关于电容式传感器的分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于电容式传感器的分析

电容式传感器工作原理

电容式传感器是将被测量的变化转换为电容量变化的一种装置,它本身就是一种可变电容器。由于这种传感器具有结构简单,体积小,动态响应好,灵敏度高,分辨率高,能实现非接触测量等特点,因而被广泛应用于位移、加速度、振动、压力、压差、液位、等分含量等检测领域。

它的基本工作原理是基于被测物理量的变化可以转换为电容量变化的这一特点. 由物理学可知,电容器的电容量是构成电容器的两极片形状,大小,相互位置及电介质介电常数的函数.

在电容式传感器中,当极板间的距离发生变化或极板间的介质状态参数发生变化而使介电常数ε产生变化时(如介质的温度, 湿度等参数发生变化时, 匀能导致介电常数的变化)都将引起电容量变化.故可据此测量物体的位移以及介质的各种状态参数.只要被测物理量的变化能使电容器中任一种参数产生相应的改变而引起电容量变化, 那么再经过一定的测量线路将此变化转换为有用的电信号输出, 即可根据这种输出信号大小来判定被测物理量的大小。

由公式C=εS/4πkd知,当被测量的变化使S、d 或ε任意一个参数发生变化时,电容量也随之而变,从而完成了由被测量到电容量的转换。其中的三个参数中两个固定,一个可变,使得电容式传感器有三种基本类型:变极距型电容传感器、变面积型电容传感器和变介电常数型电容传感器。变极距型电容传感器在初始极距较小时,灵敏度提高;但是初始极距太小时,容易引起电容器击穿。改善的办法是在极板间放置云母片。变面积型电容传感器的输出为线性,灵敏度与初始极距成反比,所以减小极距,提高灵敏度,而差动结构也能提高灵敏度。变介质型电容传感器则用于测量厚度、高度。

电容式传感器测量电路

电容式传感器的测量电路就是将电容式传感器看成一个电容并转换成电压或其他电量的电路。因此,常用的测量电路主要有桥式电路、调频电路、脉冲宽度制电路、运算放大器电路、二极管双T 形交流电桥和环行二极管充放电法等。

调频电路实际是把电容式传感器作为振荡器谐振回路的一部分,当输入量导致电容量发生变化时,振荡器的振荡频率就发生变化。虽然可将频率作为测量

系统的输出量,用以判断被测非电量的大小,但此时系统是非线性的,不易校正,因此得加入鉴频器,将频率的变化转换为电压振幅的变化,经过放大就可以用仪器指示或记录仪记录下来。

调频电容传感器测量电路具有较高的灵敏度,可以测量高至0.01 μm 级位移变化量。信号的输出频率易于用数字仪器测量,并与计算机通信,调频电容传感器测量电路具有较高的灵敏度,可以测量高至0.01 μm 级位移变化量。信号的输出频率易于用数字仪器测量,并与计算机通信,抗干扰能力强,可以发送、接收以达到遥测遥控的目的。抗干扰能力强,可以发送、接收以达到遥测遥控的目的。

因此,在实际应用中,常采用差动式结构,既使灵敏度提高 1 倍,又使非线性误差大大降低,抗干扰能力增强。电容式传感器可用来测量直线位移、角位移、振动振幅(测至0.05μm 的微小振幅),尤其适合测量高频振动振幅、精密轴系回转精度、加速度等机械量,还可用来测量压力、差压力、液位、料面、粮食中的水分含量、非金属材料的涂层、油膜厚度、测量电介质的湿度、密度、厚度等。在自动检测和控制系统中也常常用来作为位置信号发生器。

而相对的,电容式液位传感器是利用被测介质面的变化引起电容变化的一种变介质型电容器。为用于检测非导电液体的电容式传感器。它是通过将被测介质的液面高度变化转为电容器电容量的变化,当被测液体的液面在电容传感器的两同心圆柱形电极间变化时,引起极间不同介电常数介质的高度发生变化。

从能量转换的角度而言,电容变换器为无源变换器,需要将所测的力学量转换成电压或电流后进行放大和处理。力学量中的线位移、角位移、间隔、距离、厚度、拉伸、压缩、膨胀、变形等无不与长度有着密切联系的量;这些量又都是通过长度或者长度比值进行测量的量,而其测量方法的相互关系也很密切。另外,在有些条件下,这些力学量变化相当缓慢,而且变化范围极小,如果要求测量极小距离或位移时要有较高的分辨率,其他传感器很难做到实现高分辨率要求,在精密测量中所普遍使用的差动变压器传感器的分辨率仅达到1~5 μm数量级;而有一种电容测微仪,他的分辨率为0.01 μm,比前者提高了两个数量级,最大量程为100±5 μm,因此他在精密小位移测量中受到青睐。

电容式传感器的优缺点

电容器传感器的优点是结构简单,价格便宜,灵敏度高,过载能力强,动态响应特性好和对高温、辐射、强振等恶劣条件的适应性强等。缺点是输出有非线性,寄生电容和分布电容对灵敏度和测量精度的影响较大,以及联接电路较复杂等。因此,在实际应用中,常采用差动式结构,既使灵敏度提高 1 倍,又使非线性误差大大降低,抗干扰能力增强。具体的说:

首先,电容式传感器结构简单,易于制造,精度高;可以做得很小,以实现某些特殊的测量,电容式传感器一般用金属作电极,以无机材料作绝缘支承,因此可工作在高低温、强辐射及强磁场等恶劣的环境中,能承受很大的温度变化,承受高压力、高冲击、过载等;能测超高压和低压差。

其次,电容式传感器由于极板间的静电引力很小,需要的作用能量极小,可动部分可以做得小而薄,质量轻,因此固有频率高,动态响应时间短,能在几兆赫的频率下工作,特适合于动态测量;可以用较高频率供电,因此系统工作频率高。它可用于测量高速变化的参数,如振动等。

第三,由于传感器的带电极板间的引力极小,需要输入能量低,所以特别适合于用来解决输入能量低的问题,如测量极小的压力、力和很小的加速度、位移等,可以做得很灵敏,分辨力非常高,能感受0.001μm ,甚至更小的位移。

第四,电容式传感器的电容值一般与电极材料无关,有利于选择温度系数低的材料,又由于本身发热极小,因此影响稳定性也极微小。

最后,可实现非接触测量、具有平均效应。如果回转轴的振动或偏心、小型滚珠轴承的径向间隙等,采用非接触测量时,电容式传感器具有平均效应,可以减小工件表面粗糙度等对测量的影响。

当然,它也有一些缺点,在实际中输出阻抗高,负载能力差,电容传感器的电容量受其电极几何尺寸等限制,一般为几十皮法到几百皮法,使传感器输出阻抗很高,尤其当采用音频范围内的交流电源时,输出阻抗更高,因此传感器负载能力差,易受外界干扰影响而产生不稳定现象。寄生电容影响大,电容式传感器的初始电容量很小,而传感器的引线电缆电容、测量电路的杂散电容以及传感器极板与其周围导体构成的电容等“寄生电容”却较大,降低了传感器的灵敏度,破坏了稳定性,影响测量精度,因此对电缆的选择、安装、接法都要有要求。

相关文档
最新文档