建系用坐标法,解一道平面向量填空题,第一个方法非常好
2025届福建省龙岩市连城县第一中学高考冲刺数学模拟试题含解析
2025届福建省龙岩市连城县第一中学高考冲刺数学模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知x ,y R ∈,则“x y <”是“1x y <”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.已知全集U =R ,集合{}{}237,7100A x x B x x x =≤<=-+<,则()U A B ⋂=( ) A .()(),35,-∞+∞ B .(](),35,-∞+∞ C .(][),35,-∞+∞ D .()[),35,-∞+∞ 3.双曲线的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r 等于( ) A .B .2C .3D .6 4.已知12log 13a =131412,13b ⎛⎫= ⎪⎝⎭,13log 14c =,则,,a b c 的大小关系为( ) A .a b c >> B .c a b >> C .b c a >> D .a c b >>5.记递增数列{}n a 的前n 项和为n S .若11a =,99a =,且对{}n a 中的任意两项i a 与j a (19i j ≤<≤),其和i j a a +,或其积i j a a ,或其商j i a a 仍是该数列中的项,则( ) A .593,36a S ><B .593,36a S >>C .693,36a S >>D .693,36a S >< 6.已知整数,x y 满足2210x y +≤,记点M 的坐标为(,)x y ,则点M 满足5x y +≥) A .935 B .635 C .537 D .7377.已知平行于x 轴的直线分别交曲线2ln 21,21(0)y x y x y =+=-≥于,A B 两点,则4AB 的最小值为( ) A .5ln 2+B .5ln 2-C .3ln 2+D .3ln 2- 8.若集合{}2|0,|121x A x B x x x +⎧⎫=≤=-<<⎨⎬-⎩⎭,则A B =( ) A .[2,2)- B .(]1,1- C .()11-, D .()12-, 9.设a ,b 是非零向量,若对于任意的R λ∈,都有a b a b λ-≤-成立,则A .//a bB .a b ⊥C .()-⊥a b aD .()-⊥a b b 10.已知函22()(sin cos )2cos f x x x x =++,,44x ππ⎡⎤∈-⎢⎥⎣⎦,则()f x 的最小值为( )A .2B .1C .0D .11.单位正方体ABCD -1111D C B A ,黑、白两蚂蚁从点A 出发沿棱向前爬行,每走完一条棱称为“走完一段”.白蚂蚁爬地的路线是AA 1→A 1D 1→‥,黑蚂蚁爬行的路线是AB →BB 1→‥,它们都遵循如下规则:所爬行的第i +2段与第i 段所在直线必须是异面直线(i ∈N *).设白、黑蚂蚁都走完2020段后各自停止在正方体的某个顶点处,这时黑、白两蚂蚁的距离是( )A .1BCD .012.已知复数z 满足()125z i ⋅+=(i 为虚数单位),则在复平面内复数z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题:本题共4小题,每小题5分,共20分。
高一数学平面向量坐标运算试题答案及解析
高一数学平面向量坐标运算试题答案及解析1.已知,且∥,则()A.-3B.C.0D.【答案】B【解析】由已知,且∥得:,故选B.【考点】向量平行的充要条件.2.设向量,,若向量与向量共线,则= .【答案】-3【解析】由题知=(,),由向量与向量共线得,()(-3)-( )(-1)=0,解得,=-3.考点:向量的坐标运算;向量共线的充要条件3.已知点,,向量,若,则实数的值为.【答案】4【解析】由题知,=(2,3),由向量共线的充要条件及得,,解得=4考点:点坐标与向量坐标关系;向量平行的条件4.已知平面向量=(2,-1),=(1,1),=(-5,1),若∥,则实数k的值为()A.2B.C.D.【答案】B【解析】∵=(2,-1),=(1,1),∴=(2,−1)+k(1,1)=(2+k,k−1),又=(-5,1),且∥,,∴1×(2+k)-(-5)×(k-1)=0,解得:k=.故选:B.【考点】平面向量共线(平行)的坐标表示.5.已知向量,若向量则( ).A.B.2C.8D.【答案】B【解析】.【考点】平面向量平行的坐标表示.6.已知向量.(1)求的值;(2)若,且,求的值.【答案】(1);(2).【解析】(1)由向量的坐标运算及向量模的定义易表示出,,再由求得的值;(2)首先由同角的三角函数关系求出,再由得的值,最后合理的拆分角及和角公式得即可求得结果.试题解析:(1)(2)【考点】向量的坐标运算及向量模的定义;同角的三角函数关系;三角函数的和、差角公式.7.已知向量,且,则.【答案】.【解析】∵,∴,,又∵,∴.【考点】1.平面向量的坐标运算;2.平面向量共线的坐标表示.8.已知,且∥,则()A.-3B.C.0D.【答案】【解析】根据∥有,可知,得.【考点】向量共线.9.已知向量,,,且、、三点共线,则=_________.【答案】【解析】∵A,B,C三点共线,∴,又∵,,∴,解得.【考点】向量共线的坐标表示.10.已知三点A(1,1)、B(-1,0)、C(3,-1),则等于()A.-2B.-6C.2D.3【答案】A【解析】解:∵A(1,1)、B(-1,0)、C(3,-1),∴=(-2,-1),=(2,-2)∴=(-2)•2+(-1)•(-2)=-2,故选A.【考点】数量积的坐标表达式.11.若,点的坐标为,则点的坐标为.【答案】【解析】设,则有,所以,解得,所以.【考点】平面向量的坐标运算.12.已知,,则.【答案】【解析】根据向量的减法等于横坐标、纵坐标分别对应相减,得到.向量的加减及数乘类似实数运算,一般不会出错,只需注意对应即可.【考点】向量的减法运算13.已知向量()A.(8,1)B.C.D.【答案】B【解析】【考点】向量的坐标运算点评:若,14.设向量满足及,(Ⅰ)求夹角的大小;(Ⅱ)求的值.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)设与夹角为,,而,∴,即又,∴所成与夹角为.(Ⅱ)∵所以.【考点】向量的夹角向量的模点评:本题是一个考查数量积的应用问题,在解题时注意启发学生在理解数量积的运算特点的基础上,把握向量的几何表示,注意数量积性质的相关问题15.设,向量且,则( )A.B.C.2D.10【答案】B【解析】【考点】向量的坐标运算及向量位置关系点评:若则,16.已知点和向量,若,则点的坐标为________.【答案】【解析】设【考点】向量的坐标运算点评:若则,两向量相等,则其横纵坐标对应相等17.已知=(1,2),=(-2,k),若∥(+),则实数的值为.【答案】-4【解析】因为=(1,2),=(-2,k),所以+=(-1,2+k),因为∥(+),所以1×(2+k)+2=0,解得,k=-4.【考点】平面向量的加法运算;平面向量平行的条件。
必修四平面向量的坐标运算(附答案)
平面向量的坐标运算[学习目标] 1。
了解平面向量的正交分解,掌握向量的坐标表示.2.掌握两个向量和、差及数乘向量的坐标运算法则.3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来.知识点一 平面向量的坐标表示(1)向量的正交分解:把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. (2)向量的坐标表示:在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,对于平面内的一个向量a ,有且只有一对实数x ,y 使得a =x i +y j ,则有序数对(x ,y )叫做向量a 的坐标,a =(x ,y )叫做向量的坐标表示.(3)向量坐标的求法:在平面直角坐标系中,若A (x ,y ),则错误!=(x ,y ),若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1).思考 根据下图写出向量a ,b ,c ,d 的坐标,其中每个小正方形的边长是1。
答案 a =(2,3),b =(-2,3),c =(-3,-2),d =(3,-3).知识点二 平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),即两个向量和的坐标等于这两个向量相应坐标的和.(2)若a=(x1,y1),b=(x2,y2),则a-b=(x1-x2,y1-y2),即两个向量差的坐标等于这两个向量相应坐标的差.(3)若a=(x,y),λ∈R,则λa=(λx,λy),即实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.(4)已知向量错误!的起点A(x1,y1),终点B(x2,y2),则错误!=(x2-x1,y2-y1).思考已知a=错误!,b=错误!,c=错误!,如下图所示,写出a,b,c的坐标,并在直角坐标系内作出向量a+b,a-b以及a-3c,然后写出它们的坐标.答案易知:a=(4,1),b=(-5,3),c=(1,1),错误!=a+b=(-1,4),错误!=a-b=(9,-2),错误!=a-3c=(1,-2).题型一平面向量的坐标表示例1已知边长为2的正三角形ABC,顶点A在坐标原点,AB边在x轴上,C在第一象限,D 为AC的中点,分别求向量错误!,错误!,错误!,错误!的坐标.解 如图,正三角形ABC 的边长为2,则顶点A (0,0),B (2,0),C (2cos60°,2sin 60°),∴C (1,错误!),D (错误!,错误!),∴错误!=(2,0),错误!=(1,错误!),错误!=(1-2,错误!-0)=(-1,错误!),错误!=(错误!-2,错误!-0)=(-错误!,错误!).跟踪训练1 在例1的基础上,若E 为AB 的中点,G 为三角形的重心时,如何求向量错误!,错误!,错误!,错误!的坐标?解 由于B (2,0),E (1,0),C (1,错误!),D (错误!,错误!),G (1,错误!),所以CE →=(1-1,0-错误!)=(0,-错误!),错误!=(1,错误!),错误!=(1-2,错误!-0)=(-1,错误!),错误!=(错误!-1,错误!-错误!)=(-错误!,错误!).题型二 平面向量的坐标运算例2 已知平面上三点A (2,-4),B (0,6),C (-8,10),求(1)错误!-错误!;(2)错误!+2错误!;(3)错误!-错误!错误!。
高一数学平面向量坐标运算试题答案及解析
高一数学平面向量坐标运算试题答案及解析1.已知向量=(8,x),=(x,1),x>0,若﹣2与2+共线,则x的值为()A.4B.8C.0D.2【答案】A【解析】由题意得,﹣2=(8,x) 2(x,1)="(8" 2x , x 2) ,2+=2(8,x)+ (x,1)=(16+x,x+1),又﹣2与2+共线,∴(8 2x)(x+1)(x 2)(16+x)=0,解得.故选A.【考点】平面向量的坐标运算.2.已知,且∥,则()A.-3B.C.0D.【答案】B【解析】由已知,且∥得:,故选B.【考点】向量平行的充要条件.3.已知,,且,则点的坐标为.【答案】(4,-3)【解析】设C,所以=,=,由=-2,所以,解得=4,=-3,故C(4,-3).【考点】点坐标与向量坐标关系;向量相等的充要条件4.已知为锐角的三个内角,向量与共线.(1)求角的大小;(2)求角的取值范围(3)求函数的值域.【答案】(1);(2);(3)(,2]【解析】(1)由向量平行的坐标形式及可列出关于角A的正弦的方程,求出,结合A为锐角,求出A角;(2)由(1)知A的值,从而求出B+C的值,将C用B表示出来,结合B、C都是锐角,列出关于B的不等式组,从而求出B的范围;(3)将函数式中C用B表示出来,化为B的函数,用降幂公式及辅助角公式化为一个角的三角函数,按照复合函数求值域的方法,结合(2)中B角的范围,求出内函数的值域,作为中间函数的定义域,利用三角函数图像求出中间函数的值域,作为外函数的定义域,再利用外函数的性质求出外函数的值域即为所求函数的值域.试题解析:(1)由题设知:得即由△ABC是锐角三角形知: 4分(2)由(1)及题设知:即得∴ 8分(3)由(1)及题设知:, 10分由(2)知:∴ 12分∴因此函数y=2sin2B+cos的值域为(,2] 14分(其他写法参照给分)【考点】向量平行的充要条件;已知函数值求角;不等式性质;三角变换;三角函数在某个区间上的值域5.设的夹角为钝角,则的取值范围是 .【答案】或。
平面向量问题的坐标解法
平面向量问题的坐标解法梁关化,2015,12,25平面向量的知识,在高考中,常用选择题或填空题进行考查,有时也在解答题的三角题或解几题综合考查。
其中运算是考查的重点,偶尔也涉及概念。
运算分几何运算和坐标运算。
有的试题已知的向量给出坐标,而有的则不给。
一般说来,给出坐标的题比较容易,而不给出坐标的相对难些,因为综合运算能力和转化能力要求较高。
如果觉得几何解法不容易,可以试用坐标解法。
坐标解法的主要步骤是:1)建立适当的坐标系;2)设出有关点的坐标并计算出有关向量的坐标;3)有目的地进行计算进而完成题目的解答。
下面看例题。
例1)(2014年江苏卷12题)如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,PD CP 3=,2=⋅BP AP ,则AD AB ⋅的值是▲ .答案:22解:(坐标解法)建立直角坐标系如下。
设A (0,0),B (8,0),D (x,y )。
则由已知得P (x+2,y ) 2222(2,),(6,)24122(1)525(2)AP x y BP x y AP BP x y x AD x y =+=-∙=⇒+--==⇒+=由(1)和(2)得(第12题)114x y ⎧=⎪⎪⎨⎪=⎪⎩11(41180224AD AD AB ∴=∙=⨯+= 例2)(2015年天津卷文科13.题) 在等腰梯形ABCD 中,已知A B D C ,2,1,60,AB BC ABC ==∠= 点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC == 则AE AF ⋅ 的值为 . 答案:2918解:(坐标解法)建立直角坐标系如下。
设A (0,0)B (2,0)由已知得C 31((22D,52((33E F 52293318AE AF ∴∙=⨯=。
解答平面向量数量积问题的三种途径
思路探寻2考点透视= OA ∙ AB + CA2= OA ∙()AO + OB + CA 2= CA 2- OA 2+ OA ∙ OB = CA 2- OA 2= CA 2-1,当CA =2时, OC ∙ AB + CA ∙CB 取得最大值为3.首先根据三角形和外接圆的特点选择 OA 、OB 作为基底,并结合已知条件求出基底 OA 、OB 的数量积;然后用基底 OA 、 OB 表示出 OC 、 AB 、 CA 、CB,并根据向量的数量积公式求解.图3图4例3.如图4,在等腰直角△ABC 中,AC =2,点M 为线段AB 上的动点(包含端点),点D 为AC 的中点,将AC 绕点D 旋转到EF ,则 ME ∙MF 的最小值为_____.解:连接MD ,则 ME ∙ MF =() MD + DE ∙()MD + ED =||MD 2-|| DE 2,当MD ⊥AB 时,MD 最小,即||MDmin=,由|| DE 2=1,可得 ME ∙ MF 最小值为-12.解答本题,需以 MD 、DE 为基底,并用基底表示出平面向量 ME 、MF ,将问题转化为求|| MD min.再结合图形的特点,确定|| MD 取最小值时的情形,即可解题.三、利用投影法运用投影法求解平面向量数量积问题,需根据平面向量数量积的几何意义,构造出相应的几何图形,通过研究几何图形中的垂直、平行等关系,确定向量投影之间的关系,从而求得平面向量的数量积.运用投影法解题,需熟练掌握并运用向量数量积的几何意义、模长公式、余弦函数的性质.例4.若在菱形ABCD 中,AC =4,则 CA ∙AB =______.解:如图5所示,连接BD 交AC 于点O ,∵四边形ABCD 是菱形,∴2AO =AC =4,且AC ⊥BO ,∴||AB cos ∠CAB =AO =2,∴CA ∙ AB =-|| AC ∙|| AB cos ∠CAB =-8.根据题意画出图形,通过观察图形,可以确定AB在CA 方向上的投影即为|| A O ,于是连接BD ,根据菱形的性质:对角线互相垂直,构造出直角三角形,即可通过解直角三角形求出投影||A O 的长度,从而利用射影法求得 CA ∙AB 数量积的大小.图5图6例5.在△ABC 中,∠ABC =π3,点O 是△ABC 的外心, BA ∙ BO =2, BC ∙ BO =4,则 BA ∙ BC =______.解:如图6所示,设AB ,BC 中点分别为D ,E ,连接OD ,OE ,则OD ⊥AB ,OE ⊥BC ,由 BA ∙BO =2,可得|| BA ∙|| BO cos ∠OBD =12||BA ∙|| BA =2,故||BA =2,由 BC ∙BO =4,可得|| BC ∙|| BO cos ∠OBE =12|| BC ∙|| BC =4,故||BC =22,所以 BA ∙ BC =|| BA ∙||BC cos ∠ABC =22.要求 BA 、 BC 的数量积,需求出向量 BA 、BC 的模长,于是根据 BO 及其在 BA 、BC 上的投影关系,分别求得|| BA 、||BC 的大小,就能根据射影法顺利求出目标向量数量积的大小.相比较而言,坐标法比较常用,且解题过程较为简单;射影法比较灵活,但通常很难想到.无论运用哪种方法,都需熟练掌握并运用平面向量的数量积公式及其几何意义、向量运算法则及其几何意义,根据已知条件和解题需求,选用合适的方法进行求解.(作者单位:江苏省泗洪姜堰高级中学)50。
掌握高中数学中的向量与坐标解题技巧
掌握高中数学中的向量与坐标解题技巧在高中数学中,向量与坐标是常见的解题工具,它们在几何、代数和物理等各个领域中都有广泛的应用。
掌握好向量与坐标解题技巧,不仅可以提高解题的效率,还可以拓展数学思维,培养逻辑推理和问题解决的能力。
本文将介绍一些常见的向量与坐标解题技巧,并通过例题进行说明。
一、向量解题技巧1. 向量的相加与相减:向量的相加与相减是基本的运算,常用于几何和代数问题的求解。
求解过程中需要注意向量的方向和大小,通常使用向量的坐标表示。
2. 向量的数量积:向量的数量积是两个向量间的乘法运算,计算结果是一个标量。
它可以用于求向量的模、两向量夹角的余弦及向量的投影等问题,也常用于解决几何和物理中的力学问题。
3. 向量的叉积:向量的叉积是两个向量间的乘法运算,计算结果是一个新的向量。
它可以用于求向量的方向、面积和体积等问题,常见于几何和物理中的空间解析几何和电磁学等领域。
二、坐标解题技巧1. 坐标系的建立:在解题过程中,需要根据具体问题建立合适的坐标系。
常见的坐标系有直角坐标系、极坐标系和参数方程等,需要根据题意选择适当的坐标系。
2. 坐标的转换与代入:考虑到问题的特殊性,可能需要进行坐标的转换以简化计算。
在解题过程中,可以根据需要将题目中给出的条件和已知信息代入到坐标中,进而得出结论。
3. 坐标方程的建立和求解:对于问题所给出的条件,可以建立相应的坐标方程来求解。
通过方程求解,可以得到问题的答案或者进一步化简问题。
三、例题分析例题1:已知三角形ABC的顶点坐标分别为A(1, 2),B(4, 3),C(2, -1),求三角形ABC的面积。
解析:根据三角形面积的计算公式,可以利用向量的叉积来求解。
向量AB可以表示为(4-1, 3-2) = (3, 1),向量AC可以表示为(2-1, -1-2) = (1, -3)。
计算向量AB和向量AC的叉积,得到:|AB x AC| = |(3, 1) x (1, -3)| = |(3*(-3) - 1*1, 3*1 - 3*1)| = |(-10, 0)| = 10三角形ABC的面积为10平方单位。
高考理科第一轮复习练习(7.8用向量讨论垂直与平行)
课时提升作业(四十九)一、选择题1.平面α的一个法向量为n=(1,2,0),平面β的一个法向量为m=(2,-1,0),则平面α和平面β的位置关系是( )(A)平行(B)相交但不垂直(C)垂直(D)重合2.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k),若α∥β,则k等于( )(A)2 (B)-4 (C)4 (D)-23.若直线l⊥平面α,直线l的方向向量为s,平面α的法向量为n,则下列结论正确的是( )(A)s=(1,0,1),n=(1,0,-1)(B)s=(1,1,1),n=(1,1,-2)(C)s=(2,1,1),n=(-4,-2,-2)(D)s=(1,3,1),n=(2,0,-1)4.直线l的方向向量为s=(-1,1,1),平面π的法向量为n=(2,x2+x,-x),若直线l∥平面π,则x的值为( )(A)-2 (B)-错误!未找到引用源。
(C)错误!未找到引用源。
(D)±错误!未找到引用源。
5.已知A(1,0,0),B(0,1,0),C(0,0,1),则平面ABC的一个单位法向量是( )(A)(错误!未找到引用源。
,错误!未找到引用源。
,-错误!未找到引用源。
)(B)(错误!未找到引用源。
,-错误!未找到引用源。
,错误!未找到引用源。
)(C)(-错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
)(D)(-错误!未找到引用源。
,-错误!未找到引用源。
,-错误!未找到引用源。
)6.已知非零向量a,b及平面α,若向量a是平面α的法向量,则a²b=0是向量b所在直线平行于平面α或在平面α内的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件7.已知错误!未找到引用源。
=(1,5,-2),错误!未找到引用源。
=(3,1,z),若错误!未找到引用源。
⊥错误!未找到引用源。
,错误!未找到引用源。
=(x-1,y,-3),且BP⊥平面ABC,则实数x,y,z分别为( ) (A)错误!未找到引用源。
专题2.3 平面向量中范围、最值等综合问题 高考数学选填题压轴题突破讲义(解析版)
一.方法综述平面向量中的最值与范围问题是一种典型的能力考查题,能有效地考查学生的思维品质和学习潜能,能综合考察学生分析问题和解决问题的能力,体现了高考在知识点交汇处命题的思想,是高考的热点,也是难点,其基本题型是根据已知条件求某个变量的范围、最值,比如向量的模、数量积、向量夹角、系数的范围的等,解决思路是建立目标函数的函数解析式,转化为求函数(二次函数、三角函数)的最值或应用基本不等式,同时向量兼顾“数”与“形”的双重身份,所以解决平面向量的范围、最值问题的另外一种思路是数形结合,应用图形的几何性质.二.解题策略类型一与向量的模有关的最值问题【例1】【安徽省黄山市2019届高三一模】如图,在中,,,为上一点,且满足,若的面积为,则的最小值为()A.B.C.D.【答案】B【解析】设,,则三角形的面积为,解得,由,且C,P,D三点共线,可知,即,故.以所在直线为轴,以点为坐标原点,过点作的垂线为轴,建立如图所示的坐标系,则,,,,则,,,则(当且仅当即时取“=”).故的最小值为.【指点迷津】三点共线的一个向量性质:已知O、A、B、C是平面内的四点,则A、B、C三点共线的充要条件是存在一对实数、,使,且.【举一反三】1、【宁夏六盘山高级中学2019届高三下学期二模】如图,矩形中边的长为,边的长为,矩形位于第一象限,且顶点分别位于轴、轴的正半轴上(含原点)滑动,则的最大值为()A.B.C.D.【答案】B【解析】如图,设,则因为所以则所以的最大值为所以选B2、【浙江省湖州三校2019年高考模拟】已知向量,的夹角为,且,则的最小值为()A.B.C.5 D.【答案】B【解析】由题意可设,,因此表示直线上一动点到定点距离的和,因为关于直线的对称点为,所以选B.3、【四川省成都外国语学校2019届高三3月月考】在平面直角坐标系中,,若,则的最小值是()A.B.C.D.【答案】C【解析】由于,即,即,所以在以原点为圆心,半径为的圆上.得到三点共线.画出图像如下图所示,由图可知,的最小值等于圆心到直线的距离减去半径,直线的方程为,圆心到直线的距离为,故的最小值是,故选C.类型二与向量夹角有关的范围问题【例2】【四川省成都市实验外国语学校2019届高三10月月考】已知向量与的夹角为,,,,,在时取得最小值若,则夹角的取值范围是______.【答案】【解析】,,,在时取得最小值解可得:则夹角的取值范围本题正确结果:【指点迷津】求变量的取值范围、最值,往往要将目标函数用某个变量表示,转化为求函数的最值问题,期间要注意变量之间的关系,进而得解. 【举一反三】1、非零向量b a ,满足b a2=22b a,2|||| b a,则b a 与的夹角的最小值是 .【答案】3【解析】由题意得2212a b a b r r r r ,24a b r r ,整理得22422a b a b a b r r r r r r ,即1a b r11cos ,22a b a b a b a b r rr r r r r r ,,3a b r r ,夹角的最小值为3 .2、【上海市2019年1月春季高考】在椭圆上任意一点,与关于轴对称,若有,则与的夹角范围为____________【答案】【解析】 由题意:,设,,因为,则与结合,又与结合,消去,可得:所以本题正确结果:类型三 与向量投影有关的最值问题【例3】【辽宁省沈阳市郊联体2019届高三一模】若平面向量,满足||=|3|=2,则在方向上的投影的最大值为( ) A .B .C .D .【答案】A 【解析】 因为,所以,在方向上的投影为,其中为,的夹角.又,故.设,则有非负解,故, 故,故,故选A .【指点迷津】向量的数量积有两个应用:(1)计算长度或模长,通过用;(2)计算角,.特别地,两个非零向量垂直的充要条件是.另外,的几何意义就是向量在向量的投影与模的乘积,向量在向量的投影为.【举一反三】1、已知ABC 的外接圆的圆心为O ,半径为2,且0OA AB AC u u u v u u u v u u u v v ,则向量CA u u u v 在向量CB u u u v方向上的投影为( ) A. 3 B. 3 C. -3 D. 3 【答案】B本题选择B 选项.2、设1,2OA OB u uu v u u u v , 0OA OB u u u v u u u v , OP OA OB u u u v u u u v u u u v ,且1 ,则OA u u u v 在OP uuu v 上的投影的取值范围( ) A. 25-,15B.25,15C. 5,15D. 5-,15【答案】D当λ0 时, 0,x当222215λ8λ4482λ0521x λλλλ,故当λ1 时,1x 取得最小值为1,即1101x x, 当λ0 时, 222215844825215x,即15x 505x综上所述 5( ,1x故答案选D 类型四 与平面向量数量积有关的最值问题 【例4】【辽宁省鞍山市第一中学2019届高三一模】中,,,,且,则的最小值等于 A .B .C .D .【答案】C 【解析】 由题意知,向量,且,可得点D 在边BC 上,,所以,则,即,所以时以C 为直角的直角三角形.如图建立平面直角坐标系,设,则, 则,,当时,则最小,最小值为.故选:C .【指点迷津】平面向量数量积的求法有:①定义法;②坐标法;③转化法;其中坐标法是同学们最容易忽视的解题方法,要倍加注视,若有垂直或者容易出现垂直的背景可建立平面直角坐标系,利用坐标法求解.【举一反三】1、已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE DC u u u r u u u r的最大值为( )A. 1B. 12C. 3D. 2【答案】A2、【辽宁省鞍山市第一中学2019届高三一模】中,,,,且,则的最小值等于 A .B .C .D .【答案】C 【解析】 由题意知,向量,且,可得点D 在边BC 上,,所以,则,即,所以时以C 为直角的直角三角形.如图建立平面直角坐标系,设,则, 则,,当时,则最小,最小值为.故选:C .3、已知圆的半径为2,是圆上任意两点,且,是圆的一条直径,若点满足(),则的最小值为( )A. -1B. -2C. -3D. -4 【答案】C类型五 平面向量系数的取值范围问题【例5】在矩形ABCD 中, 12AB AD ,,动点P 在以点C 为圆心且与BD 相切的圆上,若AP AB AD u u u v u u u v u u u v,则 的最大值为( )A. 3B. 22C. 5D. 2【答案】A∴圆的方程为(x ﹣1)2+(y ﹣2)2=45, 设点P 25cosθ+1, 25), ∵AP AB AD u u u v u u u v u u u v,25, 25sinθ+2)=λ(1,0)+μ(0,2)=(λ,2μ), ∴55cosθ+1=λ, 55sinθ+2=2μ, ∴255(θ+φ)+2,其中tanφ=2, ∵﹣1≤sin (θ+φ)≤1, ∴1≤λ+μ≤3,故λ+μ的最大值为3, 故选:A【指点迷津】(1)向量的运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题;(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题; (3)向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题. 【举一反三】1、【云南省昆明市云南师范大学附属中学2019届高三上学期第四次月考】已知正方形ABCD 的边长为1,动点P 满足,若,则的最大值为A .B .C .D .【答案】C 【解析】解:以A 为原点建立如图所示的直角坐标系:则,,,,设, ,则由得,化简得:,又,,,,表示圆上的点到原点的距离得平方,其最大值等于圆心到原点的距离加半径的平方,即,故选:C .2.已知1,3,0OA OB OA OB u u u v u u u v u u u v u u u v ,点C 在AOB 内,且OC u u u v 与OA u u u v 的夹角为030,设,OC mOA nOB m n R u u u v u u u v u u u v ,则mn的值为( )A. 2B. 52C. 3D. 4【答案】C 【解析】如图所示,建立直角坐标系.由已知1,3,OA OB u u u v u u u v,,则10033OA OB OC mOA nOB m n u u u r u u u r u u u r u u u r u u u r(,),(,),(,), 33303n tan m, 3mn. 故选B3.【上海市金山区2019届高三二模】正方形ABCD 的边长为2,对角线AC 、BD 相交于点O ,动点P 满足,若,其中m 、n R ,则的最大值是________【答案】 【解析】建立如图所示的直角坐标系,则A (﹣1,﹣1),B (1,﹣1),D (﹣1,1),P (,),所以(1,sinθ+1),(2,0),(0,2),又,所以,则,其几何意义为过点E (﹣3,﹣2)与点P (sinθ,cosθ)的直线的斜率,设直线方程为y +2k (x +3),点P 的轨迹方程为x 2+y 2=1,由直线与圆的位置关系有:,解得:,即的最大值是1,故答案为:1类型六 平面向量与三角形四心的结合【例6】已知ABC 的三边垂直平分线交于点O , ,,a b c 分别为内角,,A B C 的对边,且 222c b b ,则AO BC u u u v u u u v的取值范围是__________.【答案】2,23【指点迷津】平面向量中有关范围最值问题的求解通常有两种思路:①“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;②“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.【举一反三】1、如图,为的外心,为钝角,是边的中点,则的值为()A. 4B.C.D.【答案】B2.已知点O 是锐角三角形ABC 的外心,若OC mOA nOB u u u v u u u v u u u v(m , n R ),则( )A. 2m nB. 21m nC. 1m nD. 10m n 【答案】C【解析】∵O 是锐角△ABC 的外心,∴O 在三角形内部,不妨设锐角△ABC 的外接圆的半径为1,又OC mOA nOB u u u v u u u v u u u v ,∴|OC u u u v |=| mOA nOB u u u v u u u v |,可得2OC u u u v =22m OA u u u v +22n OB u u u v +2mn OA u u u v ⋅OB uuu v ,而OA u u u v ⋅OB uuu v =|OA u u u v|⋅|OB uuu v |cos ∠A 0B <|OA u u u v |⋅|OB uuu v|=1.∴1=2m +2n +2mn OA u u u v ⋅OB uuu v<22m n +2mn ,∴m n <−1或m n >1,如果m n >1则O 在三角形外部,三角形不是锐角三角形, ∴m n <−1, 故选:C.3、在ABC 中, 3AB , 5AC ,若O 为ABC 外接圆的圆心(即满足OA OB OC ),则·AO BC u u u v u u u v的值为__________. 【答案】8【解析】设BC 的中点为D ,连结OD ,AD ,则OD BC u u u v u u u v,则:222212121538.2AO BC AD DO BC AD BCAB AC AC AB AC ABu u u v u u u v u u u v u u u v u u u v u u u v u u u v u u uv u u u v u u u v u u u v u u uv u u u v三.强化训练1.【宁夏平罗中学2019届高三上期中】已知数列是正项等差数列,在中,,若,则的最大值为()A.1 B.C. D.【答案】C【解析】解:∵,故三点共线,又∵,∴,数列是正项等差数列,故∴,解得:,故选:C.2.【山东省聊城市第一中学2019届高三上期中】已知M是△ABC内的一点,且,,若△MBC,△MCA和△MAB的面积分别为1,,,则的最小值是()A.2 B.8 C.6 D.3【答案】D【解析】∵,,∴,化为.∴.∴.则,而=5+4=9,当且仅当,即时取等号,故的最小值是9,故选:D.3.【贵州省凯里市第一中学2019届高三下学期模拟《黄金卷三》】已知是边长为的正三角形,且,,设函数,当函数的最大值为-2时,()A.B.C.D.【答案】D【解析】,因为是边长为的正三角形,且,所以又因,代入得所以当时,取得最大,最大值为所以,解得,舍去负根.故选D项.4.【辽宁省鞍山市第一中学2019届高三一模】已知平面向量,,满足,若,则的最小值为A.B.C.D.0【答案】B【解析】因为平面向量,,满足,,,,设,,,,所以的最小值为.故选:B.5.已知直线分别于半径为1的圆O相切于点若点在圆O的内部(不包括边界),则实数的取值范围是( )A. B. C. D.【答案】B6.【河南省南阳市第一中学2019届高三第十四次考试】已知是平面内两个互相垂直的单位向量,若向量满足,则的最大值是()A.1 B.2 C.D.【答案】C【解析】解:以所在直线建立平面直角坐标系,设,,,因为所以,即,故,令(为参数),所以,因为,所以,,故选C.7.【四川省成都市外国语学校2019届高三一诊】如图所示,在中,,点在线段上,设,,,则的最小值为()A.B.C.D.【答案】D【解析】解:.∵,,三点共线,∴.即.由图可知.∴.令,得,令得或(舍).当时,,当时,.∴当时, 取得最小值故选:D.8.【安徽省宣城市 2019 届高三第二次调研】在直角三角形中,边 的中线 上,则的最大值为( ).,,A.B.C.D.【答案】B 【解析】 解:以 A 为坐标原点,以 AB,AC 方向分别为 x 轴,y 轴正方向建立平面直角坐标系, 则 B(2,0),C(0,4),中点 D(1,2)设,所以,,在 斜时,最大值为 .故选:B. 二、填空题 9.在△ABC 中,角 A,B,C 所对的边分别为 a,b,c.若对任意 λ∈R,不等式则 的最大值为_____. 【答案】2【解析】由,两边平方得,,则则,又,则,即,由 ,从而,即,从而问题可得解.恒成立, ,,2110.【2019 年 3 月 2019 届高三第一次全国大联考】已知 的内角 所对的边分别为 ,向量,,且,若 ,则 面积的最大值为________.【答案】 【解析】由 ,得,整理得.由余弦定理得,因为,所以.又所以,,当且仅当 时等号成立,所以,即.故答案为: . 11.【四川省广元市 2019 届高三第二次高考适应】在等腰梯形 ABCD 中,已知,,,,动点 E 和 F 分别在线段 BC 和 DC 上,且,【答案】【解析】解:等腰梯形 ABCD 中,已知,,,,,,,,,则的最小值为______.,22, ,则当且仅当即 时有最小值故答案为:12.【上海市七宝中学 2019 届高三下学期开学】若边长为 6 的等边三角形 ABC,M 是其外接圆上任一点,则的最大值为______.【答案】【解析】解:是等边三角形, 三角形的外接圆半径为 ,以外接圆圆心 为原点建立平面直角坐标系,设,.设,则,..23的最大值是.故答案为.13.【天津市第一中学 2019 届高三下学期第四次月考】在线段 以点 为中点,则的最大值为________【答案】0 【解析】中,已知 为直角,,若长为 的即 14.【安徽省黄山市 2019 届高三第二次检测】已知 是锐角,则 的取值范围为________.【答案】 【解析】 设 是 中点,根据垂径定理可知,依题意的最大值为 0. 的外接圆圆心, 是最大角,若,即,利用正弦定理化简得.由于,所以,即.由于 是锐角三角形的最大角,故,故.15.【北京市大兴区 2019 届高三 4 月一模】已知点,,点 在双曲线的取值范围是_________.的右支上,则24【答案】【解析】设点 P(x,y),(x>1),所以,因为,当 y>0 时,y=,所以,由于函数在[1,+∞)上都是增函数,所以函数在[1,+∞)上是增函数,所以当 y>0 时函数 f(x)的最小值=f(1)=1.即 f(x)≥1.当 y≤0 时,y=,所以,由于函数 所以函数在[1,+∞)上都是增函数, 在[1,+∞)上是减函数,所以当 y≤0 时函数 k(x)>0.综上所述,的取值范围是.16.【上海市青浦区 2019 届高三二模】已知 为的外心,,大值为________【答案】【解析】设的外接圆半径为 1,以外接圆圆心为原点建立坐标系,因为,所以,不妨设,,,则,,,因为,所以,,则 的最25解得,因为 在圆上,所以 即, ,所以,所以,解得或,因为 只能在优弧 上,所以,故26。
高一数学平面向量基本定理及坐标表示试题答案及解析
高一数学平面向量基本定理及坐标表示试题答案及解析1.若向量与相等,其中,则=_________.【答案】-1【解析】由题意知,而向量与相等,∴,解得.【考点】相等向量的定义.2.设、是不共线的两个非零向量.(1)若,求证:三点共线;(2)若与共线,求实数的值.【答案】(1)证明详见解析;(2)当与共线时,.【解析】(1)利用向量证明三点共线,先建立平面向量的基底,求出、,找到使得,从而说明,再说明两个向量有一个公共点即可;(2)根据与共线,得到,然后根据向量相等的条件,建立、的方程组,求解即可得到的值.试题解析:(1)证明:∵而∴与共线,又有公共端点,∴三点共线(2)∵与共线,∴存在实数,使得∵与不共线∴或.【考点】1.向量共线定理;2.平面向量的基本定理;3.两向量相等的条件.3.已知向量a=(2,1)b=(3,﹣1)向量a与b的夹角为,则=()A.30°B.45°C.60°D.90°【答案】B【解析】因为,向量a=(2,1)b=(3,﹣1)向量a与b的夹角为,所以,而,所以,=45°,选B。
【考点】平面向量的坐标运算,向量的夹角。
点评:简单题,注意应用夹角公式。
4.已知下列命题中:A.若,且,则或B.若,则或C.若不平行的两个非零向量,满足,则D.若与平行,则其中真命题的个数是A. B. C. D.【答案】C【解析】对于A.若,且,则或,成立。
对于B.若,则或,可能是非零的垂直向量,错误。
对于C.若不平行的两个非零向量,满足,则,由于数量积公式展开得到成立对于D.若与平行,则,,只有共线同向成立,反向不成立,错误,故选C【考点】向量的概念和数量积点评:主要是考查了向量的基本概念和数量积的运用,属于基础题。
5.在中,,.若点D满足,则()A.B.C.D.【答案】A【解析】【考点】向量加减法点评:向量加减法遵循三角形法则:加法法则:将向量首位相接,由最初的起点指向最末的终点;减法法则:将两向量起点放在一起,连接终点,方向指向被减向量6.设,向量且,则 ( )A.B.C.2D.10【答案】B【解析】根据题意,由于同时结合,由于,那么可知,故选B.【考点】向量的数量积点评:主要是考查了向量数量积的坐标表示,以及共线和垂直的运用,属于基础题。
高一数学平面向量坐标运算试题答案及解析
高一数学平面向量坐标运算试题答案及解析1.已知平面向量=(1,2),=(﹣2,﹣4),则2+3=().A.(﹣4,﹣8)B.(﹣5,﹣10)C.(﹣3,﹣6)D.(﹣2,﹣4)【答案】A【解析】因为=(1,2),=(﹣2,﹣4),.【考点】平面向量的坐标运算.2.已知直线的方向向量为,且过点,将直线绕着它与x轴的交点B按逆时针方向旋转一个锐角得到直线,直线:.(k R).(1)求直线和直线的方程;(2)当直线,,所围成的三角形的面积为3时,求直线的方程。
【答案】(1)直线方程为:,的方程为x-y-1=0;(2)直线的方程为:7x-4y-2=0或13x-10y+4=0.【解析】(1)本小题由已知条件利用点斜式方程能求出直线的方程(其中方向向量可用以求其斜率),设直线的倾斜角为,则的斜率为,从而可求得的方程;(2)可知直线过定点M(2,3),由,得直线与的交点为C(-5,-6),点A到的距离为,联立得直线,的交点B(),又因为直线,,所围成的三角形的面积为3,所以有,再利用两点间的距离公式求得k的值,即可求得的方程.试题解析:(1)因为直线的方向向量为,且过点,所以直线方程为:,整理,得.将直线绕着它与x轴的交点B按逆时针方向旋转一个锐角得到直线,设直线的倾斜角为,且有B(1,0),则的斜率为,所以的方程为:y=x-1,整理得x-y-1=0.(2)因为直线:,即为(x-2)k+(3-y)=0,所以过定点M(2,3),由,得直线与的交点为C(-5,-6),点A到的距离为,联立得直线,的交点B(),又因为直线,,所围成的三角形的面积为3,所以有,则,解得或,所以所求直线的方程为:7x-4y-2=0或13x-10y+4=0.【考点】直线的点斜式,斜截式方程,两直线求交点,两角和的正切公式,点到直线的距离公式,两点间的距离公式,三角形的面积公式.3.已知平面向量,,且,则【答案】【解析】由得,即得。
【考点】向量垂直的数乘运算。
平面向量在坐标中的运算习题带答案
一.复习稳固1、以下说法正确的选项是〔D 〕A、数量可以比拟大小,向量也可以比拟大小.B、方向不同的向量不能比拟大小,但同向的可以比拟大小.C、向量的大小与方向有关.D、向量的模可以比拟大小.2、设O是正方形ABCD的中心,那么向量,,,AO BO OC OD是〔D 〕A、相等的向量B、平行的向量C、有一样起点的向量D、模相等的向量3、给出以下六个命题:①两个向量相等,那么它们的起点一样,终点一样;②假设||||=,a b那么a b=;③假设AB DC=,那么四边形ABCD是平行四边形;④平行四边形ABCD中,一定有AB DC=;⑤假设m n=,n k=,那么m k=;⑥a b,b c,那么a c.其中不正确的命题的个数为〔B〕A、2个B、3个C、4个D、5个4、以下命中,正确的选项是〔 C 〕A、|a|=|b|⇒a=bB、|a|>|b|⇒a>bC、a=b⇒a∥bD、|a|=0⇒a=06.如图,M、N是△ABC的一边BC上的两个三等分点,假设AB→=a ,AC →=b ,那么MN →=__ _____. 7.a 、b 为非零向量,且+=+||||||a b a b ,那么 〔 A 〕A .a 与b 方向一样B .a =bC .a =-bD .a 与b 方向相反8.如图,设O 是正六边形ABCDEF 的中心,在向量OB→,OC →,OD →,OE →,OF →,AB →,BC →,CD →,EF →,DE →,FA →中与OA →共线的向量有 A.1个B.2个C.3个D.4个 〔 C 〕9、点C 在线段AB 的延长线上,且λλ则,,2CA BC AB BC ==等于( D)A .3B .31C .3-D .31-10.设a 、b 是不共线的两个非零向量,(1)假设2,3,OA a b OB a b OC =-=+=a-3b,求证:A 、B 、C 三点共线; (2)假设8a+kb 与ka+2b 共线,求实数k 的值. 正负4 导学稿平面向量的坐标运算教学目标:理解平面向量的坐标概念;掌握平面向量的与、差与积的坐标运算。
平面向量求解技巧
平面向量求解技巧平面向量是解决平面几何问题的重要工具之一。
在应用平面向量求解问题时,以下技巧或方法可以帮助我们更快速、准确地解决问题。
1. 确定坐标系:在解决平面向量问题时,通常需要确定一个相应的坐标系。
常用的坐标系有直角坐标系和极坐标系。
选择合适的坐标系可以简化问题,并使计算更加方便。
2. 表示向量:向量是带有方向的量,可以使用一个有序的数对来表示。
在直角坐标系中,一个向量可以表示为(x, x),其中x和x分别表示该向量在x轴和x轴上的分量。
在极坐标系中,一个向量可以表示为(x, x),其中x表示向量的长度,x表示向量与正半轴的夹角。
3. 向量的加法:向量的加法满足平行四边形法则,即将两个向量的起点放在一起,然后将它们的箭头相连接,连接后的向量为原向量的和。
在直角坐标系中,向量的加法可以通过将两个向量的对应分量相加得到。
4. 向量的减法:向量的减法可以看作是向量的加法的逆运算。
即,将被减向量进行取负操作,再将该向量与减向量进行加法运算。
在直角坐标系中,向量的减法可以通过将减向量的对应分量取负,然后与被减向量的对应分量相加得到。
5. 向量的数量乘法:向量的数量乘法是将一个向量的长度与一个标量相乘,得到一个新的向量。
数量乘法会改变向量的大小,但不会改变向量的方向。
6. 向量的点乘:向量的点乘也称为内积或数量积。
点乘的结果是一个标量,不带有方向。
点乘可以用来求解两个向量的夹角、判断两个向量是否垂直等。
7. 向量的叉乘:向量的叉乘也称为外积或向量积。
叉乘的结果是一个新的向量,方向垂直于原始向量组成的平面,并遵循右手定则。
向量的叉乘可以用来求解平行四边形的面积、判断三个向量的共面性等。
8. 解决几何问题:应用平面向量求解平面几何问题时,我们通常可以将几何问题抽象为向量问题。
通过将几何问题转化为向量问题,我们可以利用向量的性质和计算方法快速求解。
9. 利用向量运算化简问题:在求解平面向量问题时,可以利用向量运算的性质化简问题。
坐标法解决平面向量最值问题
坐标法解决平面向量最值问题坐标法解决平面向量中的带有垂直关系问题如菱形,矩形,直角梯形,带特殊角的平行四边形等等1.已知b a ,是两个互相垂直的单位向量,且2||,1==⋅=⋅c b c a c ,则对任意的正实数t ,|1|b ta t c ++2 (2014天津)已知菱形ABCD 的边长为2,120BAD ∠=︒,点E 、F 分别在边BC 、DC 上,BE BC λ=,DF DC μ=.若1AE AF ⋅=,23CE CF ⋅=-,则λμ+=A.12B.23C.56D.7123.已知直角梯形ABCD 中,AD //BC ,090ADC ∠=,2,1AD BC ==,P 是腰DC 上的动点,则3PA PB +的最小值为_____5_______.4.(原创)如图,直角梯形ABCD 中,AD ⊥AB, AB//DC , AB=4,AD=DC=2,设点N 是DC 边的中点,点M 是梯形ABCD 内或边界上的一个动点,则AM AN ⋅的最大值是( B )(A )4 (B ) 6 (C ) 8 (D )105,在△ABC 中,D 为边BC 上一点,BD=12DC ,∠ADB=120°,AD=2,若△ADC 的面积为3∠BAC=__60°_____6.(根据浙江省2012高考理科样卷17题改编)如图,点M 为扇形AOB 的弧的四等分点即14AM AB =,动点D C ,分别在线段OB OA ,上,且.BD OC =若1=OA ,120AOB ︒∠=,则MC MD+的最.NMDC BA第17题6解析:连结OM ,设OC=a ,则OD=1-a由余弦定理可得:41236cos 121222+⎪⎪⎭⎫ ⎝⎛-=⨯⨯⨯-+=a a a MC π()()111122+-=+-=a a MD()()()()3412123110121023222222-=⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛-≥+∴--+-+⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+MD MC a a MD MC命题意图:考查学生建模的能力和求最值的能力。
2023年高考数学一轮复习第五章平面向量与复数3平面向量的数量积练习含解析
平面向量的数量积考试要求 1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与投影向量的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量的方法解决某些简单的平面几何问题.知识梳理 1.向量的夹角已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角. 2.平面向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,我们把数量|a ||b |cos θ叫做向量a 与b 的数量积,记作a ·b .3.平面向量数量积的几何意义设a ,b 是两个非零向量,它们的夹角是θ,e 与b 是方向相同的单位向量,AB →=a ,CD →=b ,过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1—→,我们称上述变换为向量a 向向量b 投影,A 1B 1—→叫做向量a 在向量b 上的投影向量.记为|a |cos θe . 4.向量数量积的运算律 (1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c . 5.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.几何表示 坐标表示数量积 a·b =|a ||b |cos θa·b =x 1x 2+y 1y 2模|a |=a ·a|a |=x 21+y 21夹角cos θ=a ·b|a ||b |cos θ=x 1x 2+y 1y 2x 21+y 21x 22+y 22a ⊥b 的充要条件 a ·b =0 x 1x 2+y 1y 2=0 a∥b 的充要条件a =λb (λ∈R )x 1y 2-x 2y 1=0|a ·b |与|a ||b |的关系|a ·b |≤|a ||b | (当且仅当a ∥b 时等号成立)|x 1x 2+y 1y 2|≤x 21+y 21x 22+y 22常用结论1.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2; (2)(a ±b )2=a 2±2a ·b +b 2. 2.有关向量夹角的两个结论 已知向量a ,b .(1)若a 与b 的夹角为锐角,则a·b >0;若a·b >0,则a 与b 的夹角为锐角或0. (2)若a 与b 的夹角为钝角,则a·b <0;若a·b <0,则a 与b 的夹角为钝角或π. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( × )(2)若a ·b >0,则a 和b 的夹角为锐角.( × )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的结果是向量.( √ ) (4)(a ·b )·c =a ·(b ·c ).( × ) 教材改编题1.(多选)(2022·海南省临高二中模拟)设a ,b ,c 是任意的非零向量,则下列结论正确的是( ) A .0·a =0B .a ·b =b ·c ,则a =cC .a ·b =0⇒a ⊥bD .(a +b )·(a -b )=|a |2-|b |2答案 CD2.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 答案 2 33.已知向量a ,b 满足3|a |=2|b |=6,且(a -2b )⊥(2a +b ),则a ,b 夹角的余弦值为________.9解析 设a ,b 的夹角为θ, 依题意,(a -2b )·(2a +b )=0, 则2a 2-3a ·b -2b 2=0,故2×4-3×2×3·cos θ-2×32=0, 则cos θ=-59.题型一 平面向量数量积的基本运算例1 (1)(2021·北京)a =(2,1),b =(2,-1),c =(0,1),则(a +b )·c =_________;a ·b =________. 答案 0 3解析 ∵a =(2,1),b =(2,-1),c =(0,1), ∴a +b =(4,0),∴(a +b )·c =4×0+0×1=0,a ·b =2×2+1×(-1)=3.(2)(2022·广州模拟)在平面四边形ABCD 中,已知AB →=DC →,P 为CD 上一点,CP →=3PD →,|AB →| =4,|AD →|=3,AB →与AD →的夹角为θ,且cos θ=23,则AP →·PB →=________.答案 -2 解析 如图所示,∵AB →=DC →,∴四边形ABCD 为平行四边形, ∵CP →=3PD →,∴AP →=AD →+DP →=14AB →+AD →,PB →=AB →-AP →=34AB →-AD →,又∵|AB →|=4,|AD →|=3,3则AB →·AD →=4×3×23=8,∴AP →·PB →=⎝ ⎛⎭⎪⎫AD →+14AB →·⎝ ⎛⎭⎪⎫34AB →-AD →=12AB →·AD →-AD →2+316AB →2=12×8-9+316×42=-2. 教师备选1.(2019·全国Ⅱ)已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·BC →等于( ) A .-3B .-2C .2D .3 答案 C解析 因为BC →=AC →-AB →=(1,t -3), 所以|BC →|=12+t -32=1,解得t =3, 所以BC →=(1,0),所以AB →·BC →=2×1+3×0=2.2.在边长为2的正三角形ABC 中,M 是BC 的中点,D 是线段AM 的中点.①若BD →=xBA →+yBC →,则x +y =________;②BD →·BM →=________. 答案 341解析 ①∵M 是BC 的中点, ∴BM →=12BC →,∵D 是AM 的中点,∴BD →=12BA →+12BM →=12BA →+14BC →,∴x =12,y =14,∴x +y =34.②∵△ABC 是边长为2的正三角形,M 是BC 的中点, ∴AM ⊥BC ,且BM =1,∴BD →·BM →=|BD →||BM →|cos∠DBM =|BM →|2=1.思维升华 计算平面向量数量积的主要方法 (1)利用定义:a·b =|a ||b |cos 〈a ,b 〉.(2)利用坐标运算,若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. (3)灵活运用平面向量数量积的几何意义.跟踪训练1 (1)(2021·新高考全国Ⅱ)已知向量a +b +c =0,|a |=1,|b |=|c |=2,a ·b +b ·c +c ·a =________. 答案 -92解析 由已知可得(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a ) =9+2(a ·b +b ·c +c ·a )=0, 因此a ·b +b ·c +c ·a =-92.(2)(2020·北京)已知正方形ABCD 的边长为2,点P 满足AP →=12(AB →+AC →),则|PD →|=________;PB →·PD →=________. 答案5 -1解析 建立如图所示的平面直角坐标系,∵AP →=12(AB →+AC →),∴P 为BC 的中点.∴点P 的坐标为(2,1),点D 的坐标为(0,2),点B 的坐标为(2,0), ∴|PD →|=5,PB →=(0,-1),PD →=(-2,1), ∴PB →·PD →=-1.题型二 平面向量数量积的应用 命题点1 向量的模例2 已知向量a ,b 满足|a |=6,|b |=4,且a 与b 的夹角为60°,则|a +b |=____________,|a -3b |=________. 答案 219 6 3解析 因为|a |=6,|b |=4,a 与b 的夹角为60°,所以a ·b =|a ||b |cos 〈a ,b 〉=6×4×12=12,(a +b )2=a 2+2a ·b +b 2=36+24+16=76, (a -3b )2=a 2-6a·b +9b 2=36-72+144 =108,所以|a +b |=219,|a -3b |=6 3. 命题点2 向量的夹角例3 (2020·全国Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( )A .-3135B .-1935C.1735D.1935答案 D解析 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=25-12+36=49, ∴|a +b |=7,∴cos〈a ,a +b 〉=a ·a +b |a ||a +b |=a 2+a ·b |a ||a +b |=25-65×7=1935. 命题点3 向量的垂直例4 (2021·全国乙卷)已知向量a =(1,3),b =(3,4),若(a -λb )⊥b ,则λ=________. 答案 35解析 方法一 a -λb =(1-3λ,3-4λ), ∵(a -λb )⊥b ,∴(a -λb )·b =0, 即(1-3λ,3-4λ)·(3,4)=0, ∴3-9λ+12-16λ=0,解得λ=35.方法二 由(a -λb )⊥b 可知,(a -λb )·b =0,即a ·b -λb 2=0, 从而λ=a ·b b 2=1,3·3,432+42=1525=35. 教师备选1.已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6B.π3C.2π3D.5π6 答案 B解析 设a 与b 的夹角为α, ∵(a -b )⊥b , ∴(a -b )·b =0, ∴a ·b =b 2,∴|a |·|b |cos α=|b |2,又|a |=2|b |, ∴cos α=12,∵α∈[0,π],∴α=π3.2.已知e 1,e 2是两个单位向量,且|e 1+e 2|=3,则|e 1-e 2|=________. 答案 1解析 由|e 1+e 2|=3,两边平方, 得e 21+2e 1·e 2+e 22=3.又e 1,e 2是单位向量, 所以2e 1·e 2=1,所以|e 1-e 2|2=e 21-2e 1·e 2+e 22=1, 所以|e 1-e 2|=1.思维升华 (1)求平面向量的模的方法①公式法:利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;②几何法:利用向量的几何意义,即利用向量线性运算的平行四边形法则或三角形法则作出所求向量,再利用余弦定理等方法求解. (2)求平面向量的夹角的方法①定义法:cos θ=a·b|a ||b |,求解时应求出a ·b ,|a |,|b |的值或找出这三个量之间的关系;②坐标法.(3)两个向量垂直的充要条件a ⊥b ⇔a ·b =0⇔|a -b |=|a +b |(其中a ≠0,b ≠0).跟踪训练2 (1)已知单位向量a ,b 满足a ·b =0,若向量c =7a +2b ,则sin 〈a ,c 〉等于( ) A.73B.23C.79D.29答案 B解析 方法一 设a =(1,0),b =(0,1),则c =(7,2),∴cos〈a ,c 〉=a ·c |a ||c |=73,∴sin〈a ,c 〉=23. 方法二 a ·c =a ·(7a +2b ) =7a 2+2a ·b =7, |c |=7a +2b2=7a 2+2b 2+214a ·b =7+2=3,∴cos〈a ,c 〉=a ·c |a ||c |=71×3=73,∴sin〈a ,c 〉=23. (2)(多选)(2021·新高考全国Ⅰ)已知O 为坐标原点,点P 1(cos α,sin α),P 2(cos β,-sin β),P 3(cos(α+β),sin(α+β)),A (1,0),则( ) A .|OP 1—→|=|OP 2—→| B .|AP 1—→|=|AP 2—→| C.OA →·OP 3—→=OP 1—→·OP 2—→ D.OA →·OP 1—→=OP 2—→·OP 3—→ 答案 AC解析 由题意可知,|OP 1—→|=cos 2α+sin 2α=1, |OP 2—→|=cos 2β+-sin β2=1,所以|OP 1—→|=|OP 2—→|,故A 正确; 取α=π4,则P 1⎝ ⎛⎭⎪⎫22,22,取β=5π4,则P 2⎝ ⎛⎭⎪⎫-22,22, 则|AP 1—→|≠|AP 2—→|,故B 错误; 因为OA →·OP 3—→=cos(α+β),OP 1—→·OP 2—→=cos αcos β-sin αsin β=cos(α+β),所以OA →·OP 3—→=OP 1—→·OP 2—→,故C 正确; 因为OA →·OP 1—→=cos α,OP 2—→·OP 3—→=cos βcos(α+β)-sin βsin(α+β) =cos(α+2β), 取α=π4,β=π4,则OA —→·OP 1—→=22,OP 2—→·OP 3—→=cos 3π4=-22,所以OA →·OP 1—→≠OP 2—→·OP 3—→,故D 错误. 题型三 平面向量的实际应用例5 (多选)(2022·东莞模拟)在日常生活中,我们会看到两个人共提一个行李包的情况(如图所示).假设行李包所受的重力为G ,所受的两个拉力分别为F 1,F 2,若|F 1|=|F 2|,且F 1与F 2的夹角为θ,则以下结论正确的是( )A .|F 1|的最小值为12|G |B .θ的范围为[0,π]C .当θ=π2时,|F 1|=22|G |D .当θ=2π3时,|F 1|=|G |答案 ACD解析 由题意知,F 1+F 2+G =0, 可得F 1+F 2=-G ,两边同时平方得 |G |2=|F 1|2+|F 2|2+2|F 1||F 2|cos θ =2|F 1|2+2|F 1|2cos θ, 所以|F 1|2=|G |221+cos θ.当θ=0时,|F 1|min =12|G |;当θ=π2时,|F 1|=22|G |;当θ=2π3时,|F 1|=|G |,故A ,C ,D 正确;当θ=π时,竖直方向上没有分力与重力平衡,不成立,所以θ∈[0,π),故B 错误. 教师备选若平面上的三个力F 1,F 2,F 3作用于一点,且处于平衡状态,已知|F 1|=1 N ,|F 2|=6+22N ,F 1与F 2的夹角为45°,求:(1)F 3的大小;(2)F 3与F 1夹角的大小. 解 (1)∵三个力平衡, ∴F 1+F 2+F 3=0,∴|F 3|=|F 1+F 2|=|F 1|2+2F 1·F 2+|F 2|2=12+2×1×6+22cos45°+⎝ ⎛⎭⎪⎫6+222=4+23=1+ 3.(2)方法一 设F 3与F 1的夹角为θ, 则|F 2|=|F 1|2+|F 3|2+2|F 1||F 3|cos θ, 即6+22=12+1+32+2×1×1+3cos θ,解得cos θ=-32, ∵θ∈[0,π], ∴θ=5π6.方法二 设F 3与F 1的夹角为θ, 由余弦定理得cos(π-θ)=12+1+32-⎝ ⎛⎭⎪⎫6+2222×1×1+3=32,∵θ∈[0,π],∴θ=5π6.思维升华 用向量方法解决实际问题的步骤跟踪训练3 (2022·沈阳二中模拟)渭河某处南北两岸平行,如图所示,某艘游船从南岸码头A 出发航行到北岸,假设游船在静水中航行速度的大小为|ν1|=10km/h ,水流速度的大小为|ν2|=6km/h.设ν1与ν2的夹角为120°,北岸的点A ′在码头A 的正北方向,那么该游船航行到北岸的位置应( )A .在A ′东侧B .在A ′西侧C .恰好与A ′重合D .无法确定答案 A解析 建立如图所示的平面直角坐标系,由题意可得ν1=(-5,53),ν2=(6,0), 所以ν1+ν2=(1,53),说明游船有x 轴正方向的速度,即向东的速度,所以该游船航行到北岸的位置应在A ′东侧.极化恒等式:设a ,b 为两个平面向量,则有恒等式a ·b =14[]a +b2-a -b2.如图所示.(1)在平行四边形ABDC 中,AB →=a ,AC →=b ,则a·b =14(|AD →|2-|BC →|2).(2)在△ABC 中,AB →=a ,AC →=b ,AM 为中线,则a·b =|AM →|2-14|BC →|2.例1 在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________. 答案 -16解析 如图所示,由极化恒等式,易得AB →·AC →=AM →2-MB →2=32-52=-16.例2 已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则PA →·PB →的最小值是________. 答案 1解析 如图所示,由极化恒等式易知,当OP 垂直于直线x -y +2=0时,PA →·PB →有最小值,即PA →·PB →=PO →2-OB →2=(2)2-12=1.例3 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( ) A .1B .2C.2D.22答案 C解析 如图所示,设OA →⊥OB →,记OA →=a ,OB →=b ,OC →=c ,M 为AB 的中点,由极化恒等式有(a -c )·(b -c )=CA →·CB →=|CM →|2-|AB →|24=0,∴|CM →|2=|AB →|24=12,可知MC →是有固定起点,固定模长的动向量.点C 的轨迹是以AB 为直径的圆,且点O 也在此圆上, 所以|c |的最大值为圆的直径长,即为 2.课时精练1.(2020·全国Ⅱ)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .a +2b B .2a +b C .a -2b D .2a -b 答案 D解析 由题意得|a |=|b |=1, 设a ,b 的夹角为θ=60°, 故a ·b =|a ||b |cos θ=12.对A 项,(a +2b )·b =a ·b +2b 2=12+2=52≠0; 对B 项,(2a +b )·b =2a ·b +b 2 =2×12+1=2≠0;对C 项,(a -2b )·b =a ·b -2b 2 =12-2=-32≠0; 对D 项,(2a -b )·b =2a ·b -b 2=2×12-1=0.2.(2022·石家庄模拟)已知向量a =(2,-2),b =(2,1),b ∥c ,a ·c =4,则|c |等于( ) A .2 5 B .4 C .5 2 D .4 2答案 A解析 因为b ∥c ,所以c =λb =(2λ,λ)(λ∈R ), 又a ·c =4λ-2λ=2λ=4,所以λ=2,c =(4,2),|c |=42+22=2 5.3.(2022·沈阳模拟)若两个非零向量a ,b 满足|a +b |=|a -b |=2|a |,则a -b 与b 的夹角为( ) A.π6B.π3C.2π3D.5π6 答案 D解析 |a +b |=|a -b |=2|a |,等号左右同时平方,得|a +b |2=|a -b |2=4|a |2,即|a |2+|b |2+2a ·b =|a |2+|b |2-2a ·b =4|a |2, 所以a ·b =0且|b |2=3|a |2, 所以|a -b |=|a -b |2=|a |2+|b |2-2a ·b =233|b |,所以cos 〈a -b ,b 〉=a -b ·b|a -b ||b |=-|b |2233|b |·|b |=-32, 因为〈a -b ,b 〉∈[0,π],所以〈a -b ,b 〉=5π6.4.已知a =(-2,1),b =(k ,-3),c =(1,2),若(a -2b )⊥c ,则与b 共线的单位向量为( ) A.⎝⎛⎭⎪⎫255,-55或⎝ ⎛⎭⎪⎫-255,55B.⎝ ⎛⎭⎪⎫-255,-55或⎝ ⎛⎭⎪⎫255,55C.⎝⎛⎭⎪⎫255,55 D.⎝ ⎛⎭⎪⎫-255,55答案 A解析 由题意得a -2b =(-2-2k ,7), ∵(a -2b )⊥c , ∴(a -2b )·c =0,即(-2-2k ,7)·(1,2)=0,-2-2k +14=0, 解得k =6, ∴b =(6,-3), ∴e =±b62+-32=±⎝ ⎛⎭⎪⎫255,-55.5.(多选)(2022·盐城模拟)下列关于向量a ,b ,c 的运算,一定成立的有( ) A .(a +b )·c =a ·c +b ·c B .(a ·b )·c =a ·(b ·c ) C .a ·b ≤|a |·|b | D .|a -b |≤|a |+|b | 答案 ACD解析 根据数量积的分配律可知A 正确;选项B 中,左边为c 的共线向量,右边为a 的共线向量,故B 不正确; 根据数量积的定义,可知a ·b =|a ||b |cos 〈a ,b 〉≤|a |·|b |,故C 正确;|a -b |2=|a |2+|b |2-2a ·b =|a |2+|b |2-2|a ||b |·cos〈a ,b 〉≤|a |2+|b |2+2|a ||b |=(|a |+|b |)2,故|a -b |≤|a |+|b |,故D 正确.6.(多选)已知向量a =(2,1),b =(1,-1),c =(m -2,-n ),其中m ,n 均为正数,且(a -b )∥c ,则下列说法正确的是( ) A .a 与b 的夹角为钝角 B .向量a 在b 上的投影向量为22b C .2m +n =4 D .mn 的最大值为2 答案 CD解析 对于A ,向量a =(2,1),b =(1,-1), 则a·b =2-1=1>0, 又a ,b 不共线,所以a ,b 的夹角为锐角,故A 错误; 对于B ,向量a 在b 上的投影向量为a·b |b |·b |b |=12b ,B 错误;对于C ,a -b =(1,2),若(a -b )∥c ,则-n =2(m -2),变形可得2m +n =4,C 正确; 对于D ,由2m +n =4,且m ,n 均为正数,得mn =12(2m ·n )≤12⎝ ⎛⎭⎪⎫2m +n 22=2,当且仅当m =1,n =2时,等号成立,即mn 的最大值为2,D 正确.7.(2021·全国甲卷)已知向量a =(3,1),b =(1,0),c =a +k b .若a ⊥c ,则k =________. 答案 -103解析 c =(3,1)+(k ,0)=(3+k ,1),a ·c =3(3+k )+1×1=10+3k =0,得k =-103.8.(2020·全国Ⅰ)设a ,b 为单位向量,且|a +b |=1,则|a -b |=________. 答案3解析 将|a +b |=1两边平方,得a 2+2a ·b +b 2=1. ∵a 2=b 2=1,∴1+2a ·b +1=1,即2a ·b =-1. ∴|a -b |=a -b2=a 2-2a ·b +b 2=1--1+1= 3.9.(2022·长沙模拟)在△ABC 中,BC 的中点为D ,设向量AB →=a ,AC →=b . (1)用a ,b 表示向量AD →;(2)若向量a ,b 满足|a |=3,|b |=2,〈a ,b 〉=60°,求AB →·AD →的值. 解 (1)AD →=12(AB →+AC →)=12a +12b , 所以AD →=12a +12b .(2)AB →·AD →=a ·⎝ ⎛⎭⎪⎫12a +12b=12a 2+12a·b =12×32+12×3×2×cos60°=6, 所以AB →·AD →=6.10.(2022·湛江模拟)已知向量m =(3sin x ,cos x -1),n =(cos x ,cos x +1),若f (x )=m·n .(1)求函数f (x )的单调递增区间;(2)在Rt△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若∠A =90°,f (C )=0,c =3,CD 为∠BCA 的角平分线,E 为CD 的中点,求BE 的长. 解 (1)f (x )=m·n =3sin x ·cos x +cos 2x -1 =32sin2x +12cos2x -12=sin ⎝⎛⎭⎪⎫2x +π6-12.令2x +π6∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ). 所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).(2)f (C )=sin ⎝ ⎛⎭⎪⎫2C +π6-12=0,sin ⎝ ⎛⎭⎪⎫2C +π6=12,又C ∈⎝ ⎛⎭⎪⎫0,π2,所以C =π3.在△ACD 中,CD =233,在△BCE 中,BE =22+⎝⎛⎭⎪⎫332-2×2×33×32=213.11.(2022·黄冈质检)圆内接四边形ABCD 中,AD =2,CD =4,BD 是圆的直径,则AC →·BD →等于( ) A .12 B .-12 C .20 D .-20答案 B解析 如图所示,由题知∠BAD =∠BCD =90°,AD =2,CD =4,∴AC →·BD →=(AD →+DC →)·BD → =AD →·BD →+DC →·BD →=|AD →||BD →|cos∠BDA -|DC →||BD →|cos∠BDC =|AD →|2-|DC →|2=4-16=-12.12.在△ABC 中,已知⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( ) A .等边三角形 B .直角三角形 C .等腰三角形D .三边均不相等的三角形 答案 A解析 AB→|AB →|,AC→|AC →|分别为与AB →,AC →方向相同的单位向量,由平行四边形法则可知向量AB →|AB →|+AC→|AC →|所在的直线为∠BAC 的平分线.因为⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0, 所以∠BAC 的平分线垂直于BC , 所以AB =AC .又AB→|AB →|·AC→|AC →|=⎪⎪⎪⎪⎪⎪⎪⎪AB →|AB →|⎪⎪⎪⎪⎪⎪⎪⎪AC →|AC →|·cos∠BAC =12, 所以cos∠BAC =12,∠BAC =60°.所以△ABC 为等边三角形.13.(2022·潍坊模拟)如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是F 1,F 2,且F 1,F 2与水平夹角均为45°,|F 1|=|F 2|=102N ,则物体的重力大小为________N.答案 20解析 如图所示,∵|F 1|=|F 2|=102N , ∴|F 1+F 2|=102×2=20N , ∴物体的重力大小为20N.14.(2021·天津)在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE ⊥AB 且交AB 于点E ,DF ∥AB 且交AC 于点F ,则|2BE →+DF →|的值为________;(DE →+DF →)·DA →的最小值为________. 答案 11120解析 设BE =x ,x ∈⎝ ⎛⎭⎪⎫0,12, ∵△ABC 为边长为1的等边三角形,DE ⊥AB , ∴∠BDE =30°,BD =2x ,DE =3x ,DC =1-2x ,∵DF ∥AB ,∴△DFC 为边长为1-2x 的等边三角形,DE ⊥DF ,∴(2BE →+DF →)2=4BE →2+4BE →·DF →+DF →2=4x 2+4x (1-2x )×cos0°+(1-2x )2=1, ∴|2BE →+DF →|=1,∵(DE →+DF →)·DA →=(DE →+DF →)·(DE →+EA →)=DE →2+DF →·EA →=(3x )2+(1-2x )×(1-x )=5x 2-3x +1=5⎝ ⎛⎭⎪⎫x -3102+1120, ∴当x =310时,(DE →+DF →)·DA →的最小值为1120.15.(多选)定义一种向量运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ·b ,当a ,b 不共线时,|a -b |,当a ,b 共线时(a ,b 是任意的两个向量).对于同一平面内的向量a ,b ,c ,e ,给出下列结论,正确的是( ) A .a ⊗b =b ⊗aB .λ(a ⊗b )=(λa )⊗b (λ∈R )C .(a +b )⊗c =a ⊗c +b ⊗cD .若e 是单位向量,则|a ⊗e |≤|a |+1 答案 AD解析 当a ,b 共线时,a ⊗b =|a -b |=|b -a |=b ⊗a ,当a ,b 不共线时,a ⊗b =a ·b =b ·a =b ⊗a ,故A 正确;当λ=0,b ≠0时,λ(a ⊗b )=0,(λa )⊗b =|0-b |≠0,故B 错误;当a +b 与c 共线时,则存在a ,b 与c 不共线,(a +b )⊗c =|a +b -c |,a ⊗c +b ⊗c =a ·c +b ·c ,显然|a +b -c |≠a ·c +b ·c ,故C 错误;当e 与a 不共线时,|a ⊗e |=|a ·e |<|a |·|e |<|a |+1,当e 与a 共线时,设a =u e ,u ∈R ,|a ⊗e |=|a -e |=|u e -e |=|u -1|≤|u |+1,故D 正确.16.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n = (cos B ,cos A ),m ·n =sin2C . (1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求c . 解 (1)m ·n =sin A cos B +sin B cos A =sin(A +B ),在△ABC 中,A +B =π-C ,0<C <π, 所以sin(A +B )=sin C , 所以m·n =sin C , 又m·n =sin2C ,所以sin2C =sin C ,cos C =12,又因为C ∈(0,π),故C =π3. (2)由sin A ,sin C ,sin B 成等差数列, 可得2sin C =sin A +sin B , 由正弦定理得2c =a +b .21 因为CA →·(AB →-AC →)=18, 所以CA →·CB →=18,即ab cos C =18,ab =36. 由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab , 所以c 2=4c 2-3×36,c 2=36, 所以c =6.。
解答平面向量数量积问题的三种途径
平面向量的数量积问题侧重于考查平面向量的数量积公式、向量的模的公式、数乘运算法则、加减法的几何意义、基本定理、共线定理的应用.解答这类问题常用的途径有利用坐标法、定义法、数形结合法.下面结合实例来进行介绍.一、利用坐标法坐标法是指通过建立平面直角坐标系,将问题转化为坐标运算问题来求解.运用坐标法解答平面向量数量积问题,需根据几何图形的特点,寻找或构造垂直关系,建立合适的平面直角坐标系,熟练掌握并灵活运用向量的坐标运算法,如a ∙b=()x 1,y 1∙()x 2,y 2=x 1x 2+y 1y 2、||a =x 12+y 12、a +b =()x 1+x 2,y 1+y 2、a -b=()x 1-x 2,y 1-y 2.例1.已知P 是半径为1,圆心角为23π的一段圆弧AB 上的一点,若 AC =2 CB ,则 PA ∙PC 的取值范围是_____.解:以O 为原点、OB 为x 轴,建立如图1所示的平面直角坐标系.图1可得O ()0,0,B ()1,0,A æèçø-12,过点C 作CD ⊥OB ,垂足为D ,∵|| OA =||OB =1,∠AOB =2π3,∴|| A B =3,∵ AC =2CB ,∴|| CB =13|| A B =,在Rt△CDB 中,∠CBD =π6,∴|| CD =12|| CB,|| DB =12,∴|| OB =12,∴C æèçø12,设P ()cos θ,sin θ,0≤θ≤2π3,∴ PC ∙ PA=æèçöø÷12-cos θ-sinθ∙æèçöø÷-12-cos θ-sin θ=cos 2θ-14+14-θ+sin 2θ=1-θ,∵0≤θ≤2π3,∴0≤sin θ≤1,∴1≤1θ≤1,∴ PA ∙PC 的取值范围是éëêùûú1-.首先根据圆弧的特点,以O 为原点建立平面直角坐标系;然后设出点P 的坐标,求得其他各点、各个向量的坐标,即可通过向量坐标运算,求得 PA ∙PC 的表达式;再根据三角函数的有界性求得问题的答案.二、采用定义法定义法是指根据平面向量数量积的定义:a ∙b=||a ∙||||b cos a ,b 解题.在解题时,要分别求得所求平面向量的模长、向量之间的夹角或其余弦值,即可根据平面向量数量积的定义求得答案.例2.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,求|c |的最大值.解:因为|a |=|b |=1,a ·b =0,则(a -c )·(b -c )=-c ·(a +b )+|c |2=-|c ||a +b |·cos θ+|c|2=0,其中θ为c 与a +b 的夹角,所以|c |=|a +b |cos θ=2cos θ≤2,47所以|c |的最大值是2.解答本题主要运用了定义法.我们先通过向量的数乘运算、加法运算、减法运算,根据已知关系式,将问题转化为求向量的模的平方以及向量的数量积;然后根据向量的数量积公式将问题转化为求c 与a +b 的夹角的余弦值以及|a +b |的乘积的最值,根据基本不等式求解,即可解题.例3.已知点P 是边长为1的正十二边形A 1A 2⋯A边上任意一点,则 AP ∙A 1A 2的最小值为().A.- B.- C.-3 D.-2解:如图2所示,延长A 10A 11、A 2A 1交于Q ,图2由题意可得A 10A 11⊥A 2A 1,过A 12分别作A 1Q 、A 11Q 的垂线,垂足分别为M 、N ,正十二边形A 1A 2⋯A 12的每个内角()12-2×180°12=150°,在Rt△A 12MA 1中,||A 1A 12,∠MA 1A 12=30°,则||A 1M =||A 1A 12cos 30°,在Rt△A 11NA 12中,||A 11A 12=1,∠NA 11A 12=30°,则||QM =||A 12N =||A 11A 12sin 30°=12,所以||A 1Q =||A 1M +||QM =,而 A 1P ∙ A 1A 2=|| A 1A 2∙|| A 1P cos θ,θ为 A 1P 、 A 1A 2的夹角,所以数量积 A 1P ∙ A 1A 2等于A 1P 在 A 1A 2方向上的投影||A 1P cos θ的乘积,当点P 在线段A 10A 11上时, A 1P ∙A 1A 2取最小值,可得 A 1P ∙ A 1A 2=|| A 1P ∙||A 1A 2cosθ=||A 1A 2()-|| A 1Q=.解答本题,首先要根据正十二边形的特征和向量数量积的几何意义找出 A 1P ∙A 1A 2取得最小值的情形:点P 在线段A 10A 11上;然后根据平面向量数量积的定义,求得向量 A 1P 、A 1A 2的模长及其夹角的大小,即可求得最小值.三、数形结合数形结合法是解答函数问题、向量问题的重要方法.在解题时,需先将向量的模看作线段的长,根据三角形法则、平行四边形法则构造几何图形,添加辅助线;然后将两个向量的夹角看作三角形、平行四边形的内角,利用三角形的性质、平行四边形的性质、圆的性质解题.例4.如图3,AB是圆O 的一条直径,且||AB =4,点C 、D 是圆O 上任意两点,点P 在线段CD 上,则PA ∙PB 的取值范围为______.图3图4解:如图4所示,连接OP ,则 PA ∙ PB =() PO + OA ∙()PO + OB = PO 2+ PO ∙()OA + OB + OA ∙ OB =|| PO 2-4,而P 在线段CD 上,且||CD =2,则圆心到直线CD 的距离d =22-12=3,所以3≤|| PO 2≤4,可得-1≤|| PO 2-4≤0,故 PA ∙PB 的取值范围为[]-1,0.解答本题,要先根据三角形法则和向量运算,将求 PA ∙PB 转化为求|| PO 2的最值;然后根据弦心距、圆的半径、弦之间的关系建立关系式,求得圆心到直线CD 的距离,该值即为|| PO 的最小值,||PO 的最大值为圆的半径,这样便确定了求|| PO 2的最值,从而求得问题的答案.上述三种方法都是解答平面向量数量积问题的重要方法.其中坐标法、定义法较为简单,数形结合法具有较强的灵活性,需根据题意构造出合适的几何图形,并将问题与平面几何、解析几何知识关联起来.(作者单位:云南省会泽县大成高级中学)48。
【高考一轮复习,二级结论高效解题】专题6 平面向量
专题6 平面向量二级结论1:极化恒等式【结论阐述】(1)极化恒等式:()()2214⎡⎤⋅=+--⎣⎦a b a b a b ; (2)极化恒等式平行四边形型:在平行四边形ABCD 中,()2214AB AD AC BD ⋅=-,即向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14;(3)极化恒等式三角形模型:在ABC 中,M 为边BC 中点,则;2214AB AC AM BC ⋅=-. 说明:(1)三角形模式是平面向量极化恒等式的终极模式,几乎所有的问题都是用它解决;(2)记忆规律:向量的数量积等于第三边的中线长与第三边长的一半的平方差.【应用场景】极化恒等式常用于解决与平面向量数量积有关的求值(定值)、最值、范围等问题. 【典例指引1】(2022·甘肃·高台县第一中学模拟预测)1.如图,在ABC ∆中,D 是BC 的中点,,E F 是,A D 上的两个三等分点,4⋅=BA CA ,1BF CF ⋅=- ,则BE CE ⋅ 的值是_______.【典例指引2】2.已知ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值是( )A .2-B .32-C .43-D .1-【针对训练】(2022·山东日照市·高三二模)】3.如图,在平行四边形ABCD 中,已知8,5,3,2AB AD CP PD AP BP ===⋅=,则AB AD ⋅的值是( )A .44B .22C .24D .72(2022·河北武强中学高三月考)4.如图,在平面四边形ABCD 中,O 为BD 的中点,且OA =3,OC =5.若AB AD ⋅=-7,则BC DC ⋅的值是________.(2022·全国福建省漳州市高三期末)5.在ABC ∆中,,2,1,,AB AC AB AC AB AC E F +=-==为BC 的三等分点,则·AE AF = A .89B .109C .259D .269(2022·海南海口·二模)6.在正三角形ABC 中,点,E F 是线段,AB AC 的中点,点P 在直线EF 上,若三角形ABC 的面积为2,则2+PC PB BC ⋅的最小值是___________ (2022•南通期末)7.在面积为2的ABC 中,E ,F 分别是AB ,AC 的中点,点P 在直线EF 上,则2PC PB BC ⋅+的最小值是______.(天津高考)8.如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.二级结论2:三角形“四心”向量形式的充要条件【结论阐述】设O 为ABC ∆所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则(1)O 为ABC ∆的外心()()()02sin aOA OB OC OA OB AB OB OC BC OA OC AC A⇔===⇔+⋅=+⋅=+⋅=. (如图1)(2)如图2,O 为ABC ∆的重心⇔OA OB OC ++=0.(3)如图2,O 为ABC ∆的垂心⇔OA OB OB OC OC OA ⋅=⋅=⋅. (4)如图3,O 为ABC ∆的内心sin sin sin aOA bOB cOC A OA B OB C OC ⇔++=⇔⋅+⋅+⋅=00.说明:三角形“四心”——重心,垂心,内心,外心 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等.【应用场景】主要用于有关向量与三角形“四心”问题的判断与研究. 【典例指引1】9.在ABC 所在平面内有三点O ,N ,P ,则下列说法正确的是( ) A .满足||||||OA OB OC ==,则点O 是ABC 的外心 B .满足0NA NB NC ++=,则点N 是ABC 的重心 C .满足PA PB PB PC PC PA ⋅=⋅=⋅,则点P 是ABC 的垂心 D .满足()0||||AB AC BC AB AC +⋅=,且12||||AB AC AB AC ⋅=,则ABC 为等边三角形【典例指引2】10.已知,,,O A B C 是平面上的4个定点,,,A B C 不共线,若点P 满足()OP OA AB AC λ=++,其中R λ∈,则点P 的轨迹一定经过ABC 的( )A .重心B .外心C .内心D .垂心【针对训练】11.在△ABC 中,=3AB ,=4AC ,=5BC ,O 为△ABC 的内心,若AO AB BC λμ=+,则λμ+=( ) A .23B .34C .56D .3512.已知O 是平面上的一个定点,A 、B 、C 是平面上不共线的三点,动点P 满足AB AC OP OA AB AC λ⎛⎫ ⎪=++ ⎪ ⎪⎝⎭()R λ∈,则点P 的轨迹一定经过ABC 的( )A .重心B .外心C .内心D .垂心13.设G 为ABC 的重心,若=2AB ,BC ==4AC ,则AG BC ⋅=___________ 14.设O 为ABC 的外心,若=4AB ,BC =BO AC ⋅=___________. 15.设I 为ABC 的内心,若=2AB ,BC ==4AC ,则AI BC ⋅=___________二级结论3:奔驰定理【结论阐述】奔驰定理:设O 是ABC ∆内一点,BOC ∆,AOC ∆,AOB ∆的面积分别记作A S ,B S ,C S 则0A B C S OA S OB S OC ⋅+⋅+⋅=.说明:本定理图形酷似奔驰的车标而得名. 奔驰定理在三角形四心中的具体形式:△O 是ABC ∆的重心⇔::1:1:1A B C S S S =⇔0OA OB OC ++=. △O 是ABC ∆的内心⇔::::A B C S S S a b c =⇔0aOA bOB cOC ++=. △O 是ABC ∆的外心::sin 2:sin 2:sin 2sin 2sin 2sin 20A B C SS SA B C A OA B OB C OC ⇔=⇔⋅+⋅+⋅=.△O 是ABC ∆的垂心⇔::tan :tan :tan A B C S S S A B C =⇔tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=.奔驰定理是三角形四心向量式的完美统一.【应用场景】奔驰定理常用于解答与三角形内任意一点有关的三角形面积问题. 【典例指引1】(2022·四川西昌·高二期末)16.在平面上有ABC 及内一点O 满足关系式:0OBC OAC OAB S OA S OB S OC ⋅+⋅+⋅=△△△即称为经典的“奔驰定理”,若ABC 的三边为a ,b ,c ,现有0a OA b OB c OC ⋅+⋅+⋅=则O 为ABC 的( ) A .外心 B .内心C .重心D .垂心【典例指引2】17.设G 是△ABC 重心,且(56sin )(40sin )(35sin )0A GA B GB C GC ++=,则B ∠=_________.【针对训练】 一、单选题18.若O 是平面上的定点,A ,B ,C 是平面上不共线的三点,且满足()OP OC CB CA λ=++(R λ∈),则P 点的轨迹一定过ABC 的( )A .外心B .内心C .重心D .垂心19.若O 是平面内一定点,A ,B ,C 是平面内不共线的三点,若点P 满足2OB OCOP +=+λAP (λ△(0,+∞)),则点P 的轨迹一定通过△ABC 的( ) A .外心 B .内心 C .重心D .垂心20.已知O 是平面内一定点,,,A B C 是平面上不共线的三个点,动点P 满足()()0,,λλ⎛⎫⎪=++∈+∞ ⎪⎝⎭AB AC OP OA AB AC 则点P 的轨迹一定通过ABC 的( ) A .外心 B .内心 C .重心 D .垂心21.在ABC 中,CB a =,CA b =,且sin sin a b OP OC m a B b A ⎛⎫⎪+ ⎪⎝⎭=+,m R ∈,则点P 的轨迹一定通过ABC 的( )A .重心B .内心C .外心D .垂心二、多选题(2022·重庆实验外国语学校高一期中)22.对于给定的ABC ,其外心为O ,重心为G ,垂心为H ,内心为Q ,则下列结论正确的是( )A .212AO AB AB ⋅=B .GA GB GA GC GB GC ⋅=⋅=⋅C .0HA HB HC ++=D .若A P Q 、、三点共线,则存在实数λ使||||AB AC AP AB AC λ⎛⎫=+ ⎪⎝⎭(2022·广东·东莞市光明中学高一阶段练习)23.点O 在ABC 所在的平面内,则以下说法正确的有( ) A .若0OA OB OC ++=,则点O 是ABC 的重心.B .若0||||||||AC AB BC BA OA OB AC AB BC BA ⎛⎫⎛⎫⋅-=⋅-= ⎪ ⎪⎝⎭⎝⎭,则点O 是ABC 的内心. C .若()()0OA OB AB OB OC BC +⋅=+⋅=,则点O 是ABC 的外心. D .若OA OB OB OC OC OA ⋅=⋅=⋅,则点O 是ABC 的垂心.三、填空题24.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足2cos cos OB OC AB AC OP AB B AC C λ⎛⎫+ ⎪=++⎪⎝⎭,[)0,λ∈+∞,则动点P 的轨迹一定通过ABC 的________(填序号).△内心 △垂心 △ 重心 △外心参考答案:1.78【详解】因为222211436=42244AD BC FD BC BA CA BC AD BC AD --⋅=-⋅--==()(), 2211114123234FD BCBF CF BC AD BC AD -⋅=-⋅--==-()(),因此22513,82FD BC ==,2222114167.22448ED BC FD BC BE CE BC ED BC ED --⋅=-⋅--===()()【考点】向量数量积【名师点睛】研究向量的数量积,一般有两个思路,一是建立平面直角坐标系,利用坐标研究向量的数量积;二是利用一组基底表示所有向量,两种思路实质相同,但坐标法更易理解和化简. 对于涉及中线的向量问题,一般利用向量加、减法的平行四边形法则进行求解. 2.B【分析】根据条件建立坐标系,求出点的坐标,利用坐标法结合向量数量积的公式进行计算即可.【详解】建立如图所示的坐标系,以BC 中点为坐标原点,则A ,(1,0)B -,(1,0)C ,设(,)P x y ,则()PA x y =-,(1,)PB x y =---,(1,)PC x y =--,则22223()222[(]4PA PB PC x y x y +=-+=+-∴当0x =,y =时,取得最小值332()42⨯-=-,故选:B .3.B【分析】以{},AB AD 为基底分别表示出,AP BP ,再利用平面向量数量积的运算律即可解出. 【详解】因为3CP PD =,所以14AP AD DP AD AB =+=+,1344BP AP AB AD AB AB AD AB =-=+-=-,而2AP BP ⋅=,所以, 13244AD AB AD AB ⎛⎫⎛⎫+⋅-= ⎪ ⎪⎝⎭⎝⎭,化简得:2213582216AB AD -⋅-⨯=,即22AB AD ⋅=. 故选:B . 4.9【解析】根据平面向量的线性表示与数量积运算,利用AB AD ⋅=()()AO OB AO OD +⋅+,求出||||4OB OD ==,再利用()()BC DC BO OC DO OC ⋅=+⋅+,运算可求出结果. 【详解】在平面四边形ABCD 中,O 为BD 的中点,且3,5,0OA OC OB OD ==∴+=若7AB AD ⋅=-,则()()AO OB AO OD +⋅+2AO AO OD AO OB OB OD =+⋅+⋅+⋅22()AO OA OD OB OB =+⋅+-223OB =-7=-,216OB ∴=,||||4OB OD ∴==,()()BC DC BO OC DO OC ∴⋅=+⋅+2BO DO BO OC OD OC OC =⋅+⋅+⋅+=222()4BO OC BO OD OC -+⋅++=-2059++=.故答案为:9【点睛】本题考查了平面向量的线性表示与数量积运算,考查了转化思想和运算能力,属于中档题. 5.B【详解】试题分析:因为AB AC AB AC +=-,所以AB AC ⊥,以点A 为坐标原点,,AB AC分别为,x y 轴建立直角坐标系,设()()2,00,1AB AC ==,,又E F ,为BC 的三等分点所以,4122,,,3333AE AF ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,所以412210,,33339AE AF ⎛⎫⎛⎫⋅=⋅= ⎪ ⎪⎝⎭⎝⎭,故选B.考点:平面向量的数量积.【一题多解】若AB AC AB AC +=-,则222222AB AC AB AC AB AC AB AC ++⋅=+-⋅, 即有0AB AC ⋅=,,E F 为BC 边的三等分点,则()()1133AE AF AC CE AB BF AC CB AB BC ⎛⎫⎛⎫⋅=+⋅+=+⋅+ ⎪ ⎪⎝⎭⎝⎭21123333AC AB AC AB ⎛⎫⎛⎫=+⋅+ ⎪ ⎪⎝⎭⎝⎭22225210(14)099999AC AB AB AC =++⋅=++=,故选B .6【分析】取BC 中点D ,由题意,计算得2BC =ABC BC ,数形结合可知,PD 的最小值为PBC △BC ,利用向量的基底表示与线性运算将问题转化为2222113+=+?+=+224PC PB BC PD BC PD BC BC PD BC ⋅-⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,代值计算.【详解】取BC 中点D ,由正ABC 的面积为2,221πsin 223ABCSBC BC ∴=⋅⋅=⇒=ABC 的高为πsin3h BC =⋅=,数形结合得,PD 的最小值为PBC △的高,即12PD h ≥=, 所以22316PD BC ≥,所以2211+=+?+22PC PB BC PD BC PD BC BC ⋅-⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭2222221333154416416PD BC BC PD BC BC -+=+≥+7.【分析】由平面几何的知识结合三角形面积公式可得2sin PB PC BPC⋅=∠,由平面向量数量积的运算可得2cos sin BP PC P CB B PC∠=∠⋅,由余弦定理结合基本不等式可得244cos sin BP B CBP C C-∠∠≥,进而可得242cos sin PC P BPC BP B C BC ⋅-∠∠+≥,令()42cos (),0,sin x f x x x π-=∈,利用导数求得()f x 的最小值后即可得解. 【详解】因为E 、F 分别是AB 、AC 的中点, 所以EF 到BC 的距离等于点A 到BC 的距离的一半, 所以2ABCPBCS S=,又2ABCS=,所以11sin 2PBCS PB PC BPC ==⋅⋅∠, 因此2sin PB PC BPC⋅=∠,所以2cos cos sin BPCPB PC BP PC B PC P C B ∠⋅⋅∠∠⋅==;又由余弦定理可得:2222cos =+-⋅⋅∠BC PB PC PB PC BPC 44cos s 22cos in PB PC PB PC BP BPCBPCC ≥⋅-⋅-∠=∠∠,当且仅当PB PC =时,取等号; 所以22cos 44cos 42cos sin sin sin BPC BPC BP PC PB BC CBPC BPC BPC∠-∠-∠++∠∠≥=∠⋅,令=∠x BPC ,42cos ()sin xf x x-=,()0,x π∈;又2222sin (42cos )cos 24cos ()sin sin x x x xf x x x---'==,由()0f x '>得1cos 2x <,所以3x ππ<<;由()0f x '<得1cos 2x >,所以03x π<<;所以()f x 在0,3π⎛⎫ ⎪⎝⎭上单调递减,在,3ππ⎛⎫⎪⎝⎭上单调递增;所以min()3f x fπ⎛⎫===⎪⎝⎭因此2PC PB BC⋅+的最小值是故答案为:【点睛】本题考查了基本不等式、余弦定理、导数的应用及向量数量积的最值问题,考查了运算求解能力与转化化归思想,属于中档题.8.16132【分析】可得120BAD∠=,利用平面向量数量积的定义求得λ的值,然后以点B为坐标原点,BC所在直线为x轴建立平面直角坐标系,设点(),0M x,则点()1,0N x+(其中05x≤≤),得出DM DN⋅关于x的函数表达式,利用二次函数的基本性质求得DM DN⋅的最小值.【详解】AD BCλ=,//AD BC∴,180120BAD B∴∠=-∠=,cos120AB AD BC AB BC ABλλ⋅=⋅=⋅1363922λλ⎛⎫=⨯⨯⨯-=-=-⎪⎝⎭,解得16λ=,以点B为坐标原点,BC所在直线为x轴建立如下图所示的平面直角坐标系xBy,()66,0BC C=∴,,△3,60AB ABC=∠=︒,△A的坐标为32A⎛⎝⎭,△又△16AD BC=,则52D⎛⎝⎭,设(),0M x,则()1,0N x+(其中05x≤≤),5,2DM x ⎛=- ⎝⎭,3,2DN x ⎛=- ⎝⎭,()222532113422222DM DN x x x x x ⎛⎫⎛⎫⋅=--+=-+=-+ ⎪⎪⎝⎭⎝⎭⎝⎭, 所以,当2x =时,DM DN ⋅取得最小值132. 故答案为:16;132.【点睛】本题考查平面向量数量积的计算,考查平面向量数量积的定义与坐标运算,考查计算能力,属于中等题. 9.ABCD【分析】根据三角形外心、重心和垂心的定义逐一用向量判断ABC ,用向量的数量积和运算律判断D 即可.【详解】解:对于A ,因为||||||OA OB OC ==,所以点O 到ABC 的三个顶点的距离相等,所以O 为ABC 的外心,故A 正确;对于B ,如图所示,D 为BC 的中点,由0NA NB NC ++=得:2ND NA =-,所以||:||2:1AN ND =,所以N 是ABC 的重心,故B 正确;对于C ,由PA PB PB PC ⋅=⋅得:()0PA PC PB -⋅=,即0AC PB ⋅=,所以AC PB ⊥;同理可得:AB PC ⊥,所以点P 是ABC 的垂心,故C 正确; 对于D ,由()0||||AB ACBC AB AC +⋅=得:角A 的平分线垂直于BC ,所以AB AC =; 由12||||AB AC AB AC ⋅=得:1cos 2A =,所以3A π=,所以ABC 为等边三角形,故D 正确.故选:ABCD . 10.A【分析】设BC 边的中点为D ,则2AB AC AD +=,进而结合题意得2AP AD λ=,再根据向量共线判断即可.【详解】解:根据题意,设BC 边的中点为D ,则2AB AC AD +=, 因为点P 满足()OP OA AB AC λ=++,其中R λ∈ 所以,()2OP OA AP AB AC AD λλ-==+=,即2AP AD λ=, 所以,点P 的轨迹为ABC 的中线AD , 所以,点P 的轨迹一定经过ABC 的重心. 故选:A11.C【分析】根据向量的减法法则化简题中的等量关系,结合三角形内心的性质得到系数的关系求解.【详解】由AO AB BC λμ=+得()()AO OB OA OC OB λμ=-+-, 则()()1++=0OA OB OC -λλ-μμ,因为O 为△ABC 的内心,所以++=0BC OA AC OB AB OC , 从而()()1::5:4:3λλμμ--=, 解得712λ=,14μ=,所以56λμ+=.故选:C. 12.C【分析】根据向量的线性运算,结合已知条件,即可判断点P 轨迹. 【详解】因为AB AB为AB 方向上的单位向量,AC AC为AC 方向上的单位向量,则||||AB ACAB AC +的方向与BAC ∠的角平分线一致, 由AB AC OP OA AB AC λ⎛⎫ ⎪=++ ⎪ ⎪⎝⎭,可得AB AC OP OA AB AC λ⎛⎫ ⎪-=+ ⎪⎝⎭,即AB AC AP AB AC λ⎛⎫⎪=+ ⎪ ⎪⎝⎭, 所以点P 的轨迹为BAC ∠的角平分线所在直线, 故点P 的轨迹一定经过ABC 的内心. 故选:C. 13.4【分析】由G 为ABC 的重心,易得()1=,3AG AB AC +又=BC AC AB -,结合数量积运算律即可得到结果.【详解】由已知可得ABC 是以B 为直角顶点的直角三角形, 因为G 为ABC 的重心,所以()22+1===+,3323AB AC AG AF AB AC ⋅ =BC AC AB-,△()()()()22111=+==164=4333AG BC AB AC AC AB AC AB ⋅⋅---, 故答案为:4 14.2-【分析】根据条件和几何意义,将BO AC 转化为相应的向量投影即可求解. 【详解】如图,设D 、E 分别为,AB BC 的中点,则,OD AB OE BC ⊥⊥,所以()BO AC BO BC BA BO BC BO BA =-=- cos cos BO BC OBC BO BA OBA =∠-∠ 2211=?·==222BE BC BA BD BC BA --- , 故答案为:-2 . 15.6-【分析】利用向量的数量积运算求解或根据投影的几何意义求解.【详解】解法1:不难发现,ABC 是以B 为直角顶点的直角三角形,如图,设圆I 与AB 、AC 、BC 分别相切于点D 、E 、F ,设圆I 的半径为r ,则ID IE IF r ===,显然四边形BDIF 是正方形,所以BD BF r ==,从而2AD r =-,CF r =,易证=AE AD ,=CE CF ,所以2AE r =-,CE r =,故224AE CE r AC +=+==,从而1r =,23AD r =-=()AI BC AI AC AB AI AC AI AB ⋅=⋅-=⋅-⋅cos cos AI AC IAC AI AB IAB =⋅⋅∠-⋅⋅∠ ()26AE AC AD AB AD AC AB AD =⋅-⋅=-==-故答案为:6-解法2:按解法1求得ABC 的内切圆半径1r ,由图可知AI 在BC 1,所以()316AI BC ⋅=⨯-故答案为:6- 16.B【分析】利用三角形面积公式,推出点O 到三边距离相等。
必修四平面向量的坐标运算(附答案)(最新整理)
( )1
B. 4,- 2
C.(-8,1)
D.(8,1)
→→ 3.已知四边形 ABCD 的三个顶点 A(0,2),B(-1,-2),C(3,1),且BC=2AD,则顶点 D 的 坐标为( )
( )7
A. 2, 2
( )1
B. 2,- 2
C.(3,2)
D.(1,3)
4.已知向量 a=(2,-3),b=(1,2),p=(9,4),若 p=ma+nb,则 m+n=________.
→ BC=(-8,10)-(0,6)=(-8,4).
→→ ∴(1)AB-AC=(-2,10)-(-10,14)=(8,-4).
→→ (2)AB+2BC=(-2,10)+2(-8,4)=(-18,18).
→ 1→
1
(3)BC- AC=(-8,4)- (-10,14)=(-3,-3).
2
2
跟踪训练 2 已知 a=(-1,2),b=(2,1),求:
13 ∴C(1, 3),D( , ),
22
→
→
∴AB=(=(1-2, 3-0)=(-1, 3),
→1
3
33
BD=( -2, -0)=(- , ).
2
2
22
跟踪训练 1 在例 1 的基础上,若 E 为 AB 的中点,G 为三角形的重心时,如 → →→ →
何求向量CE,AGB,G,GD的坐标?
坐标法解决向量问题
→
→
→
例 4 已知 O 是△ABC 内一点,∠AOB=150°,∠BOC=90°,设OA=a,OB=b,OC=c,
且|a|=2,|b|=1,|c|=3,试用 a,b 表示 c.
分析 注意到两个已知的特殊角,联想到建立直角坐标系求向量坐标.
平面向量坐标运算例题和知识点总结
平面向量坐标运算例题和知识点总结一、平面向量的坐标表示在平面直角坐标系中,分别取与 x 轴、y 轴方向相同的两个单位向量 i、j 作为基底。
任作一个向量 a,由平面向量基本定理可知,有且只有一对实数 x、y,使得 a = xi + yj。
我们把有序数对(x, y) 叫做向量a 的坐标,记作 a =(x, y)。
其中,x 叫做 a 在 x 轴上的坐标,y 叫做 a 在 y 轴上的坐标。
例如,向量 a =(2, 3),就表示 a 的终点坐标减去起点坐标得到在x 轴上的分量是 2,在 y 轴上的分量是 3。
二、平面向量坐标运算的知识点1、向量加法的坐标运算若 a =(x₁, y₁),b =(x₂, y₂),则 a + b =(x₁+ x₂, y₁+y₂)2、向量减法的坐标运算若 a =(x₁, y₁),b =(x₂, y₂),则 a b =(x₁ x₂, y₁ y₂)3、数乘向量的坐标运算若 a =(x, y),实数λ,则λa =(λx, λy)4、向量的模的坐标运算若 a =(x, y),则|a| =√(x²+ y²)5、向量平行的坐标表示若 a =(x₁, y₁),b =(x₂, y₂),则 a // b 的充要条件是x₁y₂ x₂y₁= 06、向量垂直的坐标表示若 a =(x₁, y₁),b =(x₂, y₂),则 a ⊥ b 的充要条件是 x₁x₂+ y₁y₂= 0三、平面向量坐标运算的例题例 1:已知向量 a =(2, 1),b =(-1, 3),求 a + b 和 a b 的坐标。
解:a + b =(2 +(-1), 1 + 3) =(1, 4)a b =(2 (-1), 1 3) =(3, -2)例 2:已知向量 a =(3, -2),b =(-2, 4),且λa + b 与 a 2b 平行,求实数λ的值。
解:λa + b =λ(3, -2) +(-2, 4) =(3λ 2, -2λ + 4)a 2b =(3, -2) 2(-2, 4) =(3 (-4),-2 8) =(7, -10)因为λa + b 与 a 2b 平行,所以(3λ 2)×(-10) (-2λ + 4)×7 = 0解得λ =-1 / 2例 3:已知向量 a =(4, 3),向量 b 的模为 5,且 a ⊥ b,求向量 b 的坐标。