(整理)二阶常系数线性微分方程的解法word版.

合集下载

二阶常系数线性微分方程的解法

二阶常系数线性微分方程的解法
1
二阶常系数齐次线性方程解的性质 回顾
一阶齐次线性方程 y P( x) y 0 (1)
1、方程(1)的任意两个解的和仍是(1)的解; 2、方程(1)的任意一个解的常数倍仍是(1)的解;
2
二阶常系数齐次线性方程解的性质 y ay by 0 (2)
1、方程(2)的任意两个解的和仍是(2)的解; 2、方程(2)的任意一个解的常数倍仍是(2)的解;
Q( x) Qm ( x) , 即 y Qm ( x) erx 情形2 若 r 是特征方程的单根, 即 r2 ar b 0 ,
而 2r a 0 , 则令 Q( x) xQm ( x) , 即
y xQm ( x)erx
14
Q (2r a)Q (r 2 ar b)Q Pm ( x) (*) 情形3 若 r 是特征方程的二重根, 即 r2 ar b 0 ,
2
2
此时原方程的通解为
y
(C1
C 2 x)e2x
1 2
x 2e2x

Q( x) Ax2 , Q Pm ( x) , 2 A 1
21
y 4 yAe x ,
代入原方程,得
A
(
1 2)2
,
即特解为
y
(
1 2)2
e
x
,
此时原方程的通解为
于是 y x( 1 x 1)e2x ,
2
2
原方程通解为
y
C1e x
C 2e2 x
x(1 2
x
1) e2 x
.
18
例6 求微分方程 y 6 y 9 y x e3x 的通解.
解 特征方程 2 6 9 0 , 特征根 1,2 3 ,
对应齐次方程通解 Y (C1 C2 x)e3x . 因为 r 3 是二重特征根,

高等数学(3年专科)第四节 二阶常系数线性微分方程-精选文档

高等数学(3年专科)第四节 二阶常系数线性微分方程-精选文档
y* + p(x)y* + q(x)y* = f (x), Y + p(x)Y + q(x)Y = 0 .
又因为 y = Y + y*, y = Y + y*, 所以 y + p(x)y + q(x)y = (Y + y* ) + p(x)(Y + y* ) + q(x)(Y + y*) = (Y + p(x) Y + q(x)Y) + ( y* + p(x) y*+ q(x)y*) = f (x).
定理 1 如果函数 y1 与 y2 是线性齐次方程的 两个解, 则函数 y = C1 y1 + C2 y2
仍为该方程的解,其中 C1, C2 是任意常数.
证 因为 y1 与 y2 是方程 y + p(x)y + q(x)y = 0 的两个解, 所以有
y p ( x ) y q ( x ) y 0 , 1 1 1
即 y1 与 y2 之比为常数. 反之,若y1 与 y2 之比为常数,
y1 设 , 则 y1 = y2,即 y1 - y2 = 0. 所以 y1 与 y2 y2 线性相关. 因此,如果两个函数的比是常数,则它们
线性相关;如果不是常数,则它们线性无关. 例如函 数 y1 = ex,y2 = e -x, 而 y1 常数, 所以,它们是线 y2 性无关的.
定理 2 如果函数 y1 与 y2 是二阶线性齐次方程 y + p(x)y + q(x)y = 0 的两个线性无关的特解, 则
y = C1 y1 + C2 y2
是该方程的通解,其中 C1, C2为任意常数. 证 因为 y1 与 y2 是方程 y + p(x)y + q(x)y = 0 的 解, 所以,由定理 1 知 y = C1 y1 + C2 y2 也是该方程的解. 又因为 y1 与 y2 线性无关,即 y1 与 y2 之比不为常数, 所以它们中任一个都不能用另一个 ( 形如 y1 = ky2 或 y2 = k1 y) 来表示. 故C1 与C2不能合并为一个任意常数, 因此 y = C1 y1 + C2 y2 是二阶线性齐次方程的通解.

二阶常系数线性微分方程的解法word版

二阶常系数线性微分方程的解法word版

第四节 二阶常系数线性微分圆程之阳早格格创做一、二阶常系数线形微分圆程的观念 形如 )(x f qy y p y =+'+'' (1)p 、q 均为真数,)(x f 为已知的连绝函数.如果0)(≡x f ,则圆程式 (1)形成0=+'+''qy y p y (2)咱们把圆程(2)喊干二阶常系数齐次线性圆程,把圆程式(1)喊干二阶常系数非齐次线性圆程. 本节咱们将计划其解法.二、二阶常系数齐次线性微分圆程1.解的叠加性定理1 如果函数1y 与2y 是式(2)的二个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任性常数.道明 果为1y 与2y 是圆程(2)的解,所以有 将2211y C y C y +=代进圆程(2)的左边,得=0)()(22221111=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是圆程(2)的解.定理1道明齐次线性圆程的解具备叠加性. 叠加起去的解从形式瞅含有21,C C 二个任性常数,但是它纷歧定是圆程式(2)的通解.2.线性相闭、线性无闭的观念设,,,,21n y y y 为定义正在区间I 内的n 个函数,若存留没有齐为整的常数,,,,21n k k k 使恰当正在该区间内有02211≡+++n n y k y k y k , 则称那n 个函数正在区间I 内线性相闭,可则称线性无闭.比圆 x x 22sin ,cos ,1正在真数范畴内是线性相闭的,果为又如2,,1x x 正在所有区间(a,b)内是线性无闭的,果为正在该区间内要使必须0321===k k k .对于二个函数的情形,若=21y y 常数, 则1y ,2y 线性相闭,若≠21y y 常数, 则1y ,2y 线性无闭. 3.二阶常系数齐次微分圆程的解法定理2 如果1y 与2y 是圆程式(2)的二个线性无闭的特解,则212211,(C C y C y C y +=为任性常数)是圆程式(2)的通解.比圆,0=+''y y 是二阶齐次线性圆程,x y x y cos ,sin 21==是它的二个解,且≠=x y y tan 21常数,即1y ,2y 线性无闭, 所以 x C x C y C y C y cos sin 212211+=+= (21,C C 是任性常数)是圆程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)战它的各阶导数皆只好一个常数果子, 根据指数函数的那个特性,咱们用rx e y =去试着瞅是可采用适合的常数r ,使rx e y =谦脚圆程(2).将rx e y =供导,得把y y y ''',,代进圆程(2),得果为0≠rx e , 所以惟有 02=++q pr r (3)只消r 谦脚圆程式(3),rx e y =便是圆程式(2)的解.咱们把圆程式(3)喊干圆程式(2)的特性圆程,特性圆程是一个代数圆程,其中r r ,2的系数及常数项恰佳依次是圆程(2)y y y ,,'''的系数.特性圆程(3)的二个根为 2422,1q p p r -±-=, 果此圆程式(2)的通解有下列三种分歧的情形.(1) 当042>-q p 时,21,r r 是二个没有相等的真根.2421q p p r -+-=,2422q p p r ---= xr x r e y e y 2121,==是圆程(2)的二个特解,而且≠=-x r r e y y )(2121常数,即1y 与2y ,得圆程(2)的通解为x r x r e C e C y 2121+=(2) 当042=-q p 时, 21,r r 是二个相等的真根.221pr r -==,那时只可得到圆程(2)的一个特解x r e y 11=,还需要出另一个解2y ,且≠12y y 常数,设)(12x u y y =, 即 )2(),(21121211u r u r u e y u r u e y x r x r +'+''=''+'='. 将222,,y y y '''代进圆程(2), 得 整治,得由于01≠x r e , 所以 0)()2(1211=+++'++''u q pr r u p r u 果为1r 是特性圆程(3)的二沉根, 所以进而有 0=''u果为咱们只需一个没有为常数的解,无妨与x u =,可得到圆程(2)的另一个解x r xe y 12=.那么,圆程(2)的通解为即 x r e x C C y 1)(21+=. (3) 当042<-q p 时,特性圆程(3)有一对于共轭复根βαβαi r i r -=+=21, (0≠β)于是 x i x i e y e y )(2)(1,βαβα-+==利用欧推公式 x i x e ix sin cos +=把21,y y 改写为 21,y y 之间成共轭闭系,与-1y =x e y y x βαcos )(2121=+, 圆程(2)的解具备叠加性,所以-1y ,-2y 仍旧圆程(2)的解,而且≠==--x x e x e y y x x βββααtan cos sin 12常数,所以圆程(2)的通解为综上所述,供二阶常系数线性齐次圆程通解的步调如下:(1)写出圆程(2)的特性圆程(2)供特性圆程的二个根21,r r(3)根据21,r r 的分歧情形,按下表写出圆程(2)的通解.例1供圆程052=+'+''y y y 的通解.解: 所给圆程的特性圆程为所供通解为 )2sin 2cos (21x C x C e y x +=-.例 2 供圆程0222=++S dt dS dt S d 谦脚初初条件2,400-='===t t S S 的特解.解 所给圆程的特性圆程为通解为 t e t C C S -+=)(21将初初条件40==t S 代进,得 41=C ,于是t e t C S -+=)4(2,对于其供导得将初初条件20-='=t S 代进上式,得所供特解为例3供圆程032=-'+''y y y 的通解.解 所给圆程的特性圆程为 0322=-+r r其根为 1,321=-=r r所以本圆程的通解为 x x e C e C y 231+=-二、二阶常系数非齐次圆程的解法1.解的结构定理3 设*y 是圆程(1)的一个特解,Y 是式(1)所对于应的齐次圆程式(2)的通解,则*+=y Y y 是圆程式(1)的通解.道明 把*+=y Y y 代进圆程(1)的左端:=)()(*+*'+*''++'+''qy py y qY Y p Y=)()(0x f x f =+*+=y Y y 使圆程(1)的二端恒等,所以*+=y Y y 是圆程(1)的解.定理4 设二阶非齐次线性圆程(1)的左端)(x f 是几个函数之战,如)()(21x f x f qy y p y +=+'+''(4)而*1y 与*2y 分别是圆程 )(1x f qy y p y =+'+''与)(2x f qy y p y =+'+''的特解,那么**+21y y 便是圆程(4)的特解, 非齐次线性圆程(1)的特解偶尔可用上述定理去助闲供出.2.)()(x P e x f m x λ=型的解法)()(x P e x f m x λ=,其中λ为常数,)(x P m 是闭于x 的一个m 次多项式.圆程(1)的左端)(x f 是多项式)(x P m 与指数函数x e λ乘积的导数仍为共一典型函数,果此圆程(1)的特解大概为x e x Q y λ)(=*,其中)(x Q 是某个多项式函数. 把 x e x Q y λ)(=*代进圆程(1)并消去x e λ,得)()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ(5) 以下分三种分歧的情形,分别计划函数)(x Q 的决定要领:(1) 若λ没有是圆程式(2)的特性圆程02=++q pr r 的根, 即02≠++q p λλ,要使式(5)的二端恒等,可令)(x Q 为另一个m 次多项式)(x Q m :代进(5)式,并比较二端闭于x 共次幂的系数,便得到闭于已知数m b b b ,,,10 的1+m ),,1,0(m i b i =.进而得到所供圆程的特解为(2) 假如λ特性圆程02=++q pr r 的单根, 即02,02≠+=++p q p λλλ,要使式(5)创造, 则)(x Q '必须假如m 次多项式函数,于是令用共样的要领去决定)(x Q m 的系数),,1,0(m i b i =.(3) 假如λ特性圆程02=++q pr r 的沉根,即,02=++q p λλ02=+p λ.要使(5)式创造,则)(x Q ''必须是一个m 次多项式,可令用共样的要领去决定)(x Q m 的系数.综上所述,若圆程式(1)中的x m e x P x f λ)()(=,则式(1)的特解为其中)(x Q m 是与)(x P m 共次多项式,k 按λ没有是特性圆程的根,是特性圆程的单根或者是特性圆程的沉根依次与0,1或者2.例4 供圆程x e y y 232-='+''的一个特解.解)(x f 是x m e x p λ)(型, 且2,3)(-==λx P m对于应齐次圆程的特性圆程为 022=+r r ,特性根根为2,021-==r r .λ=-2是特性圆程的单根, 令x e xb y 20-=*,代进本圆程解得故所供特解为 x xe y 223--=* . 例5 供圆程x e x y y )1(2-='-''的通解.解 先供对于应齐次圆程02=+'-''y y y 的通解. 特性圆程为 0122=+-r r , 121==r r齐次圆程的通解为 x e x C C Y )(21+=. 再供所给圆程的特解由于1=λ是特性圆程的二沉根,所以把它代进所给圆程,并约去x e 得比较系数,得于是 x e x x y )216(2-=* 所给圆程的通解为 x e x x x C C y y y )6121(3221+-+=+=* 3.x B x A x f ϖϖsin cos )(+=型的解法,sin cos )(x B x A x f ωω+=其中A 、B 、ω均为常数. 此时,圆程式(1)成为x B x A q y p y ωωsin cos +=+'+''(7)那种典型的三角函数的导数,仍属共一典型,果此圆程式(7)的特解*y 也应属共一典型,不妨道明式(7)的特解形式为其中b a ,为待定常数.k 为一个整数. 当ω±i 没有是特性圆程02=++q pr r 的根,k 与0; 当ω±i 没有是特性圆程02=++q pr r 的根,k 与1; 例6 供圆程x y y y sin 432=-'+''的一个特解. 解 1=ω,ω±i i ±=没有是特性圆程为0322=-+r r 的根,0=k .果此本圆程的特解形式为 于是 x b x a y cos sin +-=*'将*''*'*y y y ,,代进本圆程,得解得 54,52-=-=b a本圆程的特解为: x x y sin 54cos 52--=* 例7 供圆程x e y y y x sin 32+=-'-''的通解. 解先供对于应的齐次圆程的通解Y .对于应的齐次圆程的特性圆程为再供非齐次圆程的一个特解*y .由于x e x x f -+=2cos 5)(,根据定理4,分别供出圆程对于应的左端项为,)(1x e x f =x x f sin )(2=的特解*1y 、*2y ,则 **+=*21y y y 是本圆程的一个特解. 由于1=λ,ω±i i ±=均没有是特性圆程的根,故特解为代进本圆程,得比较系数,得解之得 51,101,41-==-=c b a . 于是所给圆程的一个特解为 所以所供圆程的通解为x x e e C e C y Y y x x x sin 51cos 10141321-+-+=+=-*.。

2.2二阶常系数线性微分方程的解法

2.2二阶常系数线性微分方程的解法

= Pm ( x)e αx ( 其中 pm ( x )是 x 的 m 次多项式 ) 1. f ( x)
这时方程② 这时方程②为 ay ′′ + by ′ + cy = Pm ( x )eαx 方程
可以设 y ∗ = Q( x )eαx ( 其中 Q( x ) 是多项式 ) 。

将 y = Q( x )e , y
10
2.2
二阶常系数线性微分方程的解法
特征方程的根
方程的通解中对应的项
给出一项 Ce
rx
单实根 r
k 重实根 r
一对单复根
r1, 2 = α ± iβ
给出 k 项 e rx (C 1 + C 2 x + L + C k x k −1 )
给出两项 eαx (C1 cos βx + C 2 sin βx )
ay′′ + by′ + cy = 0 ,

猜想方程① 形式的解, 猜想方程① 具有 y = e rx 形式的解, 其中 r 为待定常数 ,
′ = re rx , y′′ = r 2 e rx , y = e rx 代入方程①, 代入方程① 将y
e rx ≠ 0 , 故有 得 e (ar + br + c ) = 0 , 但
y


αx


= e α x [ Q ′ ( x ) + α Q ( x )] ,

= eαx [Q′′( x ) + 2αQ′( x ) + α 2Q( x )] ,
代入③ 代入③后并 约去 eαx , 得:
aQ′′( x ) + ( 2aα + b)Q′( x ) + (aα 2 + bα + c )Q( x ) = Pm ( x )

第三节_二阶常系数线性微分方程的解法

第三节_二阶常系数线性微分方程的解法
2
通解的表达式
y = C1e r1 x + C 2e r2 x
y = (C1 + C 2 x ) e
r1 x
y = eαx (C 1 cos β x + C 2 sin β x )
8
例1 解
的通解. 求微分方程 y′′ − 2 y′ − 3 y = 0 的通解.
特征方程为 λ 2 − 2λ − 3 = 0 特征根为 λ1 = −1, λ2 = 3 故所求通解为
y = C 1e − x + C 2 e 3 x
例2 解
求方程 y′′ + 2 y′ + 5 y = 0的通解 .
特征方程为 λ2 + 2λ + 5 = 0
解得
λ1, = −1± 2i , 2
y = e (C1 cos 2 x + C 2 sin 2 x )
9
故所求通解为
−x
ds ds 例3 求微分方程 2 + 2 + s = 0 满足初始条件 dt dt

′′ = Q′′( x )e r x + 2λ Q′( x )e r x + λ2Q( x )e r x (y )

代入方程 y′′ + ay′ + by = f ( x ) ,
整理并约去 e
rx
,得
Q′′ + (2r + a)Q′ + (r 2 + ar + b)Q = Pm ( x)
(*)
13
(1)
1、方程(1)的任意两个解的和仍是(1)的解; 方程(1)的任意两个解的和仍是(1)的解; (1)的任意两个解 (1)的解 2、方程(1)的任意一个解的常数倍仍是(1)的解; 方程(1)的任意一个解的常数倍仍是(1)的解; (1)的任意一个解的常数倍仍是(1)的解

(整理)二阶常系数线性微分方程的解法版.

(整理)二阶常系数线性微分方程的解法版.

第八章 8.4讲第四节 二阶常系数线性微分方程一、二阶常系数线形微分方程的概念形如 )(x f qy y p y =+'+'' (1)的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数.如果0)(≡x f ,则方程式 (1)变成0=+'+''qy y p y (2)我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法.二、二阶常系数齐次线性微分方程1.解的叠加性定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数.证明 因为1y 与2y 是方程(2)的解,所以有0111=+'+''qy y p y 0222=+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得)()()(221122112211y C y C q y C y C p y C y C ++'+'+''+'' =0)()(22221111=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解.定理1说明齐次线性方程的解具有叠加性.叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解.2.线性相关、线性无关的概念设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n个函数在区间I 内线性相关,否则称线性无关.例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为0sin cos 122≡--x x又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k必须0321===k k k .对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠21y y 常数, 则1y ,2y 线性无关.3.二阶常系数齐次微分方程的解法定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则212211,(C C y C y C y +=为任意常数)是方程式(2)的通解.例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且≠=x y y tan 21常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+=( 21,C C 是任意常数)是方程0=+''y y 的通解.由于指数函数rxe y =(r 为常数)和它的各阶导数都只差一个常数因子,根据指数函数的这个特点,我们用rxe y =来试着看能否选取适当的常数r ,使rx e y =满足方程(2).将rx e y =求导,得 rx rx e r y re y 2,=''='把y y y ''',,代入方程(2),得0)(2=++rx eq pr r 因为0≠rx e , 所以只有 02=++q pr r (3)只要r 满足方程式(3),rx e y =就是方程式(2)的解.我们把方程式(3)叫做方程式(2)的特征方程,特征方程是一个代数方程,其中r r ,2的系数及常数项恰好依次是方程(2)y y y ,,'''的系数. 特征方程(3)的两个根为 2422,1q p p r -±-=, 因此方程式(2)的通解有下列三种不同的情形. (1) 当042>-q p 时,21,r r 是两个不相等的实根. 2421q p p r -+-=,2422q p p r ---= x r x r e y e y 2121,==是方程(2)的两个特解,并且≠=-x r r e y y )(2121常数,即1y 与2y 线性无关.根据定理2,得方程(2)的通解为 x r x r e C e C y 2121+=(2) 当042=-q p 时, 21,r r 是两个相等的实根. 221p r r -==,这时只能得到方程(2)的一个特解x r e y 11=,还需求出另一个解2y ,且≠12y y 常数,设)(12x u y y =, 即 )(12x u e y x r =)2(),(21121211u r u r u e y u r u e y x r x r +'+''=''+'='. 将222,,y y y '''代入方程(2), 得 []0)()2(12111=++'++'+''qu u r u p u r u r u e x r 整理,得0])()2([12111=+++'++''u q pr r u p r u e x r由于01≠x r e , 所以 0)()2(1211=+++'++''u q pr r u p r u 因为1r 是特征方程(3)的二重根, 所以02,01121=+=++p r q pr r从而有 0=''u因为我们只需一个不为常数的解,不妨取x u =,可得到方程(2)的另一个解 x r xe y 12=.那么,方程(2)的通解为x r x r xe C e C y 1121+=即 xr e x C C y 1)(21+=.(3) 当042<-q p 时,特征方程(3)有一对共轭复根 βαβαi r i r -=+=21, (0≠β)于是 x i x i e y ey )(2)(1,βαβα-+== 利用欧拉公式 x i x e ix sin cos +=把21,y y 改写为)sin (cos )(1x i x e e e e y x x i x x i ββαβαβα+=⋅==+)sin (cos )(2x i x e e e e y x x i x xi ββαβαβα-=⋅==-- 21,y y 之间成共轭关系,取-1y =x e y y x βαcos )(2121=+, x e y y i y x βαsin )(2121_2=-= 方程(2)的解具有叠加性,所以-1y ,-2y 还是方程(2)的解,并且≠==--x x e x e y y x x βββααt a n c o s s i n 12常数,所以方程(2)的通解为 )sin cos (21x C x C e y x ββα+=综上所述,求二阶常系数线性齐次方程通解的步骤如下:(1)写出方程(2)的特征方程02=++q pr r(2)求特征方程的两个根21,r r(3)根据21,r r 的不同情形,按下表写出方程(2)的通解.例1求方程052=+'+''y y y 的通解.解: 所给方程的特征方程为0522=++r ri r i r 21,2121--=+-=所求通解为 )2sin 2cos (21x C x C e y x +=-.例 2 求方程0222=++S dt dS dtS d 满足初始条件2,400-='===t t S S 的特解.解 所给方程的特征方程为0122=++r r121-==r r通解为 te t C C S -+=)(21 将初始条件40==t S 代入,得 41=C ,于是 t e t C S -+=)4(2,对其求导得te t C C S ---=')4(22 将初始条件20-='=t S 代入上式,得 22=C所求特解为te t S -+=)24(例3求方程032=-'+''y y y 的通解.解 所给方程的特征方程为 0322=-+r r其根为 1,321=-=r r所以原方程的通解为 x x e C e C y 231+=-二、二阶常系数非齐次方程的解法1.解的结构定理3 设*y 是方程(1)的一个特解,Y 是式(1)所对应的齐次方程式(2)的通解,则*+=y Y y 是方程式(1)的通解.证明 把*+=y Y y 代入方程(1)的左端:)()()(*++*'+'+*''+''y Y q y Y p y Y=)()(*+*'+*''++'+''qy py y qY Y p Y=)()(0x f x f =+*+=y Y y 使方程(1)的两端恒等,所以*+=y Y y 是方程(1)的解. 定理4 设二阶非齐次线性方程(1)的右端)(x f 是几个函数之和,如 )()(21x f x f qy y p y +=+'+'' (4) 而*1y 与*2y 分别是方程 )(1x f qy y p y =+'+''与 )(2x f qy y p y =+'+''的特解,那么**+21y y 就是方程(4)的特解, 非齐次线性方程(1)的特解有时可用上述定理来帮助求出.2.)()(x P e x f m x λ=型的解法 )()(x P e x f m x λ=,其中λ为常数,)(x P m 是关于x 的一个m 次多项式. 方程(1)的右端)(x f 是多项式)(x P m 与指数函数xe λ乘积的导数仍为同一类型函数,因此方程(1)的特解可能为x e x Q y λ)(=*,其中)(x Q 是某个多项式函数.把 x e x Q y λ)(=*x e x Q x Q y λλ)]()(['+=*'x e x Q x Q x Q y λλλ)]()(2)([2''+'+=*''代入方程(1)并消去xe λ,得)()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ (5) 以下分三种不同的情形,分别讨论函数)(x Q 的确定方法:(1) 若λ不是方程式(2)的特征方程02=++q pr r 的根, 即02≠++q p λλ,要使式(5)的两端恒等,可令)(x Q 为另一个m 次多项式)(x Q m :m m m x b x b x b b x Q ++++= 2210)(代入(5)式,并比较两端关于x 同次幂的系数,就得到关于未知数m b b b ,,,10 的1+m 个方程.联立解方程组可以确定出),,1,0(m i b i =.从而得到所求方程的特解为x m e x Q y λ)(=*(2) 若λ是特征方程02=++q pr r 的单根, 即02,02≠+=++p q p λλλ,要使式(5)成立, 则)(x Q '必须要是m 次多项式函数,于是令)()(x xQ x Q m =用同样的方法来确定)(x Q m 的系数),,1,0(m i b i =.(3) 若λ是特征方程02=++q pr r 的重根,即,02=++q p λλ 02=+p λ.要使(5)式成立,则)(x Q ''必须是一个m 次多项式,可令)()(2x Q x x Q m =用同样的方法来确定)(x Q m 的系数.综上所述,若方程式(1)中的x m e x P x f λ)()(=,则式(1)的特解为x m k e x Q x y λ)(=*其中)(x Q m 是与)(x P m 同次多项式,k 按λ不是特征方程的根,是特征方程的单根或是特征方程的重根依次取0,1或2.例4 求方程x e y y 232-='+''的一个特解.解 )(x f 是x m e x p λ)(型, 且2,3)(-==λx P m对应齐次方程的特征方程为 022=+r r ,特征根根为2,021-==r r . λ=-2是特征方程的单根, 令x e xb y 20-=*,代入原方程解得230-=b 故所求特解为 x xe y 223--=* . 例5 求方程x e x y y )1(2-='-''的通解.解 先求对应齐次方程02=+'-''y y y 的通解.特征方程为 0122=+-r r , 121==r r齐次方程的通解为 x e x C C Y )(21+=.再求所给方程的特解1)(,1-==x x P m λ由于1=λ是特征方程的二重根,所以x e b ax x y )(2+=*把它代入所给方程,并约去xe 得 126-=+x b ax比较系数,得61=a 21-=b 于是 x e x x y )216(2-=* 所给方程的通解为 x e x x x C C y y y )6121(3221+-+=+=* 3.x B x A x f ϖϖsin cos )(+=型的解法,sin cos )(x B x A x f ωω+=其中A 、B 、ω均为常数.此时,方程式(1)成为x B x A q y p y ωωsin cos +=+'+'' (7)这种类型的三角函数的导数,仍属同一类型,因此方程式(7)的特解*y 也应属同一类型,可以证明式(7)的特解形式为)sin cos (x b x a x y k ωω+=*其中b a ,为待定常数.k 为一个整数.当ω±i 不是特征方程02=++q pr r 的根, k 取0;当ω±i 不是特征方程02=++q pr r 的根, k 取1;例6 求方程x y y y sin 432=-'+''的一个特解.解 1=ω,ω±i i ±=不是特征方程为0322=-+r r 的根,0=k .因此原方程的特解形式为x b x a y sin cos +=* 于是 x b x a y cos sin +-=*'x b x a y sin cos --=*''将*''*'*y y y ,,代入原方程,得⎩⎨⎧=--=+-442024b a b a解得 54,52-=-=b a原方程的特解为: x x y sin 54cos 52--=*例7 求方程x e y y y x sin 32+=-'-''的通解.解 先求对应的齐次方程的通解Y .对应的齐次方程的特征方程为 0322=--r r3,121=-=r rx x e C e C Y 321+=-再求非齐次方程的一个特解*y .由于x e x x f -+=2cos 5)(,根据定理4,分别求出方程对应的右端项为,)(1x e x f =x x f sin )(2=的特解*1y 、*2y ,则 **+=*21y y y 是原方程的一个特解.由于1=λ,ω±i i ±=均不是特征方程的根,故特解为)sin cos (21x c x b ae y y y x ++=+=***代入原方程,得x e x c b x c b ae x x sin sin )42(cos )24(4=-++--比较系数,得14=-a 024=+c b 142=-c b解之得 51,101,41-==-=c b a . 于是所给方程的一个特解为 x x e y x s i n 51c o s 10141-+-=* 所以所求方程的通解为x x e e C e C y Y y x x x sin 51cos 10141321-+-+=+=-*.。

二阶常系数线性微分方程的解法版共11页文档

二阶常系数线性微分方程的解法版共11页文档

第八章 8.4讲第四节 二阶常系数线性微分方程一、二阶常系数线形微分方程的概念形如 )(x f qy y p y =+'+''(1)的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数.如果0)(≡x f ,则方程式 (1)变成0=+'+''qy y p y(2)我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法.二、二阶常系数齐次线性微分方程1.解的叠加性定理 1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有将2211y C y C y +=代入方程(2)的左边,得所以2211y C y C y +=是方程(2)的解.定理1说明齐次线性方程的解具有叠加性.叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解.2.线性相关、线性无关的概念设,,,,21n y y y Λ为定义在区间I 内的n 个函数,若存在不全为零的常数,,,,21n k k k Λ使得当在该区间内有02211≡+++n n y k y k y k Λ, 则称这n 个函数在区间I 内线性相关,否则称线性无关.例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使必须0321===k k k .对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠21y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则212211,(C C y C y C y +=为任意常数)是方程式(2)的通解.例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且≠=x y y tan 21常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解.由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子, 根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r ,使rx e y =满足方程(2).将rx e y =求导,得把y y y ''',,代入方程(2),得因为0≠rx e , 所以只有 02=++q pr r(3)只要r 满足方程式(3),rx e y =就是方程式(2)的解.我们把方程式(3)叫做方程式(2)的特征方程,特征方程是一个代数方程,其中r r ,2的系数及常数项恰好依次是方程(2)y y y ,,'''的系数.特征方程(3)的两个根为 2422,1q p p r -±-=, 因此方程式(2)的通解有下列三种不同的情形.(1) 当042>-q p 时,21,r r 是两个不相等的实根.x r x r e y e y 2121,==是方程(2)的两个特解,并且≠=-x r r e y y )(2121常数,即1y 与2y 线性无关.根据定理2,得方程(2)的通解为x r x r e C e C y 2121+=(2) 当042=-q p 时, 21,r r 是两个相等的实根. 221p r r -==,这时只能得到方程(2)的一个特解x r e y 11=,还需求出另一个解2y ,且≠12y y 常数,设)(12x u y y =, 即 将222,,y y y '''代入方程(2), 得 整理,得由于01≠x r e , 所以 0)()2(1211=+++'++''u q pr r u p r u 因为1r 是特征方程(3)的二重根, 所以从而有 0=''u因为我们只需一个不为常数的解,不妨取x u =,可得到方程(2)的另一个解那么,方程(2)的通解为即 x r e x C C y 1)(21+=. (3) 当042<-q p 时,特征方程(3)有一对共轭复根 于是 x i x i e y e y )(2)(1,βαβα-+==利用欧拉公式 x i x e ix sin cos +=把21,y y 改写为21,y y 之间成共轭关系,取方程(2)的解具有叠加性,所以-1y ,-2y 还是方程(2)的解,并且≠==--x x e x e y y x x βββααtan cos sin 12常数,所以方程(2)的通解为 综上所述,求二阶常系数线性齐次方程通解的步骤如下:(1)写出方程(2)的特征方程(2)求特征方程的两个根21,r r(3)根据21,r r 的不同情形,按下表写出方程(2)的通解.例1求方程052=+'+''y y y 的通解.解: 所给方程的特征方程为所求通解为 )2sin 2cos (21x C x C e y x +=-.例 2 求方程0222=++S dt dS dtS d 满足初始条件2,400-='===t t S S 的特解.解 所给方程的特征方程为通解为 t e t C C S -+=)(21 将初始条件40==t S 代入,得 41=C ,于是t e t C S -+=)4(2,对其求导得 将初始条件20-='=t S 代入上式,得所求特解为例3求方程032=-'+''y y y 的通解.解 所给方程的特征方程为 0322=-+r r其根为 1,321=-=r r所以原方程的通解为 x x e C e C y 231+=-二、二阶常系数非齐次方程的解法1.解的结构定理3 设*y 是方程(1)的一个特解,Y 是式(1)所对应的齐次方程式(2)的通解,则*+=y Y y 是方程式(1)的通解.证明 把*+=y Y y 代入方程(1)的左端:*+=y Y y 使方程(1)的两端恒等,所以*+=y Y y 是方程(1)的解.定理4 设二阶非齐次线性方程(1)的右端)(x f 是几个函数之和,如)()(21x f x f qy y p y +=+'+'' (4)而*1y 与*2y 分别是方程 )(1x f qy y p y =+'+''与 )(2x f qy y p y =+'+''的特解,那么**+21y y 就是方程(4)的特解, 非齐次线性方程(1)的特解有时可用上述定理来帮助求出.2.)()(x P e x f m x λ=型的解法)()(x P e x f m x λ=,其中λ为常数,)(x P m 是关于x 的一个m 次多项式.方程(1)的右端)(x f 是多项式)(x P m 与指数函数x e λ乘积的导数仍为同一类型函数,因此方程(1)的特解可能为x e x Q y λ)(=*,其中)(x Q 是某个多项式函数.把 x e x Q y λ)(=*代入方程(1)并消去x e λ,得)()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ(5)以下分三种不同的情形,分别讨论函数)(x Q 的确定方法:(1) 若λ不是方程式(2)的特征方程02=++q pr r 的根,即02≠++q p λλ,要使式(5)的两端恒等,可令)(x Q 为另一个m 次多项式)(x Q m :代入(5)式,并比较两端关于x 同次幂的系数,就得到关于未知数m b b b ,,,10Λ的1+m 个方程.联立解方程组可以确定出),,1,0(m i b i Λ=.从而得到所求方程的特解为(2) 若λ是特征方程02=++q pr r 的单根, 即02,02≠+=++p q p λλλ,要使式(5)成立, 则)(x Q '必须要是m 次多项式函数,于是令用同样的方法来确定)(x Q m 的系数),,1,0(m i b i Λ=.(3) 若λ是特征方程02=++q pr r 的重根,即,02=++q p λλ 02=+p λ.要使(5)式成立,则)(x Q ''必须是一个m 次多项式,可令 用同样的方法来确定)(x Q m 的系数.综上所述,若方程式(1)中的x m e x P x f λ)()(=,则式(1)的特解为其中)(x Q m 是与)(x P m 同次多项式,k 按λ不是特征方程的根,是特征方程的单根或是特征方程的重根依次取0,1或2.例4 求方程x e y y 232-='+''的一个特解.解 )(x f 是x m e x p λ)(型, 且2,3)(-==λx P m对应齐次方程的特征方程为 022=+r r ,特征根根为2,021-==r r .λ=-2是特征方程的单根, 令x e xb y 20-=*,代入原方程解得故所求特解为 x xe y 223--=* .例5 求方程x e x y y )1(2-='-''的通解.解 先求对应齐次方程02=+'-''y y y 的通解. 特征方程为 0122=+-r r , 121==r r齐次方程的通解为 x e x C C Y )(21+=. 再求所给方程的特解由于1=λ是特征方程的二重根,所以把它代入所给方程,并约去x e 得比较系数,得于是 x e x x y )216(2-=* 所给方程的通解为 x e x x x C C y y y )6121(3221+-+=+=*3.x B x A x f ϖϖsin cos )(+=型的解法,sin cos )(x B x A x f ωω+=其中A 、B 、ω均为常数. 此时,方程式(1)成为x B x A q y p y ωωsin cos +=+'+'' (7)这种类型的三角函数的导数,仍属同一类型,因此方程式(7)的特解*y 也应属同一类型,可以证明式(7)的特解形式为 其中b a ,为待定常数.k 为一个整数.当ω±i 不是特征方程02=++q pr r 的根, k 取0; 当ω±i 不是特征方程02=++q pr r 的根, k 取1; 例6 求方程x y y y sin 432=-'+''的一个特解. 解 1=ω,ω±i i ±=不是特征方程为0322=-+r r 的根,0=k .因此原方程的特解形式为于是 x b x a y cos sin +-=*' 将*''*'*y y y ,,代入原方程,得解得 54,52-=-=b a原方程的特解为: x x y sin 54cos 52--=* 例7 求方程x e y y y x sin 32+=-'-''的通解.解 先求对应的齐次方程的通解Y .对应的齐次方程的特征方程为再求非齐次方程的一个特解*y .由于x e x x f -+=2cos 5)(,根据定理4,分别求出方程对应的右端项为,)(1x e x f =x x f sin )(2=的特解*1y 、*2y ,则**+=*21y y y 是原方程的一个特解.第 11 页 由于1=λ,ω±i i ±=均不是特征方程的根,故特解为 代入原方程,得比较系数,得解之得 51,101,41-==-=c b a . 于是所给方程的一个特解为所以所求方程的通解为希望以上资料对你有所帮助,附励志名言3条:1、理想的路总是为有信心的人预备着。

二阶微分方程解法(参考模板)

二阶微分方程解法(参考模板)

第六节 二阶常系数齐次线性微分方程教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线性微分方程的解法教学重点:二阶常系数齐次线性微分方程的解法 教学过程:一、二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程: 方程 y+py +qy =0称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数.如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解.我们看看, 能否适当选取r , 使y =e rx满足二阶常系数齐次线性微分方程, 为此将y =e rx代入方程 y +py +qy =0得(r 2+pr +q )e rx=0.由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx就是微分方程的解. 特征方程: 方程r 2+pr +q =0叫做微分方程y+py +qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式2422,1q p p r -±+-= 求出.特征方程的根与通解的关系:(1)特征方程有两个不相等的实根r 1、r 2时, 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解. 这是因为,函数x r e y 11=、x r e y 22=是方程的解, 又xr r xr x r e e e y y )(212121-==不是常数. 因此方程的通解为x r x r e C e C y 2121+=.(2)特征方程有两个相等的实根r 1=r 2时, 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解.这是因为, x r e y 11=是方程的解, 又x r x r xr x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111=++++=q pr r xe p r e x r x r ,所以xr xe y 12=也是方程的解, 且x e xe y y xr xr ==1112不是常数. 因此方程的通解为 x r x r xe C e C y 1121+=.(3)特征方程有一对共轭复根r 1, 2=a ib 时, 函数y =e(a +ib )x、y =e(a ib )x是微分方程的两个线性无关的复数形式的解. 函数y =e axcos bx 、y =e axsin bx 是微分方程的两个线性无关的实数形式的解. 函数y 1e(a +ib )x和y 2e(a ib )x都是方程的解 而由欧拉公式 得y 1e (a +ib )x e x (cos x i sin x )y 2e(aib )xe x (cos x i sin x )y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 22ie x sin x )(21sin 21y y ix e x -=βα故e ax cos bx 、y 2=e axsin bx 也是方程解.可以验证, y 1=e ax cos bx 、y 2=e axsin bx 是方程的线性无关解. 因此方程的通解为y =e ax(C 1cos bx +C 2sin bx ). 求二阶常系数齐次线性微分方程y +py +qy =0的通解的步骤为:第一步 写出微分方程的特征方程 r 2+pr +q =0第二步 求出特征方程的两个根r 1、r 2.第三步 根据特征方程的两个根的不同情况, 写出微分方程的通解. 例1 求微分方程y-2y -3y =0的通解.解 所给微分方程的特征方程为 r 2-2r -3=0, 即(r 1)(r 3)0其根r 1=-1, r 2=3是两个不相等的实根, 因此所求通解为 y =C 1e -x+C 2e 3x.例2 求方程y+2y+y=0满足初始条件y|x=0=4、y|x=0=-2的特解.解所给方程的特征方程为r2+2r+1=0, 即(r1)20其根r1=r2=1是两个相等的实根, 因此所给微分方程的通解为y=(C1+C2x)e-x.将条件y|x=0=4代入通解, 得C1=4, 从而y=(4+C2x)e-x.将上式对x求导, 得y=(C2-4-C2x)e-x.再把条件y|x=0=-2代入上式, 得C2=2. 于是所求特解为x=(4+2x)e-x.例 3 求微分方程y-2y+5y= 0的通解.解所给方程的特征方程为r2-2r+5=0特征方程的根为r1=12i r2=12i是一对共轭复根因此所求通解为y=e x(C1cos2x+C2sin2x).n阶常系数齐次线性微分方程: 方程y(n) +p1y(n-1)+p2 y(n-2) + + p n-1y+p n y=0,称为n阶常系数齐次线性微分方程, 其中p1, p2 , , p n-1, p n都是常数.二阶常系数齐次线性微分方程所用的方法以及方程的通解形式, 可推广到n阶常系数齐次线性微分方程上去.引入微分算子D及微分算子的n次多项式L(D)=D n+p1D n-1+p2 D n-2 + + p n-1D+p n则n阶常系数齐次线性微分方程可记作(D n+p1D n-1+p2 D n-2 + + p n-1D+p n)y=0或L(D)y0注 D叫做微分算子D0y y D y y D2y y D3y y D n y y(n)分析令y e rx则L(D)y L(D)e rx(r n+p1r n-1+p2 r n-2 + + p n-1r+p n)e rx=L(r)e rx因此如果r是多项式L(r)的根则y e rx是微分方程L(D)y0的解n阶常系数齐次线性微分方程的特征方程L(r)r n+p1r n-1+p2 r n-2 + + p n-1r+p n0称为微分方程L(D)y0的特征方程特征方程的根与通解中项的对应: 单实根r 对应于一项: Ce rx;一对单复根r 1, 2=a ib 对应于两项: e ax(C 1cos bx +C 2sin bx );k 重实根r 对应于k 项: e rx (C 1+C 2x + +C k x k -1); 一对k 重复根r 1, 2=a ib 对应于2k 项:e ax[(C 1+C 2x + +C k x k -1)cos bx +( D 1+D 2x + +D k x k -1)sin bx ]. 例4 求方程y (4)-2y +5y=0 的通解.解 这里的特征方程为r 4-2r 3+5r 2=0, 即r 2(r 2-2r +5)=0, 它的根是r 1=r 2=0和r 3, 4=12i .因此所给微分方程的通解为y =C 1+C 2x +e x(C 3cos2x +C 4sin2x ). 例5 求方程y (4)+b 4y =0的通解, 其中b 0.解 这里的特征方程为 r 4+b 4=0. 它的根为)1(22,1i r ±=β, )1(24,3i r ±-=β.因此所给微分方程的通解为 )2sin2cos(212x C x C ey xβββ+=)2sin2cos(432x C x C exβββ++-.二、二阶常系数非齐次线性微分方程简介二阶常系数非齐次线性微分方程: 方程y +py +qy =f (x )称为二阶常系数非齐次线性微分方程, 其中p 、q 是常数. 二阶常系数非齐次线性微分方程的通解是对应的齐次方程 的通解y =Y (x )与非齐次方程本身的一个特解y =y *(x )之和:y =Y (x )+ y *(x ).当f (x )为两种特殊形式时, 方程的特解的求法: 一、 f (x )=P m (x )e lx型当f (x )=P m (x )e lx时, 可以猜想, 方程的特解也应具有这种形式. 因此, 设特解形式为y *=Q (x )e lx , 将其代入方程, 得等式 Q(x )+(2l +p )Q(x )+(l 2+pl +q )Q (x )=P m (x ).(1)如果l 不是特征方程r 2+pr +q =0 的根, 则l 2+pl +q 0. 要使上式成立, Q (x )应设为m 次多项式:Q m(x)=b0x m+b1x m-1+ +b m-1x+b m,通过比较等式两边同次项系数, 可确定b0, b1, , b m, 并得所求特解y*=Q m(x)e lx.(2)如果l是特征方程r2+pr+q=0 的单根, 则l2+pl+q=0, 但2l+p0, 要使等式Q(x)+(2l+p)Q(x)+(l2+pl+q)Q(x)=P m(x).成立, Q(x)应设为m+1 次多项式:Q(x)=xQ m(x),Q m(x)=b0x m+b1x m-1+ +b m-1x+b m,通过比较等式两边同次项系数, 可确定b0, b1, , b m, 并得所求特解y*=xQ m(x)e lx.(3)如果l是特征方程r2+pr+q=0的二重根, 则l2+pl+q=0, 2l+p=0, 要使等式Q(x)+(2l+p)Q(x)+(l2+pl+q)Q(x)=P m(x).成立, Q(x)应设为m+2次多项式:Q(x)=x2Q m(x),Q m(x)=b0x m+b1x m-1+ +b m-1x+b m,通过比较等式两边同次项系数, 可确定b0, b1, , b m, 并得所求特解y*=x2Q m(x)e lx.综上所述, 我们有如下结论: 如果f(x)=P m(x)e lx, 则二阶常系数非齐次线性微分方程y+py+qy =f(x)有形如y*=x k Q m(x)e lx的特解, 其中Q m(x)是与P m(x)同次的多项式, 而k按l不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2.例1 求微分方程y-2y-3y=3x+1的一个特解.解这是二阶常系数非齐次线性微分方程, 且函数f(x)是P m(x)e lx型(其中P m(x)=3x+1, l=0).与所给方程对应的齐次方程为y-2y-3y=0,它的特征方程为r2-2r-3=0.由于这里l=0不是特征方程的根, 所以应设特解为y*=b0x+b1.把它代入所给方程, 得-3b0x-2b0-3b1=3x+1,比较两端x同次幂的系数, 得⎩⎨⎧=--=-13233100b b b -3b 0=3, -2b 0-3b 1=1.由此求得b 0=-1, 311=b . 于是求得所给方程的一个特解为 31*+-=x y . 例2 求微分方程y-5y +6y =xe 2x的通解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )是P m (x )e lx型(其中P m (x )=x , l =2). 与所给方程对应的齐次方程为y -5y +6y =0,它的特征方程为r 2-5r +6=0.特征方程有两个实根r 1=2, r 2=3. 于是所给方程对应的齐次方程的通解为Y =C 1e 2x +C 2e 3x .由于l =2是特征方程的单根, 所以应设方程的特解为y *=x (b 0x +b 1)e 2x .把它代入所给方程, 得 -2b 0x +2b 0-b 1=x . 比较两端x 同次幂的系数, 得 ⎩⎨⎧=-=-0212100b b b -2b 0=1, 2b 0-b 1=0.由此求得210-=b , b 1=-1. 于是求得所给方程的一个特解为 x e x x y 2)121(*--=. 从而所给方程的通解为x x x e x x e C e C y 223221)2(21+-+=. 提示y *=x (b 0x +b 1)e 2x (b 0x 2+b 1x )e 2x[(b 0x 2+b 1x )e 2x][(2b 0x +b 1)(b 0x 2+b 1x )×2]e2x[(b 0x 2+b 1x )e 2x][2b 02(2b 0x b 1)×2(b 0x 2+b 1x )×22]e 2xy *5y *6y *[(b 0x 2+b 1x )e 2x]5[(b 0x 2+b 1x )e 2x]6[(b 0x 2+b 1x )e 2x][2b 02(2b 0x b 1)×2(b 0x 2+b 1x )×22]e 2x5[(2b 0x +b 1)(b 0x 2+b 1x )×2]e2x6(b 0x 2+b 1x )e 2x[2b 04(2b 0x b 1)5(2b 0x +b 1)]e 2x[2b 0x +2b 0b 1]e 2x方程y+py +qy =e lx[P l (x )cos wx +P n (x )sin wx ]的特解形式应用欧拉公式可得e lx [P l (x )cos wx +P n (x )sin wx ]]2)(2)([ ie e x P e e x P e x i x i nx i xi l x ωωωωλ---++=x i nl x i n l e x iP x P e x iP x P )()()]()([21)]()([21ωλωλ-+++-=x i x i e x P e x P )()()()(ωλωλ-++=,其中)(21)(i P P x P n l -=, )(21)(i P P x P n l +=. 而m =max{l , n }. 设方程y+py+qy =P (x )e(l +iw )x的特解为y 1*=x k Q m (x )e(l +iw )x,则)(1)(*ωλi m k e x Q x y -=必是方程)()(ωλi e x P qy y p y -=+'+''的特解, 其中k 按l iw 不是特征方程的根或是特征方程的根依次取0或1. 于是方程y+py +qy =e lx[P l (x )cos wx +P n (x )sin wx ]的特解为x i m k x i m k e x Q x e x Q x y )()()()(*ωλωλ-++=)sin )(cos ()sin )(cos ([x i x x Q x i x x Q e x m m x k ωωωωλ-++= =x k e lx[R(1)m(x )cos wx +R(2)m(x )sin wx ].综上所述, 我们有如下结论:如果f (x )=e lx[P l (x )cos wx +P n (x )sin wx ], 则二阶常系数非齐次线性微分方程y+py +qy =f (x )的特解可设为y *=x k e lx [R (1)m (x )cos wx +R (2)m (x )sin wx ],其中R(1)m(x )、R(2)m(x )是m 次多项式, m =max{l , n }, 而k 按l +i w (或l -iw )不是特征方程的根或是特征方程的单根依次取0或1. 例3 求微分方程y+y =x cos2x 的一个特解.解 所给方程是二阶常系数非齐次线性微分方程,且f (x )属于e lx[P l (x )cos wx +P n (x )sin wx ]型(其中l =0, w =2, P l (x )=x , P n (x )=0). 与所给方程对应的齐次方程为y +y =0,它的特征方程为r 2+1=0.由于这里l +iw =2i 不是特征方程的根, 所以应设特解为y *=(ax +b )cos2x +(cx +d )sin2x .把它代入所给方程, 得(-3ax -3b +4c )cos2x -(3cx +3d +4a )sin2x =x cos2x . 比较两端同类项的系数, 得 31-=a , b =0, c =0, 94=d . 于是求得一个特解为 x x x y 2sin 942cos 31*+-=. 提示y *=(ax +b )cos2x +(cx +d )sin2x .y *=a cos2x 2(ax +b )sin2x +c sin2x +2(cx +d )cos2x(2cx +a2d )cos2x +(2ax 2b c )sin2xy *=2c cos2x 2(2cx +a 2d )sin2x 2a sin2x +2(2ax 2b c )cos2x(4ax4b4c )cos2x(4cx 4a 4d )sin2xy *y *(3ax 3b 4c )cos2x (3cx 4a 3d )sin2x由⎪⎩⎪⎨⎧=--=-=+-=-0340304313d a c c b a 得31-=a , b =0, c =0, 94=d .(注:文档可能无法思考全面,请浏览后下载,供参考。

2.2-二阶常系数线性微分方程的解法

2.2-二阶常系数线性微分方程的解法

∴对应的齐次方程的通解为Y e x (C1 C2 x) 。 ∵ f ( x) xe x ,属 f ( x) Pm ( x)e x 型( m 1, 1 ),
而 1是特征方程的重根,
∴设
y x2 ( A x A1 )e x
,A
ቤተ መጻሕፍቲ ባይዱ
1 6

A1

0

∴ y 1 x3ex ,
取 u( x) 0 的一个解 u( x) x ,则 y2 xerx 。
∴方程①的通解为 y C1erx C2 xerx , 即 y erx (C1 C2 x) 。
3 . 特 征 方 程 的 根 是 一 对 共 轭 复 数 的 情 形 。
∵ y1 e( i ) x 、 y2 e( i ) x 是方程①的特解,
将 y , ( y ) A , ( y ) 0 ,代入原方程后得
5A 6( A x A1 ) 6A x (6A1 5A ) 2x 3 ,有
6A 2

6
A1

5
A
3


A A1

1 3 7 9
. 故原方程的特解为 y
∴设 Qm ( x) A0 x m A1 x m1 Am1 x Am 。
把 Qm ( x) 代入 ④ 式,比较等式两端 x 同次幂的系数, 就得到以 A0 , A1 ,, Am1 , Am 作为未知数的 m 1 个方程 的联立方程组,从而可以定出这些 Ai (i 0, 1, , m) ,

y1 y2

e( i ) x e( i ) x
e2 i x 不为常数,它们是线性无关的,

二阶常系数常微分方程的初等解法求解技巧(K12教育文档)

二阶常系数常微分方程的初等解法求解技巧(K12教育文档)

二阶常系数常微分方程的初等解法求解技巧(word版可编辑修改)二阶常系数常微分方程的初等解法求解技巧(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(二阶常系数常微分方程的初等解法求解技巧(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为二阶常系数常微分方程的初等解法求解技巧(word版可编辑修改)的全部内容。

二阶常系数常微分方程的初等解法求解技巧(word版可编辑修改)二阶常系数常微分方程的初等解法求解技巧郑燕,王俊霞太原师范学院数学系,山西晋中,030619摘要:本文总结介绍了三类二阶常系数常微分方程的初等解法求解技巧,分别是:特征根法;常数变易法;比较系数法.同时结合例题进行具体讲解.虽然当今社会关于二阶常微分方程初等解法求解技巧的研究已经获得了很大的成就,但它的已有理论仍然得不到求知者的满足,需要大家进一步发展,使之更加完善。

关键词:二阶常系数齐次线性微分方程;特征根法;常数变易法;比较系数法;二阶常系数非齐次线性微分方程.1。

预备知识(1.1)其中以及f(t)都是连续函数并且区间是a t b。

如果,则方程(1)就变成了(1.2)我们形如方程(1.2)的方程叫做二阶齐次线性微分方程,把方程(1。

1)叫做二阶非齐次线性微分方程.并且把方程(1.1)叫做方程(1.2)对应的齐次线性微分方程。

2.求解方法技巧2.1常数变易法常数变易法是将常数看作是的待定函数,然后求出非齐次线性方程的通解。

求解过程如下:设,是方程(1.2)的基本解组,则(2.1.1)是方程(1。

2)的通解。

将常数看作是t的待定函数,那么方程(2。

第三节-二阶常系数线性微分方程的解法

第三节-二阶常系数线性微分方程的解法

(*)
情形3
若 r 是特征方程的二重根, 即 r 2 ar b 0 ,
且 2r a 0 , 则令 Q( x) x 2 Qm ( x) , 即
y x Qm ( x ) e
2

rx
15
2 Q ( 2r a )Q ( r ar b)Q Pm ( x )
于是 (2)的通解为
y (C 1 C 2 x ) e
1 x
.
6
情形3 若 0 , 则特征方程(3)有一对共轭复根
1,2 i
x x y e cos x , y e sinx 可以证明, 1 2
是(2)的解,且线性无关, 所以方程(2)的通解为
y e (C1 cos x C 2 sin x )
1 x
,得
2 u (21 a)u (1 a1 b)u 0 ,
因为 1 是方程 2 a b 0 的二重根,
2 故有 1 a1 b 0 , 21 a 0 ,
1 x u x , 即得 y2 x e , u 0 , 取特解

rx
情形2 若 r 是特征方程的单根, 即 r 2 ar b 0 ,
而 2r a 0 , 则令 Q( x ) xQm ( x ) , 即
y xQm ( x ) e r x
14
2 Q ( 2r a )Q ( r ar b)Q Pm ( x )
2
3x
的通解.
特征方程 6 9 0 , 特征根 1, 2 3 ,
对应齐次方程通解 Y (C1 C2 x) e3 x .
因为 r 3 是二重特征根,

【2019年整理】二阶常系数线性微分方程的解法版

【2019年整理】二阶常系数线性微分方程的解法版

第八章 8.4讲第四节 二阶常系数线性微分方程一、二阶常系数线形微分方程的概念形如 )(x f qy y p y =+'+'' (1)的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数.如果0)(≡x f ,则方程式 (1)变成0=+'+''qy y p y (2)我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法.二、二阶常系数齐次线性微分方程1.解的叠加性定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数.证明 因为1y 与2y 是方程(2)的解,所以有0111=+'+''qy y p y 0222=+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得)()()(221122112211y C y C q y C y C p y C y C ++'+'+''+'' =0)()(22221111=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解.定理1说明齐次线性方程的解具有叠加性.叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解.2.线性相关、线性无关的概念设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n个函数在区间I 内线性相关,否则称线性无关.例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为0sin cos 122≡--x x又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k必须0321===k k k .对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠21y y 常数, 则1y ,2y 线性无关.3.二阶常系数齐次微分方程的解法定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则212211,(C C y C y C y +=为任意常数)是方程式(2)的通解.例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且≠=x y y tan 21常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+=( 21,C C 是任意常数)是方程0=+''y y 的通解.由于指数函数rxe y =(r 为常数)和它的各阶导数都只差一个常数因子,根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r ,使rxe y =满足方程(2).将rx e y =求导,得 rx rx e r y re y 2,=''='把y y y ''',,代入方程(2),得0)(2=++rx eq pr r 因为0≠rx e , 所以只有 02=++q pr r (3)只要r 满足方程式(3),rx e y =就是方程式(2)的解.我们把方程式(3)叫做方程式(2)的特征方程,特征方程是一个代数方程,其中r r ,2的系数及常数项恰好依次是方程(2)y y y ,,'''的系数. 特征方程(3)的两个根为 2422,1q p p r -±-=, 因此方程式(2)的通解有下列三种不同的情形. (1) 当042>-q p 时,21,r r 是两个不相等的实根. 2421q p p r -+-=,2422q p p r ---= x r x r e y e y 2121,==是方程(2)的两个特解,并且≠=-x r r e y y )(2121常数,即1y 与2y 线性无关.根据定理2,得方程(2)的通解为 x r x r e C e C y 2121+=(2) 当042=-q p 时, 21,r r 是两个相等的实根. 221p r r -==,这时只能得到方程(2)的一个特解x r e y 11=,还需求出另一个解2y ,且≠12y y 常数,设)(12x u y y =, 即 )(12x u e y x r =)2(),(21121211u r u r u e y u r u e y x r x r +'+''=''+'='. 将222,,y y y '''代入方程(2), 得 []0)()2(12111=++'++'+''qu u r u p u r u r u e x r 整理,得0])()2([12111=+++'++''u q pr r u p r u e x r由于01≠x r e , 所以 0)()2(1211=+++'++''u q pr r u p r u 因为1r 是特征方程(3)的二重根, 所以02,01121=+=++p r q pr r从而有 0=''u因为我们只需一个不为常数的解,不妨取x u =,可得到方程(2)的另一个解 x r xe y 12=.那么,方程(2)的通解为x r x r xe C e C y 1121+=即 xr e x C C y 1)(21+=.(3) 当042<-q p 时,特征方程(3)有一对共轭复根 βαβαi r i r -=+=21, (0≠β)于是 x i x i e y ey )(2)(1,βαβα-+== 利用欧拉公式 x i x e ix sin cos +=把21,y y 改写为)sin (cos )(1x i x e e e e y x x i x x i ββαβαβα+=⋅==+)sin (cos )(2x i x e e e e y x x i x xi ββαβαβα-=⋅==-- 21,y y 之间成共轭关系,取-1y =x e y y x βαcos )(2121=+, x e y y i y x βαsin )(2121_2=-= 方程(2)的解具有叠加性,所以-1y ,-2y 还是方程(2)的解,并且≠==--x x e x e y y x x βββααt a n c o s s i n 12常数,所以方程(2)的通解为 )sin cos (21x C x C e y x ββα+=综上所述,求二阶常系数线性齐次方程通解的步骤如下:(1)写出方程(2)的特征方程02=++q pr r(2)求特征方程的两个根21,r r(3)根据21,r r 的不同情形,按下表写出方程(2)的通解.例1求方程052=+'+''y y y 的通解.解: 所给方程的特征方程为0522=++r ri r i r 21,2121--=+-=所求通解为 )2sin 2cos (21x C x C e y x +=-.例 2 求方程0222=++S dt dS dtS d 满足初始条件2,400-='===t t S S 的特解.解 所给方程的特征方程为0122=++r r121-==r r通解为 te t C C S -+=)(21 将初始条件40==t S 代入,得 41=C ,于是 t e t C S -+=)4(2,对其求导得te t C C S ---=')4(22 将初始条件20-='=t S 代入上式,得 22=C所求特解为t e t S -+=)24(例3求方程032=-'+''y y y 的通解.解 所给方程的特征方程为 0322=-+r r其根为 1,321=-=r r所以原方程的通解为 x x e C e C y 231+=-二、二阶常系数非齐次方程的解法1.解的结构定理3 设*y 是方程(1)的一个特解,Y 是式(1)所对应的齐次方程式(2)的通解,则*+=y Y y 是方程式(1)的通解.证明 把*+=y Y y 代入方程(1)的左端:)()()(*++*'+'+*''+''y Y q y Y p y Y=)()(*+*'+*''++'+''qy py y qY Y p Y=)()(0x f x f =+*+=y Y y 使方程(1)的两端恒等,所以*+=y Y y 是方程(1)的解. 定理4 设二阶非齐次线性方程(1)的右端)(x f 是几个函数之和,如 )()(21x f x f qy y p y +=+'+'' (4) 而*1y 与*2y 分别是方程 )(1x f qy y p y =+'+''与 )(2x f qy y p y =+'+''的特解,那么**+21y y 就是方程(4)的特解, 非齐次线性方程(1)的特解有时可用上述定理来帮助求出.2.)()(x P e x f m x λ=型的解法 )()(x P e x f m x λ=,其中λ为常数,)(x P m 是关于x 的一个m 次多项式. 方程(1)的右端)(x f 是多项式)(x P m 与指数函数x e λ乘积的导数仍为同一类型函数,因此方程(1)的特解可能为x e x Q y λ)(=*,其中)(x Q 是某个多项式函数.把 x e x Q y λ)(=*x e x Q x Q y λλ)]()(['+=*'x e x Q x Q x Q y λλλ)]()(2)([2''+'+=*''代入方程(1)并消去xe λ,得)()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ (5)以下分三种不同的情形,分别讨论函数)(x Q 的确定方法:(1) 若λ不是方程式(2)的特征方程02=++q pr r 的根, 即02≠++q p λλ,要使式(5)的两端恒等,可令)(x Q 为另一个m 次多项式)(x Q m :m m m x b x b x b b x Q ++++= 2210)(代入(5)式,并比较两端关于x 同次幂的系数,就得到关于未知数m b b b ,,,10 的1+m 个方程.联立解方程组可以确定出),,1,0(m i b i =.从而得到所求方程的特解为x m e x Q y λ)(=*(2) 若λ是特征方程02=++q pr r 的单根, 即02,02≠+=++p q p λλλ,要使式(5)成立, 则)(x Q '必须要是m 次多项式函数,于是令)()(x xQ x Q m =用同样的方法来确定)(x Q m 的系数),,1,0(m i b i =.(3) 若λ是特征方程02=++q pr r 的重根,即,02=++q p λλ 02=+p λ.要使(5)式成立,则)(x Q ''必须是一个m 次多项式,可令)()(2x Q x x Q m =用同样的方法来确定)(x Q m 的系数.综上所述,若方程式(1)中的x m e x P x f λ)()(=,则式(1)的特解为x m k e x Q x y λ)(=*其中)(x Q m 是与)(x P m 同次多项式,k 按λ不是特征方程的根,是特征方程的单根或是特征方程的重根依次取0,1或2.例4 求方程x e y y 232-='+''的一个特解.解 )(x f 是x m e x p λ)(型, 且2,3)(-==λx P m对应齐次方程的特征方程为 022=+r r ,特征根根为2,021-==r r . =-2是特征方程的单根, 令xe xb y 20-=*,代入原方程解得230-=b故所求特解为 xxe y 223--=* .例5 求方程x e x y y )1(2-='-''的通解.解 先求对应齐次方程02=+'-''y y y 的通解.特征方程为 0122=+-r r , 121==r r齐次方程的通解为 xe x C C Y )(21+=.再求所给方程的特解1)(,1-==x x P m λ由于1=λ是特征方程的二重根,所以x e b ax x y )(2+=*把它代入所给方程,并约去x e 得126-=+x b ax比较系数,得61=a 21-=b于是 xe x x y )216(2-=*所给方程的通解为 x e x x x C C y y y )6121(3221+-+=+=* 3.x B x A x f ϖϖsin cos )(+=型的解法 ,sin cos )(x B x A x f ωω+=其中A 、B 、ω均为常数.此时,方程式(1)成为x B x A q y p y ωωsin cos +=+'+'' (7)这种类型的三角函数的导数,仍属同一类型,因此方程式(7)的特解*y 也应属同一类型,可以证明式(7)的特解形式为)sin cos (x b x a x y k ωω+=*其中b a ,为待定常数.k 为一个整数.当ω±i 不是特征方程02=++q pr r 的根, k 取0;当ω±i 不是特征方程02=++q pr r 的根, k 取1;例6 求方程x y y y sin 432=-'+''的一个特解.解 1=ω,ω±i i ±=不是特征方程为0322=-+r r 的根,0=k .因此原方程的特解形式为x b x a y sin cos +=* 于是 x b x a y cos sin +-=*'x b x a y sin cos --=*''将*''*'*y y y ,,代入原方程,得⎩⎨⎧=--=+-442024b a b a 解得 54,52-=-=b a原方程的特解为: x x y sin 54cos 52--=* 例7 求方程x e y y y x sin 32+=-'-''的通解.解 先求对应的齐次方程的通解Y .对应的齐次方程的特征方程为0322=--r r3,121=-=r rx x e C e C Y 321+=-再求非齐次方程的一个特解*y .由于x e x x f -+=2cos 5)(,根据定理4,分别求出方程对应的右端项为,)(1x e x f =x x f sin )(2=的特解*1y 、*2y ,则 **+=*21y y y 是原方程的一个特解.由于1=λ,ω±i i ±=均不是特征方程的根,故特解为)sin cos (21x c x b ae y y y x ++=+=*** 代入原方程,得x e x c b x c b ae x x sin sin )42(cos )24(4=-++--比较系数,得14=-a 024=+c b 142=-c b解之得 51,101,41-==-=c b a . 于是所给方程的一个特解为 x x e y x s i n 51c o s 10141-+-=* 所以所求方程的通解为x x e e C e C y Y y x x x sin 51cos 10141321-+-+=+=-*.。

二阶常系数线性微分方程的解法

二阶常系数线性微分方程的解法

二阶常系数线性微分方程的解法一、二阶常系数线性微分方程的一般形式二阶常系数线性微分方程的一般形式为:$$y''+ay'+by=f(x)$$其中,$a$和$b$为常数,$f(x)$为一般函数,$y$为未知函数。

二、特征方程为了解二阶常系数线性微分方程,我们需要首先解决特征方程的问题。

特征方程是由原方程的常系数得到的,它的一般形式为:$$r^2+ar+b=0$$关于特征方程的特征根有以下三种情况:(1)特征根为不相等实数:$r_1\eq r_2$。

此时,原方程的通解为:$$y=c_1e^{r_1x}+c_2e^{r_2x}$$(2)特征根为相等实数:$r_1=r_2=r$。

此时,原方程的通解为:$$y=c_1e^{rx}+c_2xe^{rx}$$(3)特征根为共轭复数:$r_1=\\alpha+i\\beta$,$r_2=\\alpha-i\\beta$,其中$\\alpha$和$\\beta$均为实数,而且$\\beta\eq 0$。

此时,原方程的通解为:$$y=e^{\\alpha x}(c_1\\cos\\beta x+c_2\\sin\\beta x)$$其中,$c_1$和$c_2$均为常数。

三、常数变易法常数变易法是解非齐次线性微分方程的常用方法。

它的基本思路是先假设非齐次项的解为一个函数的形式,然后将它代入原方程,得到关于未知函数的一个代数方程,通过求解这个方程,就能得到非齐次方程的一个特解。

通过常数变易法,设非齐次项的解为$y_p(x)=u(x)v(x)$,其中$u(x)$和$v(x)$均为一般函数。

将$y_p(x)$代入原方程,得到:$$u''v+2u'v'+uv''+au'v+avu'=f(x)$$通过适当的选择$u(x)$和$v(x)$,可以让上式左边的部分消去。

一般可以选择$u(x)$和$v(x)$为特征方程的解,即$u(x)$和$v(x)$满足:$$u''+au'+bu=0$$$$v''+av'+bv=0$$此时,如果特征根为不相等实数或者共轭复数,$u(x)$和$v(x)$可以分别取不同的解,而如果特征根为相等实数,$u(x)$和$v(x)$需要取不同的线性无关解。

2.2二阶常系数线性微分方程的解法

2.2二阶常系数线性微分方程的解法
当自由项 f (x) 为两种特殊类型函数时方程②特解的求 法—待定系数法。
13
2.2 二阶常系数线性微分方程的解法
1. f (x) Pm(x)ex ( 其中 pm ( x)是 x 的 m 次多项式 )
这时方程②为 ay by cy Pm ( x)ex

可以设 y Q( x)ex ( 其中Q( x) 是多项式 ) 。
例 1.求方程 y 5 y 6 y 2x 3 的特解。
解: f ( x) 2x 3 (2x 3)e0x ,
属 f ( x) Pm ( x)e x 型( m 1, 0 ),
特征方程为 r2 5r 6 0 , r1 2 , r2 3 ,
∵ 0 不是特征根,
∴设特解为 y Q1( x)e0x Aox A1 ,
得 erx (ar 2 br c) 0 ,但 erx 0 ,故有
ar 2 br c 0 ,

2
2.2 二阶常系数线性微分方程的解法
ar 2 br c 0 ,

若 r 是一元二次方程②的一个根,则 y erx 就是 方程①的一个特解。
方程②叫做方程①的特征方程。
按特征方程的两个根 r1, r2 的三种可能情况: 1. r1 r2 是两个不相等的实根; 2. r1 r2 是两个相等的实根;
9
2.2 二阶常系数线性微分方程的解法
高阶常系数线性齐次方程的解法 n 阶常系数线性齐次方程为
a0 y(n) a1 y(n1) an1 y an y 0 , ③
其特征方程为 a0r n a1r n1 an1r an 0 . ④
方程②是一个一元 n 次方程, 有 n 个根。类似二阶常系
Q( x) 应为 m 次多项式 , Q( x) 应为 m 1 次多项式 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 8.4讲第四节 二阶常系数线性微分方程一、二阶常系数线形微分方程的概念形如 )(x f qy y p y =+'+'' (1)的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数.如果0)(≡x f ,则方程式 (1)变成0=+'+''qy y p y (2)我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法.二、二阶常系数齐次线性微分方程1.解的叠加性定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数.证明 因为1y 与2y 是方程(2)的解,所以有0111=+'+''qy y p y 0222=+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得)()()(221122112211y C y C q y C y C p y C y C ++'+'+''+'' =0)()(22221111=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解.定理1说明齐次线性方程的解具有叠加性.叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解.2.线性相关、线性无关的概念设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n个函数在区间I 内线性相关,否则称线性无关.例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为0sin cos 122≡--x x又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k必须0321===k k k .对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠21y y 常数, 则1y ,2y 线性无关.3.二阶常系数齐次微分方程的解法定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则212211,(C C y C y C y +=为任意常数)是方程式(2)的通解.例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且≠=x y y tan 21常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+=( 21,C C 是任意常数)是方程0=+''y y 的通解.由于指数函数rxe y =(r 为常数)和它的各阶导数都只差一个常数因子,根据指数函数的这个特点,我们用rxe y =来试着看能否选取适当的常数r ,使rx e y =满足方程(2).将rx e y =求导,得 rx rx e r y re y 2,=''='把y y y ''',,代入方程(2),得0)(2=++rx eq pr r 因为0≠rx e , 所以只有 02=++q pr r (3)只要r 满足方程式(3),rx e y =就是方程式(2)的解.我们把方程式(3)叫做方程式(2)的特征方程,特征方程是一个代数方程,其中r r ,2的系数及常数项恰好依次是方程(2)y y y ,,'''的系数. 特征方程(3)的两个根为 2422,1q p p r -±-=, 因此方程式(2)的通解有下列三种不同的情形. (1) 当042>-q p 时,21,r r 是两个不相等的实根. 2421q p p r -+-=,2422q p p r ---= x r x r e y e y 2121,==是方程(2)的两个特解,并且≠=-x r r e y y )(2121常数,即1y 与2y 线性无关.根据定理2,得方程(2)的通解为 x r x r e C e C y 2121+=(2) 当042=-q p 时, 21,r r 是两个相等的实根. 221p r r -==,这时只能得到方程(2)的一个特解x r e y 11=,还需求出另一个解2y ,且≠12y y 常数,设)(12x u y y =, 即 )(12x u e y x r =)2(),(21121211u r u r u e y u r u e y x r x r +'+''=''+'='. 将222,,y y y '''代入方程(2), 得 []0)()2(12111=++'++'+''qu u r u p u r u r u e x r 整理,得0])()2([12111=+++'++''u q pr r u p r u e x r由于01≠x r e , 所以 0)()2(1211=+++'++''u q pr r u p r u 因为1r 是特征方程(3)的二重根, 所以02,01121=+=++p r q pr r从而有 0=''u因为我们只需一个不为常数的解,不妨取x u =,可得到方程(2)的另一个解 x r xe y 12=.那么,方程(2)的通解为x r x r xe C e C y 1121+=即 xr e x C C y 1)(21+=.(3) 当042<-q p 时,特征方程(3)有一对共轭复根 βαβαi r i r -=+=21, (0≠β)于是 x i x i e y ey )(2)(1,βαβα-+== 利用欧拉公式 x i x e ix sin cos +=把21,y y 改写为)sin (cos )(1x i x e e e e y x x i x x i ββαβαβα+=⋅==+)sin (cos )(2x i x e e e e y x x i x xi ββαβαβα-=⋅==-- 21,y y 之间成共轭关系,取-1y =x e y y x βαcos )(2121=+, x e y y i y x βαsin )(2121_2=-= 方程(2)的解具有叠加性,所以-1y ,-2y 还是方程(2)的解,并且≠==--x x e x e y y x x βββααt a n c o s s i n 12常数,所以方程(2)的通解为 )sin cos (21x C x C e y x ββα+=综上所述,求二阶常系数线性齐次方程通解的步骤如下:(1)写出方程(2)的特征方程02=++q pr r(2)求特征方程的两个根21,r r(3)根据21,r r 的不同情形,按下表写出方程(2)的通解.例1求方程052=+'+''y y y 的通解.解: 所给方程的特征方程为0522=++r ri r i r 21,2121--=+-=所求通解为 )2sin 2cos (21x C x C e y x +=-.例 2 求方程0222=++S dt dS dtS d 满足初始条件2,400-='===t t S S 的特解.解 所给方程的特征方程为0122=++r r121-==r r通解为 te t C C S -+=)(21 将初始条件40==t S 代入,得 41=C ,于是 t e t C S -+=)4(2,对其求导得te t C C S ---=')4(22 将初始条件20-='=t S 代入上式,得 22=C所求特解为te t S -+=)24(例3求方程032=-'+''y y y 的通解.解 所给方程的特征方程为 0322=-+r r其根为 1,321=-=r r所以原方程的通解为 x x e C e C y 231+=-二、二阶常系数非齐次方程的解法1.解的结构定理3 设*y 是方程(1)的一个特解,Y 是式(1)所对应的齐次方程式(2)的通解,则*+=y Y y 是方程式(1)的通解.证明 把*+=y Y y 代入方程(1)的左端:)()()(*++*'+'+*''+''y Y q y Y p y Y=)()(*+*'+*''++'+''qy py y qY Y p Y=)()(0x f x f =+*+=y Y y 使方程(1)的两端恒等,所以*+=y Y y 是方程(1)的解. 定理4 设二阶非齐次线性方程(1)的右端)(x f 是几个函数之和,如 )()(21x f x f qy y p y +=+'+'' (4) 而*1y 与*2y 分别是方程 )(1x f qy y p y =+'+''与 )(2x f qy y p y =+'+''的特解,那么**+21y y 就是方程(4)的特解, 非齐次线性方程(1)的特解有时可用上述定理来帮助求出.2.)()(x P e x f m x λ=型的解法 )()(x P e x f m x λ=,其中λ为常数,)(x P m 是关于x 的一个m 次多项式. 方程(1)的右端)(x f 是多项式)(x P m 与指数函数xe λ乘积的导数仍为同一类型函数,因此方程(1)的特解可能为x e x Q y λ)(=*,其中)(x Q 是某个多项式函数.把 x e x Q y λ)(=*x e x Q x Q y λλ)]()(['+=*'x e x Q x Q x Q y λλλ)]()(2)([2''+'+=*''代入方程(1)并消去xe λ,得)()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ (5) 以下分三种不同的情形,分别讨论函数)(x Q 的确定方法:(1) 若λ不是方程式(2)的特征方程02=++q pr r 的根, 即02≠++q p λλ,要使式(5)的两端恒等,可令)(x Q 为另一个m 次多项式)(x Q m :m m m x b x b x b b x Q ++++= 2210)(代入(5)式,并比较两端关于x 同次幂的系数,就得到关于未知数m b b b ,,,10 的1+m 个方程.联立解方程组可以确定出),,1,0(m i b i =.从而得到所求方程的特解为x m e x Q y λ)(=*(2) 若λ是特征方程02=++q pr r 的单根, 即02,02≠+=++p q p λλλ,要使式(5)成立, 则)(x Q '必须要是m 次多项式函数,于是令)()(x xQ x Q m =用同样的方法来确定)(x Q m 的系数),,1,0(m i b i =.(3) 若λ是特征方程02=++q pr r 的重根,即,02=++q p λλ 02=+p λ.要使(5)式成立,则)(x Q ''必须是一个m 次多项式,可令)()(2x Q x x Q m =用同样的方法来确定)(x Q m 的系数.综上所述,若方程式(1)中的x m e x P x f λ)()(=,则式(1)的特解为x m k e x Q x y λ)(=*其中)(x Q m 是与)(x P m 同次多项式,k 按λ不是特征方程的根,是特征方程的单根或是特征方程的重根依次取0,1或2.例4 求方程x e y y 232-='+''的一个特解.解 )(x f 是x m e x p λ)(型, 且2,3)(-==λx P m对应齐次方程的特征方程为 022=+r r ,特征根根为2,021-==r r . λ=-2是特征方程的单根, 令x e xb y 20-=*,代入原方程解得230-=b 故所求特解为 x xe y 223--=* . 例5 求方程x e x y y )1(2-='-''的通解.解 先求对应齐次方程02=+'-''y y y 的通解.特征方程为 0122=+-r r , 121==r r齐次方程的通解为 x e x C C Y )(21+=.再求所给方程的特解1)(,1-==x x P m λ由于1=λ是特征方程的二重根,所以x e b ax x y )(2+=*把它代入所给方程,并约去xe 得 126-=+x b ax比较系数,得61=a 21-=b 于是 x e x x y )216(2-=* 所给方程的通解为 x e x x x C C y y y )6121(3221+-+=+=* 3.x B x A x f ϖϖsin cos )(+=型的解法,sin cos )(x B x A x f ωω+=其中A 、B 、ω均为常数.此时,方程式(1)成为x B x A q y p y ωωsin cos +=+'+'' (7)这种类型的三角函数的导数,仍属同一类型,因此方程式(7)的特解*y 也应属同一类型,可以证明式(7)的特解形式为)sin cos (x b x a x y k ωω+=*其中b a ,为待定常数.k 为一个整数.当ω±i 不是特征方程02=++q pr r 的根, k 取0;当ω±i 不是特征方程02=++q pr r 的根, k 取1;例6 求方程x y y y sin 432=-'+''的一个特解.解 1=ω,ω±i i ±=不是特征方程为0322=-+r r 的根,0=k .因此原方程的特解形式为x b x a y sin cos +=* 于是 x b x a y cos sin +-=*'x b x a y sin cos --=*''将*''*'*y y y ,,代入原方程,得⎩⎨⎧=--=+-442024b a b a解得 54,52-=-=b a原方程的特解为: x x y sin 54cos 52--=*例7 求方程x e y y y x sin 32+=-'-''的通解.解 先求对应的齐次方程的通解Y .对应的齐次方程的特征方程为 0322=--r r3,121=-=r rx x e C e C Y 321+=-再求非齐次方程的一个特解*y .由于x e x x f -+=2cos 5)(,根据定理4,分别求出方程对应的右端项为,)(1x e x f =x x f sin )(2=的特解*1y 、*2y ,则 **+=*21y y y 是原方程的一个特解.由于1=λ,ω±i i ±=均不是特征方程的根,故特解为)sin cos (21x c x b ae y y y x ++=+=***代入原方程,得x e x c b x c b ae x x sin sin )42(cos )24(4=-++--比较系数,得14=-a 024=+c b 142=-c b解之得 51,101,41-==-=c b a . 于是所给方程的一个特解为 x x e y x s i n 51c o s 10141-+-=* 所以所求方程的通解为x x e e C e C y Y y x x x sin 51cos 10141321-+-+=+=-*.。

相关文档
最新文档