2018年高考数学上海卷

合集下载

2018年上海高考数学试题(文科)

2018年上海高考数学试题(文科)

2018年上海高考数学试题(文科)部门: xxx时间: xxx制作人:xxx整理范文,仅供参考,勿作商业用途2018年上海高考数学试卷<文科)一、填空题<本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.不等式的解为.2.在等差数列中,若,则.3.设,是纯虚数,其中是虚数单位,则.4.若,,则.5.已知的内角、、所对的边分别是,,.若,则角的大小是<结果用反三角函数值表示).6.某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为.b5E2RGbCAP7.设常数.若的二项展开式中项的系数为-10,则.8.方程的实数解为.9.若,则.10.已知圆柱的母线长为,底面半径为,是上地面圆心,、是下底面圆周上两个不同的点,是母线,如图.若直线与所成角的大小为,则.p1EanqFDPw11.盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是<结果用最简分数表示).DXDiTa9E3d12.设是椭圆的长轴,点在上,且.若,,则的两个焦点之间的距离为. 13.设常数,若对一切正实数成立,则的取值范围为.14.已知正方形的边长为1.记以为起点,其余顶点为终点的向量分别为、、;以为起点,其余顶点为终点的向量分别为、、.若且,则的最小值是.RTCrpUDGiT 二、选择题<本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.5PCzVD7HxA 15.函数的反函数为,则的值是< ) <A )<B )<C )<D )16.设常数,集合,.若,则的取值范围为< )<A )<B )<C )<D )17.钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”的< ) <A )充分条件<B )必要条件<C )充分必要条件<D )既非充分又非必要条件18.记椭圆围成的区域<含边界)为,当点分别在上时,的最大值分别是,则< )A.0 B . C.2 D .三.解答题<本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域写出必要的步骤.19.<本题满分12分)如图,正三棱锥底面边长为,高为,求该三棱锥的体积及表面积.第19题图B20.<本题满分14分)本题共有2个小题.第1小题满分6分,第2小题满分8分.甲厂以千M/小时的速度匀速生产某种产品<生产条件要求),每小时可获得的利润是元.<1)求证:生产千克该产品所获得的利润为;<2)要使生产千克该产品获得的利润最大,问:甲厂应该如何选取何种生产速度?并求此最大利润.21.<本题满分14分)本题共有2个小题.第1小题满分6分,第2小题满分8分.已知函数,其中常数.<1)令,判断函数的奇偶性并说明理由;<2)令,将函数的图像向左平移个单位,再往上平移个单位,得到函数的图像.对任意的,求在区间上零点个数的所有可能值.jLBHrnAILg22.<本题满分16分)本题共有3个小题.第1小题满分3分,第2小题满分5分,第3小题满分8分. 已知函数.无穷数列满足.<1)若,求,,;<2)若,且,,成等比数列,求的值;<3)是否存在,使得,,,…,…成等差数列?若存在,求出所有这样的;若不存在,说明理由.23.<本题满分18分)本题共有3个小题.第1小题满分3分,第2小题满分6分,第3小题满分9分.如图,已知双曲线:,曲线:.是平面内一点,若存在过点的直线与、都有公共点,则称为“型点”.<1)在正确证明的左焦点是“型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程<不要求验证);xHAQX74J0X<2)设直线与有公共点,求证,进而证明原点不是“型点;<3)求证:圆内的点都不是“型点”.参考答案一、选择题1.2.153.4.15.6.787.8.9.10.11.12.13.14.15.A16.B17.A18.D19.20.解:<1)每小时生产克产品,获利,生产千克该产品用时间为,所获利润为.<2)生产900千克该产品,所获利润为所以,最大利润为元。

【真题】2019年上海市高考数学试题含答案解析

【真题】2019年上海市高考数学试题含答案解析

2018年高考数学真题试卷(上海卷) 一、填空题1.(2018•上海)行列式4125的值为 。

【答案】18【解析】【解答】4125=45-21=18 【分析】a cb d=ad-bc 交叉相乘再相减。

【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)2.(2018•上海)双曲线2214x y -=的渐近线方程为 。

【答案】12y x =±【解析】【解答】2214x y -=,a=2,b=1。

故渐近线方程为12y x =± 【分析】渐近线方程公式。

注意易错点焦点在x轴上,渐近线直线方程为22221x y ba -=时,by x a=±。

【题型】填空题 【考查类型】中考真题 【试题级别】高三【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)3.(2018•上海)在(1+x )7的二项展开式中,x ²项的系数为 。

(结果用数值表示) 【答案】21【解析】【解答】(1+x )7中有T r+1=7r r C x ,故当r=2时,27C =762⨯=21 【分析】注意二项式系数,与各项系数之间差别。

考点公式()na b +第r+1项为T r+1=r n r rn C a b-。

【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)4.(2018•上海)设常数a R ∈,函数2()log ()f x x a =+,若f x ()的反函数的图像经过点31(,),则a= 。

【答案】7【解析】【解答】f x ()的反函数的图像经过点31(,),故()f x 过点3(1,),则()13f =,()2log 1a +=3,1+a=23所以a=23-1,故a=7.【分析】原函数()f x 与反函数图像关于y=x 对称,如:原函数上任意点()00,x y ,则反函数上点为()00,y x【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)5.(2018•上海)已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。

2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

2018年上海市高考数学试卷(含详细答案解析)

2018年上海市高考数学试卷(含详细答案解析)

2018年上海市高考数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)行列式的值为.2.(4分)双曲线﹣y2=1的渐近线方程为.3.(4分)在(1+x)7的二项展开式中,x2项的系数为(结果用数值表示).4.(4分)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=.5.(4分)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|=.6.(4分)记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7=.7.(5分)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=.8.(5分)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为.9.(5分)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).10.(5分)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n项和为S n.若=,则q=.11.(5分)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=.12.(5分)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.414.(5分)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件15.(5分)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.1616.(5分)设D是函数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.18.(14分)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.19.(14分)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.20.(16分)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q 分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.21.(18分)给定无穷数列{a n},若无穷数列{b n}满足:对任意n∈N*,都有|b n ﹣a n|≤1,则称{b n}与{a n}“接近”.(1)设{a n}是首项为1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}是否与{a n}接近,并说明理由;(2)设数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与{a n}接近的数列,记集合M={x|x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)行列式的值为18.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18.故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.(4分)双曲线﹣y2=1的渐近线方程为±.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4分)在(1+x)7的二项展开式中,x2项的系数为21(结果用数值表示).【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式(1+x)7展开式的通项公式为T r+1=•x r,令r=2,得展开式中x2的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4.(4分)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=7.【分析】由反函数的性质得函数f(x)=1og2(x+a)的图象经过点(1,3),由此能求出a.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(4分)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|=5.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,则|z|=.故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6.(4分)记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7=14.【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,d=2,由此能求出S7.【解答】解:∵等差数列{a n}的前n项和为S n,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.(5分)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣1.【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a是奇数,且a<0,由此能求出a的值.【解答】解:∵α∈{﹣2,﹣1,﹣,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5分)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为﹣3.【分析】据题意可设E(0,a),F(0,b),从而得出|a﹣b|=2,即a=b+2,或b=a+2,并可求得,将a=b+2带入上式即可求出的最小值,同理将b=a+2带入,也可求出的最小值.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.(5分)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.(5分)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n项和为S n.若=,则q=3.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{a n}的通项公式为a=q n﹣1(n∈N*),可得a1=1,因为=,所以数列的公比不是1,,a n=q n.+1可得====,可得q=3.故答案为:3.【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.11.(5分)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=6.【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12.(5分)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+.【分析】设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,由两平行线的距离可得所求最大值.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且•=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.4【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.【解答】解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.14.(5分)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5分)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×4=8,当A1ACC1为底面矩形,有4个满足题意,当A1AEE1为底面矩形,有4个满足题意,故有8+4+4=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.(5分)设D是函数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.(14分)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.(14分)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【分析】(1)由题意知求出f(x)>40时x的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f(x)=2x+﹣90>40,即x2﹣65x+900>0,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,g(x)=30•x%+40(1﹣x%)=40﹣;当30<x<100时,g(x)=(2x+﹣90)•x%+40(1﹣x%)=﹣x+58;∴g(x)=;当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.(16分)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q 分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;方法二:根据抛物线的定义,即可求得|BF|;(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;(3)设P及E点坐标,根据直线k PF•k FQ=﹣1,求得直线QF的方程,求得Q点坐标,根据+=,求得E点坐标,则()2=8(+6),即可求得P点坐标.【解答】解:(1)方法一:由题意可知:设B(t,2t),则|BF|==t+2,∴|BF|=t+2;方法二:由题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,∴|AQ|=,∴Q(3,),设OQ的中点D,D(,),k QF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得:3x2﹣20x+12=0,解得:x=,x=6(舍去),∴△AQP的面积S=××=;(3)存在,设P(,y),E(,m),则k PF==,k FQ=,直线QF方程为y=(x﹣2),∴y Q=(8﹣2)=,Q(8,),根据+=,则E(+6,),∴()2=8(+6),解得:y2=,∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.21.(18分)给定无穷数列{a n},若无穷数列{b n}满足:对任意n∈N*,都有|b n ﹣a n|≤1,则称{b n}与{a n}“接近”.(1)设{a n}是首项为1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}是否与{a n}接近,并说明理由;(2)设数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与{a n}接近的数列,记集合M={x|x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得a n﹣1≤b n≤a n+1,求得b i,i=1,2,3,4的范围,即可得到所求个数;(3)运用等差数列的通项公式可得a n,讨论公差d>0,d=0,﹣2<d<0,d≤﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{b n}与{a n}接近.理由:{a n}是首项为1,公比为的等比数列,可得a n=,b n=a n+1+1=+1,则|b n﹣a n|=|+1﹣|=1﹣<1,n∈N*,可得数列{b n}与{a n}接近;(2){b n}是一个与{a n}接近的数列,可得a n﹣1≤b n≤a n+1,数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M={x|x=b i,i=1,2,3,4},M中元素的个数m=3或4;(3){a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,可得a n=a1+(n﹣1)d,①若d>0,取b n=a n,可得b n+1﹣b n=a n+1﹣a n=d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;②若d=0,取b n=a1﹣,则|b n﹣a n|=|a1﹣﹣a1|=<1,n∈N*,可得b n+1﹣b n=﹣>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;③若﹣2<d<0,可令b2n﹣1=a2n﹣1﹣1,b2n=a2n+1,则b2n﹣b2n﹣1=a2n+1﹣(a2n﹣1﹣1)=2+d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中恰有100个正数,符合题意;④若d≤﹣2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n﹣1≤b n≤a n+1,a n+1﹣1≤b n+1≤a n+1+1,可得b n+1﹣b n≤a n+1+1﹣(a n﹣1)=2+d≤0,b2﹣b1,b3﹣b2,…,b201﹣b200中无正数,不符合题意.综上可得,d的范围是(﹣2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.第21页(共21页)。

(完整版)2018年上海高考数学试卷(参考答案)

(完整版)2018年上海高考数学试卷(参考答案)

2018年普通高等学校招生全国统一考试上海 数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.行列式4125的值为_________.2.双曲线2214x y -=的渐近线方程为_________. 3.在7(1)x +的二项展开式中,2x 项的系数为_________.(结果用数值表示) 4.设常数a R ∈,函数2()log ()f x x a =+。

若()f x 的反函数的图像经过点(3,1),则a =_________.5.已知复数z 满足(1)17i z i +=-(i 是虚数单位),则z =_________.6.记等差数列{}n a 的前n 项和为n S ,若30a =,6714a a +=,则7S =_________.7.已知12,1,,1,2,32α⎧⎫∈---⎨⎬⎩⎭。

若幂函数()f x x α=为奇函数,且在(0,)+∞上递减,则 α=_________.8.在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E 、F 是y 轴上的两个动点,且2EF =u u u r,则AE BF ⋅u u u r u u u r的最小值为_________.9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个。

从中随机选取三个,则这三个砝码的总质量为9克的概率是_________.(结果用最简分数表示)10.设等比数列{}n a 的通项公式为1n n a q-=(*n ∈N ),前n 项和为n S 。

若11lim2n n n S a →+∞+=,则q =_________.11.已知常数0a >,函数2()2x x f x ax =+的图像经过点6,5P p ⎛⎫ ⎪⎝⎭、1,5Q q ⎛⎫- ⎪⎝⎭。

若236p q pq +=,则a =_________.12.已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,则的最大值为_________.二、选择题(本大题共有4题,满分20分,每题5分)13.设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( ) (A) (B) (C) (D) 14.已知a ∈R ,则“1a >”是“11a<”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分又非必要条件 15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。

2018年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

 2018年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

2018年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)=()A.i B.C.D.2.(5分)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.43.(5分)函数f(x)=的图象大致为()A.B.C.D.4.(5分)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.27.(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+48.(5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.9.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.CD.10.(5分)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C.D.π11.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.5012.(5分)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A 且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

2018年上海高考数学真题及答案

2018年上海高考数学真题及答案

2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)(2018?上海)行列式的值为18.【考点】OM:二阶行列式的定义.【专题】11 :计算题;49 :综合法;5R :矩阵和变换.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18.故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.(4分)(2018?上海)双曲线﹣y2=1的渐近线方程为±.【考点】KC:双曲线的性质.【专题】11 :计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4分)(2018?上海)在(1+x)7的二项展开式中,x2项的系数为21(结果用数值表示).【考点】DA:二项式定理.【专题】38 :对应思想;4O:定义法;5P :二项式定理.【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式(1+x)7展开式的通项公式为T r+1=?x r,令r=2,得展开式中x2的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4.(4分)(2018?上海)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=7.【考点】4R:反函数.【专题】11 :计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用.【分析】由反函数的性质得函数f(x)=1og2(x+a)的图象经过点(1,3),由此能求出a.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(4分)(2018?上海)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|= 5.【考点】A8:复数的模.【专题】38 :对应思想;4A :数学模型法;5N :数系的扩充和复数.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,则|z|=.故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6.(4分)(2018?上海)记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7=14.【考点】85:等差数列的前n项和.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,d=2,由此能求出S7.【解答】解:∵等差数列{a n}的前n项和为S n,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.(5分)(2018?上海)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f (x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣1.【考点】4U:幂函数的概念、解析式、定义域、值域.【专题】11 :计算题;34 :方程思想;4O:定义法;51 :函数的性质及应用.【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a是奇数,且a<0,由此能求出a的值.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5分)(2018?上海)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为﹣3.【考点】9O:平面向量数量积的性质及其运算.【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用.【分析】据题意可设E(0,a),F(0,b),从而得出|a﹣b|=2,即a=b+2,或b=a+2,并可求得,将a=b+2带入上式即可求出的最小值,同理将b=a+2带入,也可求出的最小值.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.(5分)(2018?上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【考点】CB:古典概型及其概率计算公式.【专题】11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.(5分)(2018?上海)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n 项和为S n.若=,则q=3.【考点】8J:数列的极限.【专题】11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 :点列、递归数列与数学归纳法.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{a n}的通项公式为a=q n﹣1(n∈N*),可得a1=1,因为=,所以数列的公比不是1,,a n+1=q n.可得====,可得q=3.故答案为:3.【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.11.(5分)(2018?上海)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=6.【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用.【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12.(5分)(2018?上海)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+.【考点】7F:基本不等式及其应用;IT:点到直线的距离公式.【专题】35 :转化思想;48 :分析法;59 :不等式的解法及应用.【分析】设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,由两平行线的距离可得所求最大值.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且?=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)(2018?上海)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.4【考点】K4:椭圆的性质.【专题】11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.【解答】解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.>1”是“<1”的()14.(5分)(2018?上海)已知a∈R,则“aA.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11 :计算题;34 :方程思想;4O:定义法;5L :简易逻辑.【分析】“a>1”?“”,“”?“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”?“”,“”?“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5分)(2018?上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【考点】D8:排列、组合的实际应用.【专题】11 :计算题;38 :对应思想;4R:转化法;5O :排列组合.【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×6=12,当A1ACC1为底面矩形,有2个满足题意,当A1AEE1为底面矩形,有2个满足题意,故有12+2+2=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.(5分)(2018?上海)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用;56 :三角函数的求值.【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)(2018?上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【考点】LM:异面直线及其所成的角;L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积.【专题】11 :计算题;31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.(14分)(2018?上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【考点】GP:两角和与差的三角函数;GS:二倍角的三角函数.【专题】11 :计算题;38 :对应思想;4R:转化法;58 :解三角形.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.(14分)(2018?上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【考点】5B:分段函数的应用.【专题】12 :应用题;33 :函数思想;4C :分类法;51 :函数的性质及应用.【分析】(1)由题意知求出f(x)>40时x的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f(x)=2x+﹣90>40,即x2﹣65x+900>0,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,g(x)=30?x%+40(1﹣x%)=40﹣;当30<x<100时,g(x)=(2x+﹣90)?x%+40(1﹣x%)=﹣x+58;∴g(x)=;当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.(16分)(2018?上海)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.【考点】KN:直线与抛物线的位置关系.【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;方法二:根据抛物线的定义,即可求得|BF|;(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;(3)设P及E点坐标,根据直线k PF?k FQ=﹣1,求得直线QF的方程,求得Q点坐标,根据+=,求得E点坐标,则()2=8(+6),即可求得P点坐标.【解答】解:(1)方法一:由题意可知:设B(t,2t),则|BF|==t+2,∴|BF|=t+2;方法二:由题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,∴|AQ|=,∴Q(3,),设OQ的中点D,D(,),k QF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得:3x2﹣20x+12=0,解得:x=,x=6(舍去),∴△AQP的面积S=××=;(3)存在,设P(,y),E(,m),则k PF==,k FQ=,直线QF方程为y=(x﹣2),∴y Q=(8﹣2)=,Q(8,),根据+=,则E(+6,),∴()2=8(+6),解得:y2=,∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.21.(18分)(2018?上海)给定无穷数列{a n},若无穷数列{b n}满足:对任意n ∈N*,都有|b n﹣a n|≤1,则称{b n}与{a n}“接近”.(1)设{a n}是首项为1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}是否与{a n}接近,并说明理由;(2)设数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与{a n}接近的数列,记集合M={x|x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.【考点】8M:等差数列与等比数列的综合.【专题】34 :方程思想;48 :分析法;54 :等差数列与等比数列.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得a n﹣1≤b n≤a n+1,求得b i,i=1,2,3,4的范围,即可得到所求个数;(3)运用等差数列的通项公式可得a n,讨论公差d>0,d=0,﹣2<d<0,d≤﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{b n}与{a n}接近.理由:{a n}是首项为1,公比为的等比数列,可得a n=,b n=a n+1+1=+1,则|b n﹣a n|=|+1﹣|=1﹣<1,n∈N*,可得数列{b n}与{a n}接近;(2){b n}是一个与{a n}接近的数列,可得a n﹣1≤b n≤a n+1,数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M={x|x=b i,i=1,2,3,4},M中元素的个数m=3或4;(3){a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,可得a n=a1+(n﹣1)d,①若d>0,取b n=a n,可得b n+1﹣b n=a n+1﹣a n=d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;②若d=0,取b n=a1﹣,则|b n﹣a n|=|a1﹣﹣a1|=<1,n∈N*,可得b n+1﹣b n=﹣>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;③若﹣2<d<0,可令b2n﹣1=a2n﹣1﹣1,b2n=a2n+1,则b2n﹣b2n﹣1=a2n+1﹣(a2n﹣1﹣1)=2+d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中恰有100个正数,符合题意;④若d≤﹣2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n﹣1≤b n≤a n+1,a n+1﹣1≤b n+1≤a n+1+1,可得b n+1﹣b n≤a n+1+1﹣(a n﹣1)=2+d≤0,b2﹣b1,b3﹣b2,…,b201﹣b200中无正数,不符合题意.综上可得,d的范围是(﹣2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.感恩和爱是亲姐妹。

2018年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2018年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

关注公众号”一个高中僧“获取更多高中资料
第 3 页(共 28 页)
18.(12 分)如图,在平行四边形 ABCM 中,AB=AC=3,∠ACM=90°,以 AC 为 折痕将△ACM 折起,使点 M 到达点 D 的位置,且 AB⊥DA.
(1)证明:平面 ACD⊥平面 ABC; (2)Q 为线段 AD 上一点,P 为线段 BC 上一点,且 BP=DQ= DA,求三棱锥
A.12 π
B.12π
C.8 π
D.10π
【考点】LE:棱柱、棱锥、棱台的侧面积和表面积. 菁优网版权所有
【专题】11:计算题;35:转化思想;49:综合法;5F:空间位置关系与距离.
【分析】利用圆柱的截面是面积为 8 的正方形,求出圆柱的底面直径与高,然后
求解圆柱的表面积.
【解答】解:设圆柱的底面直径为 2R,则高为 2R,
(2)估计该家庭使用节水龙头后,日用水量小于 0.35m3 的概率; (3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按 365 天计算,
同一组中的数据以这组数据所在区间中点的值作代表)
20.(12 分)设抛物线 C:y2=2x,点 A(2,0),B(﹣2,0),过点 A 的直线 l 与 C 交于 M,N 两点.
参考答案与试题解析
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选 项中,只有一项是符合题目要求的。
1.(5 分)已知集合 A={0,2},B={﹣2,﹣1,0,1,2},则 A∩B=( )
A.{0,2}
B.{1,2}
C.{0}
D.{﹣2,﹣1,0,1,2}
【考点】1E:交集及其运算. 菁优网版权所有
问题解决问题的能力.

上海高考数学真题及答案

上海高考数学真题及答案

精心整理2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1. (4分)(2018?上海)行列式° 1的值为18 .2 5【考点】OM :二阶行列式的定义.【专题】11:计算题;49:综合法;5R:矩阵和变换.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式*】=4X 5 -2X仁18.2 5 ;故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2. (4分)(2018?上海)双曲线二;--y2 3 4 5 6=1的渐近线方程为土一工.【考点】KC :双曲线的性质.【专题】11:计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.I 2 n【解答】解:•••双曲线’.■- |的a=2,b=1,焦点在x轴上2 2 ■| i u而双曲线------- 的渐近线方程为y=±二丁精心整理【分析】利用二项式展开式的通项公式求得展开式中x2的系数.2 I 1I——双曲线1的渐近线方程为y= ±寺芷故答案为:y=±—工【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3. (4分)(2018?上海)在(1+x)7的二项展开式中,x2项的系数为21 (结果用数值表示).【考点】DA :二项式定理.【解答】解:二项式(1+X)7展开式的通项公式为T r+1= :?X「,令r=2,得展开式中x2的系数为c铲21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4. (4分)(2018?上海)设常数a€ R,函数f (x)=1og2 (x+a).若f (x)的反函数的图象经过点(3, 1),则a= 7 .【考点】4R:反函数.【专题】11:计算题;33:函数思想;40:定义法;51:函数的性质及应用.【分析】由反函数的性质得函数f (x)=1og2 (x+a)的图象经过点(1, 3),由此能求出a.【解答】解:•常数a€ R,函数 f (x)=1og2 (x+a). 「f (x)的反函数的图象经过点(3, 1),•••函数f (x)=1og2 (x+a)的图象经过点(1, 3),•••Iog2 (1+a)=3,解得a=7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5. (4分)(2018?上海)已知复数z满足(1+i)z=1 - 7i (i是虚数单位),则| z| = 5 .【考点】A8 :复数的模.I\ I ;【专题】38:对应思想;4A:数学模型法;5N :数系的扩充和复数.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案. 【解答】解:由(1+i)z=1 - 7i,得1-五-6-8i 戸得二(1+i )(17〕,则|z|= 」二 ..故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6. (4分)(2018?上海)记等差数列{a n}的前n项和为S n,若a3=0, a s+a z=14,则S7= 14 . 【考点】85:等差数列的前n项和.精心整理【专题】11:计算题;34:方程思想;40:定义法;54:等差数列与等比数列.【分析】利用等差数列通项公式列出方程组,求出a i=- 4, d=2,由此能求出S7.【解答】解:•••等差数列{a n}的前n项和为S n, a3=0, a6+a7=14.If ai+2d=0・・< a i+5a i+6d=l 4解得a i= - 4, d=2,••• S7=7a i+^^ 尸-28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7. (5分)(2018?上海)已知a€ { - 2,- 1,-一. 一,1, 2, 3},若幕函数f (x) =x a为奇函数,■1—1且在(0, +x)上递减,则a= - 1 .【考点】4U :幕函数的概念、解析式、定义域、值域.【专题】11:计算题;34:方程思想;4O:定义法;51:函数的性质及应用.【分析】由幕函数f (x) =x a为奇函数,且在(0, +x)上递减,得到a是奇数,且a v0,由此能求出a的值.【解答】解: T a€ { - 2,- 1, 1, 1, 2, 3},幕函数f (x) =x a为奇函数,且在(0, +X)上递减,• a是奇数,且a v0,•••a=- 1.故答案为:-1.【点评】本题考查实数值的求法,考查幕函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8. (5分)(2018?上海)在平面直角坐标系中,已知点 A (- 1, 0)、B (2, 0), E、F是y轴上的两个动点,且|卩|=2,则二,匸的最小值为 -3 .【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;35:转化思想;41:向量法;5A :平面向量及应用.【分析】据题意可设E (0, a), F (0, b),从而得出| a- b| =2,即a=b+2,或b=a+2,并可求得1|■ ■ - •,将a=b+2带入上式即可求出‘I的最小值,同理将b=a+2带入,也可求出.1 'I的最小值.精心整理【解答】解:根据题意,设E (0, a), F (0, b);二丨丨--:;•••a=b+2,或b=a+2 ;且|三站・• •「:;.••両■丽二一2十命;当a=b+2时,…丨.:「— | < | :;••• b2+2b- 2的最小值为;4 ■;• < -1 ;的最小值为-3,同理求出b=a+2时,Z-I卜的最小值为-3.故答案为:-3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9. (5分)(2018?上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是丄(结果用最简分数表示).—冬—【考点】CB :古典概型及其概率计算公式.【专题】11:计算题;34:方程思想;49 :综合法;51:概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:心訂10,这三个砝码的总质量为9克的事件只有:5, 3, 1或5, 2, 2两个,所以:这三个砝码的总质量为9克的概率是:亠4,故答案为:亍.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10. (5分)(2018?上海)设等比数列{a n}的通项公式为a n=q n_ 1(n€ N*),前n项和为S n.若lim-—=^,贝卩q=—.n—K a n+i z【考点】8J:数列的极限.【专题】11:计算题;34:方程思想;35:转化思想;49:综合法;55:点列、递归数列与数学归纳法.【分析】禾I 」用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可. 【解答】解:等比数列{an }的通项公式为a =q"1 (n € N*),可得a i =1, 因为 r 八‘=丄,所以数列的公比不是1,n+s a n+l 乂【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用, 是基本知识的考查.11. (5分)(2018?上海)已知常数a >0,函数f(x )=' 的图象经过点P(p,\),Q(q ,)•若2z +ax552p+q =36pq ,则 a= 6.【考点】3A :函数的图象与图象的变换. 【专题】35:转化思想;51:函数的性质及应用.【分析】直接利用函数的关系式,利用恒等变换求出相应的 a 值. 【解答】解:函数f (x ) =_-——的图象经过点P (p , ¥), Q (q ,丄).严十" 同 I 5 则:一二丄,2p +ap 2q faq 55整理得:「=1,2p+n + 2p aQ+2q ap+解得:2p+q =a 2pq , 由于:2p+q =36pq , 所以:a 2=36, 由于a >0, 故:a=6.口1 -Qna n +i =q .可得 lim “n -*-00 (l _q) q1」1可得q=3.故答案为:3.故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12'( 5分)(2018?上海)已知实数"心 y1、y2 满足:Xl2+yi2=1, X22处1, X1X2+y1y2「则"I —"的最大值为一+亠【考点】7F :基本不等式及其应用;IT :点到直线的距离公式. 【专题】35:转化思想;48 :分析法;59 :不等式的解法及应用.【分析】设A (x i , y i ), B (x 2, y 2), OA = (x i , y i ), OB = (x 2, y 2),由圆的方程和向量数量积的为点A , B 两点到直线x+y - 1=0的距离d i 与d 2之和,由两平行线的距离可得所求最大值. 【解答】解:设 A (x i , y i ) , B (x 2, y 2),'■= (x i , y i ), l-= (X 2 , y 2),由 x i 2+y i 2=1, x 22+y 22=1 , x i x 2+y i y 2= 2可得A , B 两点在圆x 2+y 2=1上, 且玉鉅=1 X 1 x cos / AOB=L ,2 [- 即有/ AOB=6° ,即三角形OAB 为等边三角形, AB=1 ,弱'5弱"的几何意义为点A ,B 两点 到直线x+y - 1=0的距离d i 与d 2之和,显然A , B 在第三象限,AB 所在直线与直线x+y=1平行, 可设 AB : x+y+t=0 , (t > 0), 由圆心O 到直线AB 的距离精心整理即h 、川+丨丄「: 1的最大值为:-:+ ■;,V2 V2故答案为:.〕+「::.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系, 运=■: 1 -苗2即有两平行线的距离为 定义、坐标表示,可得三角形 OAB 为等边三角形,AB=1,I xj+yI -11 J的几何意义可得2 :二1=1,解得t=.,用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项•考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.2 2|13. (5分)(2018?上海)设P是椭圆=1上的动点,贝U P到该椭圆的两个焦点的距离之和为5 3()A. 2B. 2 :;C. 2 !.D. 4 '::」[\ \ : J J ;'【考点】K4 :椭圆的性质.【专题】11:计算题;49:综合法;5D :圆锥曲线的定义、性质与方程.【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.2 2【解答】解:椭圆'=1的焦点坐标在x轴,a=",5 32 2 -P是椭圆I厂=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2 J 5 3故选:C.【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.14. (5分)(2018?上海)已知a€ R,贝U “A1”是1”的()A .充分非必要条件B .必要非充分条件C•充要条件D.既非充分又非必要条件【考点】29 :充分条件、必要条件、充要条件.【专题】11:计算题;34:方程思想;40:定义法;5L :简易逻辑.【分析】“A 1”?“丈1”,丄V1”?“A 1或a v 0”,由此能求出结果.a a【解答】解:a€ R,贝U “A1”?“V1”,a丄J .”?“a 1 或a v0”,a... “A 1”是丄"的充分非必要条件.a故选:A.精心整理【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15. (5分)(2018?上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA i是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A. 4B. 8C. 12D. 16【考点】D8:排列、组合的实际应用.【专题】11:计算题;38:对应思想;4R:转化法;5O:排列组合.【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1- A1ABB1, D1 - A1AFF1满足题意,而C1,E1,C,D,E,和D1 一样,有2X6=12,丿I J '当A1ACC1为底面矩形,有2个满足题意,当A1AEE1为底面矩形,有2个满足题意,故有12+2+2=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16. (5分)(2018?上海)设D是含数1的有限实数集,f (x)是定义在D上的函数,若f (x)的图象绕原点逆时针旋转一后与原图象重合,则在以下各项中,f (1)的可能取值只能是()6A. .「;B.C. _D. 0【考点】3A :函数的图象与图象的变换.【专题】35:转化思想;51:函数的性质及应用;56:三角函数的求值.I ■-.. I .【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转——个单位后6与下一个点会重合.我们可以通过代入和赋值的方法当 f (1)=亠一,0时,此时得到的圆心角为0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=—,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.2 b故选:B .【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17. (14分)(2018?上海)已知圆锥的顶点为 P ,底面圆心为O ,半径为2. (1) 设圆锥的母线长为4,求圆锥的体积;(2) 设PO=4, OA 、OB 是底面半径,且/ AOB=9° , M 为线段AB 的中点,如图•求异面直线 PM 与OB 所成的角的大小.【考点】LM :异面直线及其所成的角;L5 :旋转体(圆柱、圆锥、圆台);LF :棱柱、棱锥、棱 台的体积.【专题】11:计算题;31:数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角. 【分析】(1)由圆锥的顶点为P ,底面圆心为O ,半径为2,圆锥的母线长为4能求出圆锥的体积. (2)以O 为原点,OA 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系,利用向量法能求 出异面直线PM 与OB 所成的角.I' ;: a | !【解答】解:(1) •••圆锥的顶点为P ,底面圆心为O ,半径为2,圆锥的母线长为4, •••圆锥的体积 v=£ X 71 心2 x h=7" X IT X 22 X^/7^-22J J =師兀■.(2) T PO=4, OA , OB 是底面半径,且 / AOB=9° , M 为线段AB 的中点,•••以O 为原点,OA 为x 轴,OB 为y 轴,OP 为z 轴, 建立空间直角坐标系,P (0, 0, 4), A (2, 0, 0), B (0, 2, 0), M (1, 1, 0), O (0, 0, 0),「二(1 , 1 , - 4) , ' = (0 , 2 , 0), 设异面直线PM 与OB 所成的角为9,• 9 =arcc飞'【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、 面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题. 18. (14分)(2018?上海)设常数 a € R ,函数 f (x ) =asin2x+2cos 2x . (1) 若f (x )为偶函数,求a 的值;=I M -O E I =::.|wi | - |0B |6则 cos 9•异面直线PM 与OB 所成的角的为arccos —19. (14分)(2018?上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的 平均用时.某地上班族S 中的成员仅以自驾或公交方式通勤.分析显示:当 S 中X% (0v x v 100)的成员自驾时,自驾群体的人均通勤时间为(2)若 f (K 7【考点】GP :两角和与差的三角函数;GS :二倍角的三角函数. 计算题;38:对应思想;4R :转化法;58:解三角形. )=丘+1,求方程f (x ) =1 -血在区间[-n n 上的解.【专题】11:【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出, (2)先求出 a 的值,再根据三角形函数的性质即可求出.(1) v f (x ) =asin2x+2co$x , • f (- x ) = - asin2x+2co$x ,v f (x )为偶函数,【解答】解:• f (- x ) =f (x ),• - asin2x+2co$x=asin2x+2coSx , 二 2asi n2x=0, • a=0;(2) v f (丄)=-;+1 ,4• asin ——+2cos (日=a+1=",• f (x ) = :;si n2x+2coVx= :;si n2x+cos2x+1= 2sin (2x+—) +1 ,••• f (x ) =1 - :■:, • 2sin (2x+二)+1=1-近,6••• sin (2x • 2x^—=-66 4n +2k n, k € Z ,n +k n,或 x= 13 24n +k n, k € Z ,v x € [ -n n ,"24"13K ~24~【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.或x=或x=- 或x=-IT+2kn,或精心整理IpO, 0<x<30f ( X )= 30< .<100 (单位:分钟),I H 而公交群体的人均通勤时间不受 x 影响,恒为40分钟,试根据上述分析结果回答下列问题:(1) 当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2) 求该地上班族S 的人均通勤时间g(x )的表达式;讨论g( x )的单调性,并说明其实际意义.【考点】5B :分段函数的应用.【专题】12:应用题;33:函数思想;4C :分类法;51:函数的性质及应用.【分析】(1)由题意知求出f (x ) >40时x 的取值范围即可;(2) 分段求出g (x )的解析式,判断g (x )的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30v x V 100时,即 x 2- 65x+900>0,解得x V 20或x > 45,•I x € (45, 100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2) 当 0v x <30 时,g (x ) =30?x%+40 (1-x%) =40-希;丄LJ当 30v x V 100 时, 当0V x v 32.5时,g (x )单调递减; 当32.5V x v 100时,g (x )单调递增;说明该地上班族S 中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20. (16分)(2018?上海)设常数t >2•在平面直角坐标系xOy 中,已知点F (2, 0),直线I : x=t , 曲线r y 2=8x (0< x < t , y >0). I 与x 轴交于点A 、与r 交于点B . P 、Q 分别是曲线r 与线段 AB 上的动点.(1) 用t 表示点B 到点F 的距离;f (x ) =2x+1800 -90>40, (2x+^^To一 2 23 "102 90) ?x%+40 (1 - x%) 奇-托x+58; 13 10 g (x )= 二 g(x )(2) 设t=3, |FQ|=2,线段0Q 的中点在直线FP 上,求△ AQP 的面积;(3) 设t=8,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在r 上?若存在,求点P 的坐标; 若不存在,说明理由.【考点】KN :直线与抛物线的位置关系.【专题】35:转化思想;4R :转化法;5D :圆锥曲线的定义、性质与方程.【分析】(1)方法一:设B 点坐标,根据两点之间的距离公式,即可求得| BF| ;方法二:根据抛物线的定义,即可求得| BF| ;(2) 根据抛物线的性质,求得 Q 点坐标,即可求得0D 的中点坐标,即可求得直线 PF 的方程, 代入抛物线方程,即可求得 P 点坐标,即可求得△ AQP 的面积;(3) 设P 及E 点坐标,根据直线k PF ?k FQ = - 1,求得直线QF 的方程,求得Q 点坐标,根据「+卩」=-,求得E 点坐标,贝则(牝+F ) 2=8 (「+6),即可求得P 点坐标. ;'| I 知 I m :/【解答】解:(1)方法一:由题意可知:设 B (t ,2逅t ),则 |BF|=. •=+2, •••I BF|=t+2;方法二:由题意可知:设 B (t , 2血t ),由抛物线的性质可知:| BF| =t^-=t+2, • | BF| =t+2;(2) F (2, 0), |FQ|=2, t=3,则 | FA| =1,• |AQ|=庚,• Q (3,旧,设OQ 的中点D ,解得:x==, x=6 (舍去),• △ AQP 的面积S 〒x 體X 丄斗3 ;(3)存在,设 P (牛,y ), E (弓m ),则 k PF =^^= J , k FQ 芈H 3 8 匚―y -16 8V8),D ( V3严 k QF = =-屈,则直线PF 方程:y=-犯(x - 2),,整理得: 3x 2- 20x+12=0,2 2 2 2直线QF 方程为卡(x -2),「y Q 嚮(8-2)咛,Q (8,气 j 根据丨•+ |.'=「.,则 E C +6,’亠丁),8 4y2 2...(耳J )2=8 (红+6),解得:y 2半,4y 8 5.存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在r 上,且P (二,)【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档 题.21. (18分)(2018?上海)给定无穷数列{an },若无穷数列{b n }满足:对任意n € N *,都有|b n -a n | w 1,则称{ b n }与{a n }接近”.(1) 设{a n }是首项为1,公比为丄的等比数列,b n =a n +1 + 1, n € N ,判断数列{b n }是否与{a n }接近, 并说明理由;(2) 设数列{a n }的前四项为:a 1=1, a 2=2, a 3=4, a 4=8,{b n }是一个与{a n }接近的数列,记集合 M={x|x=b i , i=1, 2, 3, 4},求 M 中元素的个数 m ;(3) 已知{a n }是公差为d 的等差数列,若存在数列{b n }满足:{b n }与{a n }接近,且在b 2 - b 1,b 3- b 2,…,b 201 - b 200中至少有100个为正数,求d 的取值范围.【考点】8M :等差数列与等比数列的综合.【专题】34:方程思想;48 :分析法;54:等差数列与等比数列.【分析】(1)运用等比数列的通项公式和新定义 接近”,即可判断;(2) 由新定义可得 1 w b n <a n +1,求得b i ,i=1,2,3,4的范围,即可得到所求个数;(3) 运用等差数列的通项公式可得 an ,讨论公差d >0, d=0,- 2v d v 0, d w - 2,结合新定义 接 近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{b n }与{a n }接近.可得 a n - 1 w b n W an+1 ,理由:{an }是首项为1,公比为寺的等比数列,,b n =a n +1 +1=丄2n |=1- 可得a n = +1,2n_1 可得数列{b n }与{an }接近;(2) {b n }是一个与{an }接近的数列, v 1, n € N *,则 | b n - a n | =|1数列{a n}的前四项为:a i=1, a2=2, 33=4, a4=8,可得b i€ [0, 2] , b2€ [ 1, 3] , b3€ [3, 5] , b4€ [7, 9],可能b i与b2相等,b2与b3相等,但b i与b3不相等,b4与b3不相等,集合M={x|x=b i, i=1, 2, 3, 4},M中元素的个数m=3或4;(3){a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,可得a n=a1 + (n - 1) d ,①若d>0 ,取b n=a n ,可得b n+1 - b n=a n+1 - a n=d> 0 ,则b2 - b1 , b3 - b2 ,…,b201 - b200中有200个正数,符合题意;②若d=0 ,取b n=a1 -丄,则|b n- a n|=|a1-丄-a1| —v 1 , n€ N ,n n nI ------------- 1 j ”产/ ' I可得b n+1 - b n=—- > 0 ,n n+1则b2 - b1 , b3 - b2 ,…,b201 - b200中有200个正数,符合题意;③若-2v d v 0 ,可令b2n- 1=a2n-1 - 1 , b2n=a2n+1 ,贝U b2n —b2n-1=a2n+1 -( 92nT — 1 ) =2+d > 0 ,则b2 - b1 , b3 - b2 ,…,b201 - b200中恰有100个正数,符合题意;④若d< - 2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n —1W b n W cl n+1 , a n+1 —1W b n+1 9n+1 +1 ,可得b n+1 - b n< a n+1 + 1 -(a n - 1) =2+d< 0 ,b2 - b1 , b3 - b2 ,…,b201 - b200中无正数,不符合题意.综上可得,d的范围是(-2 , +x).【点评】本题考查新定义接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,I . i :考查分类讨论思想方法,以及运算能力和推理能力,属于难题.感恩和爱是亲姐妹。

2018年全国高考数学卷(含文理科)

2018年全国高考数学卷(含文理科)

2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答案卡一并交回。

一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合)1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =( )A .{}0B .{}1C .{}12,D .{}012,,2.()()12i i +-=( ) A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )4.若1sin 3α=,则cos 2α=( )A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( )A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是( )A .[]26,B .[]48,C .D .⎡⎣7.函数422y x x =-++的图像大致为( )8.某群体中的每位成品使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =( ) A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C =( )A .2πB .3πC .4πD .6π10.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为三棱锥D ABC -体积的最大值为( )A .B .C .D .11.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF OP ,则C 的离心率为( )AB .2CD12.设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题(本题共4小题,每小题5分,共20分)13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.14.曲线()1x y ax e =+在点()01,处的切线的斜率为2-,则a =________.15.函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.16.已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤,第17~31题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.) (一)必考题:共60分。

2018年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

2018年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

2018年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2} 2.(5分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.4.(5分)若sinα=,则cos2α=()A.B.C.﹣D.﹣5.(5分)(x2+)5的展开式中x4的系数为()A.10B.20C.40D.806.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3] 7.(5分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.<P(X=6),则p=()9.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.10.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.5411.(5分)设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()A.B.2C.D.12.(5分)设a=log2A.a+b<ab<0B.ab<a+b<0C.a+b<0<ab D.ab<0<a+b 二、填空题:本题共4小题,每小题5分,共20分。

2018年上海市高考数学试题有答案

2018年上海市高考数学试题有答案

2018年高考数学真题试卷(上海卷)一、填空题1.(2018•上海)行列式4125的值为 。

【答案】18 【解析】【解答】4125=45-21=18 【分析】a cb d=ad-bc 交叉相乘再相减。

【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷) 2.(2018•上海)双曲线2214x y -=的渐近线方程为 。

【答案】12y x =±【解析】【解答】2214x y -=,a=2,b=1。

故渐近线方程为12y x =± 【分析】渐近线方程公式。

注意易错点焦点在x 轴上,渐近线直线方程为22221x y b a -=时,by x a=±。

【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)3.(2018•上海)在(1+x )7的二项展开式中,x ²项的系数为 。

(结果用数值表示) 【答案】21【解析】【解答】(1+x )7中有T r+1=7r r C x ,故当r=2时,27C =762⨯=21 【分析】注意二项式系数,与各项系数之间差别。

考点公式()na b +第r+1项为T r+1=r n r rn C a b-。

【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)4.(2018•上海)设常数a R ∈,函数2()log ()f x x a =+,若f x ()的反函数的图像经过点31(,),则a= 。

【答案】7【解析】【解答】f x ()的反函数的图像经过点31(,),故()f x 过点3(1,),则()13f =,()2log 1a +=3,1+a=23所以a=23-1,故a=7. 【分析】原函数()f x 与反函数图像关于y=x 对称,如:原函数上任意点()00,x y ,则反函数上点为()00,y x【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)5.(2018•上海)已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。

【真题】2018年上海市高考数学试题含答案解析

【真题】2018年上海市高考数学试题含答案解析

2018年高考数学真题试卷(上海卷)一、填空题1.(2018•上海)行列式4125的值为 。

【答案】18【解析】【解答】4125=45-21=18 【分析】a cb d=ad-bc 交叉相乘再相减。

【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)2.(2018•上海)双曲线2214x y -=的渐近线方程为 。

【答案】12y x =±【解析】【解答】2214x y -=,a=2,b=1。

故渐近线方程为12y x =± 【分析】渐近线方程公式。

注意易错点焦点在x 轴上,渐近线直线方程为22221x y ba -=时,by x a=±。

【题型】填空题 【考查类型】中考真题 【试题级别】高三【试题来源】2018年高考数学真题试卷(上海卷)3.(2018•上海)在(1+x )7的二项展开式中,x ²项的系数为 。

(结果用数值表示) 【答案】21【解析】【解答】(1+x )7中有T r+1=7r rC x ,故当r=2时,27C =762⨯=21 【分析】注意二项式系数,与各项系数之间差别。

考点公式()na b +第r+1项为T r+1=r n r rn C ab-。

【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)4.(2018•上海)设常数a R ∈,函数2()log ()f x x a =+,若f x ()的反函数的图像经过点31(,),则a= 。

【答案】7【解析】【解答】f x ()的反函数的图像经过点31(,),故()f x 过点3(1,),则()13f =,()2log 1a +=3,1+a=23所以a=23-1,故a=7.【分析】原函数()f x 与反函数图像关于y=x 对称,如:原函数上任意点()00,x y ,则反函数上点为()00,y x【题型】填空题 【考查类型】中考真题 【试题级别】高三【试题来源】2018年高考数学真题试卷(上海卷)5.(2018•上海)已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。

专题05 平面向量-2018年高考数学(理)母题题源系列(上海专版)(原卷版)

专题05 平面向量-2018年高考数学(理)母题题源系列(上海专版)(原卷版)

母题五 平面向量【母题原题1】【2018上海卷,8】在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且|EF |=2,则⋅的最小值为______.【母题原题2】【2017上海卷,7】如图,以长方体的顶点为坐标原点,过的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为,则的坐标为________【母题原题3】【2016上海卷,14】如图,在平面直角坐标系中,O 为正八边形的中心,.任取不同的两点,点P 满足0i j OP OA OA ++=,则点P 落在第一象限的概率是_____________.【命题意图】考查平面向量的基础知识、基本运算、基本应用;考查运算求解能力以及运用数形结合思想分析与解决问题的能力;考查转化与化归思想的应用.【命题规律】平面向量的数量积、模、夹角是高考考查的重点、热点,往往以选择题或填空题的形式出现.常常以平面图形为载体,考查数量积、夹角、垂直的条件等问题;也易同三角函数、解析几何、不等式等知识相结合,以工具的形式出现.浙江卷涉及模的最值问题考查最多.【答题模板】基于平面向量的双重性,解答平面向量最值问题:一般可以从两个角度进行思考:一是利用其“形”的特征,将其转化为平面几何的有关知识进行解决;二是利用其“数”的特征,通过坐标转化为代数中的有关问题进行解决.【方法总结】1.平面向量数量积的计算方法①已知向量a ,b 的模及夹角θ,利用公式a·b =|a ||b|cos θ求解; ②已知向量a ,b 的坐标,利用数量积的坐标形式求解.学/科--网(2)对于向量数量积与线性运算的综合运算问题,可先利用数量积的运算律化简,再进行运算. 2.向量数量积的性质(1)如果e 是单位向量,则a ·e =e ·a . (2)a ⊥b ⇔a ·b =0.(3)a ·a =|a |2,|a (4)cos θ=||||⋅a ba b .(θ为a 与b 的夹角)(5)|a ·b |≤|a ||b |.3.利用向量夹角公式、模公式,可将有关角度问题、线段长问题转化为向量的数量积来解决.同时应注意: (1)两向量的夹角是指当两向量的起点相同时,表示两向量的有向线段所形成的角,若起点不同,应通过移动,使其起点相同,再观察夹角.(2)两向量夹角的范围为[0,π],特别当两向量共线且同向时,其夹角为0,共线且反向时,其夹角为π. (3)在利用向量的数量积求两向量的夹角时,一定要注意两向量夹角的范围.1.【上海市虹口区2018届高三下学期教学质量监控(二模)】在中,,点、是线段的三等分点,点在线段上运动且满足k ⋅=,当⋅取得最小值时,实数的值为( )A. B. C. D.2.【上海市黄浦区2018届高三4月模拟(二模)】在给出的下列命题中,是假命题的是( ) A. 设是同一平面上的四个不同的点,若,则点必共线B. 若向量是平面上的两个不平行的向量,则平面上的任一向量都可以表示为,且表示方法是唯一的 C. 已知平面向量满足,且,则是等边三角形D. 在平面上的所有向量中,不存在这样的四个互不相等的非零向量,使得其中任意两个向量的和向量与余下两个向量的和向量相互垂直3.【2017-2018上海市杨浦区高三数学一模】设A 、B 、C 、D 是半径为1的球面上的四个不同点,且满足0AB AC ⋅=, 0AC AD ⋅=, 0AD AB ⋅=,用1S 、2S 、3S 分别表示ABC ∆、ACD ∆、ABD ∆的面积,则123S S S ++的最大值是( ) A.12B. 2C. 4D. 8 4.【上海市松江、闵行区2018届高三下学期质量监控(二模)】已知向量、的夹角为,,,若,则实数的值为___________.5.【上海市普陀区2018届高三下学期质量调研(二模)】点1F , 2F 分别是椭圆22:12x C y +=的左、右两焦点,点N 为椭圆C 的上顶点,若动点M 满足: 2122MN MF MF =⋅,则122MF MF +的最大值为__________.6.【上海市黄浦区2018届高三4月模拟(二模)】已知向量在向量方向上的投影为,且,则=_______.(结果用数值表示)7.【上海市十二校2018届高三联考】在ABC ∆中, 120BAC ︒∠=, 2AB =, 1AC =,D 为线段BC 上任一点(包含端点),则AD BC ⋅ 的最大值为________ 8.【上海市崇明区2018届高三第一次高考模拟考试】在ABC 中,边上的中垂线分别交于点若,则_______9.【上海市浦东新区2018届高三数学一模】已知向量()1,2a =-, ()3,4b =,则向量a 在向量b 的方向上的投影为________10.【上海市交通大学附属中学2018届高三上学期开学摸底考试】如图,四个棱长为1的正方体排成一个正四棱柱, AB 是一条侧棱, ()1,2,,16i P i =⋯是上、下底面上其余十六个点,则()1,2,,16i AB AP i ⋅=⋯的不同值的个数为__________.11.【2016-2017年上海市闵行区高三4月质量调研考试(二模)】已知定点()1,1A ,动点P 在圆221x y +=上,点P 关于直线y x =的对称点为P ',向量AQ OP O '=,是坐标原点,则PQ 的取值范围是 . 12.【2016-2017年上海市普陀区高三下学期质量调研(二模)】在△ABC 中, D 、E 分别是AB 、AC 的中点, M 是直线DE 上的动点.若△ABC 的面积为1,则2MB MC BC ⋅+的最小值为 .。

2018上海高考数学试卷含答案

2018上海高考数学试卷含答案

2018上海一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.行列式的值为 .2.双曲线x 24-y 2=1的渐近线方程为 . 3.在(1+x )7的二项展开式中,x 2项的系数为 (结果用数值表示).4.设常数a ∈R ,函数f (x )=1og 2(x +a ).若f (x )的反函数的图象经过点(3,1),则a = .5.已知复数z 满足(1+i)z =1-7i(i 是虚数单位),则|z |= .6.记等差数列{a n }的前n 项和为S n ,若a 3=0,a 6+a 7=14,则S 7= .7.已知α∈{-2,-1,-12,12,1,2,3},若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α= .8.在平面直角坐标系中,已知点A (-1,0)、B (2,0),E 、F 是y 轴上的两个动点,且|EF →|=2,则AE →·BF →的最小值为 .9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是 (结果用最简分数表示).10.设等比数列{a n }的通项公式为a n =q n -1(n ∈N *),前n 项和为S n .若1lim +∞→n n n a S =12,则q = . 11.已知常数a >0,函数f (x )=2x 2x +ax 的图象经过点P (p ,65),Q (q ,-15).若2p +q =36pq ,则a = . 12.已知实数x 1、x 2、y 1、y 2满足:x 12+y 12=1,x 22+y 22=1,x 1x 2+y 1y 2=12,则22|x 1+y 1-1|+22|x 2+y 2-1|的最大值为 .二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设P 是椭圆x 25+y 23=1上的动点,则P 到该椭圆的两个焦点的距离之和为( ) A .2 2 B .2 3 C .2 5 D .4 214.已知a ∈R ,则“a >1”是“1a<1”的( ) A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA 1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA 1为底面矩形的一边,则这样的阳马的个数是( )A .4B .8C .12D .1616.设D 是含数1的有限实数集,f (x )是定义在D 上的函数,若f (x )的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1)的可能取值只能是( )A . 3B .32C .33D .0三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤. 17.已知圆锥的顶点为P ,底面圆心为O ,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO =4,OA 、OB 是底面半径,且∠AOB =90°,M 为线段AB 的中点,如图.求异面直线PM 与OB 所成的角的大小.18.设常数a ∈R ,函数f (x )=a sin2x +2cos 2x .(1)若f (x )为偶函数,求a 的值;(2)若f (π4)=3+1,求方程f (x )=1-2在区间[-π,π]上的解.19.某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S 中的成员仅以自驾或公交方式通勤.分析显示:当S 中x %(0<x <100)的成员自驾时,自驾群体的人均通勤时间为f (x )=⎩⎪⎨⎪⎧30, 0<x ≤30,2x +1 800x -90, 30<x <100(单位:分钟),而公交群体的人均通勤时间不受x 影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S 的人均通勤时间g (x )的表达式;讨论g (x )的单调性,并说明其实际意义.20.设常数t >2.在平面直角坐标系xOy 中,已知点F (2,0),直线l :x =t ,曲线Γ:y 2=8x (0≤x ≤t ,y ≥0).l 与x 轴交于点A 、与Γ交于点B 、P 、Q 分别是曲线Γ与线段AB 上的动点.(1)用t 表示点B 到点F 的距离;(2)设t =3,|FQ |=2,线段OQ 的中点在直线FP 上,求△AQP 的面积;(3)设t =8,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标;若不存在,说明理由.21.给定无穷数列{a n },若无穷数列{b n }满足:对任意n ∈N *,都有|b n -a n |≤1,则称{b n }与{a n }“接近”.(1)设{a n }是首项为1,公比为12的等比数列,b n =a n +1+1,n ∈N *,判断数列{b n }是否与{a n }接近,并说明理由;(2)设数列{a n }的前四项为:a 1=1,a 2=2,a 3=4,a 4=8,{b n }是一个与{a n }接近的数列,记集合M ={x |x =b i ,i =1,2,3,4},求M 中元素的个数m ;(3)已知{a n }是公差为d 的等差数列,若存在数列{b n }满足:{b n }与{a n }接近,且在b 2-b 1,b 3-b 2,…,b 201-b 200中至少有100个为正数,求d 的取值范围.2018上海答案解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.行列式的值为 18 . 【解答】行列式=4×5-2×1=18.故答案为:18. 【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.双曲线x 24-y 2=1的渐近线方程为 . 【解答】因双曲线x 24-y 2=1的a =2,b =1,焦点在x 轴上,而双曲线x 2a 2-y 2b2=1的渐近线方程为y =±b a x ,故双曲线x 24-y 2=1的渐近线方程为y =±12x ,故答案为:y =±12x 【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.在(1+x )7的二项展开式中,x 2项的系数为 21 (结果用数值表示).【解答】解:二项式(1+x )7展开式的通项公式为T r +1=•x r ,令r =2,得展开式中x 2的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4.设常数a ∈R ,函数f (x )=1og 2(x +a ).若f (x )的反函数的图象经过点(3,1),则a = 7 .【解答】因常数a ∈R ,函数f (x )=1og 2(x +a ).f (x )的反函数的图象经过点(3,1),故函数f (x )=1og 2(x +a )的图象经过点(1,3),故log 2(1+a )=3,解得a =7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.已知复数z 满足(1+i)z =1-7i(i 是虚数单位),则|z|= 5 .【解答】由(1+i)z =1-7i ,得z =-3-4i ,则|z |=5.故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6.(4分)记等差数列{a n }的前n 项和为S n ,若a 3=0,a 6+a 7=14,则S 7= 14 .【解答】因等差数列{a n }的前n 项和为S n ,a 3=0,a 6+a 7=14,故, 解得a 1=-4,d =2,故S 7=7a 1+21d =-28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.已知α∈{-2,-1,-12,12,1,2,3},若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α= -1 .【解答】因α∈{-2,-1,-12,12,1,2,3},幂函数f (x )=x α为奇函数,且在(0,+∞)上递减, 故a 是奇数,且a <0,故a =-1.故答案为:-1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.在平面直角坐标系中,已知点A (-1,0)、B (2,0),E 、F 是y 轴上的两个动点,且|EF →|=2,则AE →·BF →的最小值为 -3 .【解答】解:根据题意,设E (0,a ),F (0,b );故|EF →|=|a -b |=2;故a =b +2,或b =a +2;且AE→=(1,a ),BF →=(-2,b );故AE →·BF →=-2+ab ;当a =b +2时,AE →·BF →=-2+(b +2)b =b 2+2b -2;因b 2+2b -2的最小值为-3;故AE →·BF →的最小值为-3,同理求出b =a +2时,AE →·BF→的最小值为-3.故答案为:-3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是 (结果用最简分数表示).【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10, 这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=15,故答案为:15. 【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.设等比数列{a n }的通项公式为a n =q n -1(n ∈N *),前n 项和为S n .若1lim +∞→n n n a S =12,则q = 3 . 【解答】等比数列{a n }的通项公式为a n =q n -1(n ∈N*),可得a 1=1,因为1lim +∞→n n n a S =12,所以数列的公比不是1,S n =a 1(1-q n )1-q,a n +1=q n .可得===1q -1=12,可得q =3.故答案为:3. 【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.11.已知常数a >0,函数f (x )=2x 2x +ax 的图象经过点P (p ,65),Q (q ,-15).若2p +q =36pq ,则a = 6 . 【解答】因为f (x )=2x 2x +ax =11+ax 2x ,且其图象经过点P ,Q ,则f (p )=11+ap 2p =65,即ap 2p =-16①, f (q )=11+aq 2q =-15,即aq 2q =-6②,①×②得a 2pq 2p +q =1,则2p +q =a 2pq =36pq ,所以a 2=36,解得a =±6,因为a >0,所以a =6.【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12.已知实数x 1、x 2、y 1、y 2满足:x 12+y 12=1,x 22+y 22=1,x 1x 2+y 1y 2=12,则22|x 1+y 1-1|+22|x 2+y 2-1|的最大值为 .【解答】设A (x 1,y 1),B (x 2,y 2),OA →=(x 1,y 1),OB →=(x 2,y 2),由x 12+y 12=1,x 22+y 22=1,x 1x 2+y 1y 2=12,可得A ,B 两点在圆x 2+y 2=1上,且OA →·OB →=1×1×cos ∠AOB =12,即有∠AOB =60°,即三角形OAB 为等边三角形,AB =1,22|x 1+y 1-1|+22|x 2+y 2-1|的几何意义为点A ,B 两点到直线x +y -1=0的距离d 1与d 2之和,显然A ,B 在第三象限,AB 所在直线与直线x +y =1平行,可设AB :x +y +t =0(t >0),由圆心O 到直线AB 的距离d =22t ,可得22-12t =1,解得t =62,即有两平行线的距离为22(1+62)=12(2+3),即22|x 1+y 1-1|+22|x 2+y 2-1|的最大值为2+3,故答案为:2+3.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设P 是椭圆x 25+y 23=1上的动点,则P 到该椭圆的两个焦点的距离之和为( ) A .2 2 B .2 3 C .2 5 D .4 2【解答】椭圆x 25+y 23=1的焦点坐标在x 轴,a =5,P 是椭圆x 25+y 23=1上的动点,由椭圆的定义可知:则P 到该椭圆的两个焦点的距离之和为2a =25.故选:C .【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.14.已知a ∈R ,则“a >1”是“1a<1”的( ) A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【解答】a ∈R ,则“a >1”⇒“1a <1”,“1a <1”⇒“a >1或a <0”,故“a >1”是“1a<1”的充分非必要条件.故选:A .【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA 1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA 1为底面矩形的一边,则这样的阳马的个数是( )A .4B .8C .12D .16【解答】根据正六边形的性质,则D 1-A 1ABB 1,D 1-A 1AFF 1满足题意,而C 1,E 1,C ,D ,E ,和D 1一样,有2×4=8,当A 1ACC 1为底面矩形,有4个满足题意,当A 1AEE 1为底面矩形,有4个满足题意,故有8+4+4=16,故选:D .【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.设D 是含数1的有限实数集,f (x )是定义在D 上的函数,若f (x )的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1)的可能取值只能是( ) A . 3 B .32 C .33 D .0【解答】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转π6个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f (1)=3,33,0时,此时得到的圆心角为π3,π6,0,然而此时x =0或者x =1时,都有2个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y ,因此只有当x =32,此时旋转π6,此时满足一个x 只会对应一个y ,因此答案就选:B .【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.已知圆锥的顶点为P ,底面圆心为O ,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO =4,OA 、OB 是底面半径,且∠AOB =90°,M 为线段AB 的中点,如图.求异面直线PM 与OB 所成的角的大小.【解答】(1)因圆锥的顶点为P ,底面圆心为O ,半径为2,圆锥的母线长为4,故圆锥的体积V =13×π×r 2×h =13×π×22×23=833π. (2)因PO =4,OA ,OB 是底面半径,且∠AOB =90°,M 为线段AB 的中点,故以O 为原点,OA 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系,P (0,0,4),A (2,0,0),B (0,2,0),M (1,1,0),O (0,0,0),PM →=(1,1,-4),OB →=(0,2,0),设异面直线PM 与OB 所成的角为θ,则cos θ==26.故θ=arccos 26.故异面直线PM 与OB 所成的角的为arccos 26.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.(14分)设常数a ∈R ,函数f (x )=a sin2x +2cos 2x .(1)若f (x )为偶函数,求a 的值;(2)若f (π4)=3+1,求方程f (x )=1-2在区间[-π,π]上的解. 【解答】(1)因f (x )=a sin2x +2cos 2x ,故f (-x )=-a sin2x +2cos 2x ,因f (x )为偶函数,故f (-x )=f (x ),故-a sin2x +2cos 2x =a sin2x +2cos 2x ,故2a sin2x =0,故a =0;(2)因f (π4)=3+1,故a sin π2+2cos 2(π4)=a +1=3+1,故a =3,故f (x )=3sin2x +2cos 2x =3sin2x +cos2x +1=2sin(2x +π6)+1,因f (x )=1-2,故2sin(2x +π6)+1=1-2,故sin(2x +π6)=-22,故2x +π6=-π4+2k π,或2x +π6=5π4+2k π,k ∈Z ,故x =-524π+k π,或x =1324π+k π,k ∈Z ,因x ∈[-π,π],故x =1324π或x =1924π或x =-524π或x =-1124π. 【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S 中的成员仅以自驾或公交方式通勤.分析显示:当S 中x %(0<x <100)的成员自驾时,自驾群体的人均通勤时间为f (x )=⎩⎪⎨⎪⎧30, 0<x ≤30,2x +1 800x -90, 30<x <100(单位:分钟),而公交群体的人均通勤时间不受x 影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S 的人均通勤时间g (x )的表达式;讨论g (x )的单调性,并说明其实际意义.【解答】(1)由题意知,当30<x <100时,f (x )=2x +-90>40,即x 2-65x +900>0, 解得x <20或x >45,故x ∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x ≤30时,g (x )=30•x %+40(1-x %)=40-x 10;当30<x <100时,g (x )=(2x +-90)•x %+40(1-x %)=-x +58;故g (x )=;当0<x <32.5时,g (x )单调递减;当32.5<x <100时,g (x )单调递增;说明该地上班族S 中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.设常数t >2.在平面直角坐标系xOy 中,已知点F (2,0),直线l :x =t ,曲线Γ:y 2=8x (0≤x ≤t ,y ≥0).l 与x 轴交于点A 、与Γ交于点B 、P 、Q 分别是曲线Γ与线段AB 上的动点.(1)用t 表示点B 到点F 的距离;(2)设t =3,|FQ |=2,线段OQ 的中点在直线FP 上,求△AQP 的面积;(3)设t =8,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标;若不存在,说明理由.【解答】(1)方法一:由题意可知:设B (t ,22t ),则|BF |=t +2,故|BF |=t +2; 方法二:由题意可知:设B (t ,22t ),由抛物线的性质可知:|BF |=t +p 2=t +2,故|BF |=t +2; (2)F (2,0),|FQ |=2,t =3,则|F A |=1,故|AQ |=3,故Q (3,3),设OQ 的中点D ,D (32,22), k QF =-3,则直线PF 方程:y =-3(x -2),代入联立y 2=8x ,整理得:3x 2-20x +12=0,解得:x =23,x =6(舍去),故△AQ P 的面积S =12×3×73=736; (3)存在,设P (18y 2,y ),E (18m 2,m ),则k PF =16-82y y ,k FQ =y y 8-162,直线QF 方程为y =y y 8-162(x -2),故y Q =y y 43-482,Q (8,y y 43-482),根据FP →+FQ →=FE →,则E (18y 2+6,y y 4482+),故(yy 4482+)2=8(18y 2+6),解得:y 2=165,故存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上,且P (25,455).【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.21.给定无穷数列{a n },若无穷数列{b n }满足:对任意n ∈N *,都有|b n -a n |≤1,则称{b n }与{a n }“接近”.(1)设{a n }是首项为1,公比为12的等比数列,b n =a n +1+1,n ∈N *,判断数列{b n }是否与{a n }接近,并说明理由;(2)设数列{a n }的前四项为:a 1=1,a 2=2,a 3=4,a 4=8,{b n }是一个与{a n }接近的数列,记集合M ={x |x =b i ,i =1,2,3,4},求M 中元素的个数m ;(3)已知{a n }是公差为d 的等差数列,若存在数列{b n }满足:{b n }与{a n }接近,且在b 2-b 1,b 3-b 2,…,b 201-b 200中至少有100个为正数,求d 的取值范围.【解答】(1)数列{b n }与{a n }接近.理由:{a n }是首项为1,公比为12的等比数列,可得a n =12n -1,b n =a n +1+1=12n +1,则|b n -a n |=|12n +1-12n -1|=1-12n <1,n ∈N *,可得数列{b n }与{a n }接近; (2){b n }是一个与{a n }接近的数列,可得a n -1≤b n ≤a n +1,数列{a n }的前四项为:a 1=1,a 2=2,a 3=4,a 4=8,可得b 1∈[0,2],b 2∈[1,3],b 3∈[3,5],b 4∈[7,9],可能b 1与b 2相等,b 2与b 3相等,但b 1与b 3不相等,b 4与b 3不相等,集合M ={x |x =b i ,i =1,2,3,4},M 中元素的个数m =3或4;(3){a n }是公差为d 的等差数列,若存在数列{b n }满足:{b n }与{a n }接近,可得a n =a 1+(n -1)d , ①若d >0,取b n =a n ,可得b n +1-b n =a n +1-a n =d >0,则b 2-b 1,b 3-b 2,…,b 201-b 200中有200个正数,符合题意;②若d =0,取b n =a 1-1n ,则|b n -a n |=|a 1-1n -a 1|=1n <1,n ∈N *,可得b n +1-b n =1n -1n +1>0,则b 2-b 1,b 3-b 2,…,b 201-b 200中有200个正数,符合题意;③若-2<d <0,可令b 2n -1=a 2n -1-1,b 2n =a 2n +1,则b 2n -b 2n -1=a 2n +1-(a 2n -1-1)=2+d >0,则b2-b1,b3-b2,…,b201-b200中恰有100个正数,符合题意;④若d≤-2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n-1≤b n≤a n+1,a n+1-1≤b n+1≤a n++1,可得b n+1-b n≤a n+1+1-(a n-1)=2+d≤0,b2-b1,b3-b2,…,b201-b200中无正数,不符1合题意.综上可得,d的范围是(-2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试卷 第 6页(共 18页)
【解答】解:∵ 2, 1, 1 , 1 ,1, 2,3 ,
22
幂函数 f (x) x 为奇函数,且在(0,+∞)上递减,
∴ a 是奇数,且 a<0 ,
∴ a 1.
故答案为: 1.
【考点】幂函数的概念、解析式、定义域、值域
8.【答案】 3
【解析】据题意可设 E(0, a), F(0, b),从而得出 a b 2 ,即 a b 2 ,或 b a 2 ,
1 qn
可得, lim n
1 q qn
lim
n
1 qn (1 q)qn
lim n
1 qn
1
1q
1 q 1
1,n
N*
,判断数列 bn

否与 an 接近,并说明理由;
(2)设数列 an 的前四项为: a1 1, a2 2,a3 4,a4 8 , bn 是一个与 an 接近的
数列,记集合 M {x | x bi ,i 1, 2,3, 4} ,求 M 中元素的个数 m;
(3)已知 an 是公差为 d 的等差数列,若存在数列bn 满足:bn 与an 接近,且在
从中随机选取三个,3 个数中含有 1 个 2;2 个 2,没有 2,3 种情况, 数学试卷 第 7页(共 18页)
所有的事件总数为: C53 10 ,
这三个砝码的总质量为 9 克的事件只有:5,3,1 或 5,2,2 两个,
所以:这三个砝码的总质量为 9 克的概率是: 2 = 1 , 10 5
故答案为: 1 . 5
数学试卷 第 2页(共 18页)
18.(本题满分 14 分,第 1 小题满分 6 分,第 2 小题满分 8 分)
设常数 a R ,函数 f (x) a sin 2x 2cos 2x
(1)若 f (x) 为偶函数,求 a 的值;
(2)若
f
4
3 1 ,求方程 f (x) 1
2 在区间
上的解。
uuur
uuur
且 AE (1, a) , BF (2, b)
uuur uuur ∴ AE BF 2 ab
uuur uuur 当 a b 2 时, AE BF 2 (b 2) b b2 2b 2 ;
∵ b2 2b 2 的最小值为 8 4 3 ; 4
uuur uuur
uuur uuur
uuur uuur
并可求得 AE BF 2 ab ,将 a b 2 带入上式即可求出 AE BF 的最小值,
同理将 b a 2 带入,也可求出
的最小值.
【解答】解:根据题意,设 E(0, a),F(0,b);
uur | EF || a b | 2
∴a b2 或b a 2
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -----------------------------------

7.已知 2, 1, 1 , 1 ,1, 2,3 ,若幂函数 f (x) xn 为奇函数,且在 0, 上递减,则
22

uuur
8.在平面直角坐标系中,已知点 A(1,0), B(2,0), E, F 是 y 轴上的两个动点,且 EF 2 ,

uuur uuur 则 AE BF 的最小值为
22 22 ax
|
的图像经过点
p
p,
6 5

Q
q,
1 5
,若
2 pq 36 pq ,则 a


12. 已 知 实 数
x₁、x₂、y₁、y₂满 足 :
x12
y12
1

x22
y22
1

x1x2
y1 y2
1 2
,则
x1 y1 1 x2 y2 1 的最大值为

2

2

数学试卷 第 1页(共 18页)
b2﹣b1,b3﹣b2 ,L ,b20﹣1 b200 中至少有 100 个为正数,求 d 的取值范围.
数学试卷 第 3页(共 18页)
数学试卷 第 4页(共 18页)
上海市 2018 年普通高等学校招生全国统一考试
数学答案解析
一、填空题
1.【答案】18 【解析】直接利用行列式的定义,计算求解即可.
【考点】古典概型及其概率计算公式
10.【答案】3
【解析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即
可.
解:等比数列{an} 的通项公式为 an
qn1 m
n N*
,可得 a1 1,
因为 lim Sn 1 ,所以数列的公比不是 1, a n n1 2
, an1 qn .
y2 b2
1的渐近线方程为
y
b a
x
∴双曲线 x2 y2 1的渐近线方程为 y 1 x
4
2
故答案为: 1 x 2
【考点】双曲线的性质
3.【答案】21
【解析】利用二项式展开式的通项公式求得展开式中 x2 的系数.
解:二项式(1 x)7 展开式的通项公式为
Tr1 C7r • xr ,
令 r 2 ,得展开式中 x2 的系数为 C72 21.
绝密★启用前

上海市 2018 年普通高等学校招生全国统一考试
数学
本试卷满分 150 分,考试时间 120 分钟.

一、填空题(本大题共有 12 题,满分 54 分第 1-6 题每题 4 分,第 7-12 题每题 5 分)
41
1.行列式
的值为

25
2.双曲线 x2 y2 1的渐近线方程为


4
3.在(1 x)7 的二项展开式中, x2 项的系数为
19.(本题满分 14 分,第 1 小题满分 6 分,第 2 小题满分 8 分)
某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均勇士,
某地上班族 S 中的成员仅以自驾或公交方式通勤,分析显示:当 S 中 x%(0 x 100)
的成员自驾时,自驾群体的人均通勤时间为
f
(
x)
30,
4 解:行列式
1 4 5-2 1 18 .
25
故答案为:18.
【考点】二阶行列式的定义.
2.【答案】 1 x 2
【考点】双曲线的性质
【解析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定
双曲线的渐近线方程.
解:∵双曲线
的 a 2 , b 1,焦点在 x 轴上
而双曲线
x2 a2
计算得答案.
解:由 (1 i) z 1 7i , 得 z 1 7i (1 7i)(1 i) 6 8i 3 4i ,
1 i (1 i)(1 i) 2
则| z | (3)2 (4)2 5 .
故答案为:5.
【考点】复数的模
6.【答案】14
【解析】利用等差数列通项公式列出方程组,求出 a1 4 , d 2 ,由此能求出 S7 . 解:∵等差数列{an} 的前 n 项和为 Sn , a3 0,a6 a7 14
20.(本题满分 16 分,第 1 小题满分 4 分,第 2 小题满分 6 分,第 2 小题满分 6 分,第 3 小题满分 6 分)
设常数 t>2 ,在平面直角坐标系 xOy 中,已知点 F (2,0) ,直线 l : x t ,曲线 :
y² 8x (0≤x≤t, y≥0) ,l 与 x 轴交于点 A ,与 交于点 B,P、Q 分别是曲线 与线 段 AB 上的动点。 (1)用 t 为表示点 B 到点 F 的距离; (2)设 t 3 ,∣FQ∣ 2 ,线段 OQ 的中点在直线 FP 上,求 △AQP 的面积; (3)设 t 8 ,是否存在以 FP、FQ 为邻边的矩形 FPEQ ,使得点 E 在 上?若存在, 求点 P 的坐标;若不存在,说明理由。
∴ a1 a1
2d 5d
0 a1
6d
14

解得 a1 -4 , d 2 ,

S7
7a1
76 2
d
28
42
14 .
故答案为:14.
【考点】等差数列的前 n 项和
7.【答案】 1
【解析】由幂函数 (f x) x 为奇函数,且在 (0, ) 上递减,得到 a 是奇数,且 a<0 ,
由此能求出 a 的值.
二、选择题(本大题共有 4 题,满分 20 分,每题 5 分)每题有且只有一个正确选项.
13.设 P 是椭圆 x2 y2 1 上的动点,则 P 到该椭圆的两个焦点的距离之和为(

53
A. 2 2
B. 2 3
C. 2 5
D. 4 2
14.已知 a R ,则“ a>1”是“ 1 <1”的 a
()
A.充分非必要条件
。(结果用数值表示)
4.设常数 a R ,函数 f x log2 (x a) ,若 f x 的反函数的图像经过点(3,1),则
a
。。
5.已知复数 z 满足 (1 i)z 1 7i (i 是虚数单位),则 z


6.记等差数列 an 的前几项和为 Sn,若 a3 0, a8 a7 14 ,则 S7
相关文档
最新文档