻辑门将各个触发器连接起来,实现计数器的功能。

3. 电路设计根据设计思路,我们使用EDA软件进行电路设计。

首先,将4个D触发器连接起来,形成4位计数器。

然后,根据计数器的功能要求,将时钟信号连接到每个触发器的时钟输入端。

最后,将各个触发器的输出通过逻辑门进行连接,得到计数器的输出。

4. 仿真验证完成电路设计后,我们使用EDA软件进行仿真验证。

通过输入不同的时钟信号,观察计数器的输出是否符合预期。

在仿真过程中,我们可以调整时钟信号的频率,观察计数器的计数速度。

三、实验结果与分析通过EDA软件的仿真,我们得到了计数器的输出结果。

在时钟信号的作用下,计数器按照预期进行了计数,并输出了相应的二进制数。

通过观察输出结果,我们可以得出以下几点结论:- 计数器的输出与时钟信号的频率有关,频率越高,计数速度越快。

- 计数器的输出按照二进制的顺序进行计数,当达到最大值时,会从0重新开始计数。

四、实验总结本次实验通过EDA软件进行了计数器的设计与仿真。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
VCC A CR QCB QCC LD C
D
16 15 14 13 12 11 10 9 74LS193 1 2 3 4 5 6 7 8
秒脉 冲
B
QB QA CPd CPu QC QD GND
接地
2012-12-1
状态显示
思考题
1.同步计数器与异步计数器有何区
别,试结合本实验加以说明? 2.计数器与分频器有何区别? 3 . 74LS193 为可逆计数器,完成加 减计数时有何差别?
计数器
电子实验室
2012-12-1
实验目的
掌握同步计数器集成芯片的功能和 使用方法。 掌握用集成计数器实现任意模数计 数器。
1
2012-12-1
实验内容
用十六进制计数器74LS193设计六进制 加计数器(清零法) 用十六进制计数器74LS193设计五进制 减计数器(置位法)

2
2012-12-1
2012-12-1
实验器件
74LS193、 74LS00
3
2012-12-1
74LS193
VCC A CL QCB QCC LD C D
16
15
14
13
12
11
10
9
1
2
3
4பைடு நூலகம்
5
6
7
8
B
2012-12-1
QB
QA CPd CPu QC QD GND
实验原理图
0000 0001 0010
CP D V CC Q
A
QB
QC
QD &
0011 0100
H LD
CR
4LS193
CP U
A B C D
GND
计数脉冲
0101 0110
2012-12-1
实验接线图
VCC A4 B4 Y4 A3 B3 Y3
+5V
14 13 12 11 10 9 8 74LS00 1 2 3 4 5 6 7 A1 B1 Y1 A2 B2 Y2 GND
相关文档
最新文档