ZPW-2000A 型无绝缘移频自动闭塞系统电路原理 (1)
ZPW-2000A轨道电路的调试
ZPW-2000A轨道电路的调试介绍ZPW-2000A轨道电路在沪杭电气化铁路的应用,包括工作原理、试验调试和故障处理。
1工作原理ZPW-2000A型无绝缘移频自动闭塞室内主要设备发送器、接收器、衰耗器、电缆模拟网络盘、机柜。
室外主要有匹配变压器、调谐单元、空心线圈、机械绝缘节空心线圈、补偿电容、防雷单元等,通过载频信号(8信息和18信息)传输原理,传送机车信号和检查轨道的电气-电气绝缘节和机械-电气绝缘节。
图1:系统原理框图图1为ZPW-2000A型无绝缘轨道电路的工作原理框图,以一个区段ADG为例,正常工作时,ADG发送器向钢轨发送载频1700-1、频偏±11HZ、低频为随列车运行和轨道空闲情况而不同的移频信号。
移频信号一部分沿着ADG主轨迎着列车运行方向,向接收端传递,到接收端经匹配变压器→防雷电缆模拟网络→衰耗盘→接收器,形成主轨道检查条件。
该条件可以从衰耗盘的“轨出”塞孔中测出,该数值从钢轨中直接送来,与受电端电压一致,需要大于240mv。
同时移频信号又向列车运行前方的调谐区小轨道发送移频信号,在调谐区形成小轨道的检查条件,经下一个区段接收端的接收端经匹配变压器→防雷电缆模拟网络→衰耗盘→接收器,这一条件可以从这个区段衰耗盘“轨出2”测出。
这样ZPW-2000A无绝缘轨道电路继电器励磁条件必须有2个,一个是主轨检查条件,另一个是小轨道检查条件,前一个是本轨道衰耗盘测得,后一个是从本轨道列车运行前方所属区段衰耗盘测得。
2 ZPW-2000A轨道电路封锁开通前试验调试2.1 试验及调试流程如图所示:图2 自闭试验及调试流程图2.2 试验前的准备工作:2.2.1导通网络接口柜,组合架、区间柜内部配线。
2.2.2导通室内各架(柜)间的配线,特别注意组合架至区间柜编码条件线,防止点灯220v 电源引入区间柜烧损设备。
2.2.3处理好各种混线、接地等故障。
2.2.4检查送至机柜的24v电源极性是否正确,按机柜布置图将发送器、接收器安装在对应位置,并用钥匙锁紧。
ZPW-2000A型无绝缘轨道电路
ZPW-2000A型无绝缘轨道电路摘要:ZPW - 2000A 型无绝缘轨道电路是铁路信号的一个重要的组成部分。
该系统保持UM71无绝缘轨道电路整体结构上的优势,解决调谐区内断轨的检查,且减少调谐区的分路死区长度,并在系统中发送器采用“N + 1”冗余,接收器采用成对双机并联运用,提高系统可靠性。
本文将主要讲述一下ZPW - 2000A 型无绝缘轨道电路的技术特点,相关原理及一些常见故障的现象及处理。
关键词:ZPW - 2000A;型无绝缘轨道电路;故障一、ZPW-2000A型无绝缘轨道电路系统特征1. ZPW-2000A型无绝缘轨道电路主要技术特点ZPW-2000A型无绝缘轨道电路系统,采用1700Hz-2600Hz载频段、FSK制式轨道电路传输特性、主要参数及计算机技术,满足机车信号为主体信号的自动闭塞及列车超速防护系统要求。
其主要技术特点是:充分肯定、保持UM71无绝缘轨道电路的技术特点和优势;解决调谐区断轨检查,实现轨道电路全程电气折断检查;减少调谐区分路死区;实现对调谐单元断线故障的检查;实现对拍频干扰的防护;通过系统参数优化,提高轨道电路传输长度;提高机械绝缘节轨道电路传输长度;实现与电气绝缘节轨道电路等长传输;轨道电路调整按固定轨道电路长度与允许最小道碴电阻方式进行提高一般轨道电路系统工作稳定性;采用国产信号数字电缆代替法国ZC03电缆,减小铜芯线经,减少备用芯组,加大传输距离,提高轨道电路系统技术性能价格比;采用长钢包铜引接线取代70mm2,铜引接线,利于防护和维修;发送、接收设备四种载频频率通用,减少电码化器材种类,减少运转备用数量,既有利于维护,又可降低工程造价;发送、接收设备有比较完善的检测功能,发送器可以实现“N+1”冗余,接收器可以实现双机互为冗余。
2. ZPW-2000A型无绝缘轨道电路系统构成ZPW-2000A型无绝缘轨道电路系统,采用电气绝缘节来实现相邻轨道电路区段的隔离。
ZPW-2000A无绝缘移频自动闭塞系统原理
型号为 Z P W一 2 0 0 0 A的无绝缘移频 自动闭塞是一种从法 国引进的 3 . 1 调谐 区断轨检查 只能无绝缘轨道 电路技术 , 但是在我国呈现出国产化的特点 , 并且在满 3 . 2 减小诃谐区 0 . 1 5 n 分路死 区 足我 国基本国情的基础上, 重新进行研发的一种技术。 这一技术的特点 3 . 3 调谐单元断线检查 在价格、 技术性能以及很多方面都具有—定的优势。 并目 获得了一系列 3 . 4 轨道 电路全程断轨检查 的技术专利, 本文重点对这方面的问题进行研究。 3 . 5 钢轨对地不平衡对传输安全的影响及防护 1 Z P W一 2 0 0 0 A型无绝缘移频自动闭塞系统技术特点 4故障查找流程 1 . 1 在原有无绝缘轨道电路整体结构的基础上予 以了肯定 , 并且充 发生故障以后, 首先要对故障加 以 判断, 厘清产生的故障是在室内 还是在室外 , 只有确定 了位置 , 才能进一步 的处理。故障的查找流程主 分保留了相关的优: 势。 1 . 2可以满足轨道电路全程诊断的要求。 要分为三步, 一是相对于发送端而言 , 要按照一定 的顺序进行检查 , 先 是检查室外发送器的功出电压 , 然后检查组合架, 紧接着对区间综合柜 1 . 3 避免出现调谐分录死区段的问题 。 加以检查 ; 二是相对于接收端而言 , 先是对室 内接收输入进行检查 , 然 1 4可以X  ̄ i  ̄ J i 皆 单元断线产生的故障加以进一步的检查。 后检查衰耗盘 以及组合架 , 最后检查区间综合柜; 三是相对于室外设备 1 . 5 降低了试验队拍频产生的干扰 , 并且加以有效的保护。 先检查电缆盒以及发送端相互匹配的变压器以及调谐单元 , 紧接 1 . 6 在相关系统参数的基础上加 以 进一步的优化 , 满足轨道电 路相 而言, 着检查钢轨传输通道 ,然后检查与受电端相互匹配的变压器与协调单 关传输长度 的要求。 l - 7 对于 1 n・ k m标准道碴电阻以及低道碴电阻传输所提出的长度 元 , 最后再对相关电缆盒进行仔细的检查, 找出故障的源头。 般 隋况下 , 室外设备故障 , 无论处理人员先到达送 电端还是受 电 要求均能够满足 , 并目 . 符合稳定 陛的要求。 先用表测量轨面 , 看是否有电压。若有电压 , 则按电流流动方向顺序 1 . 8 选用我国 自主生产的电缆 , 将法国的电缆加 以取代 , 将铜芯的 端 , 线径予以进一步的减小 , 同时也降低备用芯组的使用 , 扩大传输之间的 依次检查测量 , 检查到有 电压和无 电压之间就是故障点。若没有电压 , 距离 , 从而进一步提高系统在技术以及价格等方面的比例 , 解决工程造 则要首先判断是开路故障还是混线故障 , 此时 , 如果先到送 电端就应顺 序检查送电钢丝绳 、 匹配变压器 、 电缆接口等处 , 检查到有电压和无 电 价过高的问题。 1 . 9 选择长钢包铜引接线 的目的在于可以让工务维修变得更加便 压之间就是故障点 ; 如果先到受电端就应迅速检查受 电钢丝绳 、 匹配变 捷。 压器等看是否有混线的可能 , 若无异常, 就应快速 向送电方向移动检查 电容等 , 看是否有造成混线的处所。 1 . 1 0 为了将系统的可靠性予以进一步提升 , 主要运用“ N +1 ” 冗余 轨面 、 发射器以及双机并联的接收器。 室外匹配单元故障 , 一般发生在防雷元件和 电容被击穿 , 如果检查 确认是防雷元件被击穿,为压缩故障延时可临时将电缆线跳过防雷元 1 . 1 1 具有完整的检测和故障报警功能。 2 z P w一 2 0 0 0 A型绝缘轨道 电路系统构成 件接 人设备。 ’ 2 . 1 室外部分。 2 . 1 . 1 调谐区。 按2 9 m设计 , 实现两相邻轨道电路电 与一般的轨道电路存在一定 的差异性 ,在对 Z P W一 2 0 0 0 A产生的 对于本区段的主轨以及小轨具有较高的要求 , 需要保 气隔离 , 由空心线圈、 调谐匹配单元( 调谐单元和匹配变压器) 组成。 2 . 1 . 2 故障进行处理时, 机械绝缘节。 由机械绝缘节空线圈与调匹单元并接构成。 2 . 1 。 3 匹配变压 持在正常工作的状态下,相邻区段的小轨也需要处在正常工作的状态 当在两个区段都出现红光带时 , 很有可能是因为在两个区段的中间 器。按 0 . 2 5 一 l D Q・ k m道碴电阻范围设计 , 实现轨道电路与 S P T 传输电 下 , 针对这一问题的出现 , 应该先在相邻区段之间的 缆的匹配连接。 2 . 1 . 4补偿电容。 使传输通道趋于阻性 , 在轨道电路中, 电 公共部分出现了问题 , 容按等间距法设置, 保证轨道电路良好的传输性能。 2 . 1 . 5传输电缆。 S F F 衰耗盘 E 对输 出电压进行测试, 观察输出电压值是否高出 4 0 0 mV , 如果 型数字信号电缆, 中1 . 0 mm, 总长一般 1 0 k n, i 也可按 1 2 s . k m或者 1 5 k n。 i 是小于这个数值 , 那么就说明是主轨的问题 , 紧接着对相邻区段间的小 观察结果, 如果结果低于 1 0 0 m V, 那么就说 明是 2 . 1 . 6调谐区设备引接线。 采用 3 6 0 0 mm 、 1 6 0 0 mm钢包铜引接线 , 用于调 轨输出电压进行测量 , 谐 单元 、空心 线圈 、机械 节空心线圈等设备 与钢轨 的链接 ,也有 小轨 的问题。 当其 中的—个区段有红光带的现象发生时 , 那么很有可能 4 0 0 0 m m、 2 0 0 0 mm设计。 2 . 1 . 7扼流变压器 。 在每—个轨道电路起到平衡 是相邻后段的小轨存在异常的情况 ,这样就要x C d , 轨的输出电压进行 测试 , 当检测结果低于 1 0 0 m V时, 那么可以肯定是小轨的原因。还有一 次牵引电流的作用。 也就是在室外的主轨道 中有一端电容 比较容易丢失 , 2 . 2室内部分。 2 . 2 . 1 电缆模拟网络。 按0 5 . 、 0 5、 . 1 、 2 . 2 、 2 * 2 六段i 殳汁, 种是特殊 的情况 , 那么小轨电压会 出现低于 7 0 m V 用于对电缆 的补偿 , 总补偿距离为 1 0 k m 。2 . 2 . 2发送器 。 产生高精度、 高 还有可能出现电容塞钉头松动的迹象, 稳定移频信号源, 采用 N + I 冗余 十, 故障时通过发送报警继电器接点 的情况 , 也就会因此造成红光带的出现。 结束 语 转至 + 1 发送。 2 . 2 . 3 接收器。接收器主要的作用就是对主轨道发出的电 本文主要对 Z P W一 2 0 0 0 A故障的相关问题进行 了研究 ,探讨故障 路信号进行接收 , 当满足相关状态的 ̄ , t C T, 还能够对相邻 区 段的信号 进行接收 , 为其提供相关的小轨道电路状态条件 。 一般 情况下的接收器 查找的程序等问题 , 希望对今后的工作提供一定的帮助 。 参考文献 都采用的是双机并联的方式加以运行 。 2 . 2 . 4衰耗盒。 用于实现主轨道电 1 高速铁路管理人 员和专业技术人 员培训教材—Z P w- 2 0 0 0 A型无绝 路、 小轨道电路的调整。给出发送接收故障、 轨道 占用表示及发送 、 接收 … 用+ 2 4 V电源 电压 、 发送功出电压 、 接收 G J 、 xG J 测试条件。 缘移频 自动闭塞 系统 邮 . 北京: 中国铁道 出版社. 2 ] Z P W- 2 0 0 0 A型 无 绝缘 移频 自动 闭塞 系统技 术 综 述阴. 北 京全 路 通信 2 . 3系统防雷。室内: 发送端、 接收端的站防雷。实现对从电缆引入 [ 雷电冲击的横向、 纵向防护 , 并满足电缆绝缘在线测试。室外 : 对从钢轨 信 号研 究设计 院. 3 ] Z P W- 2 0 0 0 A移频 自动闭塞系统原理、 维护和故障��
ZPW-2000A无绝缘移频自动闭塞原理及故障分析
ZPW-2000A系统构成及原理
ZPW-2000A系统构成及原理
• 主要技术指标 • 轨道继电器GJ吸起必须具备两个技术条件,二者
缺一不可: • 1、主轨道条件正常:本轨道衰耗器上测量“轨出
1”电压应大于240mV,一般调整在450-900mV之 间;测量“GJ(Z)”与“GJ(B)”直流28V左右 (标准值:不小于20伏)。 • 2、小轨道条件正常:运行前方相邻轨道衰耗器上 测量小轨道条件“轨出2”电压应在160±10mV之 间,本轨道衰耗器上测量“XGJ”电压,直流28V左 右(标准值:不小于20伏)。
• 技术特性: • 1) 分路灵敏度为0.15Ω;分路残压小于140mV。 • 2) ZPW-2000A系统在10km SPT电缆及不同道碴电阻条件,
轨道电路传输长度按调整表。 • 3)ZPW-2000A系统在10、12.5、15km SPT电缆及1.0、1.2、
1.5Ω·km道碴电阻下,轨道电路传输长度见调整表。 • 4)主轨道无分路死区间,调谐区分路死区不大于5m。 • 5)有分离式断轨检查性能:轨道电路全程(含主轨及小
• 2) 实现对与受电端相连接调谐区 短小轨道电路移频信号的解调,给 出短小轨道电路执行条件,送至相 邻轨道电路接收器。
• 3) 检查轨道电路完好,减少分路 死区长度,还用接收门限控制实现 对BA断线的检查。
ZPW-2000A系统构成及原理
• ZPW-2000K型无绝缘轨道电路分为主轨道电路和 调谐区小轨道电路两部分,小轨道电路就是接续 主轨送端的调谐谐区部分。主轨道电路的发送器 由编码条件控制,产生表示不同含义的低频调制 的移频信号,该信号经电缆通道传给匹配变压器 及调谐单元,因为钢轨是无绝缘的,所以该信号 既向主轨道传送,也向调谐区小轨道传送,主轨 道信号经钢轨送到轨道电路的受电端,然后经调 谐单元、匹配变压器、电缆通道,将信号传至本 区段接收器。
ZPW2000A移频自动闭塞系统原理、故障...
引言
闭塞是铁路上防止列车对撞或追撞(追尾)的方式,是铁路上保障安全的重要方法。闭塞设备是用来保证区间或闭塞分区在同一时间内只能运行一个列车,从而保证行车安全,提高行车效率。然而实际工作中,由于对设备工作原理不清楚,操作不当,不能维修或者维修不熟练,造成设备故障不能及时得到解决,严重威胁行车安全和效率的事时有发生!因此要想成为一名真正的铁路技术工人必须对各设备工作原理了然于胸,要做好随时能够快速处理各种突发状况的准备,还要能通过日常测试、维护把不安全隐患消灭在萌芽中,这些就使得我们必须对各设备有更深的理解!
1.1
(1)保持UM71无绝缘轨道电路整体结构上的优势。
(2)解决了调谐区断轨检查,实现轨道电路全程断轨检查。
(3)减少调谐区分路死区。
(4)实现对调谐单元断线故障的检查。
(5)实现对拍频干扰的防护。
(6)通过系统参数优化,提高了轨道电路传输长度。
(7)提高机械绝缘节轨道电路传输长度,实现与电气绝缘节轨道电路等长传输。
(8)轨道电路调整按固定轨道电路长度与允许最小道碴电阻方式进行。既满足了1Ω·km标准道碴电阻、低道碴电阻最大传输长度要求,又为一般长度轨道电路最大限度提供了调整裕度,提高了轨道电路工作稳定性。
(9)用SPT国产铁路数字信号电缆取代法国ZCO3电缆,减小铜芯线径,减少备用芯组,加大传输距离,提高系统技术性能价格比,降低工程造价。
“f1”(f2)端BA的L1C1(L2C2)对“f2”(f1)端的频率为串联谐振,呈现较低阻抗(约数十毫欧姆),称“零阻抗”相当于短路,阻止了相邻区段信号进入本轨道电路区段,见图(C)左端(图(b)右端)。
“f1”(f2)端的BA对本区段的频率呈现电容性,并与调谐区钢轨、SVA的综合电感构成并联谐振,呈现较高阻抗,称“极阻抗”(约2欧),相当于开路。以此减少了对本区段信号的衰耗。3、补偿电容作用
ZPW-2000A型无绝缘轨道电路原理说明
1.原理说明系统原理ZPW-2000A型无绝缘移频轨道电路系统,与UM71无绝缘轨道电路一样采用电气绝缘节来实现相邻轨道电路区段的隔离。
电气绝缘节长度改进为29m,由空心线圈、29m长钢轨和调谐单元构成。
调谐区对于本区段频率呈现极阻抗,利于本区段信号的传输及接收;对于相邻区段频率信号呈现零阻抗,可靠地短路相邻区段信号,防止了越区传输,这样便实现了相邻区段信号的电气绝缘。
同时为了解决全程断轨检查,在调谐区内增加了小轨道电路。
ZPW-2000A型无绝缘移频轨道电路将轨道电路分为主轨道电路和调谐区小轨道电路两个部分,并将短小轨道电路视为列车运行前方主轨道电路的所属“延续段”。
主轨道电路的发送器由编码条件控制产生表示不同含义的低频调制的移频信号,该信号经电缆通道(实际电缆和模拟电缆)传给匹配变压器及调谐单元,因为钢轨是无绝缘的,该信号既向主轨道传送,也向小轨道传送。
主轨道信号经钢轨送到轨道电路受电端,然后经调谐单元、匹配变压器、电缆通道,将信号传至本区段接收器。
调谐区小轨道信号由运行前方相邻轨道电路接收器处理,并将处理结果形成小轨道电路轨道继电器执行条件通过(XG、XGH)送至本轨道电路接收器,做为轨道继电器(GJ)励磁的必要检查条件之一。
本区段接收器同时接收到主轨道移频信号及小轨道电路继电器执行条件,判决无误后驱动轨道电路继电器吸起,并由此来判断区段的空闲与占用情况。
主轨道和调谐区小轨道检查原理示意图见图2-1。
该系统“电气—电气”和“电气—机械”两种绝缘节结构电气性能相同。
2.电路工作原理及冗余设计2.1 发送器2.1.1 用途ZPW-2000A型无绝缘移频轨道电路发送器在区间适用于非电码化和电码化区段18信息无绝缘移频自动闭塞,供自动闭塞、机车信号和超速防护使用。
在车站可适用于非电码化和电码化区段站内移频电码化发送,并可作站内移频轨道电路使用。
2.1.2 原理框图及电路原理简要说明同一载频编码条件,低频编码条件源,以反码形式分别送入两套微处理器CPU中,其中CPU1产生包括低频控制信号Fc的移频信号。
ZPW-2000A 型无绝缘移频自动闭塞系统电路原理
1.
2.
3. 4.
在 BA 制作过程中考虑了: L 1、 L2采用 U 行磁性瓷,为降低温度系数,间隙垫有环氧薄片。 为使电感与电容(C1、C2、C3 )达到较好的温度补偿 U 型磁性瓷上下 固定采用了金属弹簧方式 。 当 温度升高时,弹簧拉力减弱,使电感增加 受到一定程度抵消。 电容选择应具有温度系数小,工作稳定,损耗角小,高频工作可靠的特 点。 电感线圈选用多股电磁线绕制 以减少高频下的电阻 。 与钢轨的引接线采用 3600mm,1600mm钢包铜引接线或 3700mm, 2000mm钢包铜引接线或与钢轨采用塞钉连接方式,接触电阻<50uΩ。
ZPW-2000A 型无绝缘移频自动闭塞系统电路原理
一 电气绝缘节 1 作用 电气绝缘节由调谐单元 空芯线圈及 29m 钢轨组成用于实现两相邻轨道电路间的电气 隔离。 2 简要工作原理 电气绝缘节长29 米 在两端各设一个调谐 单元(下称 BA),对于较低频率轨道电路 (1700,2000Hz)端设置 L1 C1 两元件的 F1 型调谐单元 对于较高频率轨道电路 (2300,2600Hz)端设置 L2,C2,C3 三 元件的F2 型调谐单元(见下图)
3. 调谐区对于某一载频形成的电感 Lv,设钢轨 电阻为 0,“零阻抗”为 0 的理想条件下 , Lv=L/2+Ls//L/2,L 为 29m 钢轨电感 4. 几个基本电路 (1) L-C 串联电路 基本电路 :
5 调谐区阻抗频率特性 前述计算分析均按中心频率进行,实际信号有±11Hz 的频偏,占 用通频带不少于±40Hz 。另外 BA 参数既要考虑到移频信号规定的频率 变化,又要考虑自身参数的变化。 在调谐区中部设置的 SVA ,其 50Hz 的交流阻抗仅约 10m,其电 阻分量也改善了并联谐振槽路的 Q 值,使调谐区并联谐振阻抗约为 2 Ω, 该考虑对提高电气绝缘节工作稳定性带来好处。 6 BA工作稳定性
ZPW-2000A 型无绝缘移频自动闭塞系统电路原理 (1)
[注]:闪光方式为灯闪 N 次后,暂停一段时间,然后继续闪动,其中 N=1~7
发送器端子代号及用途说明(如表)
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 代号 D +24-1 +24-2 024-1 024-2 1700 2000 2300 2600 -1 -2 F1~F18 用途 地线 +24V 电源外引入线 载频编码用+24V 电源(+1FS 除外) 024 电源外引入线 备用 1700Hz 载频 2000Hz 载频 2300Hz 载频 2600Hz 载频 1 型载频选择 2 型载频选择 29Hz~10.3Hz 低频编码选择线
发送器“安全与门”电路如下图 方波 1、方波 2 分别表示由 CPU1、CPU2 单独送出的方波动态信号。“光耦 1”、“光 耦 2”用于模拟电路与数字电路间的隔离。 变压器 B1 将“方波 1”信号变化读出,经“整 流桥 1”整流及电容 C1 滤波,在负载 R0 上产生一个独立的直流电源 U0。该独立 电源反映了方波 1 的存在,并做为执行电 路开关三级管的基级偏置电源。 “方波 2”信号通过“光耦 2”控制开关三级管 偏置电路。 在“方波 1”、“方波 2”同时存在 的条件下,通过变压器 B2,“整流桥2”整流 及电容滤波使发送报警继电器(FBJ)励磁。 由以上分析可以看出,FBJ↑反映“方波 1” “方波 2”的同时存在。电路中,R1 用于限流。 C1 采用四端头,为检查电容断线,防止独立 电源 U0 出现较大的交流纹波。Rb1 为上偏置 电阻,Rb2 做为漏泄电阻,保证无“方波 2”信 号时,三级管的可靠关闭。Re 做为“光耦 2”长 期固定导通时的恒流保护,同时做为 FBJ 继电 器电压的调整。Ce 为交流旁路电容。采用 B1、 B2 变压器耦合提取交流信号、都为了保证电路 的“故障—安全”。
第一章 ZPW-2000A型无绝缘移频自动闭塞系统概述
第一章 ZPW-2000A型无绝缘移频 自动闭塞系统概述
• ZPW-2OOOA无绝缘轨道电路由较为完备的轨道电路传输安 全性技术及优化的传输系统参数构成。国家知识产权局已 受理了有关“钢轨断轨检查”、“多路移频信号接收器” 等8项专利,成为我国目前安全性高、传输性能好、具有 自主知识产权的一种先进自动闭塞制式,为“机车信号做 为主体信号”创造了必备的安全基础条件。
第一章 ZPW-2000A型无绝缘移频 自动闭塞系统概述
• 非电化区段则只考虑50Hz~220V电流影响,纵向限制电压 选在~280V(或~275V),10KA以上 • (2)防雷地线电阻要严格控制在10Ω以下。 • 对于采取局部土壤取样不能真实代表地电阻的石质地带, 必须加装长的铜质地线,具体长度需视现场情况定。 • (3)对于多雷及其以上地区,特别对于石质地层的地区, 有条件应加装贯通地线。
第一章 ZPW-2000A型无绝缘移频 自动闭塞系统概述
• 1.2 ZPW-2000A型无绝缘轨道电路系统构成
– 1.2.1 室外部分
1.调谐区(JES—JES)
按29m设计,实现两相邻轨道电路电气隔绝。
第一章 ZPW-2000A型无绝缘移频 自动闭塞系统概述
• 2.机械绝缘节 • 由“机械绝缘节空心线圈”与调谐单元并 接而成,其节特性与电气绝缘节相同。 • 3.匹配变压器 • 一般条件下,按0.25~1.0Ω·km道碴电阻 设计,实现轨道电路与SPT传输电缆的匹配 连接。
ZPW-2000A型轨道电路的原理
题目ZPW-2000A型轨道电路的原理和技术条件摘要ZPW-2000无绝缘轨道电路换装施工是全路第五次提速调图工程中最重要,最紧迫的信号工程,此次工程要求高、任务重、工期短,而且全路没有现成的开通测试项目集经验。
通过对ZPW-2000无绝缘轨道电路的开通,维护测试,我们认为该轨道电路技术指标的测试调整是开通过程中最关键的无绝缘轨道电路的开通,维护测试,我们认为该轨道电路技术指标的测试调整是开通过程中最关键的一个环节,也是日常维护工作中的最重要的一个环节。
本论文主要阐述了ZPW-2000A无绝缘轨道电路是通过仿真技术开发的,是我国目前最先进的无绝缘、对信息移频轨道电路,其传输安全性、传输长度、可靠性、可维修性能较好,对器材的安装标准和系统指标要求十分严格。
本论文主要阐述了ZPW-2000A无绝缘移频自动闭塞系统的特点、构成、原理说明、区间通过信号机的设置、补偿电容的设置、闭塞区分电路等。
通过本次设计,初步掌握了ZPW-2000A的工作原理、故障处理步骤、方法、内容。
关键词ZPW-2000A;无绝缘;轨道电路AbstractZPW-2000 jointless track circuit device construction is region fifth speed-increasing and rescheduling project the most important, the most urgent signal engineering, the engineering requirements, the task is heavy, short construction period, and the whole region without off-the-peg opening test project experience. Based on the ZPW-2000 jointless track circuit is opened, maintenance and test, we think that the track circuit testing adjustment is opened during the most critical of jointless track circuit opening, maintenance and test, we think that the track circuit testing adjustment is opened during the most crucial link, and daily maintenance in the work of one of the most important links. This paper mainly expounds the ZPW-2000A jointless track circuit is through the simulation technology development, is currently China's most advanced without insulation, on information frequency shift track circuit, the transmission security, the transmission length, reliability, good performance of equipment repair, installation standard and system of indicators are very strict.Through this design, the preliminary master ZPW-2000A's working principle, fault processing steps, methods, contentKey words ZPW-2000A; jointless track circuit;目录第1章绪论 (1)第2章ZPW-2000A无绝缘移频自动闭塞系统概述 (3)2.1ZPW-2000A概述 (3)2.2 ZPW-2000A型无绝缘移频自动闭塞系统特点 (3)2.3 ZPW-2000A型无绝缘轨道电路系统构成 (4)2.3.1 室外部分 ..................................... 错误!未定义书签。
ZPW-2000A轨道电路讲义
本轨道电路 主轨道
调谐区短小 轨道
邻轨道电路
FS
XGJ XGJH
JS 1 2
JS 1 2
CPU CPU
CPU CPU
XG、XGH
G、GH GJ
XG、XGH
G、GH GJ
主轨道和小轨道检查原理图
接收器用于接收主轨道电路信号,并在检查所属调谐 区短小轨道电路状态(XG、XGH)条件下,动作本轨道 电路的轨道继电器(GJ)。另外,接收器还同时接收邻 段所 属调谐区小轨道电路信号,向相邻区段提供小轨道 电路状态 (XG、XGH)条件。
铁道部于89年引进UM71无绝缘轨道电路,91年开 始生产,相继在郑武、广深、京郑、沈山、京山等几大 干线使用。 北京铁路信号工厂被铁道部指定为UM71无 绝缘轨道电路的唯一生产厂家。
法国CSEE公司为北京铁路信号工厂授予生产许可证。 UM71存在造价高,调谐区无断轨检查、调谐区存在 死区段(20m)等问题。
二、研制过程
在铁道部的大力支持下,2000年北京全路通信信号 设计院和北京铁路信号工厂两家联合组成ZPW-2000A型 无绝缘轨道电路攻关小组,进行系统及设备的研制开发。 该系统于2000年完成了提高轨道电路传输安全性现场试 验;2001年对提高轨道电路传输长度、解决低道碴电阻 道床等系统问题在京广线武胜关进行了现场试验;2001 年先后完成铁道部组织的系统定性测试、技术审查;2002 年5月28日,在完成现场扩大试验基础上,通过铁道部技 术鉴定,决定在全路推广应用。
3 系统防雷
系统防雷由两部分构成: 室内防雷:该防雷设在室内发送端和接收端,实现对从电缆 引入雷电冲击的横向、纵向防护。 室外防雷:对钢轨引入雷电冲击进行保护。横向防护防雷单 元设在匹配变压器轨道输入端。纵向防护防雷单元设在空芯线 圈中心线与地之间。
ZPW-2000A型无绝缘移频自动闭塞系统概述
调 谐 单 元
主轨道电路 补偿电容 1G(F1)
调谐区
Δ/2
(短小轨道电路)
调 空调 谐 心谐 单 线单 元 圈元
Δ
1600 mm
匹配
变压器
SPT电缆
电缆模 拟网络
相当总长 10km
相当总长 10km
站防雷 (XGJ、XGJH)
接收
匹配 变压器
SPT电缆
匹配 变压器
SPT电缆
室外
电缆模 拟网络
站防雷
4.补偿电容: 根据通道参数兼顾低道碴电阻道床传输,考虑容 量。使传输通道趋于阻性,保证轨道电路良好传 输性能。
5.传输电缆: SPT型铁路信号数字电缆,Φ1.0mm,一般条件下, 电缆长度按10km考虑。根据工程需要,传输电缆 长度可按12.5 km、15 km考虑。
6.调谐区设备引接线: 采用3600mm、1600mm钢包铜引接线构成。用于 BA、SVA、SVA’等设备与钢轨间的连接。
“f1”(f2)端的BA对本区段的频率呈现电容性,并与调谐区钢轨、 SVA的综合电感构成并联谐振,呈现较高阻抗,称“极阻抗”(约2 欧),相当于开路。以此减少了对本区段信号的衰耗。
L/4
f1
L1C1LsFra bibliotekL2 C3
f2
C2
ZPW-2000无绝缘轨道电路移频自动闭塞低 频、 载频延用了UM71技术。载频分别为四种: 1700HZ、2000HZ、2300HZ、2600HZ。其中上 行线使用2000 HZ和2600 HZ交替排列,下行线 用1700HZ和2300 Hz交替排列。
移频自动闭塞以移频轨道电路为基础,用钢轨传递移频信息。它 是一种选用频率参数作为信息的制式,利用调制方法把规定的调制信 号(低频信息)搬移到载频段并形成振荡,由上下边频构成交替变化 的移频波形,其交替变化的速率就是调制信号频率。其信息特征就是 不同的调制信号频率。
ZPW-2000A型无绝缘轨道电路原理说明
原理说明1.系统原理ZPW-2000A型无绝缘移频轨道电路系统,与UM71无绝缘轨道电路一样采用电气绝缘节来实现相邻轨道电路区段的隔离。
电气绝缘节长度改进为29m,由空心线圈、29m长钢轨和调谐单元构成。
调谐区对于本区段频率呈现极阻抗,利于本区段信号的传输及接收;对于相邻区段频率信号呈现零阻抗,可靠地短路相邻区段信号,防止了越区传输,这样便实现了相邻区段信号的电气绝缘。
同时为了解决全程断轨检查,在调谐区内增加了小轨道电路。
ZPW-2000A型无绝缘移频轨道电路将轨道电路分为主轨道电路和调谐区小轨道电路两个部分,并将短小轨道电路视为列车运行前方主轨道电路的所属“延续段”。
主轨道电路的发送器由编码条件控制产生表示不同含义的低频调制的移频信号,该信号经电缆通道(实际电缆和模拟电缆)传给匹配变压器及调谐单元,因为钢轨是无绝缘的,该信号既向主轨道传送,也向小轨道传送。
主轨道信号经钢轨送到轨道电路受电端,然后经调谐单元、匹配变压器、电缆通道,将信号传至本区段接收器。
调谐区小轨道信号由运行前方相邻轨道电路接收器处理,并将处理结果形成小轨道电路轨道继电器执行条件通过(XG、XGH)送至本轨道电路接收器,做为轨道继电器(GJ)励磁的必要检查条件之一。
本区段接收器同时接收到主轨道移频信号及小轨道电路继电器执行条件,判决无误后驱动轨道电路继电器吸起,并由此来判断区段的空闲与占用情况。
主轨道和调谐区小轨道检查原理示意图见图2-1。
该系统“电气—电气”和“电气—机械”两种绝缘节结构电气性能相同。
2.电路工作原理及冗余设计2.1 发送器2.1.1 用途ZPW-2000A型无绝缘移频轨道电路发送器在区间适用于非电码化和电码化区段18信息无绝缘移频自动闭塞,供自动闭塞、机车信号和超速防护使用。
在车站可适用于非电码化和电码化区段站内移频电码化发送,并可作站内移频轨道电路使用。
2.1.2 原理框图及电路原理简要说明同一载频编码条件,低频编码条件源,以反码形式分别送入两套微处理器CPU中,其中CPU1产生包括低频控制信号Fc的移频信号。
ZPW2000A移频自动闭塞介绍及故障分析处理
L
XDJF
LUXJF ZXJ F LXJ 2F 2DJ LUXJF ZXJ F 2DJ
GJF
DJ
220V LXJ 2F GJF
H
XDJF
预 告 信 号 机 (3505)
LUXJF LXJ 2F ZXJ F 2DJ
U
XDJF
GJF
进站红灯:黄灯 进站L、U:LU:ZXJF、LUXJF 侧线接车: U:ZXJF
2600 -1 -2 F1~F18
1~5、9、11、12
2300Hz载频
2600Hz载频 1型载频选择 2型载频选择 29Hz~10.3Hz低频编码选择线 功放输出电平调整端子 功放输出端子 测试端子 外接FBJ(发送报警继电器端子)
S1、S2 T1、T2 FBJ-1 FBJ-2
发码方向
1700-2
L
XDJF
2DJ
ZXJ 2F LXJ 3F
1GJ GJF
DJ
220V ZXJ2 F LXJ 3F 1GJ GJF
2DJ
(3503)
H
XDJF
U
XDJF
1GJ ZXJ F
LXJ 3F GJF
2DJ
一 接 近 信 号 机
平时、侧线:LU
1GJ:U
正线接车: L
•发送器不倒+1FS的故障处理方法 • 在现场进行+1FS倒换试验时,有时会出现在 主发送人为关闭的情况下,不能正常倒到+1FS, 区间红光带。遇到该种情况,首先关闭主发送器, 用电压法测试确认+1FS的5个工作条件,哪个条 件不具备,找出不具备的条件用电压法进行查找。
电码化
要求及时采取停车措施
HU
检测码
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、ZPW-2000A 型无绝缘轨道电路系统构成
1 、室外部分:1)、 调谐区JES JES,2 )、机械绝缘节,3)、 匹配变压器,4 )、补偿电容。
5) 、传输电缆,
6 )、调谐设备引接线,
2、 室内部分:1)、模拟网络盘含站内防雷组合,2 )、发送器,3)、 接收器,4 )、衰耗盘。
其补偿原理可理解为将每补偿段钢轨 L 与电容 C 视为串联谐振,见右 图。以此在补偿段入口端(A、B)取得一个趋于电阻性负载 R。并在 出口端(C、D)取得一个较高的输出电平。
一般载频频率低,补偿电容容量大;最小道碴电阻低,补偿电容容量大;轨道电路只考虑加大 机车信号入口电流,不考虑列车分路状态时,电容容量大。
在无绝缘轨道电路区段,在每一个轨道电路区段亦设置一个起到平衡牵引电流的空芯线圈。在 两轨间该线圈应对 50Hz 形成较低的阻抗,对不平衡电流电势起到短路、平衡作用。
另外,该线圈若设在调谐区中间,适当确定参数,并可起到改善调谐区阻抗作用。该线圈也可 用作复线区段,上下行线路间等电位连接、渡线绝缘两端牵引电流平衡以及防雷接地等作用。
4、电缆模拟网络
SK3
电缆模拟网络按 0.5、0.5、1、2、2、2*2km 六节对称 π型网络,以便串接构成 0-10km 按 0.5km 间隔任意设置补偿 模拟电缆值。
SK1
SK2
5、空芯线圈
电力牵引区段,对于有机械结缘节的轨道电路,采用扼流变压器沟通和平衡牵引电流回流,由 于要通过较大牵引电流,在牵引电流不平衡条件下,又不能造成扼流变压器一个轨道电路段平衡一次牵引电流 的作用。
3、补偿电容作用
=
等效电路
钢轨呈现感性在1700Hz、 2600Hz 有着甚高的感抗值阻碍了信息的传输为此在钢轨上一段距离 内加装有补偿电容见上图。
由于L 与C 的补偿抵消了钢轨电感,使钢轨呈现阻性并在BB、 CC呈现较高的阻抗和较高的电压。 当电容断线故障时由于补偿作用的消失钢轨感性的作用使信号在钢轨上产生较大的衰减,从而 降低了接收端电压使系统导向安全。
二、ZPW-2000A 型无绝缘轨道电路系统构成图
三、工作原理 1、匹配变压器电路图 电路分析: (1)、V1V2 经调谐单元端子接至轨道, L1L2 经 SPT 电缆接至室内。 (2) 、考虑到 1.0 Ω·km 道碴电阻,并兼顾 低道碴电阻道床,该变压器变比优选为 9:1。 (3) 钢轨侧电路中,串联接入二个 16V,4700μF 电解电容(C1、C2)该二电容按相反极性串接,构成无 极性联结,起到隔直及交连作用。保证该设备在直流电力牵引区段运用中,不致因直流成分造成匹 配变压器磁路饱和。 (4)F 为匹配变压器的雷电横向防护元件。 2、电气绝缘节电路图
1
1-11 9-12
2
2-11 9-12
3
3-11 9-12
4
4-11 9-12
5
5-11 9-12
6
1-11 4-12
7
3-11 5-12
8
2-11 4-12
9
1-11 3-12
10
4-11 5-12
电压 170 156 135 110 77 62 58
46
35 33
备注 常用级,站内电码化固定用一级 常用级 常用级 常用级 常用级
电气绝缘节由调谐单元、空芯线圈 及29m 钢轨组成。用于实现两相邻轨 道电路间的电气隔离,即完成电气绝 缘节的作用。
电气绝缘节长 29 米,在两端各设 一个调谐单元(下称 BA),对于较低 频率轨道电路(1700、2000Hz)端, 设置 L1、C1 两元件的 F1 型调谐单 元;对于较高频率轨道电路(2300、2600Hz)端,设置 L2、C2、C3 三元件的 F2 型调谐单元。
6、发送器作用 1)、产生 18 种低频信号 8 种载频(上下行各四种)的高精度、高稳定的移频信号; 2)、产生足够功率的输出信号; 3)、 调整轨道电路 ; 4) 、对移频信号特征的自检测,故障时给出报警及 N+1 冗余运用的转换条件。 1.原理框图(如下图)
发送电平级电压见下表:
电平级 连接端子
[注]:区间常用 1~5 电平级 ;站内电码化:固定用 1 级 。
“安全与门”在确认两组动态信号同时存在条件下,方可驱动执行继电器,其原理框图如下图: 两数字电路间的联系为数字交换或自检、 互检及闭环检查等。
空芯线圈 SVA 结构特点 :SVA 由直径 1.53mm、19 股电磁线绕制,截面为 35mm 。在 20℃ 时,以 1592Hz 信号测试,电感量为:L=33±μH,电阻值为 25mΩ≥R≥14mΩ。直流电阻为 R0= 4.5±0.5mΩ。 铜线敷有耐高温的玻璃丝包。
SVA 作用:
(1)平衡牵引电流回流 SVA设置在29米长调谐区两个调谐单元的中间,由于它对于50Hz牵引电流呈 现甚小的交流阻抗(约10mΩ),故能起到对不平衡牵引电流电动势的短路作用。
“f1”(f2)端 BA 的 L1C1(L2C2)对“f2”(f1)端的频率为串联谐振,呈现较低阻抗(约数十毫欧姆),称 “零阻抗”相当于短路,阻止了相邻区段信号进入本轨道电路区段,见图(C)左端(图(b)右端)。
“f1”(f2)端的 BA 对本区段的频率呈现电容性,并与调谐区钢轨、SVA 的综合电感构成并联谐振,呈现较高阻 抗,称“极阻抗”(约 2 欧),相当于开路。以此减少了对本区段信号的衰耗。
(2)对于上、下行线路间的两个 SVA 中心线可做等电位连接。一方面平衡线路间牵引电流,一方面可 保证维修人员安全。
(3)作抗流变压器见下图, 如在道岔斜股绝缘两侧各装一台 SVA,二中心线连接。 应该指出,SVA 作抗流变压器时,其总电流≤200 安
(4)SVA 对 1700Hz感抗值仅有 0.35Ω,对 2600Hz 也只有 0.54Ω。在调谐区中,不能把它简单作为 一个低阻值分路电抗进行分析,而应将其作为并联谐振槽路的组成部分。SVA 参数的适当选择,可 为谐振槽路提供一个较为合适的 Q 值,保证调谐区工作的稳定性。