(完整版)冲激偶函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、单位冲激偶信号
冲激函数)(t δ的导数定义为(单位)冲激偶函数,用)(t δ'或)()1(t δ表示。
t t t d )
(d )(δδ=
' (1.3-16)
式(1.3-16)可从极限的角度理解,)(ˆlim )(0t t δδτ'='→,由图1.3-6,)(ˆ
t δ的导数)(ˆt δ'如图1.3-11(a)所示,用公式表示为
)2(1)2(1)(ˆτδττδτδ--+='t t t
当0→τ时,)(ˆ
t δ'由两个在时间上无限靠近,而强度趋于无限大的冲激构成。故称它为冲激偶函数,用图1.3-11(b)表示。
(a ) (b )
图1.3-11 冲激偶函数
设)(t x 为常规函数,其导数)(t x '在0t t =处连续,则积分
()
()t t t t x t t t t x t t t x t t t x t t t t x d )()(d )()()(d )(d )()(00000-'-=-'-
-=-=-'⎰⎰⎰⎰∞
∞-∞∞-∞∞-∞
∞-∞
∞-δδδδδ
利用冲激函数的抽样性质,从上式得
)(d )()(00t x t t t t x '-=-'⎰∞
∞-δ
(1.3-17)
该式称为)(t δ'的抽样性质。
采用对)()(t t x δ分步求导的方法,或利用式(1.3-17),还可得
)()0()()0()()(t x t x t t x δδδ'-'=' (1.3-18)
注意)()0()()(t x t t x δδ'≠' 。再来考虑)(t δ'的对称性。
t ττt -==-'τδδd )
(d )(
由于)(t δ为偶对称函数,则有
)(d )(d )(t t t t δδδ'-=-=-' (1.3-19)
可见,)(t δ'为奇对称函数。故
⎰∞
∞-='0d )(t t δ
当然,令式(1.3-17)中的1)(=t x ,也可得上式结果 。
函数)(t δ的各阶导数统称为高阶冲激。特别指出,在同一时刻出现的单
位冲激函数、高阶冲激函数间的乘积,如)(2t δ,)()(t t δδ'等没有意义。