干气密封技术基本结构原理

合集下载

干气密封技术简介

干气密封技术简介

干气密封技术简介一、干气密封技术基本结构原理一般来讲,典型的干气密封结构包含有静环、动环组件(旋转环)、副密封O形圈、静密封、弹簧和弹簧座(腔体)等零部件。

静环位于不锈钢弹簧座内,用副密封O形圈密封。

弹簧在密封无负荷状态下使静环与固定在转子上的动环组件配合,如图1所示在动环组件和静环配合表面处的气体径向密封有其先进独特的方法。

配合表面平面度和光洁度很高,动环组件配合表面上有一系列的螺旋槽,如图2所示。

随着转子转动,气体被向内泵送到螺旋槽的根部,根部以外的一段无槽区称为密封坝。

密封坝对气体流动产生阻力作用,增加气体膜压力。

该密封坝的内侧还有一系列的反向螺旋槽,这些反向螺旋槽起着反向泵送、改善配合表面压力分布的作用,从而加大开启静环与动环组件间气隙的能力。

反向螺旋槽的内侧还有一段密封坝,对气体流动产生阻力作用,增加气体膜压力。

配合表面间的压力使静环表面与动环组件脱离,保持一个很小的间隙,一般为3微米左右。

当由气体压力和弹簧力产生的闭合压力与气体膜的开启压力相等时,便建立了稳定的平衡间隙。

在动力平衡条件下,作用在密封上的力如图3所示。

闭合力Fc,是气体压力和弹簧力的总和。

开启力Fo是由端面间的压力分布对端面面积积分而形成的。

在平衡条件下Fc=Fo,运行间隙大约为3微米。

如果由于某种干扰使密封间隙减小,则端面间的压力就会升高,这时,开启力Fo大于闭合力Fc,端面间隙自动加大,直至平衡为止。

如图4所示。

类似的,如果扰动使密封间隙增大,端面间的压力就会降低,闭合力Fc大于开启力Fo,端面间隙自动减小,密封会很快达到新的平衡状态,见图5。

这种机制将在静环和动环组件之间产生一层稳定性相当高的气体薄膜,使得在一般的动力运行条件下端面能保持分离、不接触、不易磨损,延长了使用寿命。

通过以上结构的不同组合并配合辅助的密封可演化出用于实际工况的几种结构:二、干气密封型式三、单端面干气密封它适用于少量工艺气泄漏到大气中无危害的工况,见图6图四、串联式干气密封它适用于允许少量工艺气泄漏到大气的工况,见图7。

干气密封介绍(上)

干气密封介绍(上)

干气密封介绍一、干气密封干气密封经过了严格的试验和检验,由制造精度高、质量优良的陶瓷和高合金的金属材料组成,含串联式配置的密封(如:含两个动环、两套装好弹簧的静环组件、腔体、连接轴套等件)和内部迷宫密封。

在大气侧配置了隔离密封。

弹簧力和工艺气压力共同作用形成密封力,密封环和保持环间的密封元件(O形圈)起副密封的作用。

在串联密封中,工艺气侧的主密封承受全压差起主要的密封作用。

大气侧的密封作为安全备用密封,一旦主密封失效安全密封承担起主密封的作用,可以保证设备安全停机。

干气密封分类:单端面,双端面,串联式等多种。

如何选用干气密封:1、对于要求既不允许工艺气体泄漏到大气中,又不允许阻封气进入机体的情况,采用中间进气的串联式干气密封。

普通串联式干气密封适用于少量工艺气泄漏到大气中的工状。

大气侧的一级密封作为保险密封。

2、对于允许气体少量泄漏到大气中,且无任何危害的工况,选用单端面干气密封。

3、对于不允许工艺气体泄漏到大气中,但允许阻封气泄漏到工艺气中的工况,选用双端面干气密封。

二、干气密封密封端面分类及螺旋槽干气密封优点干气密封密封端面根据加工成的形状分成:有扁平密封块,有台阶的密封块,有楔形鞋状密封块的,有螺旋槽的,等等。

螺旋槽干气密封优点:运行可靠性高,使用寿命长,密封气泄漏量小,功耗极低,工艺回路无油污染,工艺气亦不污染润滑油系统,取消了庞大的密封油供给及测控系统,占地面积小,重量轻,运行维护费用低,减小了计划外维修费用和生产停车。

三、干气密封结构图。

图1 串联式干气密封的内部结构四、干气密封系统概述1、主要数据密封型式:TM02D串联式干气密封密封处轴径:100mm密封配置:带中间迷宫的串联式密封(含隔离气密封)密封系统型式:除液装置+增压装置+密封控制系统产地:沈阳透平机械股份有限公司密封材料:㈠、旋转环:硬质合金(碳化钨或碳化硅)㈡、旋转金属件:410SS㈢、静止环:特种石墨(碳化硅+DLC涂层)㈣、静止金属件:410SS㈤、弹簧:哈氏合金2 、干气密封工作原理:干气密封是一种非接触式端面密封,密封单元由两个环构成。

干气密封原理

干气密封原理

干气密封原理干气密封是一种常用的密封方式,它主要应用于高速旋转机械设备中,如离心压缩机、涡轮机、齿轮箱等。

干气密封的主要作用是防止介质(气体或液体)泄漏,同时减少摩擦损失,提高设备的运行效率。

下面将详细介绍干气密封的原理及其工作过程。

首先,干气密封的原理是利用气体的高速旋转产生的离心力和惯性力,将气体挤压到密封面上,形成一层气体膜,阻止介质泄漏。

同时,密封面上的气体膜也能减少密封面的摩擦,降低能量损失。

因此,干气密封的密封效果和摩擦损失都比较理想。

其次,干气密封的工作过程可以分为两个阶段,压缩气体和扩张气体。

在压缩气体阶段,气体被挤压到密封面上,形成高压区;在扩张气体阶段,气体从高压区向低压区扩张,形成气体膜。

通过这样的循环过程,干气密封能够持续地保持压力差,实现有效的密封效果。

此外,干气密封的工作性能还受到密封面材料、密封面形状、气体种类等因素的影响。

选择合适的密封面材料能够提高密封效果,减少摩擦损失;而优化密封面形状能够改善气体流动状态,增强密封性能。

同时,不同种类的气体对密封性能也有影响,需要根据实际工况选择合适的气体种类。

总的来说,干气密封原理是基于气体的高速旋转产生的离心力和惯性力,形成气体膜,实现有效的密封效果和减少摩擦损失。

在实际应用中,需要综合考虑密封面材料、密封面形状、气体种类等因素,进行合理的设计和选择,以达到最佳的密封性能和运行效率。

通过以上介绍,相信大家对干气密封的原理和工作过程有了更深入的了解。

在实际工程中,我们需要根据具体的设备和工况,合理选择干气密封,并进行优化设计,以确保设备的安全稳定运行。

希望本文能为大家提供一些参考,谢谢阅读!。

干气密封原理

干气密封原理

干气密封原理干气密封是一种常见的密封方式,它主要应用于高速旋转机械设备中,如离心压缩机、涡轮机等。

干气密封的主要作用是防止介质泄漏和外部空气进入设备内部,从而保证设备的正常运行和安全性。

下面我们将详细介绍干气密封的原理及其工作过程。

干气密封的原理主要包括惯性气体密封和辅助密封两种。

惯性气体密封是利用气体的惯性和离心力将气体挤压在密封面上,形成气体屏障,阻止介质泄漏。

而辅助密封则是通过外部供气系统,向密封面提供压力,增加密封面上气体的密度和压力,从而提高密封效果。

这两种原理的结合使用,能够有效地实现干气密封的功能。

干气密封的工作过程可以简单描述为,当设备开始运转时,密封面上的气体受到离心力的作用,形成高速旋转的气体屏障。

同时,辅助密封系统向密封面提供压力,使气体屏障更加稳定和密实。

当设备停止运转时,辅助密封系统也会停止供气,气体屏障逐渐消失。

这样,就能够有效地实现密封面的密封和解除密封。

干气密封的优点主要包括以下几点,首先,它能够有效地防止介质泄漏,保护设备和环境的安全;其次,干气密封不需要润滑剂,能够避免润滑剂对介质的污染;最后,干气密封具有较长的使用寿命和较低的维护成本,能够降低设备的运行成本。

然而,干气密封也存在一些缺点,例如对设备的加工精度要求较高,安装和维护较为复杂,需要专业技术人员进行操作和管理。

因此,在选择干气密封时,需要根据设备的具体情况和工作环境进行综合考虑。

总的来说,干气密封作为一种重要的密封方式,具有广泛的应用前景和发展空间。

随着科技的不断进步和创新,相信干气密封技术将会得到进一步的完善和提升,为各行各业的设备运行和安全提供更加可靠的保障。

干气密封的原理及应用场合

干气密封的原理及应用场合

干气密封的原理及应用场合1. 干气密封的定义和基本原理干气密封是一种利用清洁干燥的气体(通常是氮气)在机械轴和密封部件之间形成一个气体屏障,以防止液体或气体泄漏的密封方法。

它主要利用气体压力高于液体或气体的压力,将气体或液体压缩在轴封附近的密封腔内,从而有效地防止泄漏。

干气密封的基本原理是通过气膜将两侧介质隔离开来,从而实现密封效果。

当轴旋转时,密封腔内的气体被强制流动,形成一个气膜屏障,防止液体或气体渗入密封腔。

2. 干气密封的优点•高效性能:干气密封具有较高的密封效果,有效防止液体或气体泄漏,提高设备的工作效率。

•可靠性:由于密封性能稳定可靠,干气密封可保持长时间的使用寿命而不需要频繁维护。

•适应性强:干气密封适用于各种介质,包括化工、石油、医药等不同行业。

•安全性高:由于采用气体作为密封介质,避免了液体泄漏导致的安全隐患。

•环保性好:干气密封无需使用润滑油,减少了对环境的污染。

3. 干气密封的应用场合3.1 化工工业在化工工业中,往往需要处理一些有害、腐蚀性或粘稠的介质。

传统的液体密封在这种条件下容易受到损坏或泄漏,而干气密封可以有效地解决这些问题。

比如,干气密封常被用于泵、压缩机、反应釜等设备的密封,确保介质不泄漏,从而保护操作人员的安全和设备的正常运行。

3.2 石油行业在石油行业中,由于介质种类多样,常常需要在恶劣的工作环境中进行密封。

干气密封可以适应高温、高压、腐蚀等艰苦环境,确保设备的正常运行。

比如,干气密封常用于石油泵、油井采气设备、管线等油气密封系统中。

3.3 医药行业在医药行业中,要求设备的密封性能高、可靠性强,并且要求设备无泄漏和无污染。

干气密封具有符合医药行业要求的特点,被广泛应用于制药设备、灭菌系统、制冷设备等。

3.4 其他行业除了化工、石油和医药行业外,干气密封还广泛应用于其他领域。

例如,干气密封可用于食品加工设备、纸浆设备、电力行业的泄漏控制等。

4. 干气密封的发展趋势随着技术的不断发展,干气密封正朝着更高效、更可靠和更环保的方向发展。

干气密封基本原理及应用

干气密封基本原理及应用

Pressure [barG]
单向槽与双向槽的比较
单向槽:螺旋槽、V型槽 优点:动压效应强,气膜刚度大,抗外界扰动能力 强。
双向槽:枞树、U型槽、T型槽 优点:可以长时间反转; 缺点:较单向槽动压效应弱,气膜刚度小。 推荐:优先采用单向槽,特殊情况双向槽。
工作原理
FC 闭合力
S
P
弹簧力+流体压力
极低的工艺气泄漏
能承受速度和压力的快速变化
由于非接触的特点,理论上密封 寿命可以认为没有限制
干气密封主要特征
减少新机器的成本 集装式设计易安装,保护关键密封组
件 超过1亿5仟万小时运转经验 已安装1万2千套集装式干气密封
干气密封主要特性
取消了密封油系统 减少了维修费用 节能 防止了油系统的污染
10 6.625 in 密封直径
8 6 4 2
单向螺旋槽 改进型双向螺旋槽
最初的双向螺旋槽 雷列台阶
0
0 2000 4000 6000 8000 10000 12000 14000 16000
Speed (rpm)
单向螺旋槽 与 改进型双向螺旋槽( 5.687” ) -泄漏量与压力关系曲线
Leakage [std.l/min]
CSTEDY / CTRANS -功能
输入
压力,温度,转速,气 体组份,材料,槽形, 密封几何形状
输出
密封面间隙,泄漏量, 摩擦,功率,温升,气 膜稳定性
动态密封性能分析
密封直径 162mm 转速 16,110 rpm
压力 0 bar 温度 150 ℃
泄漏量 = 1.5 l/min
5 Microns/ div
New BD vs. UD : Seal Size 5.687"

干气密封工作原理

干气密封工作原理

干气密封工作原理
干气密封是一种常用于机械设备的密封方式,它的工作原理主要是利用气体的压力差来实现对介质的密封。

干气密封的工作原理可分为以下几个部分:
1. 气体压力:在干气密封中,通常会利用高压气体来形成一个气体密封区域。

高压气体通过密封间隙进入密封区域,并且由于气体分子的碰撞,形成气体压力。

这种气体压力能够与外界介质形成良好的隔离,从而实现密封效果。

2. 密封间隙:干气密封中的密封间隙通常由一对摩擦表面之间的间隙形成。

这个间隙足够小,以至于气体分子无法通过间隙漏出或外界介质无法进入其中。

密封间隙通常由密封面的平衡结构保持,以确保间隙的稳定性。

3. 干气供给:为了保持密封的效果,干气密封需要持续地向密封间隙供给干燥的气体。

这种干气通常由外部气源供给,并通过压缩机或其他气流装置进行处理,以确保气体的干燥性和稳定性。

供给干燥的气体能够减少介质中的水分,从而避免气体在密封过程中的胀缩问题。

干气密封的工作原理实质是通过控制气体压力和密封间隙,以及供给干燥的气体,来实现对介质的有效密封。

它具有结构简单、维护方便、适用范围广等优点,在各种机械设备中得到广泛应用。

干气密封的原理

干气密封的原理

干气密封的原理干气密封是一种常用于旋转机械设备中的密封方式,其原理是利用气体的压力来实现密封作用。

在旋转机械设备中,由于转子的高速旋转和运动部件的摩擦,会产生大量的热量和摩擦力,如果不加以有效的密封,就会导致气体泄漏和能量损失,甚至会影响设备的正常运行。

因此,干气密封的应用就显得尤为重要。

干气密封的原理可以简单地概括为以下几点:1. 气体压力作用,干气密封的核心原理是利用气体的压力来实现密封作用。

在密封装置中,通过控制气体的流动和压力,使气体形成一定的压力差,从而阻止外界空气或液体的渗入,实现密封效果。

2. 动静环结构,干气密封通常由动环和静环两部分组成。

动环是安装在旋转轴上的密封件,静环则是安装在机壳内的密封件。

当旋转轴旋转时,动环和静环之间形成一定的间隙,通过控制气体的流动和压力来实现密封作用。

3. 摩擦降低,干气密封的原理还包括通过减少摩擦力来实现密封。

在密封装置中,通过控制气体的流动和压力,形成一层气膜,从而减少旋转部件和固定部件之间的摩擦力,减少能量损失。

4. 温度控制,干气密封的原理还包括通过控制气体的温度来实现密封。

在高速旋转的机械设备中,由于摩擦产生的热量会导致气体温度升高,影响密封效果。

因此,通过控制气体的温度,可以有效地实现密封作用。

总的来说,干气密封的原理是通过控制气体的流动、压力、温度等参数,利用气体的压力和摩擦降低来实现密封作用。

在实际应用中,干气密封不仅可以有效地阻止气体泄漏和能量损失,还可以减少设备的维护成本,提高设备的运行效率,具有广泛的应用前景。

以上就是干气密封的原理,希望能对大家有所帮助。

干气密封结构与原理

干气密封结构与原理
优化方向
优化密封面设计、选择合适的弹性 元件和摩擦材料,以提高开启力。
泄漏率
01
02
03
泄漏率
干气密封在工作过程中, 气体通过密封面的流量, 通常以气体流量或泄漏量 的形式表示。
影响因素
泄漏率受密封面粗糙度、 间隙大小、气体压力和温 度等因素影响。
优化方向
减小密封面粗糙度、减小 间隙大小、提高气体压力 和温度等措施,以降低泄 漏率。

低能耗
干气密封的运行能耗较低,能 够降低企业的生产成本。
长寿命
干气密封的使用寿命较长,减 少了维修和更换的频率,降低 了维护成本。
高可靠性
干气密封的可靠性较高,能够 保证设备的长期稳定运行,减
少意外停机事故的发生。
缺点
高成本
安装要求高
干气密封的结构复杂,制造成本较高,导 致其整体价格较高。
干气密封的安装精度要求较高,需要专业 人员进行安装和调试,以确保其正常工作 。
03
干气密封的工作原理
工作原理概述
干气密封是一种非接触式机械密封,通过在密封端面之间形成一层稳定的气膜来实 现密封。
与传统的接触式机械密封相比,干气密封具有较低的摩擦阻力、磨损小、寿命长等 优点。
干气密封适用于高速、高温、高压等苛刻的工况条件,广泛应用于石油、化工、制 药等领域。
静环与动环的相互作用
旋转环
旋转环是干气密封中的另一个关键组件,它与静止环形成一 对相互作用的密封面。旋转环通常由经过特殊处理的硬质材 料制成,如碳化钨或碳化硅。
旋转环的表面经过精密研磨和抛光,使其能够在高速旋转时 保持与静止环的紧密接触,从而实现非接触式密封。
弹簧
弹簧是干气密封中的一个重要组成部 分,它为静止环提供必要的预紧力, 确保静止环与旋转环之间的紧密接触 。

干气密封原理动画

干气密封原理动画

干气密封原理动画干气密封是一种常用于轴封的密封方式,其原理是利用气体的压力将两个具有不同气压的区域隔离,以阻止气体和液体的泄漏。

干气密封的应用广泛,包括在液压系统、离心机、压缩机和其他旋转机械中。

干气密封的组成干气密封主要由以下几个部分组成:1.轴封体:轴封体是干气密封的主要组成部分,通常由金属或橡胶材料制成,其主要作用是支撑并保护轴和密封元件。

2.密封元件:密封元件是实现气密封的核心部分,常见的有活塞环、l型密封圈、燕尾环等。

密封元件通常由耐磨材料制成,以确保其较长的使用寿命。

3.流体供应装置:流体供应装置提供气体供应,保证轴封工作时间内始终有足够的气体供应,同时还需要能够调节和控制供气压力。

4.压力平衡装置:压力平衡装置用于平衡轴封两侧的气压差异,以防止气体泄漏。

常见的压力平衡装置有平衡腔、平衡管等。

干气密封的工作原理干气密封的工作原理可以简单描述为以下几个步骤:1.气体供应:当轴开始旋转时,流体供应装置会将压力略高的气体输送到轴封的密封室中。

2.密封元件接触:密封元件在气体的压力作用下与轴表面接触,形成密封间隙。

密封间隙的大小和形状取决于密封元件的设计。

3.气动力效应:当密封元件与轴表面接触时,气体将填充到密封间隙中,并将部分气体压缩。

由于压缩气体具有较高的压力,它将产生一个向内的气动力,将密封元件推向轴表面。

4.气体排放:当轴停止旋转时,气体供应装置停止供气,密封间隙内的气体压力逐渐降低,密封元件与轴表面的接触力减小,从而实现气密封。

干气密封的优点干气密封相比其他密封方式具有以下几个优点:•无泄漏:干气密封采用气体作为密封介质,具有良好的密封性能,可以有效阻止气体和液体的泄漏。

•节能环保:由于干气密封无需使用润滑油等液体介质,在工作过程中不会产生液体污染物,具有较好的环境友好性。

同时,干气密封的摩擦阻力较小,可以减少能量消耗。

•维护成本低:干气密封的密封元件一般由耐磨材料制成,寿命较长,换件周期较长,因此维护成本较低。

干气密封的工作原理及设计计算

干气密封的工作原理及设计计算

干气密封的工作原理及设计计算干气密封是一种新型的非接触轴封,与其它密封相比,干气密封具有泄漏量少、磨损小、寿命长、能耗低、操作简单可靠、维修量低、被密封的流体不受油污染等特点。

机械密封一直不能干运转,但干气密封利用流体动压效应,使旋转的两个密封端面之间不接触,而被密封介质泄漏量很少,从而实现了既可以密封气体又能进行干运转操作。

在压缩机应用领域,无论离心压缩机、轴流式压缩机、齿轮传动压缩机还是透平膨胀机,干气密封正逐渐替代浮环密封、迷宫密封和油润滑机械密封。

在泵和反应釜上干气密封应用也越来越广泛。

1、干气密封的基本工作原理干气密封与通常机械密封的平衡型集装式结构一样,但端面设计有所不同,表面上有几微米至十几微米深的沟槽,端面宽度较宽。

与通常润滑机械密封不同,干气密封在两个密封面上产生了一个稳定的气膜。

这个气膜具有较强的刚度使两个密封端面完全分离,并保持一定的密封间隙, 这个间隙不能太大,通常为几微米。

密封间隙太大,会导致泄漏量增加,密封效果较差;而密封间隙较小,容易使两密封面发生接触,因为干气密封的摩擦热不能及时散失,端面接触无润滑,将很快引起密封变形、端面过度发热从而导致密封失效。

这个气膜的存在,既有效地使端面分开又使相对运转的两端面得到了冷却,两个端面非接触,故摩擦、磨损大大减小,使密封具有长寿命的特点,从而延长主机的寿命。

如由此看出,干气密封的设计,决定性的因素是密封环上开槽的几何形状和几何尺寸,选择合理、适用易于加工制造的槽形设计和结构设计是至关重要的。

密封面开槽既可在动环上也可以在静环上,通常来说高速情况下,在动环密封面上开槽;在低速或中速情况下可以在静环上开槽。

要注意由于密封间隙只有几微米,因而一定要注意防止固体颗粒介质进入密封端面。

2、干气密封流体力学计算2.1、基本方程纳维斯托方程和连续方程2.2、方程的解法采用有限差分法,先把计算域划分为若干个有限控制体,用差商代替偏微分方程中的微商,得到代数方程,然后将代数方程在控制体上离散,得到代数方程组。

干气密封结构与原理

干气密封结构与原理

干气密封结构与原理今天咱们来唠唠干气密封这个超有趣的东西。

咱先说说干气密封的结构哈。

干气密封啊,就像是一个超级精密的小世界。

它有动环和静环这两个重要的小伙伴呢。

动环就像是个活泼好动的小机灵鬼,它是随着轴一起旋转的。

而静环呢,就比较沉稳啦,它是固定在那里不动的。

这一动一静之间啊,就有着很多奇妙的事情发生。

动环和静环的表面那可是经过超级精细的加工的,光滑得就像小婴儿的脸蛋儿似的。

而且啊,在它们之间还有一些小小的间隙,这个间隙可不能太大也不能太小,就像是 Goldilocks(金发姑娘)找到的那个“刚刚好”的状态。

再来说说干气密封的密封坝,这就像是一道小堤坝一样。

它在密封结构里起着非常重要的作用呢。

它能够控制气体的流动方向,让气体乖乖地按照我们想要的方式在密封结构里跑来跑去。

还有啊,密封槽也是个很有意思的部分。

这些密封槽的形状和大小都是经过精心设计的,就像是给气体设计了一个个小跑道,气体就在这些小跑道里穿梭。

那干气密封的原理是啥呢?这可就更有趣啦。

干气密封主要是靠气体的压力来实现密封的哦。

想象一下,气体就像是一群小小的士兵,它们被输送到密封结构里。

当动环旋转的时候,它会带动气体在动环和静环之间的间隙里形成一种特殊的气膜。

这个气膜啊,就像是一层软软的保护罩一样。

它一方面能够阻止密封介质泄漏出来,另一方面呢,又能让动环和静环不会直接接触,就像两个小伙伴之间隔了一层柔软的气垫,这样就不会互相磨损啦。

而且哦,这个气膜的压力是很有讲究的。

如果气膜的压力太小了,那就像是士兵的力量不够,可能就挡不住密封介质的泄漏啦。

但是如果气膜的压力太大呢,又可能会把动环和静环给撑开,这样整个密封结构就会出问题啦。

所以啊,就需要精确地控制气体的压力,让这个气膜保持在一个完美的状态。

在实际的工作过程中,干气密封就像是一个忠诚的小卫士。

不管设备里面的压力怎么变化,它都在那里坚守岗位。

比如说在一些大型的压缩机里,干气密封就发挥着巨大的作用。

干气密封工作原理..

干气密封工作原理..

干气密封工作原理..1 干气密封工作原理典型的干气密封结构如图1 所示,由旋转环、静环、弹簧、密封圈、弹簧座和轴套组成。

图2 为干气密封旋转环示意图,旋转环密封面经过研磨、抛光处理,并在其上面加工出有特殊作用的流体动压槽。

干气密封旋转环旋转时,密封气体被吸入动压槽内,由外径朝向中心,径向分量朝着密封堰流动。

由于密封堰的节流作用,进入密封面的气体被压缩,气体压力升高。

在该压力作用下,密封面被推开,流动的气体在两个密封面间形成一层很薄的气膜,此气膜厚度一般在3μm左右。

气体动力学研究表明,当干气密封两端面间的间隙在2~3μm时,通过间隙的气体流动层最为稳定。

这也就是为什么干气密封气膜厚度设计值选定在2~3μm的主要原因。

当气体静压力、弹簧力形成的闭合力与气膜反力相等时,该气膜厚度十分稳定。

正常条件下,作用在密封面上的闭合力(弹簧力和介质力)等于开启力(气膜反力),密封工作在设计工作间隙。

当受到外部干扰,气膜厚度减小,则气膜反力增加,开启力大于闭合力,迫使密封工作间隙增大,恢复到正常值。

相反,若密封气膜厚度增大,则气膜反力减小,闭合力大于开启力,密封面合拢恢复到正常值。

因此,只要在设计范围内,当外部干扰消失以后,气膜厚度就可以恢复到设计值。

衡量密封稳定性的主要指标就是密封产生气膜刚度的大小,气膜刚度是气膜作用力的变化与气膜厚度的变化之比,气膜刚度越大,表明密封的抗干扰能力越强,密封运行越稳定。

干气密封的设计就是以获得最大的气膜刚度为目标。

干气密封是采用机械密封和气体密封的结合,是一种非接触端部密封,它是在机械密封的动环或静环(一般在动环上)的密封面上开有密封槽(本密封为T形槽),当动静环高速旋转时,在两端面间形成一层气膜,在气体泵送效应产生的推力作用下把动静环推开,使两密封端面不接触,但在压缩机刚开机阶段,由于转速较低,动静密封面形成的动压力也较低,动静环是接触摩擦的,所以采用干气密封的压缩机,低速运行时间不宜过长[1]。

干气密封原理及使用课件

干气密封原理及使用课件
干气密封原理及使用课件
$number {01}
目录
• 干气密封原理介绍 • 干气密封系统的组成 • 干气密封的安装与调试 • 干气密封的维护与保养 • 干气密封的发展趋势与展望 • 实际应用案例分析
01
干气密封原理介绍
干气密封工作原理
干气密封工作原理主要是通过旋转轴的动环与静止环之间的 接触面形成流体动压效应,产生流体摩擦力,将旋转轴与静 止环紧紧地粘合在一起,从而实现密封效果。
多元化领域应用
从石油化工向制药、食品、电子 等领域拓展。
跨国合作与交流
加强国际合作与交流,共同推动 干气密封技术的发展和应用。
未来发展方向与挑战
绿色环保
研发低摩擦、低泄漏、低能耗的干气密封技术, 满足绿色环保要求。
高性能标准
制定更高性能的干气密封标准,提升密封性能和 可靠性。
技术人才培养
加强干气密封技术人才的培养和引进,为产业发 展提供人才保障。
轴套通常安装在轴上,用于保护轴 面并传递扭矩。
03
干气密封的安装与调试
安装步骤
准备工作
确保所有工具和材料齐全,检查 干气密封的型号和规格是否正确 。
安装密封圈
将密封圈放置在密封槽内,确保 密封圈没有扭曲或损坏。
清洁密封面
使用专用的清洗剂清洁密封面, 确保没有杂质和油渍。
安装密封盖
将密封盖与旋转轴或静态环连接 ,确保连接处没有泄漏。
05
干气密封的发展趋势与展望
技术创新与改进
材料优化
采用新型材料和涂层技术,提高 密封性能和使用寿命。
结构设计革新
改进密封端面和流体通道设计,降 低泄漏率,提高稳定性和可靠性。
智能监控与诊断
引入传感器和智能化技术,实时监 测密封性能并进行故障预警和诊断 。

干气密封的原理和结构

干气密封的原理和结构
Fs---弹簧作用力 Fp---介质作用力 Fo---气膜反力 Ha---气膜厚度
闭合力=Fs+Fp 开启力=Fo
B.间隙增大 闭合力>开启力
干气密封作用力图
Fs---弹簧作用力 Fp---介质作用力 Fo---气膜反力 Ha---气膜厚度
闭合力=Fs+Fp 开启力=Fo
C.间隙减小
闭合力<开启力
密封安装注意事项
确相同。 将经现场测量确定的调整垫(件18)套装在 主轴上(倒角方应靠近主轴端面),切勿装 反!! 将 “集装式主密封”套装在主轴上,注意区 分低压端(非驱动端)和高压端(驱动端), 配合使用 “拆装杆”和“安装板”将“集装 式密封”顶至工作位置。
缺点:
只能单向旋转
干气密封端面槽型
双旋向槽
U型槽
T型槽
双旋向槽特点
优点:
可双向旋转
缺点:
气膜刚度较小 稳定性较差 不能适应低转速
干气密封作用力图
Fs---弹簧作用力 Fp---介质作用力 Fo---气膜反力 Ha---气膜厚度
闭合力=Fs+Fp 开启力=Fo
A.正常间隙
闭合力=开启力
干气密封作用力图
干气密封原理及其应用
一.概述
干气密封概念是从气体润滑轴承理论基础上
发展而来


干气密封属于非接触式旋转动密封
在压缩机应用领域,干气密封有逐渐取代浮 环密封、迷宫密封和油润滑机械密封的趋势
干气密封优点
与普通接触式机械密封相比,干气密封主要有以下 优点: 省去了密封油系统及用于驱动密封油系统运转的 附加功率负载 大大减少了计划外维修费用和生产停车 避免了工艺气体被油污染的可能性 密封气体泄漏量小 维护费用低,经济实用性好 密封驱动功率小 密封使用寿命长,运行稳定可靠

干气密封工作原理

干气密封工作原理

干气密封工作原理
干气密封是一种常用于轴封的技术,其工作原理如下:
1. 气体压力作用:干气密封通过提供一定的气体压力来阻止液体或气体泄漏。

密封部分被填充或封闭在一个密封腔内,腔内通过一个气体供应系统提供压力。

2. 气体屏障效应:干气密封通过形成一个气体屏障来防止液体或气体进入密封部位。

在密封腔内的气体屏障通过气体流动的原理,在液体或气体传播至密封部位之前截断它们。

3. 速度差效应:干气密封通过利用液体或气体进入密封区域时速度的差异来实现密封。

当液体或气体进入密封部位时,由于速度差异,其无法进一步流动或逃逸。

4. 流量控制:干气密封通过控制气体的流量来控制与外部环境的交换,从而实现密封。

密封部分与外部环境之间需要保持一定的气体对流,以维持压力平衡。

总之,干气密封通过气体压力、气体屏障效应、速度差效应和流量控制等原理工作,从而实现对液体或气体的密封,防止泄漏。

干气密封的结构和工作原理

干气密封的结构和工作原理

干气密封的结构和工作原理干气密封的结构和工作原理其实蛮有意思的,听起来高大上,其实就像一件很简单的衣服,里面却藏着不少巧妙的设计。

先说说它的结构吧,干气密封基本上是由几个主要部分构成的,像是密封环、固定环和气体供应系统。

你想啊,这就像是一个团队,每个人都有各自的角色,缺了哪个都不行。

密封环呢,负责紧紧地包住核心部分,确保没有气体溜出去,简直就像个守卫,把“敌人”挡在外面。

固定环呢,起着支撑的作用,保持整个结构的稳定,就像是个强壮的小伙伴,给大家撑腰。

气体供应系统则负责提供必要的气体,保持压力平衡,确保密封状态好得不能再好了。

工作原理说起来更有趣了,干气密封利用了气体的压力和流动来实现密封。

想象一下,就像你在游泳池里,水流动时形成的那种涟漪。

而这些气体的流动就像在场上跳舞,轻盈而又充满节奏。

气体在密封环和固定环之间形成了一层保护膜,保持着低摩擦,减少了磨损。

可以说,这一切都像是一场华丽的表演,每个环节都紧密配合,不容有失。

因为干气密封的设计,摩擦系数可以降到最低,就像是给它穿上了滑滑的衣服,让它在工作时毫无压力。

你或许会问,这种密封有什么好处?哦,简直是太多了。

干气密封的耐用性很高,使用寿命长,这样一来就减少了维修和更换的麻烦。

简直就像买了一件高质量的衣服,不用担心洗几次就变形了。

干气密封在极端环境下也能发挥出色,像高温、高压的地方,它都能稳定工作,绝对是个可靠的伙伴。

再加上它的设计还减少了泄漏的可能性,对环境也更友好,真的是一举多得。

此外,干气密封的维护也比较简单,定期检查就能保持它的良好状态。

说白了,就像你给自己的爱车做保养,定期加油、换油,保持它的最佳状态。

这种密封装置也能减少能耗,提高设备的效率,长久以来就像是给企业省了一笔可观的开支,真是聪明之举。

任何事物都有两面性,干气密封也不例外。

虽然它的优点多多,但在安装和调试上,还是需要一些专业的知识。

就像一个新手厨师在尝试做一道复杂的菜,得小心翼翼,不能随便来。

干气密封基本原理

干气密封基本原理

©2005 John Crane Inc.
此文件包含约翰克兰知识产权内容,未经约翰克兰书面许可不得拷贝、泄露和传播
TM 、28系列干气密封特点
密封反转 -密封反转是不能接受的,应避免 -可使用双向密封设计 密封反压 -密封不能接受 密封液体污染
-少量液体污染可以接受,但应避免
©2005 John Crane Inc.
人的头发
静环 动环
气膜厚度 3-5 um
©2005 John Crane Inc.
此文件包含约翰克兰知识产权内容,未经约翰克兰书面许可不得拷贝、泄露和传播
螺旋槽
旋向
气体向中心泵送
气体受压,压力升高,产生间隙
密封坝
©2005 J权内容,未经约翰克兰书面许可不得拷贝、泄露和传播
工作原理
非接触密封的热量平衡
W .9 .8 .7 .6
密封温度高 于环境温度
密封温度 低于环境 温度
气体膨胀热量散发
.5 .4 .3 .2 .1
气体粘性剪切产生热量
0
0 1 2 3 4 5 6 膜厚 mm
©2005 John Crane Inc.
此文件包含约翰克兰知识产权内容,未经约翰克兰书面许可不得拷贝、泄露和传播
40
45
50
Pressure [barG]
©2005 John Crane Inc.
此文件包含约翰克兰知识产权内容,未经约翰克兰书面许可不得拷贝、泄露和传播
单向槽与双向槽的比较 单向槽:螺旋槽、V型槽 优点:动压效应强,气膜刚度大,抗外界扰动能力强。 缺点:不能反转。 双向槽:枞树、U型槽、T型槽 优点:可以长时间反转; 缺点:较单向槽动压效应弱,气膜刚度小。 推荐:优先采用单向槽,特殊情况双向槽。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

干气密封技术基本结构原理
一般来讲,典型的干气密封结构包含有静环、动环组件(旋转环)、
副密封O形圈、静密封、弹簧和弹簧座(腔体)等零部件。

静环位于不锈钢弹簧座内,用副密封O形圈密封。

弹簧在密封无负荷状态下使静环与固定在转子上的动环组件配合。

在动环组件和静环配合表面处的气体径向密封有其先进独特的方法。

配合表面平面度和光洁度很高,动环组件配合表面上有一系列的螺旋槽,随着转子转动,气体被向内泵送到螺旋槽的根部,根部以外的一段无槽区称为密封坝。

密封坝对气体流动产生阻力作用,增加气体膜压力。

该密封坝的内侧还有一系列的反向螺旋槽,这些反向螺旋槽起着反向泵送、改善配合表面压力分布的作用,从而加大开启静环与动环组件间气隙的能力。

反向螺旋槽的内侧还有一段密封坝,对气体流动产生阻力作用,增加气体膜压力。

配合表面间的压力使静环表面与动环组件脱离,保持一个很小的间隙,一般为3微米左右。

当由气体压力和弹簧力产生的闭合压力与气体膜的开启压力相等时,便建立了稳定的平衡间隙。

在动力平衡条件下,作用在密封上的闭合力Fc,是气体压力和弹簧力的总和。

开启力Fo是由端面间的压力分布对端面面积积分而形成的。

在平衡条件下
Fc=Fo,运行间隙大约为3微米。

如果由于某种干扰使密封间隙减小,则端面间的压力就会升高,这时,开启力Fo大于闭合力Fc,端面间隙自动加大,直至平衡为止。

类似的,如果扰动使密封间隙增大,端面间的压力就会降低,闭合力Fc大于开启力Fo,端面间隙自动减小,密封会很快达到新的平衡状态。

这种机制将在静环和动环组件之间产生一层稳定性相当高的气体薄膜,使得在一般的动力运行条件下端面能保持分离、不接触、不易磨损,延长了使用寿命。

具体介绍干气密封
气体润滑非接触式机械密封 (简称干气密封)
液体润滑上游泵送非接触式机械密封 (简称上游泵送密封)
都是基于现代流体动压润滑理论的新型非接触式机械密封。

与普通的接触式机械密封相比,干气密封与上游泵送密封可实现密封介质的零泄漏甚至零逸出,彻底消除对环境的污染,且因端面无直接的固体摩擦磨损而使使用寿命延长、密封可靠性提高和运行维护费用下降,从而使经济效益明显提高。

该技术在国外已被人们所接受并在各种转子泵上推广应用。

自20世纪80年代以来,国内有关科研院所就已开展了流体润滑非接触式机械密封的研究工作,但在工业开发应用方面进展缓慢。

1.干气密封(Dry gas seals)
干气密封最早于20世纪70年代中期由美国的约翰•克兰密封公司研制开发,首先应用于高速透平压缩机上。

工业应用表明,干气密封具有下列特点:;
干气密封是一种新型的非接触轴封,与其它密封相比,干气密封具有泄漏量少、摩擦磨损小、寿命长、能耗低、操作简单可靠、维修量低、被密封的流体不受油污
染等特点。

此外,干气密封可以实现密封介质的零逸出,从而避免对环境和工艺产品的污染;密封稳定性和可靠性明显提高;对工艺气体无污染;密封辅助系统大大简化;运行维护费用显著下降等。

机械密封一直不能干运转,但干气密封利用流体动压效应,使旋转的两个密封端面之间不接触,而被密封介质泄漏量很少,从而实现了既可以密封气体又能进行干运转操作。

在压缩机应用领域,无论离心压缩机、轴流式压缩机、齿轮传动压缩机还是透平膨胀机,干气密封正逐渐替代浮环密封、迷宫密封和油润滑机械密封。

在泵和反应釜上干气密封应用也越来越广泛。

1.1干气密封结构
干气密封与液体普通平衡型机械密封在结构上并无太大区别,不同之处在于:干气密封动环端面开有气体槽,气体槽深度仅有几微米,端面间必须有洁净的气体,以保证在两个端面之间形成一个稳定的气膜使密封端面完全分离。

气膜厚度一般为几微米,这个稳定的气膜可以使密封端面间保持一定的密封间隙,间隙太大,密封效果变差;而间隙太小会使密封面发生接触,因干气密封的摩擦热不能散失,端面间无润滑接触将很快引起密封端面的变形,从而使密封失效。

气体介质通过密封间隙时靠节流和阻塞的作用而被减压,从而实现气体介质的密封,几微米的密封间隙会使气体的泄漏率保持最小。

动环密封面分为两个功能区(外区域和内区域)。

气体进入密封间隙的外区域有空气动压槽,这些槽压缩进来的气体。

为了获得必要的泵效应,动压槽必须被开在高压侧。

密封间隙内的压力增加将保证即使在轴向载荷较大的情况下也将形成一个不被破坏的稳定气膜。

干气密封无接触无磨损的运行操作是靠稳定的气膜来保证的,稳定的气膜是由密封墙的节流效应和所开动压槽的泵效应得到的。

密封面的内区域(密封坝)是平面,靠它的节流效应限制了泄漏量。

干气密封的弹簧力很小,主要目的是为了当密封不受压时确保密封面的闭合。

选择干气密封时,决定性的判断是动环上所开动压槽的几何形状。

对于压缩机的某些操作点,如启动和停车时,一套串联密封在低速或无压操作的情况下,旋转的动压槽必须在密封面之间产生一个合适的压力。

此力靠特殊措施——三维的、弧形的槽来获得。

1.2工作原理
干气密封的工作原理可用图2来说明,当端面外径侧开设流体动压槽的动环按图示方向旋转时,流体动压槽把外径侧(称之为上游侧)的高压隔离气体泵入密封端面之间,由外径至槽径处气膜压力逐渐增加,而自槽径至内径处气膜压力逐渐下降,因端面膜压增加使所形成的开启力大于作用在密封环上的闭合力,使在静止状态下保持接触的两端面分离并处于稳定的非接触状态。

由中性高压隔离气体所形成的气膜完全阻塞了相对低压的密封介质泄漏通道,实现了密封介质的零泄漏或零逸出。

可见,干气密封属于泵入式非接触密封结构。

1.3干气密封使用范围
适用条件处于以下情况可以优先考虑干气密封用作转子泵轴封:
①要求密封介质零逸出、密封介质对摩擦温升敏感;
②要求工艺产品高纯度无污染,并且泵易抽空而使密封发生干运转;
③要求密封辅助系统简易可靠、密封运行维护费用低等。

首先应当考虑的是要
针对具体的密封介质选择与之相容的阻塞气体,可以是氮气、洁净的仪表气或蒸汽等。

尽管干气密封无需阻塞气体循环系统和冷却系统,但必须保证现场能够提供稳定可靠的气源,也许正是因为这一点,干气密封的使用范围受到了一定的限制。

石油化工等大型企业中转子泵数量多且布置集中,宜于采用干气密封,规模效益也十分突出。

若以一千台泵计算,每年直接经济效益近亿元。

相关文档
最新文档