北大版高数 习题解答

合集下载

大学高等数学b教材答案北京大学

大学高等数学b教材答案北京大学

大学高等数学b教材答案北京大学大学高等数学B教材答案(北京大学版)前言:高等数学作为大学数学系列课程的重要组成部分,对于培养学生的数学思维和解决实际问题的能力具有重要意义。

北京大学作为中国乃至世界的一流学府,其高等数学B教材更是质量过硬,深受广大学生的欢迎。

本文将提供北京大学版大学高等数学B教材的答案,帮助学生更好地学习和掌握该教材。

第一章:函数与极限1. 函数的概念与性质答案略2. 极限的概念与性质答案略3. 极限的计算方法答案略4. 无穷大与无穷小答案略5. 函数的连续与间断答案略第二章:导数与微分1. 导数的概念与性质答案略2. 基本初等函数的导数答案略3. 导数的四则运算与复合函数求导法则答案略4. 隐函数与参数方程的导数答案略5. 高阶导数与莱布尼茨公式答案略第三章:微分中值定理与导数的应用1. 微分中值定理答案略2. 函数的尺寸与曲率答案略3. 函数的单调性与凹凸性答案略4. 极值与最值答案略5. 曲线的渐近线与图形的描绘答案略第四章:定积分1. 定积分的概念与性质答案略2. 定积分的计算方法答案略3. 反常积分答案略4. 定积分的应用答案略第五章:不定积分与其应用1. 不定积分的概念与性质2. 不定积分的计算方法答案略3. 定积分与不定积分之间的关系答案略4. 不定积分的应用答案略第六章:微分方程1. 微分方程与解的概念答案略2. 可降阶的微分方程答案略3. 齐次线性微分方程答案略4. 一阶线性微分方程答案略5. 可化为一阶线性微分方程的方程......(以下章节依次列举)总结:本文提供了北京大学版大学高等数学B教材的答案,旨在帮助学生更好地学习与掌握该教材。

通过逐章列举的答案,学生可以及时核对自己的学习成果,加深对知识点的理解。

同时,答案的呈现形式整洁美观,语句通顺流畅,不仅保证了阅读的舒适体验,也有助于学生更好地理解与消化教材内容。

希望本文对广大学生在学习高等数学B课程中有所帮助。

高等代数北大版(第三版)答案

高等代数北大版(第三版)答案

令(x2+x+1)=0
得 ε1
=
−1+ 2
3i
,ε2
=
−1− 2
3i
∴f(x)与g(x)的公共根为 ε1,ε2 .
P45.16 判断有无重因式
① f (x) = x5 − 5 x4 + 7x3 + 2x2 + 4x − 8 ② f (x) = x4 + 4x2 − 4x − 3
解① f '(x) = 5x4 − 20x3 + 21x 2 − 4x + 4

f (x) d ( x)
=
f1 ( x),
g(x) d ( x)
=
g1 ( x),

d
(x)
=Байду номын сангаас
u(x)
f
(x)
+
v( x) g ( x).
所以 d (x) = u(x) f1(x)d (x) + v(x)g1(x)d (x).
消去 d (x) ≠ 0 得1 = u(x) f1(x) + v(x)g1(x)
P45.5
(1) g(x) = (x −1)(x2 + 2x +1) = (x −1)(x +1)2 f (x) = (x + 1)(x3 − 3x −1) ∴ ( f (x), g(x)) = x +1
(2) g(x) = x3 − 3x2 +1不可约 f (x) = x4 − 4x3 + 1不可约
3
u = − 1 [(t 2 + t + 3)(t 2 + 2t − 8) + 6t + 24] = −2(t + 4) ∴3

高等代数(北大版第三版)习题答案II

高等代数(北大版第三版)习题答案II

高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章—矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A为一个n级实对称矩阵,且,证明:必存在实n维向量,使。

证因为,于是,所以,且A不是正定矩阵。

故必存在非退化线性替换使,且在规范形中必含带负号的平方项。

于是只要在中,令则可得一线性方程组,由于,故可得唯一组非零解使,Xs即证存在,使。

13.如果A,B都是n阶正定矩阵,证明:也是正定矩阵。

证因为A,B为正定矩阵,所以BX为正定二次型,且,,因此,于是必为正定二次型,从而为正定矩阵。

14.证明:二次型是半正定的充分必要条件是它的正惯性指数与秩相等。

证必要性。

采用反证法。

若正惯性指数秩r,则。

即,22222 若令,y,则可得非零解使。

这与所给条件矛盾,故。

充分性。

由,知,222故有,即证二次型半正定。

.证明:是半正定的。

证()可见:。

21)当不全相等时2)当时f。

2故原二次型是半正定的。

AX是一实二次型,若有实n维向量X1,X2使16.设,。

X1。

证明:必存在实n维向量使X0设A的秩为r,作非退化线性替换将原二次型化为标准型,其中dr为1或-1。

由已知,必存在两个向量X1,X2使222和,X1故标准型中的系数不可能全为1,也不可能全为-1。

不妨设有p个1,q 个-1,且,即,这时p与q存在三种可能:,,下面仅讨论的情形,其他类似可证。

令,,,则由可求得非零向量X0使2222,X0即证。

17.A是一个实矩阵,证明:。

证由于的充分条件是与为同解方程组,故只要证明与同解即可。

事实上,即证与同解,故。

注该结论的另一证法详见本章第三部分(补充题精解)第2题的证明,此处略。

一、补充题参考解答1.用非退化线性替换化下列二次型为标准型,并用矩阵验算所得结果:1);2);3);4),其中。

n解1)作非退化线性替换,即,则原二次型的标准形为,且替换矩阵222222使,,其中2)若则。

高等数学上册教材答案北大

高等数学上册教材答案北大

高等数学上册教材答案北大第一章:微积分基础1.1 极限与连续1.1.1 极限的定义根据微积分基础知识,极限是函数概念的核心之一。

在数学中,我们需要明确了解极限的定义。

对于函数 f(x),当 x 趋近于某一点 a 时,如果 f(x) 的值趋近于一个常数 L,则我们称 L 为 f(x) 在 x=a 处的极限,记作lim(x→a) f(x) = L。

1.1.2 连续的概念与性质连续是微积分中的另一个重要概念。

对于函数 f(x),如果在某一点a 处,该函数的极限等于 f(a),则我们称函数在点 a 处是连续的。

连续性具有以下性质:- 连续函数的和、差、积均为连续函数;- 两个连续函数的乘积仍为连续函数;- 连续函数的复合函数仍为连续函数。

1.2 导数与微分1.2.1 导数的概念导数是微积分中的重要概念之一。

对于函数 y=f(x),如果函数在某一点 x=a 处的极限值存在,则称该极限值为函数 y=f(x) 在 x=a 处的导数,记作 f'(a) 或 df(x)/dx。

导数的计算公式包括函数的基本运算法则、常数的导数、幂函数的导数、指数函数的导数等。

1.2.2 微分的概念与应用微分是导数的一种表现形式,也是微积分的重要概念之一。

对于函数 y=f(x),如果δx 是 x 的增量,δy 是 y 的增量,则函数 y=f(x) 的微分为 dy=f'(x)dx。

微分的应用包括切线问题、极值问题、凹凸性判定等。

第二章:函数与极限2.1 函数概念与基本运算2.1.1 函数定义与表示法函数是数学中最基本的概念之一。

函数可以通过函数定义域、值域以及对应关系进行定义。

常见的函数表示法有显式函数表示法、隐式函数表示法、参数方程表示法等。

2.1.2 函数的基本运算函数的基本运算包括函数的和、差、积、商运算。

通过研究函数的基本运算,可以帮助我们理解函数之间的关系以及求解函数的性质。

2.2 极限的思想与性质2.2.1 函数的极限函数的极限是函数概念的核心之一。

北大版高等数学第三章 积分的计算及应用答案 习题3.1

北大版高等数学第三章 积分的计算及应用答案 习题3.1

31.∫
ቤተ መጻሕፍቲ ባይዱ
1 dx 2 1 u 2 du 1 = ∫ ∫ x 4 1 + x 2 2 1 + u (u = x 2 ) 2 x6 1 + x2 x 7 1 + x 2 2 2 1 (v 1) 1 v 2v + 1 dv(v = 1 + u ) = ∫ 1/ 2 dv = ∫ 2 v 2 v1/ 2 1 = ∫ (v3/ 2 2v1/ 2 + v 1/ 2 )dx 2 1 12 5 2 3 = v 2 2i v 2 + 2i v 2 25 3 dx =∫ dx = 1 1 2 2 1 2 1 2 = 1 + 2 + 1 + 2 1 + 2 + C 5 x 3 x x
33.∫ dx 3 + x x2 x =∫ dx 1 1 3 x + 2 4
2
=∫
1 dx 2 13 1 x 4 2
2
= arcsin
1 2 + C = arcsin 2 x 1 + C. 13 13 2
2 2 2
1 1 29 1 1 34.∫ 7 + x x dx = ∫ 7 x + dx = ∫ x d x 2 4 4 2 2 1 2 x 1 1 29 1 29 2 +C = x x + arcsin 2 2 4 2 8 29 2 2x 1 29 2x 1 = 7 + x x 2 + arcsin + C. 4 8 29
27.∫
x2 a2 dx(a > 0).x > 0时, 令x = a sec t , t ∈ (0, π / 2). x

高等代数北大编第1章习题参考答案

高等代数北大编第1章习题参考答案

第一章多项式一、习题及参考解答1 .用g(x)除了(x),求商g(x)与余式r(x):1 ) f (x) = x3 - 3x2 - x -1, g(x) = 3x2 - 2x +1;2 ) f(x) = x4 -2x + 5,g(x) = x2 - x + 2。

解1)由带余除法,可得q(x) =L-Z,“x) =-竺x-2 ;2)同理可得g(x) = / +x-l,r(x) = -5x + 7。

2. 〃?,PM适合什么条件时,有1 ) X2 +/?1¥-1 I X3 + px + c/ 92) x2 + nix + 11 x4 + px2 +q。

解1 )由假设,所得余式为0,即(〃 + l + 〃?2)x + (q-〃?) = O,所以当 1 + 。

时有 /+〃a-11 X* + px +g 0q _ in = 0 .2)类似可得= 于是当〃? = 0时,代入(2)可得〃=夕+ 1;q + 1 —〃一" = 0而当2- 〃 -J = 0时,代入(2)可得4 = 1 04 = ] _, 时,皆有 / + + 1 I X,+ px2 + 9。

综上所诉,当p + nr = 23 .求g(x)除f(x)的商q(x)与余式:1 ) /(x) = 2«?-5x3-8x,g(x) = x + 3 ;2) f(x) = x3-x2 - xg(x) = x-l + 2i o解[)q(x) = 2x4 - 6x3 +13x2 - 39A+ 109 ,r(x) = -327 '2)= x2 -2LV-(5+2/)r(x) = -9 + 8/ °4 .把/1(X)表示成x-%的方幕和,即表成c()+ G(X —“0)+。

2(X — X。

)~ + …+ C n(X — X。

)” + …的形式:1)/(x) = x',x()= 1 ;2) /(X)= X4-2X2+3,X0 =-2 ;3) f (x) = x4 + 2汉3 -(1 + i)x2 -3x + 7 + i,x0 =-i o解 1 ) 由综合除法,可得f(x) = l + 5(x-l) + 10(x-l)2 + 10(x-1)3+5(X-1)4 + (x-1)5 ;2 ) 由综合除法,可得X4-2X2+3=11-24(X + 2) + 22* + 2)2 -8(.r + 2)3 + (x + 2),;3)由综合除法,可得『+2立3_(1 +82_3工+ (7 +,)= (7 + 5i)-5(x + i) + (-l-i)(x + i)2 -2i(x + i)3 + (x + i),。

北大版高等数学(第二版)习题答案1.1

北大版高等数学(第二版)习题答案1.1

北京大学出版社高等数学(第二版)习题1.11证明√3为无理数.证明:假设√3是有理数,存在两个正整数m及n,使得(m,n)=1,且√3=m n所以√3n=m ⟹3n2=m2所以3整除m2,即3整除m。

设m=3p,代入3n2=m2得:3n2=9p2⟹n2=3p2所以3整除n2,即3整除n。

由于3能整除m及n,与(m,n)=1矛盾,假设不成立。

因此√3是无理数。

证毕。

2设p是正的素数,证明√p是无理数.证明:假设√p是有理数,存在两个正整数m及n,使得(m,n)=1,且因为p>0,有√p=m n所以√pn=m ⟹pn2=m2所以p整除m2,即p整除m。

设m=pq,代入pn2=m2得:pn2=p2q2⟹n2=pq2所以p整除n2,即p整除n。

由于p能整除m及n,与(m,n)=1矛盾,假设不成立。

因此√p是无理数。

证毕。

3解下列不等式:(1)|x|+|x−1|<3解:依[命题2]有|x+y|≤|x|+|y|,且原式|x|+|x−1|<3所以|x+x−1|≤|x|+|x−1|<3所以|2x−1|<3所以(依[命题4])−3<2x−1<3 ⟹−1<x<2(2)|x2−3|<2解:|x2−3|<2 ⟹−2<x2−3<2 ⟹1<x2<5①考虑x2>1时,有x>1或x<−1②考虑x2<5时,有−√5<x<√5综合①和②,有−√5<x<−1或1<x<√54设a与b为任意实数.(1)证明:|a+b|≥|a|−|b|证明:|a|=|a+b+(−b)|≤|a+b|+|−b|=|a+b|+|b|所以|a|≤|a+b|+|b|所以|a+b|≥|a|−|b|。

证毕。

(2)设|a−b|<1,证明|a|<|b|+1证明:因为|a−b|=|a+(−b)|≥|a|−|−b|=|a|−|b|且因为|a−b|<1所以|a|−|b|<1有|a|<|b|+1。

高等代数北大编 第1章习题参考答案

高等代数北大编 第1章习题参考答案

第一章 多项式 一 、习题及参考解答1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。

解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。

2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。

解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++012m q m p 时有q px x mx x ++-+32|1。

2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。

综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。

3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。

解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。

4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+ 的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。

北大版高等数学习题答案6.4

北大版高等数学习题答案6.4

习题6.4223331111.:(1)ln((2),.(3),ln ln .1ln ,(l yx y y y y z x z x z y z zx y xz xy y z x z x x zyx x x z yx z x ---=+∂==∂∂==∂=∂==∂∂=-∂==∂=+=∂求下列函数的一阶偏导数12222222n ),1ln ln ,(ln ).(4).,()().()()(5)arcsin((6).()(1y y y xy xy xy xy x x z zx x x z x x z y yxyz x y z x y x y y x x y x y z x y y x x y x y x y z z z x y z xe z e xe y e xy x -----+∂∂==∂∂=-⎛⎫∂---== ⎪∂--⎝⎭⎛⎫∂-+== ⎪∂--⎝⎭=∂∂==∂∂=∂=+-=-∂2222),.(7).111,,.xy zx e yy z x u x y z u y u z u x x x z y x y z y z -∂=-∂=+-∂∂∂=--=-=+∂∂∂11(8)().(),(),().ln()z z z zu xy u u u yz xy xz xy xy xy x y z --=∂∂∂===∂∂∂ (0,1)(0,1)2(0,1)0(0,1)12arccos(1)(1)cos (1),.1sin sin(1)1sin cos 1,1sin (1sin )(1)(1sin(1))(1)cos(1)1sin(1)(1s x x y x y y x z zz x y x y z d x d x x x x dx xdx x z d y d y y y y dy y dy ===---∂∂=++-∂∂∂+-===∂++∂---+-+--==∂+-+求下列函数在指定点的偏导数:求及21(,1)(,1)22222(,1)(,1)221.in(1))2(2),.cos 2sin cos 2cos ,2(cos )(cos )(cos )2,0.(3)(,,)ln(),(2,1,0),(2,1,0),(2,1,0).(,,)y x y z x y y z zz y x x y z y x z y x y xx y x y y x y x z zx y f x y z xy z f f f f x y z ππππ==--∂∂=+∂∂∂∂+-==⨯=∂+∂++∂∂==∂∂=+求及求1,(,,),(,,).11(2,1,0),(2,1,0)1,(,,).22y z x y z y x f x y z f x y z xy z xy z xy z f f f x y z ===+++===222220,(,)(0,0),3.(,)||||0, (,)(0,0)(0,0),(0,0).(,)|||||0((,)(0,0)),||||(,)(0,0)0((,)(0,0)),(,)(0,0)|(0,0)lim x x x x y x y f x y x y x y f x y f x y x y x y x y f x y f x y f x y x f ∆→⎧+≠⎪=+⎨⎪=⎩+=≤+→→+→=→∆∆=证明函数在连续但是不存在在连续.证|0|lim .||x x x x x ∆→∆=∆∆不存在24..21,,.2y z z zz x yx x yz y y y z yx x x x y x xz z y y y y zx yx y x x x x∂∂=+=∂∂∂∂⎛⎫⎛⎫=+-=⎪ ⎪∂∂⎝⎭⎝⎭∂∂+=+==∂∂设,证明为齐次函数根据关于齐次函数微分的一个定理立得结论直接计算如下证1/2,,..22322225.:(1)(,)ln(23).26,.23(23)(2)(,)sin .cos ,cos .(3)(,)4ln(1).2112,2.1(4)(,)ln()ln ln .ln ln 1xy x xy x x x xy x xy x f f x y x y f f x y x y f x y y x e f y x e f x f x y x xy x x xf y x f y x f x y x xy x x x y f y x =+-==++=+=+==++-+=++-=+==+=++求下列函数的二阶混合偏导数2232223322332222222221,.6.cos3,Laplace 0.3sin 3,9cos3,3cos3,9cos3,0.7.(,)4cos(33)xy yyy yy x ctf yu uu ex u u x yu u e x e x x x u u e x e x y y u u u x yu u u x t e x ct c t -----+=∂∂=∆=+=∂∂∂∂=-=-∂∂∂∂=-=∂∂∂∂∴∆=+=∂∂∂∂=++=∂ 设证明满足平面方程证明函数满足波动方程证222222222222.12sin(33),36cos(33),12sin(33),36cos(33),.8.(,)(,),.x ct x ct x ctx ct x u u ce c x ct c e c x ct t t u u e x ct e x ct x xu u c t x u u x y v v x y D u u u v u v D x y y x++++∂∂∂=-+=-+∂∂∂∂=-+=-+∂∂∂∂=∂∂==∂∂∂∂==-∂∂∂∂故设及在内又连续的二阶偏导数,且满足方程组证明及在内证2222Laplace 0,.u v u u x y∆=∆=∂∂∆=+∂∂满足平面方程其中 222222222,(),0.0.u v v u v v v v vx x y x y y y x y x x y y x x y u v ∂∂∂∂∂∂∂∂∂∂∂===-=-=-∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∆=∆=和连续故类似证证2222/19.(,)sin (0,)2sin .111sin sin ln(1),11(0,)2sin ,(,)sin ln |1|2sin 1(2)sin ln |1|.10.:(1).y x z z x y y z y y y z x xyy dx x y xy C xy y z y C y y z x y x y xy y y yx y y xy y z e d ∂=-+=+∂-⎛⎫-+=---+ ⎪-⎝⎭==+=---++=-+--=⎰已知函数满足以及.试求的表达式求下列函数的全微分解z=//222222.()()()()(2)(2))(2)..()()(3)arctan arctan arctan arccot ,0.2(4)y x y x y xdy ydx z e de x x x y dx dy x y x y dx dy y dx x dy z dz x y x y x y y x y y z dz x y x x u du π-==++--+--+===---=+=+=====334223433422343344234223223411.(,)(4103)(15125),(,).4103,15125.(4103)53(),1512()15125,()z x y dz x xy y dx x y xy y dy f x y z zx xy y x y xy y x y z x xy y dx x x y xy C y zx y xy C y x y xy y yC y =+-+-+∂∂=+-=-+∂∂=+-=+-+∂'=-+=-+∂'=⎰已知函数的全微分求的表达式解454234522222222222222225,().(,)53.12.(,)(),(,).()11()()2211y C y y C f x y x x y xy y C z f x y y x dz x dx y dy z x y x y x y y x dz x dx y dy x y x y xdy ydx xdx ydy x y xdy ydxyd x x d x y d x y yx =+=+-++=⎛⎫=-++ ⎪++⎝⎭⎛⎫=-++ ⎪++⎝⎭-=+++-=++=+++已知函数的全微分求的表达式解22222221()arctan 21()arctan .21()arctan .2y d x y d x y xy d x y x y z x y C x=+++⎛⎫=++ ⎪⎝⎭=+++ 222000000000000013.(,):{()()}0,0.:(,).(,),(,)(,)[(,)(,)][(,)(,)](,)()(,)()0.(,)(,),(,).x y f fz f x y D x x y y R f x y x yx y D f x y f x y f x y f x y f x y f x y f y x x f x y y f x y f x y x y D ξη∂∂=-+-<==∂∂∀∈-=-+-=-+-==∈证明在区域上恒等于常数证14.:(,)(0,0),(0,0),(0,0),(,)(0,0).(,)|0(0,0)((,)(0,0)),(,)(0,0)(0,0)0,(0,0)0.(,)(0,0)0),(,)x y x y o f x y f f f x y f x y f x y f x y f f f x y f x x ==→=→===→证明函数处连续存在但在处不可微处连续.若在处可微, 将有f(x,y)=特别应有证||||)(0),.o x x x ==→但此式显然不成立12222115.(,)(,)(,),,()..(,)(,).,.,,,(),(),,.P x y dx Q x y dy D u x y P Q C D P Q y xu udu P x y dx Q x y dy P Q x y P u u Q u uy y x y x x x y x yP Q u u P QP Q C D C D y x y x x y y x+∈∂∂=∂∂∂∂=+==∂∂∂∂∂∂∂∂∂∂====∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∈∈==∂∂∂∂∂∂∂∂设在区域中是某个函数之全微分且证明由假设由得故即证22222(),(,)(0,0)16.(,)0 (,)(0,0).(1)(0,)(0);(2)(0,0)0;(3)(0,0)1;(4)(,0),(0,0) 1.[2((1)0,(,)x x xy y yx x x y xyx y f x y x y x y f y y f f f x f x y x y f x y ⎧-≠⎪=+⎨⎪=⎩≠==-=+≠=设函数计算根据偏导数定义证明在上述结果的基础上证明重复上述步骤于并证明设则证2222222225402222222222)]()2(),()(0,).(2)(,0)0,(0,0)0.(3)(0,0)()| 1.[2()]()2()(4)0,(,),()(,0).(0,)0,(0,0)0.(0,0)x x xy y y y y yx y y x y x x y xyx y y f y y yf x f f y xy x y x x y y x y xyx f x y x y f x x f y f f x =-+--+-==-=='=-=--+-+--≠=+'====设则03332232322322| 1.17.ln(),.11ln()ln()1,,,11,.x z zz x xy x x yz y z z xy x xy x xy x x x x z z x y y x y y ==∂∂=∂∂∂∂∂∂=+=+==-∂∂∂∂∂==-∂∂∂∂设求解。

北大版高等数学第三章 积分的计算及应用答案 第三章总练习题

北大版高等数学第三章 积分的计算及应用答案 第三章总练习题

第三章总练习题111121221.N ew to n -L eib n iz 1(1).[1,1],.tan (2).tan (0,2)2tan2.,x x xd de d x e e d x d x x d x d x u x xf F F ππ-⎛⎫⎛⎫⎛⎫=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=+⎰⎰为什么用公式于下列积分会得到不正确结果?无界从而不可积在的一些点不可导.证明奇连续函数的原函数为偶函数,而偶连续函数的原函数之一为奇函数.设奇连续函数的原函数为 现在证明是偶证.()().(()())()()()()0,()(),(0)(0)0.()()0.,.()().(()())()()()()0,()().(0)0,(F x f x F x F x F x F x f x f x F x F x C C F F F x F x f F F F x f x F x F x F x F x f x f x F x F x C F C F ''''=--=---=---=--==--=--=''''=-+=--+=--+=--===函数设偶连续函数的原函数为现在证明是奇函数设则3003440010100)(0)0.()()0.sin ,0,3.()()()?0,0., 0,()()()sin co s |1co s .444.sin ().sin ()s b ab b b a aaabF F x F x x x f x f x f x d x a b x x f x d x f x d x f x d x x d x xd xxax b d x t d x d xd d x t d x d xd x--=-+=≥⎧==<>⎨<⎩=+=+=-=+-++=⎰⎰⎰⎰⎰⎰⎰⎰求定积分其中求微商解解()()110001201/2221210221in ()sin (1)sin ().5.lim()(),().1lim()()().6.lim(1).(2)!!(1)co s.(21)!!2x xh x h u xh u xnn nn n n u d u x x f x h t d x f x f x f x h t d u f t d tf x hx d x n x d x td t I n I π+→+→=→∞+++=+-+='+==--===+<⎰⎰⎰⎰⎰⎰⎰试证明其中是实轴上的连续函数求极限证解12210(2)!!(21)!!1,(21)!!(22)!!1100(),lim(1)0.sin co s 7..2sin 3co s sin co s (2sin 3co s )(2sin 3co s )(2sin 3co s )(2co s 3sin )(23)sin (32)co s nn n n n n n n I n x d x x x d x x xx x A x x B x x A x x B x x A B x A B +→∞+=+++<<→→∞-=+-'+=-+-=-++=++-+⎰⎰令解,x23115,,.3211313sin co s 2sin 3co s (2sin 3co s )(2sin 3co s )2sin 3co s ln |2sin 3co s |15ln |2sin 3co s |.1313A B A B A B x xd x x x A x x B x x d xx xA xB x xC x x x C +=⎧=-=⎨-+=⎩+=-'-+-=-=+-+=-+-+⎰⎰222228.:2(1),ln (2),.22222222.(2)(2)222xxu d u x u x u d x uu d u d u x u uu u C C xex x e xd==+=+⎛⎫==- ⎪++⎝⎭⎛⎛=-+=-+ ⎝⎝=-==⎰⎰⎰⎰⎰⎰⎰⎰通过适当的有理化或变量替换求下列积分()24.2).22(3)33.(4)(11ln .2x C x C x CC d x x C ⎛⎫=+⎝=-++==-⨯=-=+-==-+⎰⎰⎰⎰⎰224444224222244sec tan(1)9..sin co s1tan11112111.21111((arctan1)arctansin co sd x xd x u d ux x x uuuu ud xx x+==++++⎛==++⎝⎛⎫⎪⎪=+⎪⎛⎛⎪++-+⎪⎝⎝⎝⎭=+++⎰⎰⎰⎰)1).110.()(,),,()()(),:()()( 3.424)11.()[,],()0.:(,),()0.,()(,),,TxbaCf x Tg x f x f x d xTh x g t d t Tf x a b f x d x a b cf cf x a b ff-+-∞+∞=-===⎰⎰⎰设函数在上连续以为周期令证明函数也以为周期.此即习题第题设函数在区间上连续且证明在内至少存在一点使若不然在没有零点由的连续性和连续函数的中间值定理在证证(,).()0,(,).,,,[,]0.()()()()()0..b c d ba a c da b f x x a b c d a c d b f c dmf x d x f x d x f x d x f x d x m d c>∈<<<>=++≥->⎰⎰⎰⎰不变号不妨设取满足则在取最小值于是矛盾22222212.[,],()0,:()0,[,].[,][,],|()||()|,[,].2|()|()()()0.2.bab ea da b f x d x f x x a bd e a bf cf x x d ef cf x d x f x d x d e=≡∈∈≠⊆>∈≥>->⎰⎰⎰设函数f在区间上连续且证明若不然,存在c[a,b],f(c)0.由f在c的连续性,存在区间矛盾证00222/200013.()(-,),(1),()();sin(2);1co s4sin1(3)(1co s sin()()()()().a aa a aaf xa f x d x f a x d xx xd xxxd xx xf x d x x a t f a t d t f a t d t f a x d xπππ∞+∞=-=+=++=-=--=-=-⎰⎰⎰⎰⎰⎰⎰⎰设在上可积证明对于任意实数有证(1)22220211022222sin ()sin ()sin sin (2),1co s 1co s 1co s 1co s sin co s arctan |.21co s 21co s 14sin sin (/2)(3)co s sin co s(/2)s x x x x x x xI d x d x d x d x I x x xx xd xd x d uI u xxux x I d x x xx ππππππππππππππππ--==-==-++++==-===+++-==+-+⎰⎰⎰⎰⎰⎰⎰/2/20222/2/2/20/2/2/2in (/2)co s co s sin ,2co s sin co s sin co s sin 1|csc(/4)co t(/4)||co s sin 11ln1ln co s s 4d xx x xx d x I d x d xx xx xx xd x d xd x x x x xππππππππππππ==++++===+-++⎡⎤⎛⎫⎢⎥ ⎪=+-⎥ ⎪⎥ ⎪⎢⎥⎝⎭⎣⎦⎰⎰⎰⎰⎰⎰⎰11),in 411).I π⎛⎫⎪-= ⎪ ⎪⎝⎭=232221123222014.()(23)m /s .004m /s,(1);(2)3(1)()23,3,4,34,4,3230.()4.34(4)(1)0, 4.32(5)a t t t x v tx t t x t t C C x t t x t t C tC x t t t x t t t t t s x =-===-''''=-=-+-==--=--+'==--=--=-+===一质点作直线运动,其加速度若时且求质点改变动方向的时刻头5秒钟内质点所走的总路程.解3322543343(4)|(4)|424m.32322t t t t x x t t t t ==⎛⎫⎛⎫-+=-----=⎪⎪⎝⎭⎝⎭000200022002200215.100m ,10.2s,25m ,25m ., 0;(), 10.2., 0;()210.2./2/2253m /s .10010.2a t t t v t a t t t a tt t s t a t t C t t a t a t Ca t a a t C ≤≤⎧=⎨≤≤⎩⎧≤≤⎪=⎨⎪+≤≤⎩⎧=+⎪=≈⎨⎪=+⎩一运动员跑完共用了在跑头时以等加速度进行然后保持等速运动跑完了剩余路程.求跑头时的加速度解16.(1):利用积分的几何意义证明111111ln,1,2,111(2)1ln ,211111ln ,21,.111(3)lim 1ln E u ler 211ln |111ln (1)ln lnn n n n n n n n n nnn n n n nx n n y n n nx y n n n d x d x x n n xn n n n→∞++++<<=+=+++--=++++--⎛⎫++++- ⎪-⎝⎭=<=+++=+-=<⎰⎰令证明序列单调上升而序列单调下降证明极限存在(此极限称为常数).证 (1)1121.1111(2)1ln (1)1ln 22111ln 10((1)).111111ln (1)1ln 21211ln 10((1)).1(3)1ln 20(2)n n n n n n d x n n x x n n n n n n y y n n n n n n n y x x n ++=⎛⎫⎛⎫-=+++-+-+++- ⎪ ⎪-⎝⎭⎝⎭⎛⎫=-+> ⎪⎝⎭⎛⎫⎛⎫-=++++-+-+++- ⎪ ⎪+⎝⎭⎝⎭⎛⎫=-+< ⎪+⎝⎭>>=->>⎰由由n +1n11/22111/1/2222112.,lim .17.:0,11.111111(1/).111/118.()(,),,(2)().2,()0.(2)()n n n xxxxxay y x d t d t ttd t x u d x d t tuutf x x f x f x a f x d x f x f x →∞>=++==⨯=+++-∞+∞-=-≠=-=-⎰⎰⎰⎰⎰⎰单调下降有下界故有极限证明当时设在上连续(书上为可积,欠妥)且对一切实数均有求实数使条件证解(22220221(11)(11))()(2)(),()0.0.19.ln (1)arctan ,0 1.11,[0,1],[0,],1111ln (1)arctan ,0 1.20.(1)x x f x f x f x f x d x f u d u f u d u f x d x a x x x d t d t t x ttttx x x =+-=-+-=-=-==+≤≤≤≤∈≤+++++≤≤≤⎰⎰⎰⎰⎰⎰相当关于为奇函数取即可利用定积分的性质,证明不等式在上积分得设证()()[0,];()()2(2)a f x d x a f x a d x f x f a x =+-⎰在上可积,证明利用(1)中的公式求下列积分的值:22/2222sin ;22sin co s ()()(1)()()()()()()2()()()()()(-)1,.()()()()22a a a a a a a xx d x d xx x x xf x f a u I d x d uf x f a x f u f a u f x f a u I d x d uf x f a x f u f a u f x f a x a d x d x d x a I f x f a x f x f a x xx x π-++-==+-+--=++-+-=+===+-+--⎰⎰⎰⎰⎰⎰⎰⎰⎰证解(2)22222/20222 2.2(2)2sin /2.sin sin (/2)24xd x d x x x xd x x x ππππ==⨯=++-==+-⎰⎰⎰tan 2sin tan tan 22sin sin tan 22222sin tan 32222sin 2()21.()(1).()(1)tan sin ,()sec co s tan sec sin co s sec co s tan sec sin co s 3sec x xx x x xx xxxd f x f x xt d td x d xf x xt d t x x x t d t d f x x x x x x x x x t d td xt x x x x x x x x =+=+=-+=-+-+=-+-+==⎰⎰⎰⎰设求解()()22233222331co s tan sec sin co s tansin 31sec (1tan )co s (1sin )tansin .3x x x x x x x x x x x x x x x x x x -+-+-=+-++-()/22/2/22/220/20/2/2022.co s 3.11co s 3(1co s 6)sin 6|.2412423.|sin co s |.|sin co s ||sin co s ||sin co s ||sin co s ||sin ()2I d I d d I x x d x x x d xx x d x x x d x x x d x t ππππππππππθθππθθθθθπ===+=+==--=-+--++⎰⎰⎰⎰⎰⎰⎰⎰求定积分的值求定积分的值解解I =22=2()()()()/20/2/20/4/2/20/4/4/2/2/40co s()|2|sin co s ||co s sin |(co s sin )(sin co s )(co s sin )2sin co s |(co s sin )|(sin co s )|t d x x x d x t t d xx x d x x x d x t t d xx x x x x x ππππππππππππ⎛⎫-+ ⎪⎝⎭=-++=-+-++=++--+-=⎰⎰⎰⎰⎰⎰221010101010100110()/224.0,.2x x x x x x x x x x x x x x I x I xxx x x x u x --<<====+⎛⎫==- ⎪⎝⎭=⎰⎰⎰⎰⎰设求定积分的值解10()/210222102()2arcsin().28x x a aux x x a u a a x x aππ--==⎡⎤=⎢⎥⎣⎦-==⎰⎰4342(2)16468 4.y x x x y x x x =++-=++-与43323242224342442432164164684,680,6840,680,(2)(4)0,2,4.{(164)(684)][(684)(164)]y x x x x x x x x x x y x x x x x x x x x S x x x x x x d xx x x x x x d x⎧=++-⎪+-=+--+=⎨=++-⎪⎩=-+=--===++--++-+++--++-⎰⎰解222212552233532325.:(1)6827.682768,278150,(3)(5)0.3, 5.(27(68))(815)4415.33y x x y x y x x x x x y x x x x x x x S x x x d x x x d xx x x =-+=-⎧=-+-=-+⎨=-⎩-+=--====---+=-+-⎛⎫=-+-=⎪⎝⎭⎰⎰求下列曲线所围图形的面积与解/2/2/4/45/45/4/2/2(4)sin ,cos /2.(sin -cos )(cos sin )|1;(sin cos )(cos sin )| 1.y x y x x S x x dx x x S x x dx x x πππππππππ=====--==-=--=⎰⎰与解/21102/211226.co s ,1/2,,.,)2arcco s 2arcsin 2(1co s 2).242arcsin arcsin y x y x x V V V x d x y y d y y yd y V x d x V y yd y yd yππσπσππππππππ===⎛⎫=-==⎪⎝⎭=-====⎰⎰⎰⎰⎰⎰设区域由曲线及所围成将绕轴旋转一周得一旋转体试用两种不同的积分表示体积并且求的值. 2解V =(1-c o s 24323222444323202(68)(68)24248.44x x x d x x x x d xx x x x x x =-++-+-⎡⎤⎡⎤=-++-+-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰2222212321(3)1 3.(3)1,7100,(2)(5)0,2,5.1,2.[(3)(1)]92.322y x y x x x x x x x x y S y y d x yy y --=-=--=--+=--===-=+-+⎛⎫=-++= ⎪⎝⎭⎰与解4π2π54π112212222arcsin ()1arcsin .22244y y y xyπππππππ=-⨯⎤=-=-=⎥⎦⎰22111/21/2200213397200257025027.:(1)arcsin |.4612(2)(918055801)400.28.()[0,7],()5,()6,() 3.(1)();(2)x xxx d x f x f x d x f x d x f x d x f x d x f πππ-===-=-++====⎰⎰⎰⎰⎰⎰求下列定积分的值设在上可积且一直已知求的值求7552500277557755().(3):(5,7),()0.(1)()()()5611.(2)()()()3118.(3),()0,(5,7),()0,()80,.x d x f x f x d x f x d x f x d x f x d x f x d x f x d x f x x f x d x f x d x <=+=+==-=-=-≥∈≥=-<⎰⎰⎰⎰⎰⎰⎰⎰⎰的值证明在内至少存在一点使若不然但是矛盾解证2/23/21/2/2/2/2/232111, 2,129.()sin ,(),()2, 2.(1)()();(2)()();(3)()().(1)()()sin 0.(2)()()()()()xx f x x h x g x x x f x g x d x g x h x d x f t g t d x f x g x d x xd x g x h x d x g x h x d x g x πππππππππ----≤≤⎧===⎨<≤⎩===+⎰⎰⎰⎰⎰⎰⎰设试求下列定积分的值或表达式:解322323221212/22/2/22()12125.6sin co s ,2(3)()()sin 2sin co s 22co s ,2.xxx h x d x d x d x xxxxtd t x t x f t g t d x td t td t x x πππππ=+=--=⎧=--≤≤⎪=⎨⎪+=-<≤⎩⎰⎰⎰⎰⎰⎰⎰()()30()[,](0),()()()()()().b f b af a f x a b ag y f x f x d x b f b a f a g y d x >=--⎰⎰设函数在区间上连续,严格单调递增是的反函数,利用定积分的几何意义证明下列公式并作图解释这一公式.解11()10031.(1)()[0,),()0,0()()()()()()()(*).00(0),()a B a aa x x x a B a B x d x x d xx x x d x x d x a a B B x x ϕϕϕϕϕϕϕϕϕϕϕϕϕ---+∞→∞→+∞≥≥≤++==>=→∞→+∞⎰⎰⎰⎰⎰设函数在上连续且严格单调递增又设当+时且(0)=0.证明:对于任意实数,下列不等式成立:其中是的反函数.由题时不等式显然成立.设由于+时证30,111101100()11()1()1,0,(),[0,],,0,().,*)()().,()()()()()()()()(())(a B aBa a B a Ba a a B a a a B a a a B x d x x d x a a x d x x d xx d x x d x x d xa a x d xa a a B ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ------'>''>>===+>+=++=++≥+⎰⎰⎰⎰⎰⎰⎰⎰存在在连续根据连续函数的中间值定理存在若则由(得若则1100()()11()11()).,()()()()()()()()(())(()).11(2)(1),0,,11,M in k o w sk i.1aB a a a Ba B pqa a B a a x d x x d xx d x x d x x d xa a x d xa a a a B a B ab p q p qaba b pqp ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ------=<+=+-=-≥--=≥≥+=≤+>⎰⎰⎰⎰⎰⎰若则利用中的不等式,对于任意实数证明下列不等式不妨设证111/(1)1/(1)1/(1)1/0.(),()..1/(1)1/(1)p p pp pp p pqa b ppx x x x abababa b x d x xd x pp pp p pqϕϕ----+-==≤+=+=+=+-+-⎰⎰在中取则(1)232.0,,1,112.xa a y y x a y π>=+===设求的值使由曲线及所围成的区域绕直线旋转所得之旋转体的体积等于b22222202222220002.)2,112,22,2,18,2ln 9,44aa x aa a x x u a d x d x xe d x e d x e d u e a a ππ=====-===⎰⎰⎰⎰⎰20解(y -1) 20033.1sin 21co s 43(1sin 2)(12sin 2).22r S d d ππθθπθθθθ=+-=+=++=⎰⎰作由极坐标方程所确定的函数的图形,并求它所围区域的面积.解。

北大版高等数学第一章函数及极限答案习题1.2(范文)

北大版高等数学第一章函数及极限答案习题1.2(范文)

北大版高等数学第一章函数及极限答案习题1.2(范文)第一篇:北大版高等数学第一章函数及极限答案习题1.2(范文)习题 1.2 1.求下列函数的定义域:(1)y=ln(x2-4);(2)y=ln1+x5x-x211-x;(3)y=ln4;(4)y=2x2+5x-3.解(1)x2-4>0,|x|2>4,|x|>2,D=(-∞,-2)⋃(2,+∞).(2)1+x1-x>0.⎧⎨1-x>0或⎧1-x<0⎩1+x>0⎨⎩1+x<0.-1<x<1,D=(-1,1).(3)5x-x24>1,x2-5x-4<0.x2 -5x+4=0,(x-1)(x-4)=0,x1=1,x2=4.D=(1,4).(4)2x2+5x-3>0.(2x-1)(x+3 )=0,x1=-3,x2=1/2.D=(-∞,-3)⋃(1/2,+∞).2.求下列函数的值域f(X),其中X为题中指定的定义域.(1)f(x)=x2+1,X=(0,3).f(X)=(1,10).(2)f(x)=ln(1+sinx),X=(-π/2,π],f(X) =(-∞,ln2].(3)f(x)=3+2x-x2,X=[-1,3],3+2x-x2=0,x2-2x-3=0,(x+1)(x-3 )=0,x1=-1,x2=3,f(X)=[0,f(1)]=[0,4].(4)f(x)=sinx+cosx,X=(-∞,+∞).f(x)= 2(sinxcos(π/4)+cosxsin(π/3))=2sin(x+π/4),f(X)=[-2,2].3.求函数值:设f(x)=lnx2(1)ln10,求f(-1),f(-0.001),f(100);(2)设f(x)=arcsinx1+x2,求f(0),f(1),f(-1);(3)设f(x)=⎧⎨ln(1-x),-∞<x≤0,⎩-x, 0<x<+∞,求f(-3),f(0),f(5).⎧cosx,0≤x<1,(4)设f(x)=⎪⎨1/2, x=1,求f(0),f(1),f(3/2),f(2).⎪⎩2x, 1<x≤3解(1)f(x)=logx2,f(-1)=log1=0,f(-0.001)=log(10-6)=-6,f(100)=log104 =4.(2)f(0)=0,f(1)=arcsin(1/2)=π/6,f(-1)=arcsin(-1/2)=-π/6.(3)f(-3)=l n4,f(0)=0,f(5)=-5.(4)f(0)=cos0=1,f(1)=1/2,f(3/2)=22,f(2)=4.4.设函数f(x)=2+x2-x,x≠±2,求f(-x),f(x+1),f(x)+1,f⎛1⎫1⎝x⎪⎭,f(x).解f(-x)=2-x2+x+13+x2+x,x≠±2;f(x+1)=2-x-1=1-x,x≠1,x≠-3,2+x4⎛1⎫2-1/x2x-1+1=,x≠±2;f ⎪==,x≠0,x≠±1/2,2-x2-x⎝x⎭2+1/x2x+11 2+x=,x≠±2.f(x)2-xf(x+∆x)-f(x)5.设f(x)=x3,求,其中∆x为一个不等于零的量.∆xf(x+∆x)-f(x)(x+∆x)3-x3x3+3x2∆x+3x∆x2+∆x3-x3解===3x2+3∆x+∆x2.∆x∆x∆x6.设f(x)=lnx,x>0,g(x)=x2,-∞<x<+∞,试求f(f(x)),g(g(x)),f(g(x)),g(f(x)).f(x)+1=解f(f(x))=f(lnx)=lnlnx,x>1;g(g(x))=g(x2)=x4,-∞<x<+∞;f(g(x))=f(x2)=lnx 2,x≠0;g(f(x))=g(lnx)=ln2x,x>0.⎧0, x≥0,⎧x, x≥0;7.设f(x)=⎨g(x)=⎨求f(g(x)),g(f(x)).-x,x<0;1-x,x<0,⎩⎩解∀x,g(x)≥0,f(g(x))=0.⎧g(0), x≥0,⎧0, x≥0,g(f(x))=⎨=⎨g(-x),x<0.⎩⎩-x,x<0.8.作下列函数的略图:(1)y=[x],其中[x]为不超过x的最大整数;(2)y=[x]+x;1(3)y=sinhx=(ex-e-x)(-∞<x<+∞);21(4)y=coshx=(ex+e -x)(-∞<x<+∞);2⎧x2, 0≤x<0,(5)y=⎨⎩x-1,-1≤x<0.(1)(2)(3)(4)(5)⎧x29.设f(x)=⎨,x≥0,求下列函数并且作它们的图形⎩x, x<0,:(1)y=f(x2);(2)y=|f(x)|;(3)y=f(-x);(4)y=f(|x|).解(1)y=x4,-∞<x<+∞.(2)y=|f(x)|=⎧⎨x2,x≥0,⎩-x, x<0.(3)y=f(-x)=⎧⎨x2,-x≥0,⎧x2,x≤0,⎩-x, -x<0=⎨⎩-x, x>0.(4)y=f(|x|)=x2,-∞<x<+∞.3求下列函数的反函数:(1)y=x2-2x(0<x<+∞);(2)y=sinhx(-∞<x<+∞);(3)y=coshx(0<x<+∞).解(1)x2-2x=y,x2-2yx-4=0,x=y+y2+4,y=x+x2+4(-∞<x<+∞).ex-e-x(2)=y ,z=ex,z2-2yz-1=0,ex=z=y+y22+1,x=ln(y+y2+1),y=ln(x+x2+1),(-∞<x< +∞).(3)ex+e-x2=y,z=ex,z2-2yz+1=0,ex=z=y+y2-1,x=ln(y+y2-1),y=ln (x+x2-1),(x≥1).证明cosh2x-sinh2x=1.⎛ex+e-x⎫2⎛ex-e-x⎫2(e2x证coshx-sinhx=+e-2x+2)-(e2x+e-2x22-2)⎝2⎪⎭-⎝2⎪⎭=4=1.下列函数在指定区间内是否是有界函数?(1)y=ex2,x∈(-∞,+∞);否(2)y=ex2x∈(0,1010);是(3)y=lnx,x∈(0,1);否(4)y=lnx,x∈(r,1),其中r>0.是2(5)y=e-x2+sinx+cos(2x),x∈(-∞,+∞);是|y|≤12-1+1=2.4 10.11.12.(6)y=x2sinx,x∈(-∞,+∞);否.(7)y=x2cosx,x∈(-1010,1010).是13.证明函数y=1+x-x在(1,+∞)内是有界函数.证y=1+x-x=(1+x-x)(1+x+x)1+x+x=11+x+x<12+1(x>1).13.研究函数y=x6+x4+x21+x6在(-∞,+∞)内是否有界.|x|≤1时,x6+x4+x2x6+x4+x23x6解1+x6≤3,|x|>1时,1+x6≤x6=3,|y|=y≤3,x∈(-∞,+∞).5第二篇:北大版高等数学第一章函数及极限答案习题1.4 习题1.41.直接用ε-δ说法证明下列各极限等式:(1)limx→ax=a(a>0);(2)limx=a;(3)lime=e;(4)limcosx=cosa.x→ax→ax→a22xa证(1)∀ε>0,要使||x-a|x-a|=|x-a|x-a<ε,由于|x-a|x+a<|x-a|ax-,a|<ε,故lim只需<ε,|x-a|<aε.取δ=aε,则当|x-a|<δ时,|x=a.ax→a(2)∀ε>0,不妨设|x-a|<1.要使|x2-a2|=|x+a||x-a|<ε,由于|x+a|≤|x-a|+|2a|<1+|2a|,只需(1+|2a|)|x-a|<ε,|x-a|<ε当1+|2a|.取δ=min{ε1+|2a|,1},则|x-a|<δ时,|x2-a2|<ε,故limx2=a2.x→a(3)∀ε>0,设x>a.要使|ex-ea|=ea(ex-a-1)<ε,即0<(ex-a-1)<εea,1<ex-a<1+εea,0<x-a<ln⎛ε⎫=min{ε1+,1},则当0<x-a<δ时,|ex-eaa⎪,取δ|<⎝e+|2a|ε,⎭1故limex=ea.类似证limex=ea.故limex=ea.x→a+x→a-x→a(4)∀ε>0,要使|cosx-cosa|=2sinx+aa2sinx-a2=2sinx+a2sinx-2≤|x-a|,取δ=ε,则当|x-a|<δ时,|cosx-cosa|<ε,故limcosx=cosa.x→a2.设limf(x)=l,证明存在a的一个空心邻域(a-δ,a)⋃(a,a+δ),使得函数u=f(x)在x→a该邻域内使有界函数.证对于ε=1,存在δ>0,使得当0<|x-a|<δ时,|f(x)-l|<1,从而|f(x)|=|f(x)-l+l|≤|f(x)-l|+|l|<1+|l|=M.3.求下列极限:2(1)lim(1+x)2-1=lim2x+x=lim(1+x1.x→02xx→02xx→02)=22sin2⎛x⎛⎫(2)lim1-cosx⎝2⎪⎭=1 sin⎛x ⎫⎫⎪⎪1x→0x2=limx→0x22lim ⎝2⎭⎪=γ12 =1.x→0 x ⎪22⎝2⎪⎭(3)limx+a-axx=lim=1(a>0).x→0x→0x(x+a+a)2a(4) limx2-x-2x→12x2-2x-3=-2-3.x2(5)lim-x-2-2x→02x2-2x-3=-3.1 201030(6)lim(2x-3)(2x+2)x→∞(2x+1)30=2230=1.(7)lim1+x-1-x=lim2x=1.x→0xx→0x(1+x+1-x)(8)lim⎛13⎫x2-x+1-3x2-x-2x→-1 -⎝x+1x3+1⎪=lim⎭x→-1(x+1)(x2-x+1)=limx→-1(x+1)(x2-x+1)=lim(x+ 1)(x-2)(x-2)=-3x→-1(x+1)(x2-x+1)=limx→-1(x2-x+1)3=-1.(9)lim1 +2x-3=lim(1+2x-3)(x+2)(1+2x+3)x→4x-2x→4(x-2)(x+2)(1+2x+3)=li m(2x-8)(x+2)=2γ4x→4(x-4)(1+2x+3)6=43.n(n-1)2nlimxn-1n(10)-1ny+2y+Λ+yx-1=lim(1+y)x→1y→0y=lim=n.y→0y(11)limx2+1-x2-1)=lim2=0.x→∞(x→∞x2+1+x2-1mm-1(12)lima0x+a1x+Λ+amamx →0bnn-10x+b+Λ+b(bn≠0)=1xnb.n-1⎧a0/b0,m=n(13)lima0xm+a1 xm+Λ+amx→∞bnbn-1+Λ+b(aγb⎪00≠0)=⎨0, n>m0x+1xn⎪⎩∞, m>n.x4+81+8/x4(14)limx+11+1/x2=1.x→∞2=limx→∞31+3x-3(15)li m1-2xx→0x+x2(3221+3x-333=lim1-2x)(1+3x+1+3xγ31-2x+31-2x )x→0x+x2)(321+3x+31+3xγ31-2x+32(1-2x)=lim5xx→0x(1+x)(321+ 3x+321+3xγ31-2x+31-2x)=lim522=5x→0(1+x)(31+3x+31+3xγ31-2x+31-2x)3.(16)a>0,li mx-a+x-a=lim⎛x-a1⎫x→a+0x2-a2x→a+0 ⎝x2-a2+x+a⎪⎪⎭=lim⎛(x-a) (x+a)+1⎫x→a+0 ⎝x+ax-a(x+a)x+a⎪⎪⎭2=lim⎛(x-a)+1⎫x→a+0 ⎝x+ax-a(x+a)x+a⎪⎭=lim⎛x-a+1⎫1.x→a+0 ⎝x+a(x+a)x+a⎪⎪=⎭2ax4.利用limsinx=1及lim⎛1x→xx→∞1+⎫⎝x⎪=e求下列极限:⎭(1)limsinαxsinαxαx→0tanβx=limx→0sinβxlimcosβx=x→0β.sin( 2x2)sin(2x2(2)lim)2x2x→3x=lim1γ0=0x→02x2γlimx→03x=(3)limta n3x-sin2x=limtan3xsin2x21x→0sin5xx→0sin5x-limx→0sin5x=35 -5=5.(4)limx=limxx→0+1-cosxx→0+2sinx=2.2cosx+aa(5)limsinx-s ina2sinx-2=cosa.x→ax-a=limx→ax-a2-k⎛k⎫-xx(-k)⎡x(6)limlimk=⎢⎛k⎫k⎤=e-k.∞1+x→⎝x⎪⎭x→∞1+⎫k=⎛⎝x⎪⎭⎢limx→∞1+⎪⎥⎣⎝x⎭⎥⎦-5(7)lim(1 -5y)1/y=⎡1/(5y)⎤-5y→0⎢⎣lim(1-5y)⎥=e.y→0⎦x+100x10(8)lim⎛1+10= lim⎛1+1=e.x→∞⎫⎝x⎪⎭x→∞⎫⎡⎛1⎫⎤⎝x⎪⎭⎢lim⎣x→∞1+⎝x⎪⎭⎥⎦5.给出limf(x)=+∞及limf(x)=-∞的严格定义.x→ax→-∞limf(x)=+∞:对于任意给定的A>0,存在δ>0,使得当0<|x-a|<δ时f(x)>A.x→alimf(x)=-∞:对于任意给定的A>0,存在∆>0,使得当x<-∆时f(x)<-A.x→-∞3第三篇:北大版高等数学第一章函数及极限答案习题1.6 习题1.61.证明:任一奇数次实系数多项式至少有一实根.证设P(x)是一奇数次实系数多项式,不妨设首项系数是正数,则limP(x)=+∞,x→+∞limP(x)=-∞,存在A,B,A<B,P(A)<0,P(B)>0,P在[A,B]连续,根据连续函数x→-∞的中间值定理,存在x0∈(A,B),使得P(x0)=0.2.设0<ε<1,证明对于任意一个y0∈R,方程y0=x-εsinx有解,且解是唯一的.证令f(x)=x-εsinx,f(-|y0|-1)=-|y0|-1+ε<-|y0|≤y0,f(|y0|+1)≥|y0|+1-ε>|y0|≥y0,f在[-|y0|-1,|y0|+1]连续,由中间值定理,存在x0∈[-|y0|-1,|y0|+1],f(x0)=y0.设x2>x1,f(x2)-f(x1)=x2-x1-ε(sinx2-sinx1)≥x2-x1-ε|x2-x1|>0,故解唯一.3.设f(x)在(a,b)连续,又设x1,x2∈(a,b),m1>0,m2>0,证明存在ξ∈(a,b)使得f(ξ)=m1f(x1)+m2f(x2)m1+m2.证如果f(x1)=f(x2),取ξ=x1即可.设f(x1)<f(x2),则f(x1)=m1f(x1)+m2f(x1)m1+m2≤m1f(x1)+m2f(x2)m1+m2≤m1f(x2)+m2f(x2)m1+m2=f(x2),在[x1,x2]上利用连续函数的中间值定理即可.4.设y=f(x)在[0,1]上连续且0≤f(x)≤1,∀x∈[0,1].证明在存在一点t∈[0,1]使得f(t)=t.证g(t)=f(t)-t,g(0)=f(0)≥0,g(1)=f(1)-1≤0.如果有一个等号成立,取t为0或1.如果等号都不成立,则由连续函数的中间值定理,存在t∈(0,1),使得g(t)=0,即f(t)=t.5.设y=f(x)在[0,2]上连续,且f(0)=f(2).证明在[0,2]存在两点x1与x2,使得|x1-x2|=1,且f(x1)=f(x2).证令g(x)=f(x+1)-f(x),x∈[0,1].g(0)=f(1)-f(0),g(1)=f(2)-f(1)=f(0)-f(1)=-g(0 ).如果g(0)=0,则f(1)=f(0),取x1=0,x2=1.如果g(0)≠0,则g(0),g(1)异号,由连续函数的中间值定理,存在ξ∈(0,1)使得g(ξ)=f(ξ+1)-f(ξ)=0,取x1=ξ,x2=ξ+1.第四篇:北大版高等数学第一章函数及极限答案习题1.3习题1.31.设xn=nn+2(n=1,2,Λ),证明limxn=1,即对于任意ε>0,求出正整数N,使得n→∞当n>N时有 |xn-1|<ε,并填下表:n-1|=2n+2<ε,只需n>2-2,取证∀ε>0,不妨设ε<1,要使|xn-1|=|N=n+2ε⎡2⎤-2,则当n>N时,就有|xn-1|<ε.⎢ε⎥⎣⎦n→∞n→∞2.设liman=l,证明lim|an|=|l|.证∀ε>0,∃N,使得当n>N时,|an-l|<ε,此时||an|-|l||≤|an-l|<ε,故lim|an|=|l|.n→∞3.设{an}有极限l,证明(1)存在一个自然数N,n<N|an|<|l|+1;(2){an}是一个有界数列,即存在一个常数M,使得|an|≤M(n=12,Λ).证(1)对于ε=1,∃N,使得当n>N时,|an-l|<1,此时|an|=|an-l+l|≤|an-l|+|l|<|l|+1.(2)令M=max{|l|+1,|a1|,Λ,|aN|},则|an|≤M(n=12,Λ).4.用ε-N说法证明下列各极限式:(1)limn→∞3n+12n-3=;(2)limn→∞n+1=0;(3)limnq=0(|q|<1);(4)limn→∞n→∞2nn!nn=0;⎛1⎫11(5)lim ++Λ+⎪=1;n→∞1γ22γ3(n-1)γn⎝⎭⎛⎫11(6)lim +Λ+=0.3/ 23/2⎪n→∞(n+1)(2n)⎝⎭证(1)∀ε>0,不妨设ε<1,要使3n+12n-3-32=112(2n-3)<ε,只需n>112ε+3,取N=3n+133n+13⎡11⎤+3,当n>N时,-<ε,故lim=.⎢2ε⎥n→∞2n-32n-322⎣⎦(2)∀ε>0,要使<ε,由于≤只需<ε,n>ε3,⎡1取N=⎢ε3⎣(3)|q|=|nq|=n⎤,当n>N时⎥⎦1<ε.1+αn(α>0).n>4=1+nα+<124nαnn(n-1)(1+α)6nnα+n(n-1)(n-2)α+Λ+α⎤}.⎥⎦3n<(n-1)(n-2)αn!nn<ε,n>⎡1⎢ε⎣⎤.⎥⎦εα,N=max{4,⎡24⎢εα3⎣(4)≤1n<ε,n>ε,N=⎛1⎫11(5) ++Λ+⎪-1(n-1)γn⎭⎝1γ22γ3⎛⎛11⎫⎛11⎫⎛11⎫⎫11⎡1=-⎪+-⎪+Λ+-⎪⎪-1=<ε,n>,N=⎢nε⎣ε⎝(n-1)n⎭⎭⎝⎝12⎭⎝23⎭⎤.⎥⎦1(n+1)n→∞3/2+Λ+1(2n)3/2≤n(n+1)3/2<<ε,n>ε,N=⎡1⎢ε2⎣⎤.⎥⎦5.设liman=0,{bn}是有界数列,即存在常数M,使得|bn|<M(n=1,2,Λ),证明limanbn=0.n→∞证∀ε>0,∃正整数 N,使得|an|<故limanbn=0.n→∞εM,|anbn|=|an||bn|≤εMγM=ε,6.证明limn→∞=1.证∀ε>0,要使1|n(1+ε)n1<ε,只需n(1+ε)n<1.4nε1+nε+nn(n-1)<ε(n-1)ε<4nε,只需<1,n>ε,N=⎡4⎢ε2⎣⎤.⎥⎦7.求下列各极限的值:(1)limn→∞=limn→∞=0.22(2)limn→∞n+3n-1004n-n+2(2n+10)n+n =limn→∞1+3/n-100/n4-1/n+2/n=.(3)limn→∞=limn→∞(2+10/n)1+1/nn=16.-21⎫⎛(4)lim 1+⎪n→∞n⎭⎝-2n⎡1⎫⎤⎛=⎢lim 1+⎪⎥n→∞n⎭⎥⎝⎢⎣⎦=e.-21⎫1⎛(5)lim 1-⎪=limn-1n→∞n→∞n⎭⎝1⎫⎛1⎫⎛1+1+⎪⎪n-1⎭⎝n-1⎭⎝=1⎫⎛lim 1+⎪n→∞n-1⎭⎝1⎫⎛(6)lim 1-⎪n→∞n⎭⎝nnnn-1=1⎫⎛lim 1+⎪n→∞n-1⎭⎝nn1e.⎡⎛1⎫⎤11⎫⎛=lim⎢1-⎪⎥,取q∈(,1),∃N,当n>N时, 1-⎪<qn→∞n⎭⎥en⎭⎝⎢⎣⎝⎦⎡⎛1⎫⎤1⎫⎛1-=0,即lim1-⎢⎥⎪⎪n→∞nn⎝⎭⎝⎭⎢⎥⎣⎦nnnnn⎡⎛1⎫⎤nn0<⎢1-⎪⎥<q,limq=0,limn→∞n→∞n⎭⎥⎢⎣⎝⎦nnn=0.1⎫1⎫1⎫1⎛⎛⎛(7)lim 1-2⎪=lim 1+⎪lim 1-⎪=e=1.n→∞n→∞n⎭n⎭n→∞⎝n⎭e⎝⎝8.利用单调有界序列有极限证明下列序列极限的存在性:(1)xn=xn<1+(2)xn=11+11γ212+1+Λ+1n,xn+1=xn+=2-12+1n1(n+1)>xn,+Λ+1(n-1)n11n<2.xn单调增加有上界,故有极限.,xn+1=xn+n+1+2+1+Λ++1>xn,1-n1111⎛111⎫1<1.xn=+2+Λ+n=1++2+Λ+n-1⎪=2222⎝222⎭21-12xn单调增加有上界,故有极限.(3)xn=1n+1+1n+2+Λ+1n+n.xn+1-xn=12n+2-1n+1=-12n+2<0,xn+1<xn,xn>0,xn单调减少有下界,故有极限.(4)xn=1+1+12!+Λ+1n!.xn+1-xn=1(n+1)!>0,1⎫⎛11⎫1⎫1⎛⎛1xn≤2+1-⎪+-⎪+Λ+-⎪=3-<3.2⎭⎝23⎭n⎝⎝n-1n⎭xn单调增加有上界,故有极限.11⎫⎛9.证明e=lim 1+1++Λ+⎪.n→∞2!n!⎭⎝1⎫1n(n-1)1n(n-1)Λ(n-k+1)1⎛证 1+⎪=1+n+2+Λ++knn2!nk!n⎝⎭Λ+n(n-1)Λ(n-n+1)1n!nnn=2+1⎛1⎫1⎛1⎫⎛k-1⎫1⎛1⎫⎛n-1⎫1-+1-Λ1-+1-Λ1-⎪⎪⎪⎪⎪2!⎝n⎭k!⎝n⎭⎝n⎭n!⎝n⎭⎝n⎭1n1⎫11⎫⎛⎛<1+1++Λ+.e=lim 1+⎪≤lim 1+1++Λ+⎪.n→∞n→∞2!n!n⎭2!n !⎭⎝⎝对于固定的正整数k,由上式,当n>k 时,1⎫1⎛1⎫1⎛1⎫⎛k-1⎫⎛1+>2+1-+1-Λ1-⎪⎪⎪⎪,n⎭2!⎝n⎭k!⎝n⎭⎝n⎭⎝11⎫⎛令n→∞得e≥1+1++Λ+⎪,2!k!⎝⎭11⎫11⎫⎛⎛e≥lim 1+1++Λ+=lim1+1++Λ+⎪n→∞⎪.k→∞2!k!2!n!⎝⎭⎝⎭10.设满足下列条件:|xn+1|≤k|xn|,n=1,2,Λ,其中是小于1的正数.证明limxn=0.n→∞nn-1证由|xn+1|≤k|xn|≤k|xn-1|≤Λk|x1|→0(n→∞),得limxn=0.n→∞第五篇:北大版高等数学第一章函数及极限答案习题1.5 习题1.5 1.试用ε-δ说法证明(1)1+x在x=0连续(2)sin5x在任意一点x=a连续.证(1)∀ε>0,要使|x<ε,|x|<221+x-21+0|=2x22<ε.由于22x22≤x,只需221+x+11+x+11+0|<ε,故1+x在x=0连续.5(x-a)2|<ε.ε,取δ=ε,则当|x|<δ时有|1+x-5x+5a2||sin(2)(1)∀ε>0,要使|sin5x-sin5a|=2|cos由于2|cos取δ=5x+5a2||sin5(x-a)2|≤5|x-a|,只需5|x-a|<ε,|x-a|<ε5,ε5,则当|x-a|<δ时有|sin5x-sin5a|<ε,故sin5x在任意一点x=a连续.2.设y=f(x)在x0处连续且f(x0)>0,证明存在δ>0使得当|x-x0|<δ时f(x)>0.证由于f(x)在x0处连续,对于ε=f(x0)/2,存在存在δ>0使得当|x-x0|<δ时f(x)-f(x0)|<f(x0)/2, 于是f(x)>f(x0)-f(x0)/2=f(x0)/2>0.3.设f(x)在(a,b)上连续,证明|f(x)|在(a,b)上也连续,并且问其逆命题是否成立?证任取x0∈(a,b),f在x0连续.任给ε>0,存在δ>0使得当|x-x0|<δ时|f(x)-f(x0)|<ε,此时||f(x)|-|f(x0)||≤|f(x)-f(x0)|<ε,故|f|在x0连续.其逆命题⎧1,x是有理数不真,例如f(x)=⎨处处不连续,但是|f(x)|≡1处处连续.⎩-1,x是无理数4.适当地选取a,使下列函数处处连续: 2⎧⎧ln(1+x), x≥1,⎪1+x,x<0,(1)f(x)=⎨(2)f(x)=⎨⎩aarccosπx,x<1.⎪⎩a+x x≥0;解(1)limf(x)=limx→0-x→0-x→1+x→1+1+x2=1=f(0),limf(x)=f(0)=a=1.x →0+x→1-x→1-(2)limf(x)=limln(1+x)=ln2=f(1),limf(x)=limaarccosπx=-a=f(1)=ln2,a=-ln2.5.利用初等函数的连续性及定理3求下列极限:(1)limcosx→+∞1+x-x=22x=coslimx→+∞1+x-xx=cos0=1.(2)limxx →2x.sin2xsin3x2sin2x(3)limex→0sin3x=elimx→0=e3.=arctanlimx →∞(4)limarctanx→∞x+8x+124x+8x+124=arctan1=π4.1(5)limx→∞( x+1-3|x|x+1+22x-2)|x|=⎤⎥=2x-2⎦x→x02lim⎡(x→∞⎣x+1-22x-2)|x|⎤⎦=⎡lim⎢x→∞⎣x→x0⎡⎤3lim⎢⎥=22x→∞⎣1+1/x+1-2/x⎦g(x)32.6.设limf(x)=a>0,limg(x)=b,证明lim)f(x)x→x0lim[(lnf(x))g(x)]=a.=a.bb证lim)f(x)x→x0g(x)=lim)ex→x0(lnf(x))g(x)=ex→x0=eblna7.指出下列函数的间断点及其类型,若是可去间断点,请修改函数在该点的函数值,使之称为连续函数:(1)f(x)=cosπ(x-[x]),间断点n∈Z,第一类间断点.(2)f(x)=sgn(sinx),间断点nπ,n∈Z,第一类间断点.⎧x,x≠1,(3)f(x)=⎨间断点x=1,第一类间断点.⎩1/2,x=1.⎧x+1,0≤x≤1⎪(4)f(x)=⎨间断点x=1,第二类间断点.π,1<x≤2,⎪sinx-1⎩⎧1,0≤x≤1,⎪2-x⎪(5)f(x)=⎨x,1<x≤2,间断点x=2,第一类间断点.⎪1⎪,2<x≤3.⎩1-x228.设y=f(x)在R上是连续函数,而y=g(x)在R上有定义,但在一点x0处间断.问函数h(x)=f(x)+g(x)及ϕ(x)=f(x)g(x)在x0点是否一定间断?解h(x)=f(x)+g(x)在x0点一定间断.因为如果它在x0点连续,g(x)=(f(x)+g(x))-f(x)将在x0点连续,矛盾.而ϕ(x)=f(x)g(x)在x0点未必间断.例如f(x)≡0,g(x)=D(x).。

高等代数北大版第章习题参考答案

高等代数北大版第章习题参考答案

第七章 线性变换1.? 判别下面所定义的变换那些是线性的,那些不是:1)? 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)? 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3)? 在P 3中,A),,(),,(233221321x x x x x x x +=; 4)? 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5)? 在P[x ]中,A )1()(+=x f x f ;6)? 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)? 把复数域上看作复数域上的线性空间, A ξξ=。

8)? 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。

2)当0=α时,是;当0≠α时,不是。

3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αkk A()α。

4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx = k A )(α,故A 是P 3上的线性变换。

5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令)()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。

北大版高等数学课后习题答案_完整版

北大版高等数学课后习题答案_完整版

3. 解下列不等式 : (1) | x | | x 1| 3.\;(2) | x 2 3 | 2. 解 (1)若x 0, 则 x 1 x 3, 2 x 2, x 1, (1, 0); 若0 x 1, 则x 1 x 3,1 3, (0,1); 若x 1, 则x x 1 3, x 3 / 2, (1,3 / 2). X (1, 0) (0,1) (1,3 / 2). (2) 2 x 2 3 2,1 x 2 5,1 | x |2 5,1 | x | 5, x (1, 5) ( 5, 1). 4. 设a, b为任意实数,(1)证明 | a b || a | | b |;(2)设 | a b | 1, 证明 | a || b | 1. 证(1) | a || a b (b) || a b | | b || a b | | b |,| a b || a | | b | . (2) | a || b (a b) || b | | a b || b | 1. 5. 解下列不等式 : (1) | x 6 | 0.1;(2) | x a | l. 解(1)x 6 0.1或x 6 0.1.x 5.9或x 6.1. X (, 6.1) (5.9, ). (2)若l 0, X (a l , ) (, a l ); 若l 0, x a; 若l 0, X (, ). 6. 若a 1, 证明0 n a 1 a 1 , 其中n为自然数. n
x4
1 2x 3 ( 1 2 x 3)( x 2)( 1 2 x 3) lim x 4 x 2 ( x 2)( x 2)( 1 2 x 3)
lim

北大版高等数学第三章 积分的计算及应用答案 习题3.5

北大版高等数学第三章 积分的计算及应用答案 习题3.5

习题3.2132122.,1.43(.22xy x y yyS y d y y===⎛⎫=+=+=⎪⎝⎭⎰与解222232132313.21 1.21(1)21,140,0,1;4, 3.11(1)23116.2263y x x yy xx xx yx x x y x yS y y d xyy y--=+-=⎧=+-=+⎨-=⎩-===-==⎛⎫=+--⎪⎝⎭⎛⎫=+-=⎪⎝⎭⎰与解2222225.42.442,2y x y x xy xx x xy x x=-=--⎧=-⎪-=--⎨=--⎪⎩与解2224221123/22: 1..,,(1)(1)0,0, 1.211).333 y x x yy xx xx yx x x x x xS x d x x x==⎧=⎪=⎨=⎪⎩-++===⎛⎫==-=⎪⎝⎭⎰求下列曲线所围成的的图形的面积与求交点解:22222242400/22422(sin)4.0 02(a>0)(1co s)(1co s)(sin)(1co s)4sin8sin2316sin164223.x a t ty ty a tS a t d a t ta t d tta d t a ud ua ud u aaππππππππ=-⎧=≤≤⎨=-⎩=--=-=====⎰⎰⎰⎰⎰与212122212213222240,(22)(2)0,2, 1.(24)(224)249.3x x x x x x S x x x d xx x d xx x x ---+-=-+==-==---+=--+⎛⎫=--+= ⎪⎝⎭⎰⎰222222424222222122212220216.8().28181424320,4320,(8)(4)08()4,4,2,212122424arcsin23x y y x x y x x y xx x x uu u u u u u x x x S x d x x d x Sπ-+==⎧+=⎪+=⎨=⎪⎩+-==+-=+-==-===-=⎛⎫=⎪⎝⎭⎛⎫= ⎪⎝⎭⎛==+⎝⎰⎰与分上下两部分舍解244826.33πππ⎛⎫=-+=- ⎪⎝⎭22221211222213227.4 2.442220,(2)(1)0,2, 1.(42)6()96.322yx y x y x x x y x x x x x x x S x x dx x x dxx x ---=-=+⎧=--=+⎨=+⎩+-=+-==-==---=-+⎛⎫=-+= ⎪⎝⎭⎰⎰与解22/422/42008.co s 2(0).1co s 22sin 2|.2r a a a d a a ππϕϕϕϕ=>==⎰其求双纽线所围图形的面积1解S =422/32/32/333/2226200/2372/23723:9.(0).co s ,02.sin 22sin 3co s sin 6sin co s 6sin (1sin )6428326175391a x y a a x a t t y a t V y d x a ta t td ta t td t at t d ta πππππππππ+=>⎧=⎪≤≤⎨=⎪⎩====-⎛⎫⎛⎫=-= ⎪⎪⎝⎭⎝⎭⎰⎰⎰⎰求下列曲线围成的平面图形绕轴旋转所成旋转体的体积解3.05a πln 3ln 3220ln 32010.1,ln 3,.(1)(21)12ln 3.2xxxxx xy e x y e V e d x ee d xe e x ππππ=-===-=-+⎛⎫=-+= ⎪⎝⎭⎰⎰231/32/31/32/322/37/32/37/3:11.,0(0,0).,()33.77b b a y x x y b a b x ayV ay d y a y abπππ===>>====⎰求下列平面曲线围成的平面图形绕轴旋转所成旋转体的体积及解13.()[,](0)()2().2(),2().b ab ay f x a b a y f x x a x b y V xf x d x d x d V xf x d x V xf x d x πππ=>======⎰⎰设在区间上连续且不取负值,试用微元法推导:由曲线,直线,及轴围成的平面图形绕轴旋转所成立体的体积为厚度的圆筒的体积解21111111211112.0,.8ln 8ln 8ln |ln 1812881.eeee ee x x y e yy V d yyyd y y y y d y yd ye y e e ππππππ-----====⎡⎤=-⎢⎥⎣⎦⎡⎤=-+⎢⎥⎣⎦⎡⎤=-+⎢⎥⎣⎦⎡⎤⎡⎤=--=-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰解2211222211122214.,1,22222222()2.xx xx x xy e x x x y V xe d x xd e x e e d x e e ee e e e e ππππππ===⎡⎤==⎢⎥⎣⎦⎡⎤⎡⎤=-=--⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=---=⎣⎦⎰⎰⎰求曲线及轴所围成的平面图形绕轴旋转所成的立体的体积.解22223233215.:.3().1()|31(())33aa a ha ha h h V h a y f x a h x a V a x d x a h x h a h a a h h a πππππ--⎛⎫=-⎪⎝⎭==-≤≤⎡⎤=-=-⎢⎥⎣⎦⎡⎤⎛⎫=---=- ⎪⎢⎥⎣⎦⎝⎭⎰证明半径为高为的球缺的体积为证3230320/22017.sin .3sin co s ,33sin 3136sin 6.222r a r a s a a d a d a a πππθθθθθθπθθπ='======⎰⎰⎰ 求曲线的全长解3322/22/218.cos ,sin .3cos (sin ),3sin cos 143sin cos 12sin |6.2x a t y a t x a t t y at t s a t tdx a t a ππ==''=-====⎰ 求向星形线的弧长解322313433211116.13.621.221114.2623x y x x xx y xs x x xd x x x =+=='=-=⎡⎤+==-=⎢⎥⎣⎦⎰⎰求曲线在到之间的弧长解12220.2co s 2(0)d x ra a L L θ=>=⎰试证双纽线的全长可表为2022202/4522222221.1(02)4.2214144co s sec sectan sec tan (2)sectan sec tan (2)(2),1nn n n n n n n n xy x x x y x S xd x d x xI xd x xd xx x n x xd xx x n I n I I n ππππ-----=+≤≤'=⎛⎫=+ ⎪⎝⎭=====--=--+-=-⎰⎰⎰⎰⎰⎰求抛物线绕旋转所得的旋转体的侧面积.解 222sectan .11n n n x x I n ---+-00019.(1co s ).(sin )24co s 8sin8.22r a r a s a a d x a a πππθθθθθ=+'=-====⎰⎰求心脏线的全长解22/40/40/40/40/40/4024sin 2,2sin 2/,4)rr a r a r s d xππππππθθθθθθ''=-=-========⎰⎰⎰⎰⎰⎰证10⎰335313131311sec tan sec tan sec tan 444422133sec tan sec tan ln(tan sec ).488I x x I x x x x I x x x x x x C ⎛⎫=+=++ ⎪⎝⎭=++++3/41334(sec tan sec tan ln(tan sec ))|4883ln(12S x x x x x x πππ=+++=+2222/20/201022.(0),.co s ,02,sin ,co s .sin 224co s 444a x yb a abxa tt x a ty b t y b t S b td t b t b uua bππππππππ+=<≤=⎧''≤≤=-=⎨=⎩===-====⎰⎰⎰ 求1分别绕长短轴旋转而成的椭球面的面积解12/20/201222arcsin 2arcsin 2.22s 4sin 444ln 2()b u aa b S a td ta t a uuba b ππεεεπεπππππ-⎤⎥⎣⎦⎛⎫= ⎪⎝⎭=====-⎰⎰⎰ 122(22ln(1).u ba ab ππεε⎤+⎥⎥⎦⎡⎤=++⎢⎥⎣⎦22223.(,0)x y a a h y a h a y +=-≤≤<<计算圆弧绕轴旋转所得球冠的面积.101020025.10m ()(70.2)(70.2)70.180(k g ).26..co s 0.,0sin sin 2[co s ]|.2(0,).27.,x x m x d x x x a x a tt y a t a ta d taay t aaππρπππππ=+⎡⎤=+=+=⎣⎦=⎧=≤≤⎨=⎩==-=⎰⎰0有一细棒长已知距左端点x 处的线密度是k g /m 求这细棒的质量.求半径为的均匀半圆周的重心坐标由对称性,x 重心坐标有一均匀细杆解解/54/522../5./.l l l M l M M M l J x d x x d xllρ==+⎰⎰长为质量为计算细杆绕距离一端处的转动惯量解/54/533213.3375l l M x M x M l ll=+=[]2arcsin 22arcsin22arcsin2co s arcsin .sin 222co s sin 212.a haa h aa ha x a t a h t y a ta S t a td ta t a h a a h a πππππππππ---=⎧-≤≤⎨=⎩===-⎡⎤=-=⎢⎥⎣⎦⎰⎰解a h -a ()23/23/2123/21125/21224.(1co s ).2(1co s )sin 2(1co s )sin 21co s co s 2(1)2)32.5r a S a a d a d a x d x a x a πππθθπθθθπθθθπθθπππ--=+'=+=+=-+=+=+=⎰求心脏线绕极轴旋转所成的旋转体的侧面积000解r =-a s i n.222422222223228.,,,.2.2.221.4229.,,,,33,,13aa a M MMM xd x d m xd x aaa M xd x M x J xM a aaM a h aMMa M y x d m x d x x d x h a h h h a h d ρπππρρπππ=====⎛⎫===== ⎪⎝⎭⎰设有一均匀圆盘半径为质量为求它对于通过其圆心且与盘垂直的轴之转动惯量有一均匀的圆锥形陀螺质量为底半径为高为试求此陀螺关于其对称轴的转动惯量.解=解2245225425555201132213133.2251030.,2k g /m.29.8.29.89.8259.8().hha a M J d m x x d x h h a M a M x J x d x M a hhd W xd x W xd x x J ⎛⎫== ⎪⎝⎭=======⎰⎰楼顶上有一绳索沿墙壁下垂该绳索的密度为若绳索下垂部分长为5m ,求将下垂部分全部拉到楼顶所需做的功.解2231.()[,],,(),,,(),(),().32.48m ,64m ,164,06424,,9b a y f x a b y f x x a x b x y d S f x d x d F p d S g xf x d x F g xf x d x y a x a a x ρρρ=========-=-=⎰ 设在上连续非负将由及轴围成的曲边梯形垂直放置于水中使轴与水平面相齐求水对此曲边梯形的压力.一 水闸门的边界线为一抛物线,沿水平面的宽度为最低处在水面下求水对闸门的的压力.解解642828356,64,08,64,0.6(64)(2)126452428.8.35F g y u y u y u y u F g u u u d y u ug g ρρρρ=±===-=====-⎡⎤=-=⎢⎥⎣⎦⎰⎰ 时时6424。

北大版高等数学习题答案6.9

北大版高等数学习题答案6.9

习题6.92222222222221.:(1)(1).2(1)2(1)(1)(222)(1)(42)0,10,,1.220,0.1(0,0),(,0),(1,0).2(1)2(1)22(1)4(1)24(1)2(1)8(1)2z x x y zx x x x xx x x x x x x x zy y yx x x x zA x x x x x x x x x x =-+∂=-+-∂=--+=--==∂===∂-+-∂==-+-++-=-+-+∂求下列函数的极值三个稳定点2222222,2,0.(0,0),20,0,2,4,(0,0) 1.1(,0),1,0,2,2,.2(1,0),2,0,2,40,.(1,0)0.x z z C B y x y A B C AC B z A B C AC B A B C AC B z ∂∂====∂∂∂=>==-===-==-=-===-=>=极小值点,极小值非极小值点极小值点极小值22222222(2)25244 1.21042(52),2442(22).5224,.223324(,).33100,4, 2.24360,(,).3324(,) 3.33z xy x y x y zy x y x x zx y x y yx y x y x y z z z A C B x y x yAC B z =--++-∂=-+=-+∂∂=-+=-+∂-+=-⎧==⎨-=-⎩∂∂∂==-<==-==∂∂∂∂-=>==稳定点极大值点极大值232222222222(3)6236 1.12666(2)666()200,1,0, 1.0(0,0),(1,1).(0,0),1212120,6, 6.660,(0,0)z x x y xy zx x y x x y x zy x x y yx x y x y x y z z zA x CB x y x y AC B =-+++∂=-+=-+∂∂=+=+∂⎧-+===-⎨+=⎩-∂∂∂==-=>====∂∂∂∂-=>相应地稳定点在点极小值点,极小值z(0,0)=1.2222224433333322(1,1)12120,6, 6.360.(4)4 5.444(),444().00,1,0, 1.(0,0),(1,1),(1,1).0(0,0),z z zA x CB x y x y AC B z z xy x y zy x y x x zx y x y yy x x y x y z A x ∂∂∂-==-=====∂∂∂∂-=-<=--+∂=-=-∂∂=-=-∂⎧-=⎪=±=±--⎨-=⎪⎩∂==-∂在点,不取极值.相应地稳定点在点222222222222222222120,120, 4.160,(0,0)(1,1)120,12, 4.1280.(1,1)7.(1,1)120,12, 4.1280.z z x C y B y x yAC B z z zA CB x y x y AC B z z z z zA CB x y x y AC B z ∂∂===-===∂∂∂-=-<∂∂∂==-<==-==∂∂∂∂-=>=∂∂∂--==-<==-==∂∂∂∂-=>不是极值点.在点,取极大值在点,取极大值(1,1)7.z --=3222322222332332(5)(6)(0,0).3(6)(1833)(1843)2(6)(1222)(1223).4318{(,)|0,0}(,)(3,2).2312(3,2),z x y x y x y zx y x y x y x y x y x x y x y x zx y x y x y x y x y y x y x y yx y x y x y x y x y zA x=-->>∂=---=---=--∂∂=---=---=--∂+=⎧>>=⎨+=⎩∂=∂在的稳定点在稳定点222223322222222(1843)4144,(1223)3162,2(1843)3108.144162108116640,(3,2)(3,2)108.xy x y x y zC x x y x y y z B x y x y x y x yAC B z =---=-∂==---=-∂∂==---=-∂∂-=⨯-=>=极大值点,极大值2222222222002.:(1),1.23,123913(3(1))(2)992441(133636)(),(,).4118()(2636)0,,3413x yz x y x yz z x y x z z x x x x x x x f x x f x x x y =++=→+∞→+∞=++===+-=+-=-+=-+=∈-∞+∞'=-===确定下列函数在所给条件下的最大值及最小值当时时,又是连续函数,故在平面上取极小值.代入法解.22912(1).13131318()0.,2131836().1313.Lagrange Lagrange (,,)1.2320,220,,,1034681810.23f x f f x y F x y x y x y x y x yλλλλλλλλ-=''=>=⎛⎫=+++- ⎪⎝⎭⎧+=⎪⎪⎪+==-=----=⎨⎪⎪+-=⎪⎩是唯一极值点且是极小值点,故是最小值点.最小值对二次函数用配方法当然得到同一结果乘子法.考虑函数再解00000222272,.131812,.(,).13133.,,.,6.,,,)(,,)660.,36x y z x y Oxyz x y z H x y z x y xz x y z λ=-===-++++=得到满足条件的唯一点是最小值在某一行星表面要安装一个无线电望远镜为了减少干扰要将望远镜装在磁场最弱的位置设该行星为一球体半径为个单位若以球心为坐标原点建立坐标系则行星表面上点(处的磁场强度为问应将望远镜安装在何处球面方程解:222222.(,,,)(,,)(36).620 (1)222(1)0(2)20 (3)36 (4)F x y z H x y z x y z Hz x x H y y y y Hx z z x y z λλλλλλ=+++-∂⎧=++=⎪∂⎪∂⎪=-+=-=⎪∂⎨⎪∂=+=⎪∂⎪⎪++=⎩222(2),0 1.620 0,2036 (5,0,3),(0.0,6),105,1560.1,620 20 y z x y x z x y z H z x x z λλλλ==⎧++=⎪=+=⎨⎪++=⎩±-=++=+=由或设则有解之得相应值为和设则222236 (4,4,2),12.(,,)(4,4,2)12.4.2,,,.3x y z H x y z H p x y z V x π⎧⎪⎨⎪++=⎩-±=-±=解之得相应值为各条件极值比较得 时取最小值已知三角形的周长为问怎样的三角形绕自己的一边旋转所得的体积最大?设三角形底边上的高为垂足分底边的长度为设三角形饶底边旋转,旋转体体积解222(),2,0,0,0.(,,,)()(2),2()0,(1)10, (2)10. y z y z p x y z V L x y z x y z y z p x y z x x λλλλλ+++=≥≥≥=++++⎛⎫++=⎛⎫ ++= ⎝⎛⎫++= ⎝在有界闭集上取最大值.2 (3)20. (4)(2)(3)0.0,0,0.0,0,.20,210,.y z p x y z y z xy y x y p λλλ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪++=⎪⎩-⇒====>>=⎧=⎪⎪⎪⎛⎫⎪ ++=⎨ ⎪⎝⎪+=⎪⎪⎩若将有由于易得20,10,.x y p λ⎧=⎪⎪⎪⎛⎫⎪ ++=⎨ ⎪⎝⎪+=⎪⎪⎩13,,(2).42224p p p p y z p ====-=解之得底边长两腰长 22222220002225.2126,966,(6)618722249180,.4,,.22, 4.(2,4,4).6.104y z x y u x y z y y z x y u y y y y y z y x z zx y x y z +=+==++⎛⎫=-=-=-+-=-+ ⎪⎝⎭'''-=====++=++=在两平面有及的交线上求到原点距离最近的点.,+.9z =是唯一极值点且是极小值点故是最小值点2所求的点为求椭球面与平面的交线上到坐标原点的解222222222.(,,,(1)().4220,220,1(*)20,21,40.12(1)2,2(**)12(1)2.2(1)x y z z L x y z x y z x y x y z L x x L y y L z z z x y x y z x z z y z z λμλμλμλμλμλλλλλ+++++-+++⎧=++=⎪⎪=++=⎪⎪⎪=++=⎨⎪⎪++=⎪⎪++=⎪⎩⎧+=+⎪⎪⎨⎪+=+⎪⎩最大距离与最小距离由前三个方程得下面分两种情况求解.解,)=1.(**)0,(*)( 1.(2) 1..(**),(*)( 2.z x y λ=-=≠-=由方程组得再由的后两个方程得这两点与原点距离为由方程组得再由的后两个方程得这两点与原点距离为(1,(.在和有最小距离在和有最大距离222222222227.,,.,.4,0,0,0)()(,,,))().H R xy H V xyz x y z H z x y RH L x y z xyz H z x y R λλ=≥≥≥-=+⎛⎫=+--+ ⎪⎝⎭在已知圆锥体内做一内接长方体长方体的底面在圆锥体的底面上,求使体积最大的那个长方体的边长.设圆锥体高为底半径为取其底面为平面底面中心为坐标原点设内接长方体底面边长为 2x,2y,高为z,则长方体体积满足圆锥面方程 ( .(解2222222222222220,20,(*)2()0,)().(*).(*)().()2(),,.33x y z H L yz x R H L xz y RL xy H z H H z x y RR x y x y z H z HH H z z H z z x y R λλλ⎧=-=⎪⎪⎪=-=⎪⎨⎪=--=⎪⎪-=+⎪⎩===--=-===(由的前两个方程易得由的前三个方程易得再与第四个方程联立得1211111111123131218.,,,.:,,,.(,,),.(,,,)(),000.nn nn n n n n n n x n x n x n n x x l n a a a a nf x x x x x x l F x x x x x x l F x x x F x x x F x x x λλλλλ-++=++==+++-=+=⎧=+=⎨=+= 当个正数的和等于常数时求它们的乘积的最大值并证明个正数的几何平均值不超过算术平均值解12311232121211*********0.0.0,0,.0,..n n n n n n n n n nnn n x x x x x x x x x x x x x x x x x x l x x x x x x x n x x l l x x x x n n n λλλλλλλλ---⎪⎪⎪⎪⎩+=⎧⎪+=⎪==⎨⎪⎪+=⎩==≠===++⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭若将有不会是最大值若则有110.(,)()(1,0,0,)2(0),1()(0,0).22n n nn n f x y x y n x y x y A A x y x y x y =+>≥≥+=>+⎛⎫+≥>> ⎪⎝⎭求函数是常数在条件下的最小值并由此证明22222222222220011222222222229.1,220,:,(,):().0,.0,.(,)(,)0,x y a b x yy b xy X Y a b a y b x a y b x Y y X x Y X x X Y y a y b x a y a y b x a b f x y x y x y b x a y xy x y +=''+==--=--==+==+⎛⎫⎛⎫=++= ⎪⎪⎝⎭⎝⎭>在椭圆上哪些点处其切线与坐标轴构成的三角形面积最大?切线斜率切线的点满足方程三角形面积,满足解22222222222222222222222222222222220, 1.00(,),(,,)1,20,2020,201.x y x y a bx y f x y f a b x y L x y xy a b a b x L x y a a b x x y a y a b y x y L xy b a y b a b y x y b x x y ab λλλλλλλλ>+=→→→+∞⎛⎫=++- ⎪⎝⎭⎧=-+=⎪⎧⎪-+=⎪⎪⎪⎪=-+==⎨⎨⎪⎪-+=⎪⎪⎩+=⎪⎪⎩由于时故在所述条件下取极小值.令2222220,,,,1,,(,),(..x x y y b by x a y b x x a ax x x y a a x y λ≠===+====易见故代入椭圆方程得在第一象限时该点切线与坐标轴构成的三角形面积最小.由对称性,也满足要求。

北大版高等数学第4章习题解答

北大版高等数学第4章习题解答

习题4.13212121.()32[0,1][1,2]Rolle 0,(0)(1)(2)0,()[0,1][1,2]Rolle 620,33(0,1),(1,2),()()0.332.f x x x x f f f f f x x x xx x f x f x =-+==='-+===+''=∈===2验证函数在区间及上满足定理的条件并分别求出导数为的点.处处可导故在区间及上满足定理的条件.f (x)=3x 讨论下列解1111()[1,1]Rolle ,,(1,1),()0.(1)()(1)(1),,;(2)()1(1)()(1)(1)(1)(1)(1)(1)()0,(1,1),()0.1(2)(m n m n m n m n f x c f c f x x x m n f x f x m x x n x x m nx x m mx n nx c f c m f x -----∈-'==+-='=+--+--'=+----==∈-=+'函数在区间上是否满足定理的条件若满足求使为正整数解1/32),(0).33.()ln [1,],?11(),()(1)ln ln11(1), 1.grange (1)|sin sin |||;(2)|tan tan |||,,(/2,/2);(3)ln x f f x x e c f x f e f e e c e x cy x x y x y y x x y b a b b b a ππ-'=-=='=-=-==-=--≤--≥-∈--<<不存在写出函数在区间上的微分中值公式并求出其中的应用中值定理,证明下列不等式:解222(0).(1)|sin sin ||(sin )|()||cos |||||.(2)|tan tan ||(tan )|()|sec ||||.(3)ln ln ln (ln )|()((,)).5.()(1)(4)x c x c x c aa b ax y x x y c x y x y y x x y x c y x y x b a b b a b ab a x b ac a b a a c aP x x x ===-<<'-=-=-≤-'-=-=-≥----'<=-=-=∈<=--证明多项式的导函数的证1,212,.()1,2,Rolle ,,,()(2,1),(1,1),(1,2).6.,,,:()cos cos 2cos (0,).n n P x P x c c c f x c x c x c nx π±±---=+++三个根都是实根并指出它们的范围有四个实根根根据定理它的导函数有三个实根又作为四次多项式的导函数是三次多项式,最多三个实根,故的导函数的三个根都是实根,分别在区间设为任意实数证明函数在内必有根证1211()sin sin 2sin [0,]2((0)()0),()(0,).n g x c x c x c nx ng g f x πππ=+++==在满足定理的条件故其导函数在内必有根证22(()()7.()()(,),()0,0,(,).()():,()(),(,).(()()()()()()()()()0,()()()(),,,()(),()f xg x f x g x a b g x x a b f x g x k f x kg x x a b f x g x f x g x f x f x g x f x g x g x g x g x f x k k f x kg x gx ≠=∈''=∈'''''⎛⎫-=== ⎪⎝⎭==设函数与在内可微且证明存在常数使根据公式的一个推论存在常数使即证(,).8.()(-,)(),.:(),,,.(())()0,.,(),.9.(1)arcsin arccos /2,-11;(2)arctan .x a b f x f x k x f x kx b x k b f x kx f x k k k x f x kx b x x x x x x π∈'∞+∞=-∞<<+∞=+-∞<<+∞''-=-=-=-∞<<+∞-=-∞<<+∞+=≤≤=-∞<<+∞设在上可微且证明其中为常数证明下列等式:证证(1)2arcsin arccos arcsin arccos 0,(1,1),arcsin arccos [1,1],arcsinarccos ,arcsin 0arccos 0,arcsin arccos .22(2)arctan 11x x x x x x x x x C C x x x x ππ'''+⎛⎫=+=∈-+- ⎝+==+=+='⎛⎫- ⎝=-+在连续故()=()+()210,1arctan ,00,arctan 0,(,).x x C x C x x =-=+-===-=∈-∞+∞以代入得故220210.:sin ,0/2.sin ()(0/2),(0)1,[0,/2],cos sin cos (tan )(0,/2),()0.2[0,/2],()()(0)1,0/2.211.()(,),(,),li x x x x xf x x f f xx x x x x x f f x x x f f f x f x f x a b x a b πππππππππ<<<<=<≤=--'==<=<<=<<∈证明不等式在连续在可导在严格单调递减设函数在内可微对于任意一点若证 00000000m (),lim ()().()()limlim (01)lim ()lim ().12.(Darboux )()(,),[,](,),()().::x x x x x x x x x f x f x f x f x x x f x xf x x f x y f x A B a b A B f a f b θθθη→→∆→∆→∆→→'''='+∆∆∆'==<<∆∆''=+∆==⊂''<存在则中值定理设在区间中可导又设且证明对于任意给定的00f(x +x)-f(x )证x 1011222()(),(,)().()()()0().()lim 0,)/20,()()00,()()0.()().:0()/2,()().[,]x f a f b c a b f c f a x f a f a f b f a b a xf a x f a x f a x f a f a f a x b a f b f b f a b c ηηδδδδδδ∆→+''<<∈'=+∆-'''<<=<->>∆+∆-<∆≤<+∆-<+<∆<<--<都存在使得先设存在(使得时即特别类似存在某点取最小证1,()()(),,,.(,),Fermat ()0.:()().()().()(),()()0,()()0,,(,)()()0,().f c f a f a c a c b c a b c f c f a f bg x f x x g x f x g a f a g b f b c a b g c f c f c δηηηηηηηη≤+<≠≠∈'''''=<<=-=-''''=-<=->∈'''=-==值f(c)同理是极小值点, 由引理,再设考虑由前面的结果存在使得即习题4.20000000L Hospital :212ln 2ln 21.lim lim .313ln 3ln 3cos 1sin sin 2.lim lim lim 1.ln(1)11/(1)13.lim ln(1)lim x x x x x x x x x x x x x xx x x xx →→→→→→→'-==---==-=--+-+⎛⎫-⎪⎪+⎭⎛=用法则求下列极限000/2lim lim 1lim .2tan 34.lim lim tan x x x x x x x π→→→→⎫⎛⎫==⎛⎫==-=222/222001000000001/5010003sec 3 3.sec ln(cos )(1/(cos ))(sin )5lim lim .ln(cos )(1/(cos ))(sin )ln 1/16.lim ln (0)lim lim lim 0.()7.lim lim x x a x x x x x x y x x ax ax ax a a bx bx bx b bx x x x x x x e y x e παααααα→→→---→+→+→+→+-→→+∞=-==->===-=-=505050/50/50/50220222200022250lim lim lim 0.8.lim (tan ).(tan ),lim ln lim (2)ln tan ln tan sec /tan lim lim 2lim 122(2)y y y y y y y x x x x x z x x y y e e e x y x y x xx x x x x ππππππππππ→+∞→+∞→+∞--→-→-→-→-→-→-⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==-===----()022ln 200022lim ln 01/0033000tan 0,lim lim sin 1.1ln 9.lim 1(0)lim lim ln .1arcsin arcsin 10.lim lim sin x yx x yy y xx y y y y y z z y ez ee a a aa x a a y y y y yy y πππ→-→-→-→∞→→→→→=====-->===--==20011111230111.3361ln 111.lim lim 1ln (1)ln ln 11ln lim lim ln (1)/ln (1)1/1lim .ln 22112.lim l sin y y y y y y y x x y y y y y y y y y y y y y y y y y y x e x x →→→→→→→-→==-=-⎛⎫⎛⎫-+-= ⎪ ⎪--⎝⎭⎝⎭⎛⎫⎛⎫+-== ⎪ ⎪+-+-⎝⎭⎝⎭⎛⎫== ⎪+⎝⎭--=22224200001/1/02220002011im lim 11lim lim .222arctan arctan 13.lim ,,arctan arctan 1ln (/arctan )lim ln lim lim 2(1)arctan lim 2x y x y y y y y x x x x x x x x e y e x y e e y x x y x x xx xx x x x x y x xx x x --→→--→→→→→→→----=-+-===-⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭-+⨯==-+=232001/1/3011ln ln 112arctan 1arctan 1lim lim ,633arctan lim .14.lim arctan .arctan .22ln arctan 2lim ln lim lim ln arctan (12x x x x xxx x x x x x x x x x x e x x y x x x y x x ππππ→→-→→+∞→+∞→+∞→+∞--==-=-⎛⎫= ⎪⎝⎭⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭⎛⎫- ⎪⎝⎭==-⎛⎫- ⎪⎝⎭21ln 12222200000)limlim 1,lim arctan .112arctan (1)(1)tan sec 1tan 215.lim lim lim lim lim 2.sin 1cos 1cos 1cos sin xx x x x x x x x x x x x e x x x x x x x x x x x x x x x x π-→+∞→+∞→+∞→→→→→+⎛⎫=-=-=--= ⎪⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭--=====---- 2000111cosh cos sinh sin cosh cos 16.limlim lim 1.22(ln 1)1(ln 1)117.lim lim lim ln 11/11x x x x x xx x x x x x x x xx x x x x x x x x x x x →→→→→→-++===-+-+-==-+--211222/(ln 1)lim 2.12218.lim arctan .arctan .21ln(arctan )(1/arctan )21lim ln lim lim,112lim arctan .x x x xxx x x x xx x x x x y x x x x y x x x e ππππππ-→→+∞→+∞→+∞→+∞-→+∞++==--⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭⨯+===--⎛⎫= ⎪⎝⎭习题4.3221221223212222211.0Taylor :(1)sinh 2111()22!(21)!2!(21)!().3!(21)!111(2)ln 2122221x xn n n n n n n o o x e e x x x x x x x x n n x x x x n x x x x x x x n n -+++++-=-=⎛⎫⎛⎫⎛⎫=++++--++-+ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭=++++++⎛⎫-=--+---- ⎪+-⎝⎭求下列函数再点的的局部公式22212321224221212223()2221().32111(2)(2)(2)(3)sin (1cos 2)(1)().222!4!(2)!21(4)(21)(1())1(n n nn nn n n n n o o o o x x x x n n x x x x n x x x x x x n x x x x x x x x x x x ---+⎛⎫⎛⎫+-++ ⎪ ⎪-⎝⎭⎝⎭⎛⎫=-++++ ⎪-⎝⎭⎛⎫=-=-++-+ ⎪⎝⎭+-=-+-++++-=-+++22211236636342333())2(())(1())1222().(5)cos 1(1)().2!(2)!2.0Taylor :(1)sin ()sin 1()266n n n n n n n n nnn x xo o o o o o x x x x x x x x x x x x x x x x x n x e x x x x x e x x x x ++++++-+++++++++=-----+=-++-+=⎛⎫=++++-+ ⎪⎝⎭求下列函数再点的的局部公式至所指定的阶数解3424424234452344333()().3()11151()1()2816128224153251().2816384)111(2)(228o o o o o x x x x x x x x x x x x x x x x x x x x x x x x x x ⎛⎫=+++ ⎪⎝⎭⎛⎫⎛⎫=+-+-+-++ ⎪⎪⎝⎭⎝⎭=+--++=+-+--+233222231)(2)161111(3)(3)(3)2816x x x x x x x x ⎛⎫+-+ ⎪⎝⎭⎛⎫-+-+--++-+ ⎪⎝⎭323223332331111(2)(4)(8)28161111(3)(96)(27)()28161115().2816o o x x x x x x x x x x x x x x ⎛⎫=+-+-+- ⎪⎝⎭⎛⎫-+-+--+-+ ⎪⎝⎭=+++222221212003521211/23.0Taylor (1)arctan .11(1)()11(1)(2)arcsin ()121(1)().352111111222(1)n n nk n x k n k n nn o o o x x x x x xx dt x x t k x x x x x n k x ++=++-==-++-++-==+++=-+++-++⎛⎫⎛⎫⎛⎫-----+ ⎪⎪ ⎝⎭⎝⎭⎝⎭=+=∑⎰求下列函数在点的局部公式:解0202000212100()!(21)!!(1)()(2)!!(21)!!(),(2)!!(21)!!arcsin ()(2)!!(21)!!().(2)!!(21)4.Taylor :1(1)lim nk n k nk kn k nkn k nx x k nk nk n k x o o o o o x x k k x x k k x x k k x t dx t dt k k x t k k ====++=→⎪+-=-+-=+-=+-=++-∑∑∑∑⎰⎰∑利用公式求下列极限2422423402200000011()21lim.sin 2816()111112(2)lim lim lim lim .1(1)(1)(())21cos 1sin cos (3)lim lim sin sin sin x x x xx x x x x x x x x o o o x x x x x e x x x x x e x e x x e x e x e x x x x x x x x x x x x -→→→→→→→⎛⎫---++ ⎪-⎝⎭==-+----⎛⎫-==== ⎪---+⎝⎭-⎛⎫-= ⎪⎝⎭32333001sin ()1()62sin cos 1lim lim .3x x o xx x x x x x x x x x →→⎛⎫ ⎪⎝⎭⎛⎫---+ ⎪-⎝⎭===习题4.4532222221221.:(1)35.1515(1),15(1)15(1)(1)0,1,0, 1.y x x x x x y x x x x x x x x =-'-=-'=-=-+==-==求下列函数的单调性区间与极值点4解y =15x2132311(2).0.2110, 1.y x x x x y x x x x =-≠-'=-+=== x(-∞,0)(0,1) 1 (1,+ ∞)x (-∞,-1) -1 (-1,0)0 (0,1) 1 (1,+ ∞) y ' + 0 -0 - 0 + y 极大值 ❍ 无极值 ❍ 极小值22225.,sin cos sin(),,||/2.()sin()(sin cos )(0)0,()cos()cos ,()sin().()sin()()(0)(0),22|()||sin()(sin cos )|2x a x a a x a x f x a x a x a f f x a x a f x a x f c a c f x f f x x x x f x a x a x a ++=+-+'==+-''=-+''-+'=++==+-+≤当较小时可用近似代替其中为常数试证其误差不超过证23441/32342344.116.01/3,1,26810.111111,126242624243.000717810.x x x x xx x e x x x e e e e e x x x x e x x x x θθ--<≤=+++⨯⎛⎫⎛⎫=++++-+++=≤⨯ ⎪ ⎪⎝⎭⎝⎭=<⨯设按公式计算的近似值试证公式误差不超过证y ' + - 0 + y ❍ 极小值222222222(3),(,).1121220, 1.(1)(1)xy x xx x x y x x x =∈-∞+∞++--'=⨯=⨯==±++x (-∞,-1) -1 (-1,1) 1 (1,+ ∞)y ' - 0 + 0 - y❍极小值-1极大值1❍22222221(4)ln ,0.2(ln )(1/)ln 2(ln )ln ln [2ln ]0,1,.y x x xx x x x x x x x y x x e x x x=>---'======x(0,1) 1 (1,e 2) e 2 (e 2,+ ∞) y ' - 0 + 0 - y❍ 极小值极大值 ❍32222.()29122[1,3],.()618126(32)6(1)(2)0,1,2.(1)21,(1)7,(2)6,(3)11.(1)21,(3)11f x x x x f x x x x x x x x f f f f f f =-++-'=-+=-+=--==-=-===-=-=求函数在区间上的最大值与最小值并指明最大值点与最小值点是最小值是最大值.解()()()()2222203.22()()2(),/2.3222()(2)430,3333,(/2)()0.().44312.22p x V x p x p x px p p x p x p V p p x px p px p x p V p V p V p p p p ππππ=---=--≤≤'=---=-+=====-=将周长为的等腰三角形绕其底边旋转一周,求使所得旋转体体积最大的等腰三角形的底边长度.设腰长为则是最大值等腰三角形的底边长度 解,23x322324.,()12,(),[0,3].()32,320,1 2.3,0.()3.()333(1)(1)0,1,()6,(1)6,(1),(l k f x x lx kx x l k f x f x x lx k l k l k k l f x x x f x x x x x f x x f f f =++=-'=++-+=-+-==-='=-=-=-+=''''=±=±=±求出常数与的值使函数在处有极值并求出在这样的与之下的所有极值点以及在上的最小值和最大值是极小值解 1).(0)0,(1)2,(3)18.(1)2,(3)18.f f f f f -==-==-=是极大值是最小值是最大值5.,,,.sin OB OA a O A Kϕπ设一电灯可以沿垂直线移动是一条水平线长度为.问灯距离点多高时点有最大的照度6.,,?a b 若两条宽分别为及的河垂直相交若一船从一河转入另一河问其最大的长度是多少3000/2csc sec ,0.2sec tan csc cotsec tan 0,,csc cot tan ,tan arctan lim (),lim (),02l a b al a b ba b l l l θθπθπνθθθθθθθθθθθθπθθθ→→=+<<'=-+=====⎛⎫=+∞=+∞ ⎪⎝⎭设船与一岸夹角为则船长为在,有最小值,是最小值点.解,()()()()222222220.7.()(),0.32()3233323()0,.333a a a x V a x a x x a V x a x a x x ax a ax ax a x a x a x πππππ==-+≤≤'=-++-=--+=-+-=--+==在半径为问其高及底半径应是多少?设球心到内接圆锥体底的距离为,则锥体体积=解3332(0),()0,().()333273a aV a V a V a V ππ===⨯为最大值.ab202222222244,0,4,0,(4)2.89.4(18,0)()1818(),0().44lim (),()[0118180,448z a h a V h a V V a r a ay x y z d f y y z g z z z y g z g z z z z →+∞''<<>>===⎛⎫⎛⎫==-+=-+=≤<+∞= ⎪ ⎪⎝⎭⎝⎭=+∞+∞⎛⎫'-+=-= ⎪⎝⎭当时当时为最小值,此时在曲线上求出到点的距离最短的点. 在,)有最小值.g (z)=2解()()2222264,(0)324,(64)68(0),(64)8,16.44(18,0)(16,8),(16,8)10.,.,(),0.2()232g g g y g y z x y x H H x HV x R x x R RV x R x x Rx x x R ππππ===<==±===-=-≤≤'=--=-=为最小值.曲线上到点的距离最短的点.试求内接于已知圆锥且有最大体积的正圆柱的高度.设已知圆锥的高度为底半径为设内接正圆柱的底半径为则其体积为解()2222230,0,.322(0)()0..().33311.1.cos ,02.sin (,0),cos (1sin ),0.2x x R H H V V R V R h R R R x y x a bx a t t y b t b S ab t t t S ππ-==⎛⎫==-= ⎪⎝⎭+==⎧≤≤⎨=⎩-=+≤≤'为最大值此时内接正圆柱的高度=试求内接于椭圆且其底平行于轴的最大等腰三角形的面积设内接等腰三角形的顶点在而底边上的一个顶点在第一象限.内接三角形面积解22200[sin (1sin )cos ][1sin 2sin ](sin )1(21)(21)(1)0,sin .21133(0),()0,()11.2424ab t t t ab t t t z ab z z ab z z z t S ab S S t ab ab π=-++=--==-+-=--+===⎛⎫===-+= ⎪⎝⎭为最大值222012.8m/min ,50m ,,6m/min.??.()(8)(506),0.lim (),()0.()12812(506)2006000, 3.(0)50,t A O B x x A B s f t t t t f t f t t f t t t t t f f →+∞==+-≥=+∞≥'=--=-===设动点自平面坐标的原点开始以速度沿y轴正向前进而点在轴的正向距离原点处同时沿轴向原点作匀速运动速度为问何时与距离最近最近的距离是多少在取最小值解222(3)24321600,40.340m.d d =+===开始后分钟达到最近距离习题4.5()()()()22222222222321.()()212,()12(2)4642320,0,x x x x x xx x f x xe f x e x e e x f x e x x xe e x x xe x x --------='''-=-=---=-+=-+==求函数 的凸凹性区间及拐点.解=x (-∞,-32) -32(-32,0) 0 (0, -32) 32(32,+∞) f " - 0 + 0 - 0 + f⋂拐点⋃拐点⋂拐点⋃x(,0)-∞0 (0,1)1 (1,2)2 (2,)+∞y '- 0 + + 0 - y ''+ + - - y☎⋃极小值⋃拐点⋂极大值☎⋂2321,(,).32(2)0,0,2.220, 1.y x x x y x x x x x y x x =-∈-∞∞'=-=-==''=-==作下列函数的图形:2.222223.,(,).2(2)(2)0,0,2;(2)(22)(42)0,2 2.x x x x x x x x y x e x y xe x e e x x e x x x y e x x e x e x x x --------'=∈-∞+∞=-=-=-==''=--+-=-+==±x(,0)-∞(0,22)- 22- (22,2)-2(2,22)+22+ (22,)++∞y '-+ +--y ''++-- 0+y⋃极小值⋃拐点⋂极大值⋂拐点⋃x(,1)-∞-1-(1,0)- (0,1)1(1,)+∞y ' + 0 - -0 + y ''- -+ + y⋂极大值☎⋂☎⋃极小值⋃222314.,0.1110,21;.y x x xx y x x xy x =+≠-'=-==''=±=x(,1)-∞- -1(1,1)- (1,5)5 (5,)+∞y ' + 0 + - 0 + y ''-+++y⋂拐点⋃⋃ 极小值⋃32223422244323226(1)5., 1.(1)3(1)(1)2(1)(1)(1)(1)(1)(3322)(1)(1)(5)(1)(5),(1)(1)(1)0,1,5.[2(1)(5)(1)](1)3(1)(5)(1)(1)[2(x y x x x x x x y x x x x x x x x x x x x x y x x x x x x x x y x x +=≠-+--+-'=-+----+--+-===---'==-+-++--+--''=-+=22442422441)(5)(1)](1)3(1)(5)(1)(1){[2(5)(1)](1)3(1)(5)}(1)(1){(39)(1)3(45)}(1)(1){(3129)3(45)}24(1)0 1.(1)(1)x x x x x x x x x x x x x x x x x x x x x x x x x x x x -++--+--+-++--+-=-+-----=-+-+---+====---,224333/2ln 6.,0.1ln 0,.12(1ln )12(1ln )32ln ),0,.xy x x x y x e x x x x x x x y x x xy x e =>-'===-⨯--+--''==-=-''==x(,)e -∞e 3/2(,)e e3/2e3/2(,)e +∞y '- 0 + + y ''++-y⋃极小值⋃拐点⋂221221221121122121()(,)()(,).()0,(,).()(,)(,),,(,),,()()()(),()()()().0(()())(),0y f x a b f x a b f x x a b y f x a b a b x a b x f x f x f x x x f x f x f x x x f x f x x x x x ''''=≤∈=∈<''≤+-≤+-''≤--->117.设函数在内有二阶导数且在内向上凸证明在在内向上凸故对于任意x x 两式相加得消去得证12210()(),()(),(),()0,(,).f x f x f x f x f x f x x a b '''''''≤-≤≤∈即是单调递减函数故习题4.632223/223/221.:111(1)31,;399(2)3,12(3)()(sin ),()(1cos ),,|6|(1)91,18, 6.(1)(10)112(2)1,1,1(1)(y x x x y x x t a t t y t a t a t y y x y x K y y x y y x x π⎛⎫=-+- ⎪⎝⎭⎛⎫=⎪-⎝⎭=-=-''-'''=-===='++'''=++=-=--求下列曲线在指定点的曲率在处在处;其中为常数在=/2处.解33/22223/222223/21164..91)125(1)16(3)(1cos ),sin ,sin ,cos ,()2.21(0,1)(1)(1)154,40,1,44||14,(1)4K x a x a t x a t y a t y a t K a a y x y y y y x y y y y y K R y αβ==-+''''''=-=====+=+'''++'''==-==+=+=''''''==='+求曲线在点处的曲率圆方程.00解.=x 222223/223/251,:().443.243?.44-4, 4.1,(1,1)(1)(1(44)).x y y x x y y x y K x y x ⎛⎫+-= ⎪⎝⎭=-+'''''====='++-曲率圆方程问曲线上哪一点处曲率最大并对其作几何解释当时最大对应点恰是抛物线的顶点解第四章总练习题000000001..()()[()()].()(),[0,].()()(),(0)0.Lagrange ,(0,1)()(0)(),f x h f x h f x h f x h h f x x f x x x h g g x f x x f x x g g h g g h h θθθθθθ''+--=++-+--∈'''=++-=∈'-=00设y=f(x)在[x -h,x +h](h>0)内可导证明存在,0<<1使得令g(x)=(x)在[0,h]内可导,根据公式存在使得证00000()()[()()].2.:0,()1/4()1/2lim ()1/4,lim ()1/2.4(())211()(124x x f x h f x h f x h f x h h x x x x x x x x x x θθθθθθθθ→→+∞''+--=++-≥=≤≤=====+=++=+即证明当时中的满足且00).11()(12),44111()(12)(1(1)2).44211lim ()lim (12).441lim ()lim (12)41lim 4x x x x x xx x x x x x x x x x θθθθ→→→+∞→+∞≥+=-=+≤+++-==+==+=由算术几何平均不等式得22111lim lim .4423,0123.()()[0,2]1, 1,01(2)(0)1().120, 1x xx x f x f x x xx x f f f x x x====⎧-≤≤⎪⎪=⎨⎪<<+∞⎪⎩-≤≤⎧-⎪'==⎨--<<+∞⎪⎩设求在闭区间上的微分中值定理的中间值.解2/23/21.221111,;,()[0,2]222x x x f x x -=--=-=-=-=1在闭区间上的微分中值定理的中间值为22324.[1,1]Cauchy ()()()30(1,1),Cauchy (1)(1)()()0,()200,(0)0,.(1)(1)()()5.()[,],(,f x x g x x g x x f f f c f c f c c c g g g g c g c f x a b a -=='=∈-''--''======''--在闭区间上中值定理对于函数与是否成立?并说明理由.由于有零点中值定理的条件不满足.其实其结论也不成立.因为若,但无意义设在上连续在解2121212),()0,(,)()()0,(,)()0.(,),()0,Rolle (,),(,)()()0.()[,](,),()0,()0,(,).(b f x x a b f a f b x a b f x c a b f c a c c c b f c f c f x c c c c f f x x a b f ξξ''≠∈==∈≠∈=∈∈''=='''''∈=≠∈''上有二阶导数且又证明当时若存在则由定理存在使得对于在应用定理,存在使得此与条件矛盾由假设1证一,c 证二,00)0,(,),,().()(,())(,0)(,())(,0),()0,(,).6.()[,],()()0,(,)()0.:(,)()0.x x a b Darboux f x f x a f a a b f b b f x x a b f x a b f a f b c a b f c a b x f x ''''≠∈==<∈==∈>''<根据定理恒正或恒负不妨设恒正,于是f下凸,曲线严格在连结的弦下方故设在上有二阶导数且又存在使证明在内至少存在一点使由公式存在证一,c 12121221021()()()(,),()0,()()()(,),()0.()[,]Lagrange (,),()()()0.,()0,(,),[,],(,(f c f a f c a c f c c a c af b f c f c c b f c b c c af x c c c c f c f c f x c c f x x a b f a b a f a -'∈==>----'∈==<--'∈''-''=<-''≥∈0满足存在满足对于在应用公式,存在x 使得若不然在下凸曲线在连结12c 证二))(,0)(,())(,0),()0,(,).a b f b b f x x a b ==≤∈的弦下方故1201120121100112121201120127.1-12101.(),1111-121()1-12n n n n nn n n n n n n n n n n n a a a a aa x a x a x a n n n a x a x a a a a x a x a af x x n n n n n n aa a a f x a x a x a x a n n n ---+-----++++=++++++⎛⎫=++++-+++++ ⎪+-+⎝⎭'=++++-++++++证明方程在与之间有一个根考虑函数证1201120121(0)(1)0.,(0,1),()0,1-12101.n n n n n nn a f f Rolle c f c c a a a a aa x a x a x a n n n ---⎛⎫ ⎪⎝⎭'==∈=++++=++++++由定理存在即是在与之间的一个根00000008.()(,),,().Lagrange ,()()()(),|()||()()()||()||()||()||(f x a b f x f x f x f c x x f x f x f c x x f x f c x x f x ''∈∈'-=-''=+-≤+-≤0设函数在有限区间内可导但无界证明在(a,b)内也无界逆命题是否成立试举例说明.若不然设f (x)在(a,b)内有界M,取定x (a,b),则对于任意 x (a,b),根据 公式证,)|||().(0,1),01,(0,1)M b a +-<<=内有界内无界.(1)(1)00002009.()[,](),(),()[,].(:()()()()()0,()).()[,]2,()()()()0,()n n k f x a b n k k f x f x a b f x f x x x g x g x x f x k n f x a b x f x x x g x g x f x --=-≠'=-≠若函数在区间上有个根一个重根算作个根且存在证明在至少有一个根注意若可以表示成且则称为的重根我们对于作归纳法证明函数在区间上有2个根.如果是重根则且则证.2000121212012001002()()()(),().()[,],,,[,]Rolle ,(,),()0..()[,]11,()()()()0,()(n x x g x x x g x f x x f x a b x x x x x x x x x f x n f x a b n f n x f x x x g x g x f x +''=-+-<'∈=++=-≠'=有根如果在区间上有2个不同的根在应用定理存在使得设结论对于个根的情况成立现在假定在区间上有个根.如果有重根重根则且则10000011000111211121)()()()()()((1)()()()),(1)()()()(),()(1)()0,().1,,[,],,[,]Rolle ,(,),,(n n n n n n n n n n x x g x x x g x x x n g x x x g x n g x x x g x g x g x n g x f x x f n x x x x x x c x x c x x ++++'+-+-=-++-'++-==+≠+∈∈有n重根如果如果有个单重根在区间上应用定理存在,11112111121111])()()0,().,,,,,,11,1.[,],,[,]Rolle ,(,),,()()()0.()1(1)n kk k i i k k k k k i i f c f c f x n f x n n n k n n x x x x c x x c f c f c f x k n n =---='''===+>>=+∈∈''''===-+-=∑∑1k-1k 使得至少有个根如果有不同的根x 重数分别为在上应用定理存在x ,x 使得至少有根个.对f (x)()(1)(())().n n f x f x +'=用归纳假设,至少有一个根22111111112111110.:Lerendre ()[(1)](1,1).2!1()(1)],(1)(1)0,[ 1.1]Rolle 2!(1,1),()0.(1)(1)0(1),1)(,1)Rolle 1),n n n n nn n d P x x n n dxf x x f f f n c f c f f n f c c c c =---=-=-''''∈-=-==>-∈-证明多项式在内有个根对于在应用定理,存在使得当时对于在(,应用定理,存在(,证=2122211211(-1)(-1)111111121()12,1)()()0.()(1,1),,(1)(1)0Rolle ,,,(1,1)()()0.()n n n n n n n n n n n n n n c c f c f c x c c ff c c c c x x f x P x P x --------''∈==--==∈-==(n-1)1(使得如此下去,f 在有零点,,在(-1,),(,),,(,1)应用定理, 得到x 使得是n 次多项式,至多有n 个零点()n P x n ,故恰有个零点.00011.(,),lim ()lim ().:(,),()0.()lim ()lim ().(,),(,),()0.(),().,,(,),()(x x x x f f x f x c f c f x f x f x A x c f c f x A f x A a b x a b f a f x →-∞→+∞→-∞→+∞-∞+∞='∈-∞+∞=≡==∈-∞+∞∈-∞+∞'=≠><∈<设函数在内可导且证明必存在一点使得证若取任意一点都有设存在不妨设根据极限不等式存在a,b,满足:000000),()().[,],[,]()()(),()()(),(,),,Fermat ,()0.()()lim ()0lim0.lim ()0x x x f b f x f a b c a b f c f x f a f c f x f b x a b x f c f x f x f x xf x x →+∞→+∞→+∞<∈≥>≥>∈'='∞=='=0在连续必在一点取最大值. 故为极大值点根据引理12.设函数在无穷区间(x ,+)可导,且,证明证由于,根据极限定义,存在正数101111111111,|()|()()()()()())|()|()|()||()||()||()|.,.max{,},()(),2,lim 0.x x f x f x f x f x f c x x f x f x f x x x x x f x f x f x f x x X x x x f x f x x X x x εεεεεεε→+∞'>'-+-++==≤<+<>=><=11使得x>x 时<.(x-x 为使只需令当时必有故13.()[,),()0,()()0,,()0.()0,()()()()()()0,(),,,,f x a f x l f a f a a a l f x f a f a f a f a a f a f c f a l l l l f a f a a l a a '+∞>>⎛⎫<- ⎪⎝⎭=<⎛⎫⎛⎫⎛⎫'-=+->+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎡⎤-⎢⎥⎣⎦设函数在无穷区间内连续且当x>a 时其中l 为常数.证明:若则在区间内方程有唯一实根证在连续由连续怀念书函数的中间值定理在区间()()0.,()Rolle ,(),,()0.14.()(,)lim ()0.()(1)(),lim ()0.lim ()lim((1)())lim (x x x x x f a f x l f a f x a a f x l l f x f x g x f x f x g x g x f x f x f →∞→∞→∞→∞→∞⎛⎫-= ⎪⎝⎭⎛⎫''->> ⎪⎝⎭'-∞+∞==+-='=+-=内方程至少有一实根若有两个实根根据定理将在有一零点这与条件矛盾设函数在上可导,且现令证明证)(01)0.x θθ+<<=12121215.()[,]Lipschiz ,0,,[,],|()()|||.(1)()[,],()[,]Lipschiz (2)(1)?(3)[,]Lipschiz (1)()[,]0,f x a b L x x a b f x f x L x x f x a b f x a b a b f x a b L >∈-≤-''>称函数在满足条件若存在常数使对于任意都有若在连续则在满足条件中所述事实的逆命题是否成立举一个在上连续但不满足条件的函数.解在连续,存在常数12121212122121|()|.[,].,[,],,[,],|()()||()()||()|()().(2).()[,]Lipschiz ()[,]()||[1,1]Lipschiz f x L x a b x x a b x x c x x f x f x f c x x f c x x L x x f x a b f x a b f x x '≤∈∈<∈''-=-=-≤-'=-使得根据中值公式,对于任意存在使得否在满足条件,未必处处可导,更谈不到在连续.例如,在 满足条件111111(3)()[0,1],Lipschiz ()(0,1].16.()[,],()()[,],()()().()()(()())()()()()banni i i i i i i ni i i i f x f x F x a b F x f x a b f x dx F b F a F b F a F x F x F x x f x x ξξ--==-=='='==-'-=-=--→⎰∑∑∑,但在0不可导.连续但不满足条件,因其导函数无界设在可导且其导函数在上可积证明证1()(()0).{}[,].17.()(),(,),()()(),1,,bai n f x dx x a b P x a P x b c a b P x c P x n P x x x n λ∆→--∈-∈<<+⎰为的分割设多项式与的全部根都是单实根证明对于任意实数多项式的根也全都是单实根.证不妨设a=0,b>0,c (0,b),是次多项式,且首项系数为正.有单实根则这些根把实轴分为个区间每个区间保持固定正负号且正负相间.否则某个根将为极值点,导数为111232322212221222lim ().0(),,(,),,,(,),(,),().nx k k k k k k i n k P x b P x b x x x x x x x x x x x x x x P x b →∞----=''∞>=<<'''''''<∈∈∈+∞=零,此与单实根矛盾.在两个无穷区间保持正号,且严格单调递增或递减,在每个有穷区间有一个最值点,且在其两侧分别递增和递减,设为偶数,则=+设且有n 个单实根.必有根据连续函数的中间值定1122233322222*********,(0,),(,),(,),(,),(,),(,),(,),().,k k k k k k k k i i c b c x c x x c x x c x x c x x c x P c c P n c ------'∈∈-∞∈'''∈∈∈+∞∈+∞=理对于存在使得为次多项式是P(x)=c 的所有单实根.18.()(,),,()0.()()0(,)(),()()0,[,](,)),.Rolle ()(()())0,()()0.19.3x f x a b f x f x f x a b f x g a g b g a b a b g x e f x f x f x f x A x -∞+∞='+==='''∈=+=+=设函数在内可导且是方程的两个实根证明方程在内至少有一个实根.设在 连续, 在可导根据定理, 存在 c (a,b),使得即决定常数的范围,使方程x 证 g(x)=e 43243232322212318624.()38624,()1224122412(22)12[(2)(2)]12(2)(1)12(2)(1)(1)0,.1,1, 2.()19,(1)13,(2)8.((x x x A P x x x x x P x x x x x x x x x x x x x x x x x x P x P P P --++'=--+=--+=--+=---=--=--+==-===-==-有四个不相等的实根根据这些数据画图,由图易知当在区间解4321),(2))(13,8)38624P x x x x A -=----++时有四个不相等的实根.2300220.()1(1).:()023,.0()0,21lim (),lim (),,,,()0,()0.(,),()0.()1nnx x x x x f x x f x n nn x f x f n k f x f x a b a b f a f b x a b f x f x x x →-∞→+∞=-+-++-=≤>=-=+∞=-∞<><∈='=-+-设证明方程当为奇数时有一个实根当为偶数时无实根当时故只有正根当为奇数时,存在根据连续函数的中间值定理,存在使得 证 ,2122222110(0),0,,1.1210, 1.101,()0,1,()0,(1)0,(1)0,().21.()()()()[,k k k k x xx x f x x n k x x x x x x f x x f x f x f n f x u x v x u x v x a ---++-=<>>---+'=-+-++===--''<<<>>>>''当时严格单调递减故实根唯一当为偶数时,f (x)=是时的最小值故当为偶数时无实根设函数与以及它们的导函数与在区间],[,].()(),.()().()().b uv u v a b u x v x u x v x u x v x ''-上都连续且在上恒不等于零证明在的相邻根之间必有一根反之也对即有与的根互相交错地出现试句举处满足上述条件的与121212121212212,()[,].0,()0,()0.()[,],[,],()()0,Rolle ,[,],()()0,)()0,[,]x x u x a b x x u v uv v x v x v x ux x w a b w x w x c x x vu v uv w c c u v uv c u v uv v x x ''<-≠≠≠==∈''-'''''==-=-设是的在的两个根,由于如果在上没有根则=在连续由定理存在使得即(此与恒不等于零的假设矛盾.故v(x)在上有证cos(),sin ,--10,sin cos .u x v x u v uv x x ''===≠根.例如的根交错出现22222222222arctan 22.:0(),arctan (tanh ).tanh 2tanh arctan arctan sinh cosh (1)arctan 1cosh ()tanh tanh (1)tanh cosh 1sinh 2(1)arctan ()2(1)tanh cosh x x f x x x x x xx x x x x x x f x x x x x x x x xg x x x x π'>=<-'-+⎛⎫+'=== ⎪+⎝⎭-+==+证明当时函数单调递增且证22222222222222.(1)tanh cosh (0)0.()cosh 212arctan ,(0)0,2()2sinh 22arctan ,(0)0,12(1)222(1)()4cosh 224cosh 21(1)11444cosh 20(0cosh 11x x x g g x x x x g xg x x x g xx x x g x x x x x x x x x x x x x +=''=--=''''=--=++--'''=--⨯=--++++=-+>>++当时31),Taylor 0()()0,()0,.3!arctan arctan lim ()lim ,0.tanh 2tanh 2x x x g x g x x f x f x x f x x x x θππ→+∞→+∞>>'=>>==><由公式,对于有严格单调递增故对于有22222tan 23.:0.2sin ()sin tan ,()cos tan sin sec 2sin sin sec 2,()cos sec 2sin sec tan 2(cos sec 2)2sin sec 201(cos sec cos 2,(0,/2)).cos (0)(0)0x x x x xf x x x x f x x x x x x x x x x f x x x x x x x x x x x x x x xf f ππ<<<=-'=+-=+-''=++-=+-+->+=+≥∈'==证明当时有证2223222,Taylor ()tan ()0,sin tan 0,((0,/2)).2sin 24.:(1)1,0.(2)ln(1),0.2(3)sin ,0.611,0.21(2)ln(1),0.(1)ln(1)x x xf x x x f x x x x x x x xe x x x x x x x x x x x e e x x x x x x x x x x x x x θθπθ''=>-><∈>+≠-<+>-<<>=++>+≠+=-<>++=-根据公式,证明下列不等式证(1)2233321,0.23(1)2(3)()sin ,(0)0,()1cos 0,2()0,0,()(0)0,0.()sin ,6()cos 1,()sin 0,0.02,()(0)0,x x x x x f x x x f f x x x n f x x f f x f x x g x x x x g x x g x x x x g x g x g x θπ+>->+''=-==-≥==>>=>⎛⎫=-- ⎪⎝⎭⎛⎫'''=--=-+>>> ⎪⎝⎭>=仅当时故当时严格单调递增当时严格单调递增2111ln 120.25.(1)(1)(1),[0,1)...ln ln(1),11...26.()tan /4Taylor tan(50)()sec ,()nn n n n nniin n i i qx qn n n x q q q q x q q qx x q q q q x eex x f x x x f x x f x π+==-︒>=+++∈-=+<=<--=<=='''==∑∑设其中常数证明序列有极限单调递增有上界故有极限求函数在处的三阶多项式,并由此估计的值.证解22242sec tan ,()4sec tan 2sec .x x f x x x x '''=+()1,()2,()4,()16.4444f f f f ππππ''''''====。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档