焦炉烟气余热回方案

合集下载

(详细方案)焦炉烟道气余热利用脱硫脱硝一体化技术方案-1

(详细方案)焦炉烟道气余热利用脱硫脱硝一体化技术方案-1

(详细方案)焦炉烟道气余热利用脱硫脱硝一体化技术方案-10 引言本方案是在原烟道旁设置旁路烟道,安装余热回收系统设备—热管蒸发器,将其烟气余热进行回收利用,降到170℃左右进入下道工序或排空,余热回收系统设备—热管蒸发器可产出表压0.8MPa压力的饱和蒸汽,可用于生产、生活使用或者发电。

脱硫塔是烟气脱硫和产生硫酸铵盐的装置。

烟气中的SO2在脱硫塔中被除去。

烟气中的二氧化硫与自喷淋层逆流而下的PH值为5.5~5.9的硫酸铵和亚硫酸铵反应生成硫酸氢铵和亚硫酸氢铵,生成的硫酸氢铵和亚硫酸氢铵回流到塔釜过程中与添加的氨水发生反应,生成硫酸铵和亚硫酸铵,使其保持吸收二氧化硫的能力。

塔釜溢流至氧化室的亚硫酸铵被空气中的氧气氧化为硫酸铵,生成的硫酸铵溶液通过干燥系统干燥后生成固体硫酸铵外售。

经脱硫塔处理后的烟气进入脱硝塔,与臭氧混合,使烟气中的NOx被氧化,氧化后的烟气更容易被尿素溶液吸收,在吸收塔内,烟气与尿素水溶液进行对流接触,NOx 与尿素反应生成氮气、二氧化碳、水。

脱硝塔塔顶的气体主要成分为二氧化碳和氮气,直接排入大气,脱硝塔塔底的工艺水重新配制尿素溶液,循环利用。

采用湿式-氨法脱硫,强制氧化-尿素还原法烟气脱硝,工艺技术先进、成熟、可靠,运行所需原料市场供应充足。

项目实施后可实现减少污染物排放和资源浪费,达到有效的目的,实现节能减排,具有良好的经济效益和环境效益。

焦炉烟气脱硫脱硝一体化工程工艺流程框图工艺原理1、氨法脱硫氨法脱硫是利用二氧化硫[SO2]与氨[NH3]在常温下反应,生成亚硫酸铵[(NH4)2SO3],然后氧化生成硫酸铵[(NH4)2SO4]的原理,对烟气中的二氧化硫进行治理。

该法不仅避免了双碱法、石灰石-石膏法等工艺会产生大量石膏[CaSO4]混合物无法处理的弊端,还有另一个优点就是脱硫效率随着烟气含硫量增加而增加,对二氧化硫[SO2]含量大于1000mg/Nm3的烟气,其脱硫效率可达到98%以上。

焦炉烟气脱硫脱硝及余热回收方案书(优质参考)

焦炉烟气脱硫脱硝及余热回收方案书(优质参考)

山西焦化股份有限公司焦炉烟气脱硫脱硝项目二期工程方案书1#焦炉烟气脱硫脱硝及余热回收2017年03月02日一、设计方案1、工程概述山西焦化股份有限公司焦炉烟气脱硫脱硝项目工程二期,共有3台50孔焦炉,每台产能50万吨/年。

由于现有生产工艺并未配备相应的烟气净化处理装置及设施,生产过程中产生的烟气(含SO2和NOx)通过地下烟道引至烟囱直接排放。

随着环保形式的日益严峻,个别地区机械焦炉烟囱已经开始执行《炼焦化学工业污染物排放标准》(GB16171-2012)中的特别排放限值要求:SO2≤30mg/ Nm3(干基),NOx≤150mg/ Nm3(干基),颗粒物≤15mg/Nm3(干基)。

为积极响应国家环保部关于焦炉生产污染物排放指标的控制,峰煤焦化厂相关领导拟对焦炉烟气进行脱硫脱硝净化处理,以达到污染物排放指标。

2、基础参数及条件2.1、焦炉烟气参数在正常生产过程中,1#、4#、5#焦炉各有一个烟囱,每个烟囱排放的烟气量和烟气成分基本相同,详细参数见下表:序号名称单位数值1 烟气量Nm3/h 90000-1200002 烟气温度℃230-2903 SO2浓度mg/Nm3 ≤2004 NOx浓度mg/Nm3 ≤12005 粉尘浓度mg/Nm3 ≤306 含O2量% 7-11%2.2、设计原则及标准《焦化安全规程》GB12710—2008《炼焦化学工业污染物排放标准》GB16171-2012《火电厂烟气脱硝工程技术规范-选择性催化还原法》HJ562-2010《工艺金属管道设计规范》GB50316-2000《工业企业厂界噪声标准Ⅲ类标准》GB12348-90《工业企业设计卫生标准》GBZ1-2002《工业金属管道工程施工及验收规范》GB50235-97《自动化仪表施工及验收规范》GB 50093-2002《机械设备安装工程施工及验收规范》GB50231-98《压缩机、风机、泵安装工程施工及验收规范》GB50275-98《工业设备及管道绝热工程施工及验收规范》GBJ126-89《工业设备、管道防腐蚀工程施工及验收规范》HGJ229-91《自动化仪表工程施工及验收规范》GB50093—2002《电气装置安装工程电器设备交接试验规程》GB50150—91《继电保护和安全自动装置技术规程》DL400-91《电力工程直流系统设计技术规程》DL/T8044-2004《低压配电设计规范》DL/T50044-95《袋式除尘器分类及规格性能表示方法》GB6719—86《袋式除尘器用滤料及滤袋技术条件》GB12625—90《脉冲袋式除尘器用滤袋框架技术条件》GB/T5917—91《袋式除尘技术性能及测试方法》GB11653—89《机电产品包装通用技术条件》GB/T13384—91《气焊、电弧焊及气体保护焊缝的基本型式及尺寸》GB/T985-1988《埋弧焊焊缝的基本型式及尺寸》GB/T986-1988以上标准不限于此,如遇最新标准,按最新标准执行。

烟气余热回收技术方案

烟气余热回收技术方案

烟气余热回收技术方案1. 背景介绍烟气是许多工业生产过程中产生的一种重要废气。

燃烧产生的烟气中含有大量的热量,如果不进行有效的回收利用,将会造成能源的浪费和环境的污染。

因此,烟气余热回收技术成为了重要的研究方向之一。

本文将介绍一种烟气余热回收技术方案,以实现高效能源利用和环境保护。

2. 技术原理该烟气余热回收技术方案基于换热原理,通过烟气与工艺流体之间的热量交换,实现热能回收。

具体的技术原理如下:1.烟气预处理:在烟气进入烟道前,对其进行预处理,去除大颗粒的烟尘和其他污染物,以确保烟气的净化程度和换热器的正常运行。

2.烟气与工艺流体换热:将烟气通过烟道引导至烟气换热器中,与工艺流体进行热量交换。

工艺流体可以是水、油等,在换热器内与烟气进行流体间的热交换,使烟气中的热量传递给工艺流体,从而实现热能的回收利用。

3.对工艺流体进行冷却:烟气中的热能传递给工艺流体后,工艺流体温度升高。

为了保证回收后的热能能够有效利用,需要对工艺流体进行冷却。

这可以通过使用冷却器或进行进一步的热量转移实现。

4.回收后的热能利用:冷却后的工艺流体可以用于供热、供暖或其他工业生产过程中的热能需求,从而实现能源的高效利用。

3. 技术优势该烟气余热回收技术方案具有以下优势:•高效能源利用:通过回收烟气中的热能,将原本浪费的能源转化为可用的能源,提高能源利用率。

•环境保护:减少煤、油等能源的消耗,降低二氧化碳等温室气体的排放,对环境具有积极的影响。

•经济效益:通过烟气余热的回收利用,降低了企业的能源消耗成本,提高了企业的经济效益。

•可持续发展:烟气余热回收技术是一种可持续发展的技术,有助于提高能源的可再生利用率,减少对自然资源的依赖。

4. 技术应用烟气余热回收技术可以应用于各个领域,包括但不限于以下几个方面:•工业生产:适用于钢铁、化工、电力等工业生产过程中产生的烟气,将烟气中的余热转化为工艺流体的热能需求,减少能源浪费。

•建筑供热:可将烟气余热应用于建筑供热系统中,为建筑提供温暖的供暖水源,减少传统能源的消耗。

焦化行业烟气脱硝--余热回收--脱硫工艺方案

焦化行业烟气脱硝--余热回收--脱硫工艺方案

mg/ Nm3
5
入口 SO2 浓度
mg/ Nm3
280-290 20
1800 450
2.3.2 气候条件
2.4. 设计要求
脱硫脱硝工程技术性能指标
序号 2 3
名称 NOx SO2
初始浓度(mg/Nm³) 1800 450
排放浓度(mg/Nm³) ≤500 ≤50
4
氨逃逸
脱除率(%) ≥72.2 ≥77.78 ≤5ppm
因,致使焦炉 250—320℃高温烟气直接排放,浪费了大量的废热能源。 近年来,国内已有部分大型焦化厂开始注重焦炉烟气余热利用,如太钢,采用了煤调
湿装置,利用焦炉烟道部分废气,在流化床设备内将原料煤按要求进行粒度分级,同时利 用焦炉烟道气热量脱出煤中部分水分,从而达到优化炼焦煤粒度、调整水分及预热的目的。
但该项目一是投资费用较大,而且设备占地面大,二是只能利用部分废气的热量,还有较 大的废气未被利用。
2009 年 4 月,天津华能能源设备有限公司开发的国内首套烟道气热管余热锅炉系统, 在唐山达丰焦化有限公司成功运行,生产低压饱和蒸汽或过热蒸汽,生产蒸汽 100Kg/吨焦,
用于焦化生产,大大降低了生产成本。随后旭阳焦化集团、金牛天铁焦化公司、唐山九江 钢铁、山西美锦能源、山东傅山焦化等 40 多家企业进行了改造,为几十家企业,带来了客
产尾气中的SO2, 生产亚硫铵和硫铵。
第一步, SO2和NH3的反应为基础的吸收过程:
SO2+H2O+xNH3 = (NH4) xH2-XSO3 因此,采用氨法脱硫首先得到亚硫酸铵中间产品。
(1)
第二步,采用空气对亚硫铵直接强制氧化:
(NH4)XH2-XSO3+1/2O2 +(2-x)NH3=(NH4)2SO4

某焦炉燃烧烟气余热回收

某焦炉燃烧烟气余热回收

目录1.总论 (1)2.焦炉 (3)3.热力 (6)4.电气部分 (10)5.自动化仪表 (12)6.土建 (13)7.采暖通风 (14)8.给排水 (16)9.总图运输 (17)10.消防 (19)11.能源评价 (21)12. 三废、环境保护以及综合利用 (21)13.劳动安全与卫生 (21)1.总论1.1.工程概述某焦化厂焦炉属于38.5m3大容积焦炉,使用两座并联排列方式,年产量100万吨。

焦炉采用焦炉煤气做为燃料,属于双联火道、废气循环、复热、焦炉煤气下喷形式的焦炉。

焦炉煤气通过立火道进入焦炉燃烧室,在焦炉燃烧室内燃烧后,再经过斜道进入蓄热室,将蓄热室的蓄热体加热之后,进入分烟道。

各燃烧室的燃烧烟气通过分烟道汇集到二个总烟道,再由总烟道排出。

各分烟道和总烟道上设有闸板,用于调节和温度焦炉的烟道的吸力。

整个烟道采用自然排烟方式,完全靠烟囱的抽力所产生的负压使炉膛维持微负压燃烧状态。

两座焦炉最终排放烟气平均温度达到250℃左右,蓄热室与烟囱之间的烟道上未采取任何余热回收装置,因此烟气余热损失巨大,约占焦炉总能耗的21%左右。

根据某焦化厂焦炉生产现状,对烟道进行改造,增加余热回收系统,使焦炉烟气排放温度降低到150~170℃,所回收的余热产生0.6MPa和0.4MPa饱和蒸汽用于生产和生活,达到节能降耗减排的目的,提高能源利用率。

系统改造包括烟道改造、新建余热回收设备、水泵房建设等内容。

1.2. 具体设计范围(1)烟道改造:在原有一个总烟道的基础之上,增设一个旁路烟道,在旁路烟道上安装余热回收装置、增压风机、烟道闸板。

同时另外一个总烟道也需要连接到此旁路烟道上,这样两个总烟道并联进入此旁路烟道。

(2)余热利用系统:在旁路烟道中安装热管蒸汽发生器、热管水预热器,增压引风机,烟道调节闸板等设备。

新建一座水泵车间,在车间内安装2台补给水泵、2台循环泵,给水和蒸汽管网。

1.3. 建设条件(1)建设所需的公辅介质基本上从焦炉作业区内部接取。

燃气锅炉烟气余热深度回收技术及应用分析方案

燃气锅炉烟气余热深度回收技术及应用分析方案

燃气锅炉烟气余热深度回收技术及应用分析1、概述燃气锅炉作为主要的采暖设备,燃烧产生的烟气温度通常很高,这些烟气含有大量的显热和潜热,如果不经处理直接排放到大气中会造成能量浪费。

排烟温度越高,排烟热损失越大,一般排烟温度升高15~20 ℃,就会使排烟热损失增加1%,如果能将这部分热量回收利用起来,不仅节约能源,而且提高了锅炉热效率。

目前,烟气余热回收技术主要有两种:热泵式烟气余热回收技术和换热器式烟气余热回收技术。

热泵式烟气余热回收技术前期投资成本高,所需安装空间较大;换热器式烟气余热回收技术一般仅在锅炉尾部烟囱上加装烟气余热回收装置,但受被加热介质温度等方面的限制,处理后的低温烟气温度仍然较高,大部分水蒸气汽化潜热未被回收利用,造成能源浪费和环境污染。

由于天然气成分绝大部分为烃,燃气锅炉排烟中水蒸气的体积分数较高,烟气可利用的热能中,水蒸气的汽化潜热所占份额相当大,若将烟气冷却到露点温度以下,并深度回收利用天然气燃烧时产生的水蒸气凝结时放出的大量潜热,可进一步提升燃气锅炉热效率。

2、冷凝热回收计算锅炉烟气显热的回收量主要体现在锅炉排烟的温降幅度,而潜热回收量主要体现在烟气中水蒸气的凝结量,即当排烟温度低于露点温度,有水蒸气凝结时,烟气的放热量应用烟气的焓差表示。

不同地区燃气成分不同,不同锅炉燃烧工况不同,所以燃烧产物即烟气的成分和状态各不相同,特别是烟气中水蒸气含量各异,使得烟气热回收潜力存在差异。

选取过量空气系数α=1.1,相应露点温度为 58.15℃的工况进行相关参数的计算。

根据供热系统实际运行工况,相对于锅炉本体排烟温度(一级余热回收装置进口烟温)为 110 ℃时,不同排烟温度下显热回收量、潜热回收量、水蒸气冷凝率以及锅炉热效率增量的计算结果。

由计算结果可知,排烟温度越低,水蒸气冷凝率越高,潜热和显热回收量也相应越高。

当排烟温度低于 60 ℃(接近烟气露点温度)时,回收总热量及锅炉热效率的变化值迅速增大,这主要是由于排烟温度低于露点温度,烟气中水蒸气的汽化潜热得以回收;当排烟温度继续降至40℃时,水蒸气冷凝率65% ,每燃烧 1 m3 天然气所回收的显热为 1 090 kJ,潜热为2650 kJ,锅炉热效率可提高10.17% 。

烟气余热回收技术方案

烟气余热回收技术方案

烟气余热回收技术方案1.引言:随着工业化的发展,许多工业过程会产生大量的烟气余热。

如果这些余热不加以利用,不仅对环境造成负面影响,还会浪费能源资源。

因此,烟气余热回收技术的研发和应用变得至关重要。

本文将探讨一些常见的烟气余热回收技术方案。

2.烟气余热回收技术方案:2.1烟气热交换器烟气热交换器是一种常见的烟气余热回收技术方案。

烟气热交换器的原理是通过传导、对流、辐射等方式,将烟气中的热量传递给工作介质(如水或空气),从而提高工作介质的温度。

具体来说,烟气经过烟气热交换器后,冷却,而介质则被加热,可以用于供暖、工业热水等。

2.2高温烟气直接回收在一些高温烟气的情况下,可以直接回收其中的热能。

例如,高温烟气可以用于直接发电或驱动蒸汽涡轮机,从而产生电力或机械功。

这种烟气直接回收技术方案不仅能够有效回收热能,还能够实现能源的多次利用。

2.3烟气余热利用系统烟气余热利用系统是一种集成化的烟气余热回收技术方案。

该系统由多个组件组成,包括烟气余热锅炉、热交换器、余热净化装置等。

其工作原理是将从工业烟气中回收的余热传递给工作介质,并进一步利用该余热进行供热、发电等用途。

2.4烟气余热发电系统烟气余热发电系统是一种通过回收烟气中的热能来发电的技术方案。

该系统在烟气热交换器中通过热能传递的方式将烟气中的热量传递给工作介质,使其达到足够高的温度和压力,从而驱动蒸汽涡轮机产生电力。

3.烟气余热回收技术方案的应用和优势:3.1工业领域应用3.2环境保护优势3.3节能效益4.结论烟气余热回收技术方案在工业生产和环境保护中具有重要的意义。

通过采用适当的技术方案,可以有效回收烟气中的热能,提高能源利用效率,降低能源消耗和环境污染。

值得注意的是,不同的行业和工艺过程可能需要采用不同的烟气余热回收技术方案,因此在具体应用中需要根据实际情况进行选择和调整。

焦炉上升管余热回收方式

焦炉上升管余热回收方式

焦炉上升管余热回收方式一、引言焦炉是钢铁生产过程中不可或缺的设备,但同时也是能源消耗最大的设备之一。

在焦炉生产过程中,大量的余热被排放到大气中,造成了能源的浪费和环境的污染。

因此,如何有效地回收焦炉余热,成为了钢铁企业节能减排的重要课题。

二、焦炉余热回收方式1. 烟气余热回收焦炉烟气中含有大量的余热,通过烟气余热回收技术,可以将烟气中的余热回收利用,用于加热水或蒸汽等。

目前,常用的烟气余热回收技术有烟气余热锅炉、烟气余热换热器等。

2. 焦炉上升管余热回收焦炉上升管是焦炉生产过程中的一个重要组成部分,其中也含有大量的余热。

通过焦炉上升管余热回收技术,可以将上升管中的余热回收利用,用于加热水或蒸汽等。

目前,常用的焦炉上升管余热回收技术有水膜式余热回收、蒸汽回收等。

三、水膜式余热回收技术水膜式余热回收技术是一种常用的焦炉上升管余热回收技术。

该技术通过在焦炉上升管内部设置水膜,将上升管中的余热传递给水膜,使水膜中的水被加热,从而实现余热回收利用。

该技术具有回收效率高、操作简单、维护方便等优点。

四、蒸汽回收技术蒸汽回收技术是另一种常用的焦炉上升管余热回收技术。

该技术通过在焦炉上升管内部设置蒸汽发生器,将上升管中的余热传递给蒸汽发生器,使蒸汽发生器中的水被加热,从而实现余热回收利用。

该技术具有回收效率高、能够产生蒸汽等优点。

五、结论焦炉余热回收是钢铁企业节能减排的重要措施之一。

目前,常用的焦炉余热回收技术有烟气余热回收、焦炉上升管余热回收等。

水膜式余热回收技术和蒸汽回收技术是常用的焦炉上升管余热回收技术,具有回收效率高、操作简单、维护方便等优点。

在今后的钢铁生产中,应该进一步加强焦炉余热回收技术的研究和应用,实现能源的节约和环境的保护。

焦炉上升管余热回收工艺流程

焦炉上升管余热回收工艺流程

焦炉上升管余热回收工艺流程一、引言焦炉是冶金行业中常见的设备,用于生产焦炭。

在焦炉的运行过程中,会产生大量的余热。

为了充分利用这些余热资源,提高能源利用效率,降低能源消耗和环境污染,焦炉上升管余热回收工艺应运而生。

二、工艺流程步骤 1. 上升管余热回收系统设计在进行焦炉上升管余热回收之前,需要对系统进行设计。

首先需要确定回收余热的方式,常见的有水蒸汽发电、空气预热和供暖供水等。

根据不同的应用需求选择不同的方式,并设计相应的系统结构。

2.系统安装与改造根据设计方案,对现有焦炉系统进行改造和安装。

这包括增加换热器、冷凝器等设备,并与原有系统进行连接。

同时需要对现有系统进行一定程度的改造,以适应新设备的接入。

3.系统调试与运行完成安装和改造后,需要对整个系统进行调试和运行。

首先进行设备检查和试运行,确保设备正常工作。

然后进行系统调试,包括温度、压力、流量等参数的调整,以达到最佳工作状态。

4.热量回收在焦炉上升管中,烟气携带着大量的余热。

通过换热器将烟气中的余热传递给工质(如水蒸汽或空气),实现能量的转化和回收。

换热器通常采用板式或管式结构,通过与烟气接触实现传热。

5.能量利用回收的余热可以用于多种应用,例如发电、供暖、供水等。

在发电方面,通过将余热转化为蒸汽驱动汽轮机发电。

在供暖和供水方面,可以利用余热加热水源,并输送到需要的地方。

6.系统监控与维护完成焦炉上升管余热回收系统的建设后,需要进行系统监控和维护工作。

通过安装传感器和仪表监测系统各项参数,并及时处理异常情况。

定期对设备进行检修和维护,确保系统长期稳定运行。

三、流程图graph LRA[设计回收方式] --> B[系统安装与改造]B --> C[系统调试与运行]C --> D[热量回收]D --> E[能量利用]E --> F[系统监控与维护]四、工艺流程优势 1. 节能环保:焦炉上升管余热回收可以充分利用焦炉产生的余热资源,减少能源消耗,降低对环境的污染。

烟气余热回收技术方案

烟气余热回收技术方案

烟气余热回收技术方案一、引言工业生产过程中产生的烟气中含有大量的余热能量,如果能够将这部分余热回收并有效利用,不仅可以提高能源利用率,减少能源消耗,还可以减少对环境的污染。

因此,烟气余热回收技术的开发和应用对于企业的可持续发展具有重要意义。

二、烟气余热回收技术的原理烟气余热回收技术主要包括两个方面的内容:烟气的热量回收和余热的利用。

烟气的热量回收主要是通过烟气净化设备对烟气中的热量进行回收,常见的技术有烟气换热器、烟气脱硫设备等。

余热的利用则需要通过适当的设备将余热转化为可用能源,常见的方式有蒸汽循环、制冷循环等。

三、烟气换热器的设计和应用烟气换热器是烟气余热回收的核心设备,其主要功能是通过换热器将烟气中的热量传递给工艺流体,从而实现能量的转化。

烟气换热器的设计应考虑以下几个因素:1.换热器的材料选择:应根据烟气中存在的腐蚀物质和工艺流体的特性选择合适的材料,常见的材料有不锈钢、碳钢等。

2.换热器的热交换效率:应通过优化换热器的结构和流体的流动方式,提高热交换效率。

可以采用流体的迂回流动、增加流体的速度等方式提高换热效率。

3.换热器的清洁方式:由于烟气中含有灰尘和颗粒物等杂质,容易在换热器的表面形成污垢,影响换热效果。

因此,应考虑对换热器进行清洗和维护。

四、余热利用技术方案1.蒸汽循环技术:将回收的余热用于蒸汽发生器中,产生蒸汽用于工艺或供暖等用途。

蒸汽循环技术的优点是热效率高,适用于大量余热的回收利用。

2.制冷循环技术:将回收的余热用于制冷设备中,通过制冷设备产生低温热能,可用于制冷或其他低温工艺需求。

制冷循环技术的优点是适用于低温余热的回收利用。

3.热泵技术:热泵是一种将低温热能转化为高温热能的装置,通过热泵技术可以将回收的低温余热升温并利用于工艺流程。

热泵技术的优点是能够实现高效率的能量转化,适用于低温余热的回收利用。

五、烟气余热回收技术应用案例1.钢铁行业:钢铁生产中烟气中含有大量高温余热,可以通过烟气换热器将余热回收并用于烧结热风炉、蒸汽发生器等设备,提高能源利用率。

焦化厂焦炉烟道废气余热利用途径及设计方案

焦化厂焦炉烟道废气余热利用途径及设计方案

焦化厂焦炉烟道废气余热利用途径及设计方案1、热管技术:用热管余热锅炉回收焦炉烟道废气余热生产蒸汽技术,因其投资省,见效快而快速发展。

烟道废热余热回收生产蒸汽的工艺原理:热流体的热量由热管传给放热端水套管内的水,并使其汽化,所产汽—水混合物经蒸汽上升管达到汽包,经集中分离后再经蒸汽主控阀输出。

由于热管不断将热量输入水套管内的水,并通过外部汽—水管道的上升及下降完成基本的汽—水循环,达到将热流体降温,并转化为蒸汽的目的。

焦炉烟道废气余热生产蒸汽的工艺流程:在焦炉主烟道翻板阀前开孔,将焦炉主烟道废气引出,经调节型蝶阀入余热回收系统,换热降温后约170 ℃的烟气通过风机抽送,再经开关型蝶阀排入主烟道翻板阀后的地下主烟道,最后经焦炉烟囱排入大气。

锅炉水被加热后汽化,经汽包并计量后并入蒸汽管网,供各生产车间使用。

余热回收系统由软化水处理装置、除氧器、水箱、除氧给水泵、锅炉给水泵、热管蒸汽发生器、软水预热器汽包、上升管、下降管等组成。

其核心技术是热管技术回收烟气中的显热,将软化水加热成水蒸气,其工艺流程图如图图所示。

焦炉烟道废气余热回收生产蒸汽系统是一项节能减排工程,产生的饱和蒸汽可并入焦化厂蒸汽管网,供低压蒸汽用户使用。

2、煤调湿:煤调湿是将炼焦煤在装炉前除去一部分水分,保持装炉煤水分稳定在6%左右,然后装炉炼焦。

利用焦炉烟道废气煤调湿工艺不但可以节省能源,减少废气、废水、废热的排放,而且可以提高装炉煤堆密度及炼焦初期升温速度、缩短结焦时间,从而实现节能降耗的目的。

煤调湿装置的热源主要有导热油、蒸汽和焦炉烟道废气等。

相比较而言,以导热油和蒸汽为热源的煤调湿工艺存在设备繁琐、运行费用高等问题;以焦炉烟道废气为热源的煤调湿工艺可以利用废气余热干燥入炉煤,热效率高,节能效果好。

目前以焦炉烟道废气为热源的煤调湿工艺主要有流化床式、风动选择式和沸腾流化床式等。

2.1、流化床煤调湿:XXX厂采用焦炉烟道废气对煤料干燥的流化床煤调湿装置,其工艺流程为:将粉碎后的煤料由煤仓送往流化床干燥机,从分布板进入的焦炉烟道废气直接与煤料接触,对煤料进行干燥,调湿后的粗煤粒从干燥机排入螺旋输送机,剩余的煤粉随焦炉烟道废气进入袋式除尘器,回收的煤粉通过螺旋输送机送入皮带机上,为抑制扬尘,采用加湿机对干煤粉适当加湿,使煤粉和粗煤粒一起经皮带机送到焦炉煤塔,工艺流程图见下图。

窑炉余热利用方案

窑炉余热利用方案

窑炉余热利用方案窑炉是一种用来进行燃烧和加热的设备,通常会产生大量的余热。

合理利用窑炉的余热,不仅可以提高能源利用效率,还可以减少能源消耗,从而降低生产成本和环境负荷。

下面是一些窑炉余热利用方案的介绍。

1.余热回收换热器:余热回收换热器是一种常见的窑炉余热利用设备,通过将窑炉烟气中的余热传递给流体介质,实现热能回收。

常见的余热回收换热器包括顺流式、逆流式和交叉式换热器。

通过合理设计换热器,可以使窑炉的余热利用效率达到60%以上。

2.余热发电:利用窑炉余热发电可以将热能转化为电能。

通过使用蒸汽或有机工质循环在余热回收换热器中进行工作,驱动涡轮发电机,将热能转化为电能。

余热发电技术可以实现窑炉烟气中的热能高效利用,并且可以减少对传统电力网络的依赖。

3.余热蓄热系统:余热蓄热系统可以将窑炉的余热暂时储存起来,以待需要时释放。

蓄热系统通常采用热媒(如盐、油或水)来储存热能,通过控制储热和释热的时间和温度,实现对余热的有效利用。

余热蓄热系统可以提高窑炉的稳定性和热能利用效率。

4.余热空调系统:利用窑炉余热进行暖通空调供热和制冷是一种常见的利用方案。

通过在窑炉烟气中设置吸收式或吸附式制冷机组,可以将余热转化为冷量。

同时,余热空调系统还可以利用余热进行空气加热和热水供应,实现能源的综合利用。

5.余热利用案例:中国水泥厂引进了一套1500t/d离心窑炉,通过安装余热回收换热器和余热发电系统,实现了窑炉余热的高效利用。

其中,余热回收换热器的设计热效率达到70%,每年为该厂节约能源约3000吨标准煤。

同时,余热发电系统每年可发电约500万千瓦时,为企业创造了可观的经济效益。

总之,合理利用窑炉的余热可以提高能源利用效率,减少能源消耗,降低生产成本,减少环境污染。

各种余热利用方案可以根据企业的需求和条件进行选择和组合。

在未来的工业发展过程中,窑炉余热利用将成为能源节约和环境保护的重要举措。

锅炉烟气余热回收利用热水设计方案

锅炉烟气余热回收利用热水设计方案

锅炉烟气余热回收利用热水设计方案1. 背景介绍随着能源资源的日益稀缺和环境保护意识的增强,热能的回收利用成为了一个重要的课题。

在许多工业生产过程中,锅炉排放出的烟气中蕴含着大量的热能,如果能够有效地回收和利用这部分热能,不仅可以提高能源利用效率,还可以减少对环境的污染。

本文将介绍一种锅炉烟气余热回收利用的热水设计方案。

2. 方案设计2.1 方案原理该方案的基本原理是通过烟气余热回收装置将锅炉排放出的烟气中的热能转移给热水,使其升温。

具体来说,主要包括以下几个步骤:1.烟气余热回收装置:通过安装在锅炉烟道中的余热回收装置,将烟气中的热能吸收并传递给回收系统。

2.热水回收系统:将余热回收装置中吸收的热能传递给热水。

可以通过热交换器等方式,将烟气中的热能转移给冷却的热水,使其升温。

2.2 设计方法2.2.1 烟气余热回收装置的选择根据实际情况,选择合适的烟气余热回收装置。

常见的回收装置包括烟气预热器、烟气蓄热器等。

根据需要,可以选择不同的装置进行组合使用,以达到最佳的热能回收效果。

2.2.2 热水回收系统设计在设计热水回收系统时,需要考虑以下几个方面:1.热水系统容量:根据需求确定热水系统的容量,包括热水储存容量和流量。

2.热交换器设计:选择适当的热交换器,并根据热水流量、温度差等参数进行设计。

3.系统管道布局:合理设计热水回收系统的管道布局,以确保热能的高效传递和利用。

2.3 设计参数在进行具体的设计过程中,需要确定一些关键的参数,包括:1.烟气温度:根据实际情况测量或估算锅炉烟气的温度。

2.热水需求量:根据实际使用需求确定热水的流量和温度。

3.热交换器效率:根据热交换器的类型和设计参数,估算其效率。

3. 实施方案在确定了具体的设计方案和参数后,可以进行实施。

具体实施过程包括以下几个步骤:1.确定设备和材料:根据设计方案,选择合适的设备和材料,包括烟气余热回收装置、热交换器等。

2.设备安装和调试:按照设计方案,进行设备的安装和调试工作,确保设备能够正常运行。

烟气净化余热回收工程方案

烟气净化余热回收工程方案

烟气净化余热回收工程方案一、项目概述烟气净化余热回收工程是指对工业生产中产生的烟气进行净化处理,并通过余热回收技术将其中的热能利用起来,用于生产过程中的其他热能需求。

该工程方案旨在提高能源利用率,降低环境污染,实现节能减排的目标。

本文将结合工业生产中常见的烟气净化和余热回收技术,提出一套全面的烟气净化余热回收工程方案。

二、烟气净化技术在工业生产过程中,燃煤、燃油、燃气等燃烧过程产生的烟气中含有大量的固体颗粒物、二氧化硫、氮氧化物等有害气体,如果直接排放到大气中会对环境造成严重污染。

因此,烟气净化技术是工业生产中必不可少的环保措施之一。

1. 除尘技术除尘技术是烟气净化中最基础的技术之一,其原理是通过物理或化学手段将烟气中的固体颗粒物捕集下来。

常见的除尘设备有电除尘器、布袋除尘器、湿法电除尘器等。

在烟气净化余热回收工程中,可以根据实际情况选用合适的除尘设备,以保证烟气中固体颗粒物的排放达标。

2. 脱硫技术二氧化硫是烟气中的一种有害气体,其排放会对大气产生严重影响。

因此,脱硫技术也是烟气净化中的重要环节。

常见的脱硫设备有石膏脱硫、湿法脱硫、干法脱硫等。

在烟气净化余热回收工程中,脱硫技术的选择应考虑设备的稳定性、脱硫效率以及产生的副产品处理成本等因素。

3. 脱硝技术氮氧化物是烟气中另一种重要的有害气体,其排放也会对环境造成严重污染。

因此,脱硝技术的应用也十分重要。

常见的脱硝设备有SCR脱硝、SNCR脱硝等。

在烟气净化余热回收工程中,可以根据烟气中氮氧化物的浓度和排放标准选用合适的脱硝设备。

以上是烟气净化中的主要技术,其选择应根据工程实际情况进行合理的组合,以保证烟气排放达标。

三、余热回收技术烟气中含有大量的热能,其温度通常在100℃以上,因此通过余热回收技术将其中的热能利用起来对节能减排具有重要意义。

常见的余热回收技术有:1. 热管式余热回收器热管式余热回收器是一种通过热管传热的技术,其结构简单、安装方便,并且不会对生产设备产生负载。

烟气余热回收技术方案

烟气余热回收技术方案

烟气余热回收技术方案
一、回收烟气余热的技术方案
1.回收烟气余热技术方案的主要内容
回收烟气余热技术方案的主要目的是通过烟气余热回收、再利用技术,实现“重组能源”的功能,将非均一能源转化为可重复使用的热能,最大
限度的提高燃烧过程的热效率,从而实现能源节约和降低污染的目的。

实施回收烟气余热技术方案的主要内容包括:
(1)分析烟气余热特性。

(2)设计回收烟气余热系统,确定余热回收等效回收量,以及系统
布局、内部功率分配等必要参数;
(3)烟气余热回收装置的选定及其它设备的选型;
(4)烟气余热回收热工计算及热网计算;
(5)制定完善的烟气余热回收技术装置的安装、运行、维护等配套
技术措施。

2.烟气余热回收装置的选定
在回收烟气余热技术方案中,烟气余热回收装置是重要的组成部分,
常用的余热回收装置主要有烟气余热回收热交换器、余热回收汽轮机、余
热回收锅炉等。

(1)烟气余热回收热交换器:烟气余热回收热交换器是一种通过热
能传输机构实现烟气余热回收的设备,烟气余热回收热交换器的优点在于
结构简单、安装方便,节能效。

焦炉烟气余热回收可行性分析报告

焦炉烟气余热回收可行性分析报告

焦炉烟气余热回收可行性分析报告一、引言在能源资源日益紧缺的背景下,如何高效利用能源成为了各个行业的共同关注点。

焦炉烟气的余热是一个潜在的能源资源,通过回收利用可以实现能源的有效利用。

本文将对焦炉烟气余热回收的可行性进行分析,并对其经济和环境效益进行评估。

二、焦炉烟气余热回收技术简介焦炉烟气余热回收技术是指通过采用适当的设备和系统,将焦炉排放的烟气中的热能回收利用。

常见的焦炉烟气余热回收技术包括锅炉余热利用、余热发电、余热蒸汽发生器等。

三、可行性分析1. 技术可行性焦炉烟气余热回收技术已经在一些企业中得到应用,并取得了显著的效果。

通过对各个环节的研究和改进,已经有了成熟的技术方案。

因此,从技术角度来看,焦炉烟气余热回收具备可行性。

2. 经济可行性焦炉烟气余热回收项目的经济可行性主要包括投资回收期、投资利润率和内部收益率等方面的评估。

根据初步的估算,焦炉烟气余热回收项目的投资回收期约为3-5年,投资利润率约在15%-20%,内部收益率约为10%-15%。

经济可行性分析表明,焦炉烟气余热回收项目具备一定的投资回报能力。

3. 环境可行性焦炉烟气中含有大量的有害物质,将其直接排放到大气中会对环境造成严重的污染。

而通过焦炉烟气余热回收技术,可以有效地减少烟气中有害物质的排放量,降低环境污染。

因此,从环境角度来看,焦炉烟气余热回收具备可行性。

四、结论综合分析可行性方面的因素,我们可以得出以下结论:1. 技术方面:焦炉烟气余热回收技术已经成熟,具备广泛的应用前景。

2. 经济方面:焦炉烟气余热回收项目在经济上具备一定的投资回报能力,可以实现合理的投资利润。

3. 环境方面:焦炉烟气余热回收技术能够有效地减少环境污染,对于保护环境具有积极的意义。

因此,焦炉烟气余热回收是一项具备可行性的项目,可以进一步深入研究和推广应用。

相关企业可以根据自身情况,评估该技术在其生产过程中的适用性,并制定相应的投资和应用方案,以实现能源的有效利用和环境保护的双重目标。

焦炉烟道气余热回收项目可行性

焦炉烟道气余热回收项目可行性

运行成本分析
燃料成本
人工成本
回收焦炉烟道气余热后,可减少对焦 炉燃料的依赖,从而降低燃料成本。
操作和维护设备所需的人工成本也应 考虑在内。
维护成本
设备运行过程中需要定期维护和保养 ,所产生的费用应计入运行成本。
经济效益评估
节能效益
通过回收焦炉烟道气余热,可减 少对焦炉燃料的消耗,从而降低 能源成本,提高能源利用效率。
社会可行性
焦炉烟道气余热回收项目符合国家节能减排政策,能够得 到政府支持和政策优惠,同时提高企业形象和社会责任感 。
对项目的建议和展望
加大研发力度
进一步研发先进的焦炉烟道气余热回 收技术和设备,提高余热回收率和能 源利用效率。
推广应用范围
将焦炉烟道气余热回收技术应用于更 多的企业和领域,扩大市场应用范围 ,提高节能减排效益。
焦炉烟道气余热回收项目能够提高能源利用效率 ,降低生产成本,有助于提升地区经济效益。
3
改善ห้องสมุดไป่ตู้民生活环境
焦炉烟道气余热回收项目可以减少废气的排放, 改善周边居民的生活环境,提高居民的生活质量 。
环境和社会影响的应对措施
严格控制废气排放
加强环境监测
通过采用先进的余热回收技术和设备,确 保废气的排放达到国家和地方的环保标准 。
焦炉烟道气余热占焦化过程总能 耗的30%左右,具有较高的回收
价值。
目前焦炉烟道气余热主要通过自 然冷却和简易换热等方式进行利
用,利用率较低。
焦炉烟道气余热回收的意义
01
02
03
提高能源利用率
回收焦炉烟道气余热可以 减少能源浪费,提高能源 的利用率。
降低生产成本
通过回收焦炉烟道气余热 ,可以减少对焦炉加热所 需的额外能源,从而降低 生产成本。

煤化工焦炉烟道余热利用项目实施计划方案

煤化工焦炉烟道余热利用项目实施计划方案

煤化工焦炉烟道余热利用项目实施方案一、项目情况表二、实施单位和管部门意见目录一、目标和任务二、技术方案的选择和确定三、承担单位、人员四、支撑条件与保障措施五、关键技术及采取的解决措施六、技术路线七、详细工作计划八、组织方式与运行管理九、研究报告编制大纲十、项目初审、验收或鉴定时间十一、验收或鉴定所需主要技术文件、材料的安排十二、推广应用计划及措施十三、附件一、目标和任务某煤化工曹家峪园区焦化在建工程有4座5.5米捣固焦炉,单座焦炉烟道气产生量约为80000m3/h,可利用的废热资源相当大。

焦炉烟道气为300℃左右,长期以来通过焦炉烟囱排入大气,浪费了大量的废热能源。

烟道气余热利用项目利用了烟道气这一废热能源,为焦化甲醇工程提供180℃余热蒸汽。

项目的建设符合国家的能源政策及产业政策,符合企业发展的规划。

烟道气余热利用工程总投资300万元,计划2011年8月开工建设,预计2011年12月投入使用。

届时利用烟道气余热产生蒸汽26.31t/h,一年按8000小时计算,可节约标煤19248吨/年。

二、技术方案的选择和确定烟道气余热利用项目是将焦炉排放的烟道气从300℃降低至170℃再送到烟囱进行排放,单座焦炉释放的烟道气流量为80000m3/h,四座焦炉烟道气从300℃降低至170℃放出热量为:Q1=mc△T=4×80000×1.7×130=70720000kj/h =16838100 kcal /h。

在此增设废热锅炉系统回收这部分热量,废热锅炉吸收释放的热量,计算出折合180℃饱和蒸汽量为:Q2/640=16838100/640=26310kg/h=26.31t/h因此可选用两台15 t/h的废热锅炉回收热量。

以上热量可折合标煤为(一年按8000小时计算,标煤的发热量按7000kcal/kg):8000×Q1/7000=8000×16838100/7000= 19248t由此可得:通过2×15t/h的废热锅炉可以提供26.31t/h 约180℃余热蒸汽,折合标煤19248t,蒸汽可供煤焦、化产回收生产和生活使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于其中经总烟道进入烟囱热烟气的仍有较大的余热回收价值。该方案就是为回收这一部分烟气的余热而设计。
热管余热锅炉在焦炉余热回收中的应用
烟气的余热回收利用在国内已是成熟技术。根据我们的长期从事余热锅炉工程设计经验以及厂家提供的设计条件:一台80万吨焦化炉可利用的烟气量配置一台余热锅炉可产生压力0.7Mpa,温度170℃的饱和蒸汽9t/h;
煤在炭化室干馏过程中产生的荒煤气汇集到炭化室顶部空间,经过上升管、桥管进入集气管。约 700℃左右的荒煤气在桥管内被氨水喷洒冷却至 90℃左右。荒煤气中的焦油等同时被冷凝下来。煤气和冷凝下来的焦油等同氨水一起经过吸煤气管送入煤气净化车间。
焦炉加热用的焦炉煤气,由外部管道架空引入。焦炉煤气经预热后送到焦炉地下室,通过下喷管把煤气送入燃烧室立火道底部与由废气交换开闭器进入的空气汇合燃烧。燃烧后的废气经过立火道顶部跨越孔进入下降气流的立火道,再经蓄热室,又格子砖把废气的部分显热回收后,经过小烟道、废气交换开闭器、分烟道、总烟道、烟囱排入大气。
几年的发展,经我公司成功改造的锅炉、工业窑炉已有1000多台,公司在锅炉及工业窑炉的余热回收利用及节能改造、纺织印染定型机的余热回收利用及节能改造、废气净化处理等领域处于国内先进水平。
公司坐落在璀璨的东方明珠——上海浦东新区,公司现有锅炉节能高级专家10名,产品研发工程师人员30多名,公司拥有国内先进生产、检测设备,拥有专业的运输、安装、售后服务队伍。公司是集锅炉余热回收、环保设备研发、设计、制造、配套、安装、调试及售后服务于一体的多元化高科技环保企业。
烟气的余热回收利用在国内已是成熟技术,烟风系统改造方案为:
在焦化炉烟气出口的主烟道上开一个烟道口,同时在主烟道设置一台翻板式闸板阀,在新开的烟道口用管道将管道口和余热锅炉的进气口连接,并在进余热锅炉前再设置一台翻板式闸板阀,最后在出余热锅炉的管道上再设置一台闸板阀。运行时,将锅炉进口前的闸板阀打开,主烟道上的闸板阀关闭,通过引风机的作用,将烟气引至锅炉,同时将除盐水引入锅炉水侧,通过换热,产生蒸汽供生产和生活使用。如果是原有焦化炉技改项目,由于涉及到连接管道停车时间的问题,所以,供方通常做如下安排:设备安装时,将其它所有设备安装好,最好只剩下烟气管道的工作内容,安装前,准备好所需要的闸板阀,安装工具等材料。
多年来,公司自主研发的波形给煤节能装置(国家专利号:ZL 3120.9)、热管余热蒸汽发生器(国家专利号:ZL 7839.9)在纺织印染、石油化工、金属冶炼等行业广泛运用,尤其在锅炉、玻璃窑炉、陶瓷窑炉、焦化炉、矿热炉、石灰窑炉、水泥窑炉、烧结炉、退火炉、定型机等高能耗领域,为用户创造了巨大的经济效益。由我公司承担的上海重型机械厂、上海华峰集团、上海五四助剂厂的锅炉余热回收节能改造项目被列入《2009年上海市重点节能技术改造项目汇编》。另外公司在流化床锅炉改造、冷凝水回收、余热发电、锅炉富氧燃烧改造、烟气脱硫脱硝、除尘工程等方面也处于国内领先水平。
公司以“服务于企业,贡献于社会”为宗旨,长期致力于“电力、冶炼化工、纺织印染、造纸食品、电子电器、农业”等行业的节能降耗、锅炉余热回收、定型机余热回收、废气净化、烘干干燥等工业、农业领域的集成化治理工作,并全面开展合同能源管理(EMC)项目的节能改造工程。
蕲黄人不断加大技术创新投入,始终采用国内领先的生产设备、生产工艺和科学管理方法,一如既往的以优质产品服务广大客户。在发展的道路上,我们始终奉行“一切为了节能、一切为了客户”的宗旨,为客户提供节能产品、节能诊断改造、节能规划与设计服务及合同能源管理项目服务,以实现企业节能增效、互惠互利、共获双赢的目标,与新老朋友携手共创辉煌的明天!
项目实施后,可充分利用焦化炉废气的大部分热能,降低能耗,同时改变了焦化炉高温废气排入大气而污染环境的状态,实现“节能减排”的最佳效果。
热管余热锅炉技术特点
(1)传热系数高。废气和水及水蒸气的换热均在热管的外表面进行,而且废气热管外侧为翅片,这样换热面积增大,传热得到强化,因而使换热系数得到了很大的提高;
焦化厂节能减排项目
-----热管式余热锅炉应用的可行性





上海蕲黄节能环保设备有限公司山西办事处
二○一一年一月
上海蕲黄节能环保设备有限公司成立于2009年,是在上海蕲黄节能设备有限公司(2004年)无法满足市场需求的基础上成立的,是国内较早开展余热回收的厂家之一,2010年被选为上海市节能协会服务产业委员会委员,并于2011年获Байду номын сангаас国家第三批节能服务公司。通过近
(4) 阻力损失小,可以适用于老机组的改造。一般情况下,增加了余热回收设备,热废气的阻力增加在1500Pa左右。 单根或多根热管的损坏不影响设备整体使用。
(5) 热管制作是采用镍基钎焊翅片管技术,它是我公司2009年引进的美国技术,是一种新型翅片管焊接工艺,由绕片——喷粉——高温烧结等十余道工序组成。其利用镍粉的熔化将翅片与基管焊接在一起,形成冶金连接。管片焊着率100%,接触热阻接近零。在翅片管表面烧结一层0.2mm左右致密、光滑的合金保护层,使普通碳钢材料具有不锈钢时性能,其表面硬度高,能在高温、高流速和腐蚀性介质的冲刷下工作,耐低温酸露点腐蚀,较同类产品寿命可提高3~5倍,表面光滑可减缓积灰。采用该技术的热管换热设备,其使用寿命较普通翅片热管提高了2~3倍。
(2)防积灰、堵灰、抗腐蚀能力强。通过调节热管冷热段受热表面的比例,可以调节管壁温度,使之高于烟气露点温度或最大腐蚀区,可以有效地防止因为酸露点及烟气中的硫腐蚀。延长换热器使用寿命,保证换热器的换热效率。
(3) 冷热流体完全隔开,有效防止水汽系统的泄漏。在运行时,由于废气的大量冲刷,即使管子受到一定的损坏,也不会造成冷侧的气水泄漏到热侧,确保了系统的安全运行,这也是该设备有别于一般烟道中设备的最大特点;
我公司将以严谨的科技作风,良好的信誉,合理的价格,竭诚为广大公司做好服务,共创辉煌。
焦化工艺概述:
煤车间送来的配合煤装入煤塔,装煤车按作业计划从煤塔取煤,经计量后装入炭化室内。煤料在炭化室内经过一个结焦周期的高温干馏制成焦炭并产生荒煤气。
炭化室内的焦炭成熟后,用推焦车推出,经拦焦车导入熄焦车内,并由电机车牵引熄焦车到熄焦塔内进行喷水熄焦。熄焦后的焦炭卸至凉焦台上,冷却一定时间后送往筛焦工段,经筛分按级别贮存待运。
相关文档
最新文档