(钢结构设计原理)第四章 轴心受力构件

合集下载

第4章 钢结构轴心受力构件——格构式

第4章 钢结构轴心受力构件——格构式
载力的影响。
4.5 格构式轴心受压构件计算
二、 格构式轴心受压构件的整体稳定承载力
2. 对虚轴的整体稳定承载力
N f x A
双肢格构式轴心受压构件对虚轴的换算长细比的计算公式是:
2 缀条构件: ox x 27 A A
1x
λx —— 整个构件对虚轴的长细比; A ——各分肢横截面的毛面积之和; A1x ——一个节间内两侧斜缀条的毛截面面积和:
(一)缀条的设计: 1、斜缀条的设计 2、横缀条的设计: (二)缀板的设计
4.5 格构式轴心受压构件计算 五、缀件(缀条、缀板)的设计 (一)缀条设计: 1 、斜缀条的设计: 缀条的布置一般采用单系缀条或交叉缀 条。缀条可看做以分肢为弦杆的平行弦桁架 的腹杆,与结构力学计算桁架腹杆的方法相 同。
4.5 格构式轴心受压构件计算 五、缀件(缀条、缀板)的设计 (一)缀条设计: 1 、斜缀条的设计: 按铰接桁架计算一个斜缀条 的内力为: N1=V1/(n cosθ)
缀条一般采用单角钢,与柱单面连接,考虑到
受力时的偏心和受压时的弯扭,当按轴心受力
构件设计时,应将钢材强度设计值乘以下列折
减系数η:
4.5 格构式轴心受压构件计算 五、缀件(缀条、缀板)的设计 (一)缀条设计: 1、斜缀条的设计: (1)按轴心受压计算构件的稳定性时: (2)按轴心受压计算构件的强度和(与分肢 的)连接时:
4.5 格构式轴心受压构件计算 二、 格构式轴心受压构件的整体稳定承载力 2、对虚轴的整体稳定承载力 对格构式构件来说,当绕虚轴失稳时,因肢件之 间不连续,只采用缀条或缀板联系,剪切变形较
大,剪力引起的附加影响不能忽略,通常采用换
算长细比λ0x来替代实际长细比λx,以考虑缀材

钢结构设计原理 第四章-轴心受力构件

钢结构设计原理 第四章-轴心受力构件

因此,失稳时杆件的整个截面都处于加载的过 程中,应力-应变关系假定遵循同一个切线模量 Et,此时轴心受压杆件的屈曲临界力为:
N cr ,t

2 Et I
2 二、实际的轴心受压构件的受力性能
在钢结构中,实际的轴压杆与理想的直杆受力性能之间差别很大,实 际上,轴心受压杆的屈曲性能受许多因素影响,主要的影响因素有:
一、理想轴压构件的受力性能 理想轴压构件是指满足下列4个条件: o杆件本身绝对直杆; o材料均质且各向同性; o无荷载偏心且在荷载作用之前无初始应力; o杆端为两端铰接。 在轴心压力作用下,理想的压杆可能发生三种形式的屈曲: 弯曲屈曲、扭转屈曲、弯扭屈曲——见教科书P97图4–6 轴心受压构件具体以何种形式失稳,主要取决于截面的形式 和尺寸、杆的长度以及杆端的支撑条件。
l N 2 EI 对一无残余应力仅存在初弯曲的轴压杆,杆件中点截面边缘开始 式中 N l2 NE 屈服的条件为:
0
1
经过简化为:
N N vm v0 v0 fy v m v0 v 1 1 N NE A W N N v0 N E fy A W NE N
An—构件的净截面面积_
N fy r f R An
P94式4-2
(1)当轴力构件采用普通螺栓连接时 螺栓为并列布置:
n1 n2 n3
按最危险的截面Ⅰ-Ⅰ 计算,3个截面净截面面积 相同,但 Ⅰ-Ⅰ截面受力最大。
N n
Ⅰ-Ⅰ:N Ⅱ-Ⅱ:N-Nn1/n Ⅲ-Ⅲ:N-N(n1+n2)/n
Ⅰ Ⅱ Ⅲ
2 2
从上面两式我们可以看出,绕不同轴屈曲时,不仅临界力不同,且残余 应力对临界应力的影响程度也不同。因为k1,所以残余应力对弱轴的 影响比对强轴的影响严重的多。

第4章轴心受力构件1211

第4章轴心受力构件1211

轴 心 受 力 构 件
强度 (承载能力极限状态) 轴心受拉构件 刚度 (正常使用极限状态) 强度 轴心受压构件 稳定 刚度 (正常使用极限状态)
(承载能力极限状态)
设计轴心受拉构件时,应根据结构用途、构件受 力大小和材料供应情况选用合理的截面形式,并对所 选截面进行强度和刚度计算。 设计轴心受压构件时,除使截面满足强度和刚度 要求外尚应满足构件整体稳定和局部稳定要求。实际
结构构件,稳定计算比强度计算更为重要。强度问题与 稳定问题虽然均属第一极限状态问题,但两者之间概念 不同。强度问题关注在结构构件截面上产生的最大内力 或最大应力是否达到该截面的承载力或材料的强度,强 度问题是应力问题;而稳定问题是要找出作用与结构内 部抵抗力之间的不稳定平衡状态,即变形开始急剧增长
的状态,属于变形问题。
N f An ,1 其中:An ,1 b n1 d 0 t ;
f 钢材强度设计值 ; d 0 螺栓孔直径; b 主板宽度;t 主板厚度。
拼接板的危险截面为2-2截面。
考虑孔前传力50%得: 2-2截面的内力为:
2
t1 t b
N
b1
N
0.5n2 N 0.5 N 1 n 2 n2 计算截面上的螺栓数; n 连接一侧的螺栓总数。 N f 其中:An , 2 b1 n2 d 0 t 1 ; An , 2
上,只有长细比很小及有孔洞削弱的轴心受压构件,
才可能发生强度破坏。一般情况下,由整体稳定控制 其承载力。 轴心受压构件丧失整体稳定常常是突发性的,容 易造成严重后果,应予以特别重视。
§4-2 轴心受力构件的强度和刚度
一、强度计算(承载能力极限状态)

钢结构第四章轴心受力构件

钢结构第四章轴心受力构件
以极限承载力Nu为依据。规范以初弯曲v0 =l/1000来综合考
虑初弯曲和初偏心的影响,再考虑不同的截面形状和尺寸、不 同的加工条件和残余应力分布及大小及不同的屈曲方向后,采
用数值分析方法来计算构件的Nu值。
令 n/( E/ fy) Nu /(Afy)
绘出~λn曲线(算了200多条),它们形成了相当宽的
三、轴心受力构件的工程应用 平面桁架、空间桁架(包括网架和塔架)
结构、工作平台和其它结构的支柱等。 四、截面选型的原则
用料经济;形状简单,便于制做;便于与 其它构件连接。 五、设计要求
满足强度和刚度要求、轴心受压构件还应 满足整体稳定和局部稳定要求。
★思考问题:强度破坏和整体失稳有何异同??
第二节 轴心受力构件的强度和刚度计算
h ix /1
b iy /2
根据所需A、h、b 并考虑局部稳定要求 和构造要
求(h≥b),初选截面尺寸A、h、b 、t、tw。通常取h0 和b为10mm的倍数。对初选截面进行验算调整。由
于假定的不一定恰当,一般需多次调整才能获得较
满意的截面尺寸。
三、格构式轴心受压构件设计
1. 格构式轴心受压构件的整体稳定承载力 (1) 绕实轴的整体稳定承载力
h0/tw(2 50.5m)ax 23 /fy 5
式中λmax为两方向 长细比的较大值
当构件的承载力有富 裕时,板件的宽厚比可适 当放宽。
第五节 轴心受压构件设计
一、设计原则 1.设计要求 应满足强度、刚度、整体稳定和局部稳定要求。 2.截面选择原则 (1)尽量加大截面轮廓尺寸而减小板厚,以获得
也板称的作局局部部稳与定整计体算等,稳《定规准范则》。采用了σcr板σcr整体的设计准则, σcr板—板的临界应力,主要与板件的宽厚比有关。 《规范》采用限制板件宽厚比的方法来满足局部稳定。根据设 计准则分析并简化后得到的局部稳定计算公式为:

钢结构原理-第4章轴心受力构件

钢结构原理-第4章轴心受力构件
柱子曲线: 由于各种缺陷同时
存在,且都是变量,再 加上材料的弹塑性,轴 压构件属于极值点失稳, 其极限承载力Nu很难用 解析法计算,只能借助 计算机采用数值法求解。
《钢结构原理》 第4章 轴心受力构件
缺陷通常只考虑影响最大的残余应力和初弯曲(l/1000)。 采用数值法可以计算出轴压构件在某个方向(绕 x 或 y 轴)的 柱子曲线,如下图,纵坐标为截面平均应力与屈服强度的比值, 横坐标为正则化长细比。
《钢结构原理》 第4章 轴心受力构件
4.1 概述
4.1.1 定义:构件只承受轴心力的作用。 承受轴心压力时称为轴心受压构件。 承受轴心拉力时称为轴心受拉构件。
N
N
N
N
《钢结构原理》 第4章 轴心受力构件
4.1.2 轴心受力构件的应用 平面及空间桁架(钢屋架、管桁架、塔桅、网架等); 工业及民用建筑结构中的一些柱; 支撑系统;等等。
(a) N
(b) N
Hale Waihona Puke (c) NNN
N
《钢结构原理》 第4章 轴心受力构件
4.4.3 理想轴心受压构件的弯曲屈曲 4.4.3.1 弹性弯曲屈曲
取隔离体,建立平衡微分方程
EyIN y0
用数学方法解得:N 的最 小值即分岔屈曲荷载 Ncr,又称 为欧拉荷载 NE 。
Ncr2EI/l2
对应的临界应力为:
《钢结构原理》 第4章 轴心受力构件
4.4 轴心受压构件的整体稳定
概念:在压力作用下,构件的外力必须和内力相平衡。 平衡有稳定、不稳定之分。当为不稳定平衡时,轻微的扰 动就会使构件产生很大的变形而最后丧失承载能力,这种 现象称为丧失稳定性,简称失稳,也称屈曲。 特点:与强度破坏不同,构件整体失稳时会导致完全 丧失承载能力,甚至整体结构倒塌。失稳属于承载能力极 限状态。与混凝土构件相比,钢构件截面尺寸小、构件细 长,稳定问题非常突出。只有受压才有稳定问题。

钢结构轴心受压答案

钢结构轴心受压答案


(2)强度验算:
查表5.1,
由于 可正、可负,故由 产生的应力可使翼缘压应力增大(或减少)、也可使腹板压应力增大(或减少)。即:
所以,强度满足要求且腹板边缘起控制作用。
(3)弯矩作用平面内稳定验算:
查附表4.2得:
有端弯矩和横向荷载共同作用且产生同向曲率,故 。
由前可知,腹板起控制作用,所以:
还应验算腹板是否可能拉屈:
,b类截面,按 查表得
,承载力无太明显的提高。
(3)如果轴心压力为330KN(设计值),I16能否满足要求?如不满足,从构造上采取什么措施就能满足要求?
8距uuuuuuuuuuuujuu因为 ,所以整体稳定不满足。
在侧向加一支撑,重新计算。
,b类截面,查表得
,整体稳定满足。
4.6 设某工业平台柱承受轴心压力5000KN(设计值),柱高8m,两端铰接。要求设计一H型钢或焊接工字形截面柱。
(1)截面几何特征
强度验算:
因为: ,故可以考虑截面塑性发展。
(3)弯矩作用平面内的稳定验算:
, 查附表4.2得
对x轴为悬臂构件,故
(4)弯矩作用面外的稳定验算:
因上半段和下半段支撑条件和荷载条件一致,故:
查附表4.2得
构件对y轴无论是上半段、还是下半段均为两端支撑,在弯矩作用平面内有端弯矩且端弯矩相等而无横向荷载,故 ,
(4)验算弯矩作用平面外的稳定:
绕对称轴的长细比应取计入扭转效应的换算长细比 ,可采用简化计算方法确定:
根据教材85页,有:
因此:
属于b类截面,查附表4.2得:
①弯矩使翼缘受压时:
与对x轴相同,取
②弯矩使翼缘受拉时:
由于腹板的宽厚比

第四章 轴心受力构件

第四章 轴心受力构件

§4-6 格构式轴心受压柱的截面设计
§4-6 格构式轴心受压柱的截面设计
一、格构式轴心受压柱的组成 分肢
缀板
缀件
缀条
§4-6 格构式轴心受压柱的截面设计
二、格构式轴心受压柱的实轴和虚轴
垂直于分肢腹板平面的主轴--实轴;
垂直于分肢缀件平面的主轴--虚轴;
格构式轴心受压构件的设计应考虑:
§4-3 轴心受压构件的整体稳定
1.0
0.8 d 0.6 c b
a
0.4
0.2
0
50
100
150
200
250
(Q235)
a类为残余应力影响较小,c类为残余应力影响较大, 并有弯扭失稳影响,a、c类之间为b类,d类厚板工字 钢绕弱轴。
§4-3 轴心受压构件的整体稳定
构件长细比的确定
y x x
截面为双轴对称构件:
§4-2 轴心受力构件的强度和刚度
二、刚度计算(正常使用极限状态) 保证构件在运输、安装、使用时不会产生过大变形。
l0 [ ] i
l0 构件的计算长度;
i
I 截面的回转半径; A
[ ] 构件的容许长细比
§4-3 轴心受压构件的整体稳定
§4-3 轴心受压构件的整体稳定
强度 (承载能力极限状态) 刚度 (正常使用极限状态) 强度 轴心受压构件
轴 心 受 力 构 件
稳定
(承载能力极限状态)
刚度 (正常使用极限状态)
§4-2 轴心受力构件的强度和刚度
§4-2 轴心受力构件的强度和刚度
一、强度计算(承载能力极限状态)
N f An
其中: N — 轴心拉力或压力设计值; An— 构件的净截面面积; f— 钢材的抗拉强度设计值。 轴心受压构件,当截面无削弱时,强度不必计算。

4-钢结构设计原理-轴心受力构件1 钢结构设计原理

4-钢结构设计原理-轴心受力构件1 钢结构设计原理
第四章 轴心受力构件
4 轴
主要内容:

受 力
1、轴心受拉构件的强度和刚度

件 设
2、轴心受压构件的强度

3、轴心受压实腹式构件的整体稳定
4、轴心受压格构式构件的整体稳定
5、轴心受压实腹式构件的局部稳定
6、轴心受压格构式构件的局部稳定
7、轴心受力构件的刚度
学习目标
1.掌握轴心受拉构件强度的计算方法、净截面的概念;
4

心 受
所谓分支点失稳,是指当荷载逐渐增加到某一数值
力 构
时,结构除了按原有变形形式可能维持平衡之外,还可
件 设
能以其他变形形式维持平衡,这种情况称为出现平衡的

分支。出现平衡的分支是此种结构失稳的标志。
对于受偏心压力的细长直杆,当荷载逐渐增大而趋
于某一数值时,其原有变形形式急剧增大,致使结构丧
失承载能力。这种失稳现象称为极值点失稳。
结构或构件在外力增加到某一数值时,稳定的平衡
状态开始丧失,稍有扰动,结构变形迅速增大,使结构 丧失正常工作的能力,称为失稳。
在桥梁结构中,总是要求沿各个方向保持稳定的平
衡,也即沿各个方向都是稳定的,避免不稳定的平衡或 随遇平衡。
结构稳定问题的两种形式:
第一类稳定问题,分支点失稳问题; 第二类稳定问题,极值点失稳问题。
4
轴 心 受 力 构 件 设 计
4.3.3轴压稳定理论的沿革——具有初始缺陷的实际轴心压杆的稳 定问题
有关轴心压杆的整体稳定问题的理论经历了由理想状态杆件的
单曲线函数关系到实际状态杆件多曲线函数关系的沿革。传统的
理想状态压杆的单曲线稳定理论认为轴压杆是理想状态的,它在

(整理)第4章_轴心受力构件的性能_思考题参考答案

(整理)第4章_轴心受力构件的性能_思考题参考答案

第4章 思考题参考答案【4-1】为什么轴心受拉构件开裂后,当裂缝增至一定数量时,不再出现新的裂缝?在裂缝处的混凝土不再承受拉力,所有拉力均由钢筋来承担,钢筋通过粘结力将拉力再传给混凝土。

随着荷载的增加,裂缝不断增加,裂缝处混凝土不断退出工作,钢筋不断通过粘结力将拉力传给相邻的混凝土。

当相邻裂缝之间距离不足以使混凝土开裂的拉力传递给混凝土时,构件中不再出现新裂缝。

【4-2】如何确定受拉构件的开裂荷载和极限荷载?(1) 当0t t εε=时,混凝土开裂,这时构件达到的开裂荷载为:000(1)tcr c t c E t N E A E A εαρε==+(2) 钢筋达到屈服强度时,构件即进入第Ⅲ阶段,荷载基本维持不变,但变形急剧增加,这时构件达到其极限承载力为:tu y s N f A =【4-3】 在轴心受压短柱荷载试验中,随着荷载的增加,钢筋的应力增长速度和混凝土的应力增长速度哪个快?为什么?(1)第Ⅰ阶段,开始加载到钢筋屈服。

钢筋增长速度较快。

此时若忽略混凝土材料应力与应变关系之间的非线性关系,则钢筋与混凝土的应力分别为s E ε和c E ε,由于s c E E >,因此钢筋增长的速度较快,若考虑混凝土非线性的影响,此时混凝土应力与荷载关系呈一条上凸的曲线,则钢筋增长的速度相对混凝土更快。

(2)第Ⅱ阶段,钢筋屈服到混凝土被压碎。

混凝土增长速度较快。

当达到钢筋屈服后,此时钢筋的应力保持不变,增加的荷载全部由混凝土承担,混凝土的应力加速增加,应力与荷载关系由原来的上凸变成上凹。

(图4-9)【4-4】如何确定轴心受压短柱的极限承载力?为什么在轴压构件中不宜采用高强钢筋?(1)当00.002εε==时,混凝土压碎,短柱达到极限承载力cu c y s N f A f A ''=+(2)由于当轴压构件达到极限承载力时00.002sεεε'===,相应的纵筋应力值为:32200100.002400/s s s E N mm σε''=≈⨯⨯=由此可知,当钢筋的强度超过2400/N mm 时,其强度得不到充分发挥,因此不宜采用高强钢筋。

第四章轴心受力构件公式整理

第四章轴心受力构件公式整理
当 b1 t 0.56 l 0 y b 1 时:
2 2 l b1 0yt 3 .7 1 t 52.7b14
( 4 30a )
yz
( 4 30b )
④、单轴对称的轴心受压构件在绕非对称轴以外的任意轴失稳时 ,应按弯扭屈曲计算其稳定性。
当计算等边角钢构件绕平行轴(u轴)稳 定时,可按下式计算换算长细比,并按b类 截面确定 值:
钢结构
2014-2015-2
一、强度计算(承载能力极限状态)
N f An
N—轴心拉力或压力设计值; An—构件的净截面面积; f—钢材的抗拉强度设计值。
( 4 1)
适用于fy/fu≤0.8的情况;轴心受压构件,当截面无削 弱时,强度不必计算。
二、刚度计算(正常使用极限状态)
保证构件在运输、安装、使用时不会产生过大变形。
( 4 41)
式中: 构件两方向长细比较大 值,当 30时 , 取 30;当 100时,取 100。
B、箱形截面翼缘板
b 235 13 t fy b0 235 40 t fy
( 4 42 ) ( 4 43)
b0 t
( 4 27b )
B、等边双角钢截面,图(b)
b
y
b
当 b t 0.58 l 0 y b时:
4 0 . 475 b yz y 1 2 2 l0 y t 当 b t 0.58 l 0 y b时:
y

(b)
( 4 28a )
yz
y
(C)
( 4 29a )
yz
b2 5 .1 t
2 2 l0 t 1 y 4 17 . 4 b 2

钢结构基本原理第4章

钢结构基本原理第4章


第4.1节 概述
本节目录
1. 轴心受力构件的应用 2. 轴心受力构件类型 3. 轴心受力构件的截面形式 4. 轴心受力构件的计算内容
基本要求
了解轴心受力构件的类型、应用及计算内容
4.1.1 轴心受力构件的应用
轴心受力构件是指承受通过截面形心轴线的轴向力 作用的构件。
图4.1.1 桁架
图4.1.2 网架
由于组合截面制作费时费工,其总的成本并 不一定很低,目前只在荷载较大或构件较高时使 用。
4.1.4 轴心受力构件的计算内容
件轴 心 受 力 构
强度 (承载能力极限状态) 轴心受拉构件 刚度 (正常使用极限状态)
强度 (承载能力极限状态) 轴心受压构件 稳定
刚度 (正常使用极限状态)
第4.2节 轴心受力构件的强度和刚度
②理想轴心压杆的弹塑性弯曲屈曲临界力和临界应力
对于长细比λ<λp的轴心压杆发生弯曲屈曲时,构件截 面应力已超过材料的比例极限,并很快进入弹塑性状态, 由于截面应力与应变的非线性关系,这时构件的临界力和 临界应力公式采用切线模量理论计算。
N cr

2Et I
l2
cr

2Et 2
Et ---切线摸量
A
N f
A
N ——轴心压力设计值;
A ——构件毛截面积;
f ——钢材抗压强度设计值;

——
cr
/
f
,称为轴心受压构件整体稳定系数,
y
根据截面分类和构件长细比,由柱子曲线或查表确定。
轴心受压构件的柱子曲线
压杆失稳时临界应力σcr与长细比λ之间的关系曲线 称为柱子曲线。
规范在制定轴心受压构件的柱子曲线时,根据不同 截面形状和尺寸、不同加工条件和相应的残余应力分布 和大小、不同的弯曲屈曲方向以及l/1000的最大初弯曲, 按照最大强度准则,对多种实腹式轴心受压构件弯曲失 稳算出了近200条柱子曲线。

钢结构设计原理4轴心受力构件

钢结构设计原理4轴心受力构件

轧制普通工字钢,腹板较薄,热轧后首先冷却;翼缘在
冷却收缩过程中受到腹板的约束,因此翼缘中产生纵向
残余拉应力,而腹板中部受到压缩作用产生纵向压应力
。轧制H型钢,由于翼缘较宽,其端部先冷却,因此具
有残余压应力,其值为=0.3
f
左右,残余应力在翼缘宽
y
度上的分布,常假设为抛物线或取为直线。翼缘是轧制
边或剪切边的焊接工字形截面,其残余应力分布情况与
Ncrx
2EIx 2
x
I ex Ix
2EIx 2
x
2t(kb)h2 / 4 2tbh2 / 4
2EIx 2
x
k
N cry
2EI y 2
y
I ey Iy
2EI y 2
y
2t(kb)3 /12 2tb3 /12
2EI y 2
y
k3
由于k<l.0,故知残余应力对弱轴的影响比对强轴的影 响要大得多 。
N f
An
采用高强度螺栓摩擦型连接的构件,验算净截面强度时 应考虑一部分剪力已由孔前接触面传递,验算最外列螺 栓处危险截面的强度时,应按下式计算
N' f
An
N ' N (1 0.5 n1 ) n
摩擦型连接的拉杆,除验算净截面强度外,还应验算毛 截面强度
N f
A
4.2.2轴心受力构件的刚度计算 为满足正常使用要求,构件应具有一定的刚度,保证构 件不会在运输和安装过程中产生弯曲或过大的变形,以 及使用期间因自重产生明显下挠,还有在动力荷载作用 下发生较大的振动。
GIt
1 i02
2E 2z
A
z
I
/ l2
Ai02 GIt

第四章 轴心受力构件

第四章   轴心受力构件

13
二、实腹式轴心受压构件的整体稳 定
欧拉临界力计算公式
N cr
相应的临界应力为
EI
2
l
2
cr
N cr E 2 A
2
14
(1)轴心受压构件稳定承载力传统计算方法
②改进的欧拉公式——切线模量理论。众所 周知,构件越细长,越容易失稳,即失稳的临界 应力越低。当欧拉公式计算的临界应力 cr f P (比例极限)时,欧拉假定中的线弹性假定才成立, 欧拉公式的计算结果才接近实际情况。当构件较 cr >f P 为粗短,失稳时的临界应力较高, 时,杆 件进入弹塑性阶段,虽仍可采用欧拉公式的形式 进行计算,但应采用弹塑性阶段的切线模量代替 欧拉公式中的弹性模量。
式(4-10)实质上是稳定验算公式,但都是强度(应力) 验算形式。 上述由条件 x = y 得出两主轴方向等稳定只有在临 界应力和长细比一一对应的情况下才正确。钢结构中,由
于考虑了残余应力等的影响,临界应力 cr 或稳定系数
与长细比不再一一对应,从而有多条柱子曲线( — 是 x

23
(2)强度问题和稳定问题的区别及提高稳定承载力的措施
④在弹性阶段,强度问题采用的一阶(线性)分析方法,
出于内力与荷载成正比,与结构变形无关,因此可应用叠加
原理,即对同一结构,两组荷载产生的内力等于各组荷载产 生的内力之和。在二阶分析中,由于结构内力与变形有关, 因此稳定分析不能采用叠加原理。 不难看出,提高构件稳定承载力的一般措施是:增加截
面惯性矩、减小构件支撑间距、增加支座对构件的约束程度。
总之,减少构件变形的措施均是提高构件稳定承载力的措施。
24
2.实际轴心受压构件的受力性能

第四章 轴心受力构件

第四章 轴心受力构件

第四章轴心受力构件§4-1 概述1、工程实例(假设节点为铰接,无节间荷载作用时,构件只受轴心力作用)(1)桁架(2)塔架(3)网架、网壳2、分类⑴按受力来分:①轴心受拉构件②轴心受压构件到某临界值时,理想轴心受压构件可能以三种屈曲形式丧失稳定。

(1) 弯曲屈曲构件的截面只绕一个主轴旋转,构件的纵轴由直线变为曲线,这是双轴对称截面构件最常见的屈曲形式。

如图4-2 (a)就是两端铰接工字形截面构件发生的绕弱轴的弯曲屈曲。

(2) 扭转屈曲失稳时构件除支承端外的各截面均绕纵轴扭转,图4-2 (b)为长度较小的十字形截面构件可能发生的扭转屈曲。

(3) 弯扭屈曲单轴对称截面构件绕对称轴屈曲时,在发生弯曲变形的同时必然伴随着扭转。

图4-2 (c)即T 形截面构件发生的弯扭屈曲。

图4-2 轴心受压构件的三种屈曲形式欧拉临界力和欧拉临界应力临界应力其中:——单位剪力时的轴线转角,;通常剪切变形的影响较小,忽略其对临界力或临界应力的影响。

E N E σ1222211γλπλπσ⋅⋅+⋅⋅==EAEAN cr cr1γ)(1GA βγ=这样,※上述推导基于材料处于弹性阶段,即,或。

(二)初始缺陷对轴心受压构件稳定承载力的影响 1. 残余应力的影响残余压应力对压杆弯曲失稳的影响: 对弱轴的影响比对强轴的影响要大的多。

稳定应力上限,弱轴:强轴:其中:,0<<1.0。

2.初弯曲的影响图4-3 考虑初弯曲的压力—挠度曲线图示压力—挠度曲线有如下特点:1有初弯曲时,挠度v 不是随着N 按比例增加;N 较小时,挠度增加较慢,N 趋于时,挠度增加较快,并趋向于无限大;2相同压力N 的作用下,压杆的初挠度值越大,杆件的挠度也越大;Ecr N EAlEI N =⋅=⋅=2222λππEcr cr E AN σλπσ=⋅==22pcr f E≤⋅=22λπσpp f E λπλ=≥322kEx crx ⋅⋅=λπσkEycry⋅⋅=22λπσ翼缘宽度翼缘弹性区宽度=k k E N3由于有的存在,轴心压杆的承载力总是低于,因此是弹性压杆承载力的上限。

第四章轴心受力构件公式整理

第四章轴心受力构件公式整理

第四章轴心受力构件公式整理1.应变公式:轴心受力构件的应变公式描述了受力构件在轴向受力作用下的变形情况。

应变公式主要有以下两种形式:(1)需要计算伸长形变的情况下:在受力过程中,轴心受力构件发生的伸长形变与受力大小和材料的弹性模量有关。

应变公式可表示为:ε=ΔL/L其中,ε表示轴向应变;ΔL表示受力构件发生的伸长形变;L表示受力构件的初始长度。

(2)不需要考虑伸长形变的情况下:在一些情况下,受力构件的长度相对较短,可以忽略伸长形变的影响。

此时,应变公式可以表示为:ε=δ/h其中,ε表示轴向应变;δ表示构件上其中一截面上的位移;h表示受力构件的高度。

2.应力公式:轴心受力构件的应力公式描述了受力构件在轴向受力作用下的应力分布情况。

应力公式主要有以下两种形式:(1)线性弹性应力公式:在弹性阶段,应力与应变成正比,最常用的应力公式是线性弹性应力公式:σ=E*ε其中,σ表示轴向应力;E表示受力构件材料的弹性模量;ε表示轴向应变。

(2)线性弹塑性应力公式:在考虑弹塑性情况下,应力与应变的关系不再是线性的。

此时,应力公式可以表示为:σ=σe+σp其中,σ表示轴向应力;σe表示弹性应力;σp表示塑性应力。

3.弯矩公式:轴心受力构件在受到弯矩作用时,会引起构件的弯曲变形。

弯矩公式描述了轴心受力构件在弯矩作用下的变形情况。

弯矩公式主要有以下几种形式:(1)切线法公式:根据切线法,弯曲截面上的任意一点都受到一个弯矩的作用。

弯矩公式可以表示为:M=σ*S其中,M表示弯矩;σ表示轴向应力;S表示截面的静矩。

(2)一阶弹性理论公式:在一阶弹性理论中,构件的截面仍然平面,但允许在截面平面上有变形。

弯矩公式可以表示为:M=σ*I/y其中,M表示弯矩;σ表示轴向应力;I表示截面的惯性矩;y表示截面上任一点到中性轴的距离。

(3)符合木尔斯定理的公式:木尔斯定理适用于构件截面受平面弯矩时产生的应力。

弯矩公式可以表示为:M=W*y/I其中,M表示弯矩;W表示截面上的轴向力;y表示截面上任一点到中性轴的距离;I表示截面的惯性矩。

钢结构第四章

钢结构第四章

14.1轴心受力构件的截面形式4.2轴心受力构件的强度和刚度计算4.2.1 轴心受力构件的强度计算4.2.2 轴心受力构件的刚度计算4.3 轴心受压构件的整体稳定4.3.1 轴心受压构件的弹性弯曲屈曲4.3.2 轴心受压构件的弹塑性弯曲屈曲4.3.3初始缺陷对压杆稳定承载力的影响4.3.4 轴心受压构件的整体稳定计算24.4 实腹式轴心受压构件的局部稳定4.4.1 薄板屈曲(1) 薄板的弹性屈曲(2) 薄板的弹塑性屈曲4.4.2 受压构件局部稳定计算4.4.2.1 确定板件宽厚比(高厚比)限值的准则4.4.2.2 板件宽厚比(高厚比)限值4.4.2.3受压构件的腹板不满足高厚比限值时的处理例题-格构柱例题-轴压柱,截面削弱34.5.2 格构式轴压构件的整体稳定计算(1) 格构式构件绕实轴的整体稳定计算(2) 格构式构件绕虚轴的整体稳定计算①换算长细比②格构式构件绕虚轴的整体稳定计算4.5.3 格构式轴心受压构件分肢的稳定(1) 缀条柱(2) 缀板柱4.5.1 格构式轴心受压构件的截面形式与组成4.5 格构式轴压构件44.5.4 格构式轴心受压构件缀材计算(1) 缀材面承担的剪力①单缀条强度设计值的调整②斜缀条承受的轴向力(2) 缀条设计(3) 缀板设计③斜缀条整体稳定计算④缀条与分肢连接焊缝计算⑤缀条与分肢连接形式(4) 横隔设置①缀板受力②缀板与分肢连接③缀板线刚度54.6 轴心受压构件截面设计4.6.1 实腹式轴心受压构件截面设计4.6.2 格构式轴心受压构件截面设计(3) 截面验算(1) 确定截面所需的面积、回转半径、截面高度、截面宽度等(2) 确定型钢号或组合截面各板件尺寸(1) 根据绕实轴的稳定性确定分肢截面尺寸(2) 根据虚轴和实轴的等稳性确定分肢的间距(3) 截面验算(4)缀材设计7轴心受力构件:承受通过构件截面形心轴线的轴向力作用的构件。

(轴心受拉构件和轴心受压构件)截面形式型钢截面组合截面热轧型钢截面冷弯薄壁型钢截面实腹式组合截面格构式组合截面4.1轴心受力构件的截面形式应用:屋架、托架、塔架和网架、工作平台和其它结构的支柱等8实腹式构件:格构式构件:优点:构造简单、制造方便,整体受力和抗剪性能好缺点:截面尺寸大时钢材用量较多。

《轴心受力构件》课件

《轴心受力构件》课件

ma x ( x, ) y max
l0——计算长度,取决于其两端支承情况;
i——回转半径;
i I
[] ——容许长细比 ,查表P115表6.1,P117表6.2。
A
§6.3 实腹式轴心受压构件
6.3.1 轴心受压构件的整体失稳形式
理想轴心受压构件(理想直,理想 轴心受力)当其压力小于某 个值(Ncr)时,只有轴向压缩变形和均匀压应力。达到该值时,构 件可能弯曲或扭转,产生弯曲或扭转应力。此现象称:构件整体失 稳或整体屈曲。意指失去了原先的直线平衡形式的稳定性。
以轴心受力构件截面上的平均应力不超过钢材的屈服强度 为计算准则。
1. 截面无削弱
构件以全截面平均应力达到屈服强度为强度极限状态。 设计时,作用在轴心受力构件中的外力N应满足:
式中:
σN f A
(6.2.1)
N —— 轴心力设计值;
A—— 构件的毛截面面积;
f —— 钢材抗拉或抗压强度设计值。
2. 有孔洞等削弱
欧拉临界应力随着构件长细比减小而增大。
轴心受压构件的计算长度系数
表6.3.1
在欧拉临界力公式的推导中,假定材料无限弹性、符合虎克定理
(E为常量),因此当截面应力超过钢材的比例极限fp后,欧拉临界 力公式不再适用,式(6.3.2)应满足:
或长细比:
cr
2E 2
fp
p
E fP
(6.3.3) (6.3.4)
(6.2.2)
6.2.2 轴心受力构件的刚度计算(正常使用极限状态)
轴心受力构件均应具有一定的刚度,以免产生过大的变形和振
动。通常用长细比来衡量,越大,表示构件刚度越小。因此设计
时应使构件长细比不超过规定的容许长细比:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

max(li0)max[]
(4-8)
max——构件最不利方向的最大长细比; (x ,y)max
l0——计算长度,取决于其两端支承情况;
i——回转半径;
[] ——容许长细比 ,查P85表4-1,表4-2。
i I A
2021/3/8
10
平衡问题的基本概念
平衡问题的基本概念
2021/3/8
11
轴心受压构件的平衡状态
第四章 轴心受力构件
1、轴心受力构件的应用和截面形式 2、轴心受力构件的强度和刚度 3、轴心受压构件的整体稳定 4、轴心受压构件的局部稳定 5、实腹式轴心受压构件的截面设计 6、格构式轴心受压构件的设计
2021/3/8
1
轴心受力构件的应用
轴心受力构件的应用
a)
轴心受力构件是指承受通过截面形 心轴线的轴向力作用的构件。包括 轴心受拉构件(轴心拉杆)和轴心 受压构件(轴心压杆)。
截面为单轴对称(T形截面)的轴心受压构件绕对称轴失稳时,由于截 面形心和剪切中心不重合,在发生弯曲变形的同时必然伴随有扭转变 形,这种现象称为弯扭失稳。
2021/3/8
8
轴心受力构件截面螺栓连接时的强度计算
轴心受力构件的强度计算
轴心受力构件采用螺栓连接时最危险净截面的计算
螺栓并列布置按最危险的正 交截面(Ⅰ-Ⅰ)计算:
An1bn1d0t
螺栓错列布置可能沿正交截面 (I-I)破坏,也可能沿齿 状截面(Ⅱ- Ⅱ)破坏,取截 面的较小面积计算:
c1
1
N
随遇平衡是从稳定平衡过渡到不稳定平衡
的临界状态,发生随遇平衡时的轴心压力
称为临界力Ncr,相应的截面应力称为临界 应力cr。
2021/3/8
13
轴心受压构件的失稳状态
失稳的基本概念
如轴心压力再稍微增加,则弯曲变形 迅速增大而使构件丧失承载能力,这 种现象称为构件的不稳定平衡或弯曲 失稳。
2021/3/8
b1
1 1Ⅱ
N
b
t1 t
N
b
t1 t
N
c4
A n 2 c4n 2 1 c1 2c2 2n 2d0 t;
c3 c2
1Ⅱ
2021/3/8
9
轴心受力构件的刚度计算
轴心受力构件的刚度计算
轴心受力构件的刚度通常用长细比来衡量,越大,表示构件刚度
越小;长细比过大,构件在使用过程中容易由于自重产生挠曲,在 动力荷载作用下容易产生振动,在运输和安装过程中容易产生弯曲。 因此设计时应使构件长细比不超过规定的容许长细比
传力方式: 上部结构-柱头-柱身-柱脚- 基础
实腹式构件和格构式构件
柱脚
柱脚
实腹式构件具有整体连通的截面。
x
y
y
x 2021/3/8
格构式构件一般由两个或多个分肢
1 x (虚轴) 1 x (虚轴) 用缀件联系组成。采用较多的是两
y
y
y
(实轴)
y (实轴)
分肢格构式构件。
1x
1x
3
轴心受力构件的应用
轴心受力构件的应用
1. 截面无削弱 构件以全截面平均应力达到屈服强度为强度极限状态。
设计时,作用在轴心受力构件中的外力N应满足:
σN f A
N —— 轴心力设计值; A—— 构件的毛截面面积; f —— 钢材抗拉或抗压强度设计值。
2021/3/8
7
轴心受力构件截面有削弱时的强度计算
轴心受力构件的强度计算
2. 有孔洞等削弱
1 x (虚轴)
1 x (虚轴)
它们与分肢翼缘组成桁架体系;缀板常
y
y
y
y
用钢板,与分肢翼缘组成刚架体系。
(实轴)
(实轴)
1x
1x
4
轴心受力构件的截面形式
轴心受力构件的截面形式
a)型钢截面; b)实腹式组合截面;c)格构式组合截面
实 腹 式 截 面
格 构 式 截 面
轴心受力构件的截面形式
实腹式构件比格 构式构件构造简 单,制造方便, 整体受力和抗剪 性能好,但截面 尺寸较大时钢材 用量较多;而格 构式构件容易实 现两主轴方向的 等稳定性,刚度 较大,抗扭性能 较好,用料较省。
+
+
+
+
b)
++
在钢结构中应用广泛,如桁架、网
++
架中的杆件,工业厂房及高层钢结
构的支撑,操作平台和其它结构的
++
支柱等。
++
2021/3/8
轴心受力构件的应用
轴心受压构件的应用
2
轴心受力构件的应用
柱头
柱头
缀板
柱身
柱身
l l
缀条
l =lபைடு நூலகம்
支承屋盖、楼盖或工作平台的竖向 受压构件通常称为柱。柱由柱头、 柱身和柱脚三部分组成。
2021/3/8
5
轴心受力构件的设计内容
轴心受力构件的设计内容
轴 轴心受拉构件 心 受 力 构 轴心受压构件 件
强度 (承载能力极限状态) 刚度 (正常使用极限状态) 强度 (承载能力极限状态) 稳定
刚度 (正常使用极限状态)
2021/3/8
6
轴心受力构件的强度计算
轴心受力构件的强度计算
轴心受力构件以截面上的平均应力达到钢材的屈服强 度作为强度计算准则。
稳定平衡的基本概念
无缺陷的轴心受压构件在压力较小时, 只有轴向压缩变形,并保持直线平衡状 态。此时如果有干扰力使构件产生微小 弯曲,当干扰力移去后,构件将恢复到 原来的直线平衡状态。(稳定平衡)
2021/3/8
12
轴心受压构件的随遇平衡的基本概念
随遇平衡的基本概念
随着轴向压力N的增大,当干扰力移去后, 构件仍保持微弯平衡状态而不能恢复到原 来的直线平衡状态。(随遇平衡)
◎ 弹性阶段-应力分布不均匀; ◎ 极限状态-净截面上的应力为均匀屈服应力。
N
N
N
N
N/A f 0
max =3 0
n
(5fy.2.2)
(a)弹性状态应力
(b)极限状态应力
截面削弱处的应力分布
构件以净截面的平均应力达到屈服强度为强度极限状态。
设计时应满足
σ N f An
(4-1)
An—— 构件的净截面面积
柱头
柱头
格构式构件
实轴和虚轴
格构式构件截面中,通过分肢腹板的
缀板
主轴叫实轴,通过分肢缀件的主轴叫
虚轴。
l l
缀条
l =l
缀条和缀板
柱身 柱脚
柱身 柱脚
一般设置在分肢翼缘两侧平面内,其作 用是将各分肢连成整体,使其共同受力, 并承受绕虚轴弯曲时产生的剪力。
x
y
y
x 2021/3/8
缀条用斜杆组成或斜杆与横杆共同组成,
14
轴心受压构件的平衡状态总结
平衡问题的基本概念
2021/3/8
15
轴心受压构件的整体失稳状态
轴心受压构件的整体失稳状态
无缺陷的轴心受压构件(双轴对称的工型截面)通常发生弯曲失稳, 构件的变形发生了性质上的变化,即构件由直线形式改变为弯曲形式, 且这种变化带有突然性。
对某些抗扭刚度较差的轴心受压构件(十字形截面),当轴心压力达 到临界值时,稳定平衡状态不再保持而发生微扭转。当轴心力在稍微 增加,则扭转变形迅速增大而使构件丧失承载能力,这种现象称为扭 转失稳。
相关文档
最新文档