量子光学(1)
量子光学
![量子光学](https://img.taocdn.com/s3/m/7927df15bdd126fff705cc1755270722192e598e.png)
必须指出的是,光量子学说的提出,成功的解释了光电效应现象的实验结果,促进了光电检测理论、光电检 测技术和光电检测器件等学科领域的飞速发展;因此,从这个意义上讲,爱因斯坦是光电检测理论之父。不仅如 此,光量子学说的提出最终导致了量子光学的建立,所以说它是量子光学发展的源头和起点;因此,从这个意义 上讲,爱因斯坦是量子光学的先驱和创始人。尤为重要的是,爱因斯坦在其光量子学说中所提出的有关光量子这 一概念,几经发展形成了当今的光子这一概念,最终导致光子学理论的建立,并由此带动了光子技术、光子工程 和光子产业的迅猛发展;可见,光量子学说是光子学、光子技术、光子工程和光子产业的发端;因此,从这个意 义上讲,爱因斯坦是光子学、光子技术、光子工程和光子产业的先导。除此而外,爱因斯坦在研究二能级系统的 黑体辐射问题时曾提出了受激辐射、受激吸收和自发辐射这三个概念,并形式的引入了爱因斯坦受激辐射系数、 受激吸收系数和自发辐射系数这三个系数等等;特别是受激辐射这一概念的提出,最终导致了激光器的发明、激 光的出现和激光理论的诞生,直至形成了当今的激光技术、激光工程和激光产业;因此,从这个意义上讲,爱因 斯坦本人是当之无愧的激光之父和激光理论的先驱。
图5研究实验
图6量子光学除了单个原子的自发辐射外,还有多个原子在一起时产生的相干自发辐射,也称超辐射。
发展历程
01
光电效应
02
理论体系
03
推向深入
04
学科成就
06
理论规则
05
激光之父
图7 M·普朗克提出了能量子假设众所周知,光的量子学说最初由A.Einstein于1905年在研究光电效应现象 时提出来的[注:光电效应现象包括外光电效应、内光电效应和光电效应的逆效应等等,爱因斯坦本人则是因为研 究外光电效应现象并从理论上对其做出了正确的量子解释而获得诺贝尔物理学奖;这是量子光学发展史中的第一 个重大转折性历史事件,同时又是量子光学发展史上的第一个诺贝尔物理学奖。尽管爱因斯坦终生对科学的贡献 是多方面的(例如,他曾建立狭义相对论和广义相对论等等),但他本人却只获得这唯一的一次诺贝尔物理学奖]。
《量子光学》课件
![《量子光学》课件](https://img.taocdn.com/s3/m/889b6f89a0c7aa00b52acfc789eb172dec63997a.png)
压缩态:量子光 学中的特殊状态, 其量子态密度小 于真空态密度
特点:压缩态具 有较高的相干性 和较低的噪声, 可以提高量子通 信和量子计算的 效率
应用:压缩态在 量子通信、量子 计算、量子精密 测量等领域具有 广泛的应用前景
研究进展:近年 来,压缩态的研 究取得了重要进 展,如压缩态的 制备、测量和操 控等。
量子光学在量子通信、量子 计算等领域有广泛应用
量子光学的研究内容
量子光学的基本 原理
量子光学的实验 方法
量子光学的应用 领域
量子光学的发展 趋势
量子光学的发展历程
量子力学的诞生:1900年,普朗克提出量子概念,量子力学开始萌芽 量子光学的兴起:1927年,海森堡提出不确定性原理,量子光学开始发展 量子光学的成熟:1948年,玻尔提出量子光学理论,量子光学逐渐成熟 量子光学的应用:20世纪60年代,量子光学在通信、计算等领域得到广泛应用
量子光场的相干态描述
相干态:量子光场的一种特殊状态,具有确定的相位关系
相干态的性质:相干态具有确定的相位关系,可以描述为相干态的叠加
相干态的表示:相干态可以用相干态的叠加来表示,其中每个相干态的相位关系是确定的
相干态的应用:相干态在量子光学、量子信息等领域有广泛的应用,如量子通信、量子计算 等
单光子计数是一 种常用的量子光 场测量方法,可 以测量单个光子 的存在和数量。
光子关联测量是 一种测量量子光 场中光子之间的 关联性的方法, 可以测量光子之 间的纠缠、相干
等性质。
量子态层析是一 种测量量子光场 中光子状态的方 法,可以测量光 子的波长、偏振、
相位等信息。
量子光场的测量 实验
实验目的:测量量子光场的性质和 特性
量子光学基础课件
![量子光学基础课件](https://img.taocdn.com/s3/m/df4dbd24f4335a8102d276a20029bd64783e62f5.png)
01
02
03
光场量子化概念
光场是由光子组成的,光 子的能量是量子化的,光 场也需用量子化的方式描 述。
电磁场哈密顿量
通过对电磁场进行量子化 处理,可以得到光场的哈 密顿量,进一步推导出光 场算符等基本概念。
光子数态与相干态
介绍光子数态与相干态等 光场常用量子态,以及这 些量子态的性质和应用。
将量子光学器件(如量子光源、光子探测器 、量子门等)集成到单一芯片上,实现高性 能、小型化的量子光子器件。
片上光源与探测器
发展片上量子光源和高效光子探测器,实现 与集成器件的无缝对接,降低系统复杂度和 成本。
基于量子光学的量子模拟与量子计算新架构
1 2 3
光量子计算
利用光子作为量子信息的载体,设计并实现光量 子计算新架构,具有高速、低损耗、易于扩展等 优势。
量子光学历史和现状
历史
量子光学的起源可以追溯到20世纪初,普朗克提出量子假说解释黑体辐射现象。 随后爱因斯坦提出光子的概念,揭示了光的粒子性。20世纪后半叶,随着激光技 术和非线性光学的兴起,量子光学得到了快速发展。
现状
近年来,随着单光子源、量子纠缠光源等关键技术的突破,以及量子计算、量子 通信等领域的蓬勃发展,量子光学研究进入了新的高峰期。目前,量子光学已经 在基础科学研究和技术应用方面取得了众多重要成果。
类比量子模拟
基于量子光学原理设计类比计算机,模拟解决物 理、化学等领域的复杂问题,加速科学研究进程 。
数字量子模拟
结合经典计算和量子光学技术,实现对复杂量子 系统的数字模拟,为量子算法和量子计算提供验 证平台。
感谢您的观看
THANKS
光与物质相互作用的量子理论
偶极近似与旋波近似
[课件]量子光学-1PPT
![[课件]量子光学-1PPT](https://img.taocdn.com/s3/m/b403a702af45b307e871978a.png)
*维恩公式: 应用类似于麦克斯韦速率分布方法.
e T , c e 0 1
c 2 5 T
在短波区域与实验相附合,在长波区有较大偏离.
经典物理概念竟然得出如此荒唐的结论,物理学史上称之 为 “ 紫外灾难 ” 。 黑体辐射问题所处的困境成为十九世 末“物理学天空中的一朵乌云”,但它却孕育着一个新物理概 念的诞生。
量子光学-1
2、近年来的发展
•粒子物理: •量子电动力学、重整化方法 •天体物理:
•太阳中微子短缺问题 •引力波存在的问题 •物体的速度能否超过光速的问题
•生物物理
•有机体遗传程序的研究(须运用量 子力学、统计物理、X射线、电子能 谱和核磁共振技术等)。 •非平衡热力学及统计物理
3、物理学发展的趋向
黑体实验模型
黑体辐射测量
黑体(小孔表面) 分光元件
集光透镜 平行光管 会聚透镜及探头 分光元件(如棱镜或光栅等)将不同波长的辐射按一 定的角度关系分开,转动探测系统测量不同波长辐射的强 度分布。再推算出黑体单色辐出度按波长的分布。
实验结果:
(1)绝对黑体的总辐出度E 0(T) 随绝对温度T的升 高迅速地增大; (2)随温度 T增高, m值向短波长方向移动。 (3)绝对黑体的辐射规律与空腔的形状及材料无关; e0(T, )
数学表达式, T , 角度去寻找符合实验曲线的 e 0
但均无成功,其中最具有代表性的是瑞利—琼斯和 维恩所做的工作。
经典物理遇到的困难
*瑞利---琼斯公式:1890年,瑞利和琼斯将经典的电磁 理论和分子运动论中的能均分定理应用到热辐射中,
但沿用经典物理概念(如经典电磁辐射理论和能量均分定理) 去推导一个符合实验规律的黑体单色辐出度函数 均遇到困难。瑞利—琼斯推导结果是
《量子光学》PPT课件
![《量子光学》PPT课件](https://img.taocdn.com/s3/m/c3bbda69680203d8cf2f2439.png)
上述一系列新的物理现象使人们认识到,原子是由更小的粒子
组成。原子的内部肯定存在着新的物理规律。揭示了原子的内部存 在着更复杂的结构在十九世纪末物理学家面临的新课题。由此,揭 开了物理学发展史上的新的一页。
返回
第十五章 量子光学
在高中物理中已经提到物理光学中关于光的性 质的两种观点:
光:
波动性 是电磁波 。干射,衍射,偏振等特性 粒子性 光子 。 在与物质相互作用时表现出来
nh
类比
2h
h
0
nnh
n 0 ,1 ,2 ,3 ,
Step Energy
普朗克公式
在一定温度下,从物体单位表面积上,单位时间内,分布在
波长附近单位波长间隔内辐射能为
e,T 2 hc2 5
1
hc
f,T
普朗克理论与实验结果的比较
ekT1
eT,
实验结果
普朗克理论
0
普朗克(德)
1858—1947
提出能量量子化 的假设,解释了 电磁辐射的实验 规律获得1918年 诺贝尔奖。
普 朗 克 与 爱 因 斯 坦
例 15—1 一谐振子m04kg k40N m 1A00m 1
求 1 能量 E?,频率 0?
2 能量子 ? ,能量对应的量子数 n?
3 振子发射一个能量子,能量的相对变化率?
解 1
E1 2 3 1 3J 0 4 E 61029n最大量子数
求解光电效应题目公式:
1 2m2V hA
eU 0h A
12mV2eUa
而红限为 0
A h
Albert Einstein (German)
He was awarded the 1921 Nobel Prize for the discovery of the law the photoelectric effect and contributions to mathematical physics.
量子光学
![量子光学](https://img.taocdn.com/s3/m/3a69711da32d7375a4178071.png)
量子光学的进展光物理是近代物理发展最活跃的领域之一。
特别是近30年来,由于激光的问世,光学的面貌发生了深刻的变化,光物理的研究内容也从传统的光学与光谱学迅速扩展到光学与物理其他分支学科的交汇点。
诸如激光物理、非线性光学、高分辨率光谱学、强光光学和量子光学正不断趋于完善和成熟。
量子光学是研究光场的量子统计性质与物质相互作用的量子特征的学科。
它包括:非经典光场‘激光操纵原子、分子及其应用’量子光学和量子力学的交叉与渗透的研究。
尽管人类认识到光的量子性已经近一百年,但是应用量子理论研究光辐射与光场的相干性及统计性还只是近年来的事。
从光量子论的诞生,到随后量子力学的建立,对物理学乃至整个自然科学产生了极其深刻的影响。
一 hbt实验1956年,由汉堡、布朗及退斯完成了光学关联实验。
这一实验又常以三人姓氏第一字母打头,被称为hbt实验。
他们把发自放电管的辐射,经滤波后,由半透半反分光器分为两束,其中一束经时间延迟器。
两只光电倍增管分别接收两束光后,再把其输出信号馈送到一个相关器中。
这样,相关器测量到的将是两个不同时空点光场强度起伏的关联,不再是过去的相干实验中所测的光场强度自身的相位关联。
通过这一实验,他们首次证实了光场存在有高阶相关效应,这是过去任何经典干涉与衍射实验所没能观察到的。
就相干光的频率而言,光场的强度起伏关联是一个缓慢变化的量,它的测量值受到外界的扰动要比测量相位关联微弱得多。
hbt实验给相干性带来了全新的概念。
根据经典理论,传统光场的随机性只用一个一阶相关函数描述就够了,这就是一阶相干度为1时,即对应完全相干性情况。
然而,hbt实验测出的光场起伏却表明,上述相干性的描述并不完备,还必须补充二阶或更高阶的相关函数。
只有当一阶、二阶或更高阶的相干度均为1时,才能称为完全相干光。
在普通光源情况下,不可能获得这种真正的完全相干光。
然而,一台理想的激光器所产生的光场就处于相干态,只有激光诞生后,人们才有可能获得真正的相干光源。
量子光学的理论和技术
![量子光学的理论和技术](https://img.taocdn.com/s3/m/98e2545efbd6195f312b3169a45177232f60e407.png)
量子光学的理论和技术量子光学是量子力学在光学领域的应用与发展,其研究对象是光和光与物质相互作用的过程。
量子光学通过量子力学理论描述了光线的本质,即光子。
光子不仅仅是光的粒子性质的象征,还是量子力学体系中物质微观世界的研究对象之一。
本文将介绍量子光学的理论和技术,分别从量子光学的基础、发展历程和应用研究等方面进行探讨。
一、量子光学的基础量子光学的诞生源于量子力学理论,量子力学描述了微观粒子的行为。
光学是一个应用广泛的领域,而在光学中,人们发现现象无法被经典物理学理论解释,这时量子力学引入光的波粒二象性概念解决了这个难题。
按照量子力学的惯例,粒子在该方面的表现是"波浪行为",同时也表现出微粒子的性质。
光子不仅具有波动性而且具有粒子性,因此表现出波粒二象性。
此外,光子还有Spin自旋,反映了光子的角动量,光子还是其自身以及与其他微观物体相互作用的基本元件。
二、量子光学的发展历程量子光学兴起于二十世纪五六十年代,起初主要是为了解决光与物质相互作用的基本问题,随着理论研究的深入,逐渐形成了一整套完整的理论体系。
量子光学的发展经历了两个时期:早期的单光子量子光学和后来的多光子量子光学。
早期单光子量子光学主要研究了光的单个光子的性质,如光的自由度、量子态、纠缠态等内容。
多光子量子光学则是在单光子量子光学的基础上将光场状态拓为多体量子态,探索了光场的统计性态、非经典光和光场的纠缠等问题。
二十一世纪,量子光学在量子通信、量子计算、量子测量等领域发挥出了重要的作用。
三、量子光学的应用研究1. 量子密钥分发(QKD)量子光学最早应用是在量子通信安全领域中,其中最著名的就是量子密钥分发(QKD)。
在传统的公钥加密技术中,信息发送者需要将密钥通过非加密的信道发送至收到者,由于密钥在传输过程中可能会被劫持窃取,从而导致数据泄露。
而QKD则是利用光子的特殊性质,使信息发送方可以在不暴露密钥的情况下将密钥传输给接收方。
量子光学研究的主要内容
![量子光学研究的主要内容](https://img.taocdn.com/s3/m/45fa1746b94ae45c3b3567ec102de2bd9705de46.png)
量子光学研究的主要内容
基于量子物理学原理,量子光学研究几十年来一直引起科学界的浓厚兴趣。
量子光学是研究奥斯特里特森公式(原子与光子之间存在的相互作用)的研究,它研究了量子态的光子如何影响物质,及其如何影响自身的性质。
量子光学的研究是多学科的综合研究,它涉及物理学、化学、以及技术科学等各个领域,它们共同参与到量子光学的研究中。
量子光学的研究内容,首先包括量子物理学方面的研究,它研究了光子的量子态,以及它们之间的相互作用,从而建立了一种新的量子光学理论,用来解释宇宙中物理现象的形成和发展。
其次,量子光学还包括对物理学和化学中量子态物质的研究,它们之间会发生特殊的相互作用,从而影响物质本身的性质。
量子光学还涉及到电磁场、热熵和动力学等研究,并在实验研究中将量子光学理论应用到实际工程中。
实验方面,量子光学研究了激光的功率分布、激光的双曲线特性、激光的相位结构以及激光的波长调制,并开发出了各种激光扫描系统,以及量子光学成像技术等应用于实际工程中的技术。
此外,量子光学还有诸多其他方面的研究,比如激光光谱、量子光学的计算机模拟研究、量子光学的光电子技术研究等。
在未来,量子光学的研究还将进一步深入,它将在电子学、医学、材料学、生物学以及环境科学等方面获得更多的应用,从而为人类社会做出大量的贡献。
量子光学的研究是一项复杂的任务,它不仅要求理论研究者仔细研究和理解量子物理学原理,而且还要求实验研究者投入大量的精力和资源,以开发出先进的实验技术和设备,从而为量子光学研究带来更深入的突破。
目前,量子光学已经取得了巨大的进步,它的应用领域也越来越广泛,因此量子光学的研究将继续在各个领域受到高度重视。
《量子光学》课件
![《量子光学》课件](https://img.taocdn.com/s3/m/bbf36692370cba1aa8114431b90d6c85ec3a8898.png)
量子光学的发展经历了从经典到量子、从理论到实验的演变。
总结词
量子光学的发展始于20世纪初,当时科学家开始研究光的量子性质。随着量子力学的建立和发展,人们逐渐认识到光不仅具有波动性质,还具有粒子性质。此后,量子光学逐渐发展成为一个独立的学科领域,并不断取得新的研究成果和突破。
详细描述
CHAPTER
CHAPTER
量子光学应用
05
03
量子信道容量
研究量子信道的容量限制,为量子通信技术的发展提供理论支持。
01
量子密钥分发
利用量子态的不可复制性,实现通信双方安全地生成和共享密钥,用于加密和解密信息。
02
量子隐形传态
利用量子纠缠,实现量子态的信息传输,即使在遥远距离上也能传送量子态的信息。
利用量子并行性和量子纠缠等特性,设计高效的量子算法,用于解决某些经典计算机难以处理的问题。
《量子光学》PPT课件
目录
contents
量子光学概述量子光场的描述量子光源量子光学实验量子光学应用总结与展望
CHAPTER
量子光学概述
01
量子光学是一门研究光子与物质相互作用、光子自身行为的科学。
总结词
量子光学是物理学的一个分支,主要研究光子与物质的相互作用以及光子自身的量子行为。它涉及到光子的产生、传播、吸收、散射等过程,以及光子与其他粒子相互作用时的量子特性。
新型量子光源
单光子源可实现单光子级别的操作、量子纠缠光源可实现量子通信和量子计算等应用。
特点
量子通信、量子计算、量子传感等。
应用
CHAPTER
量子光学实验
04
总结词
揭示量子波动性
详细描述
双缝干涉实验是量子光学中经典的实验之一,通过让单光子依次通过两条细缝,在屏幕上观察到明暗相间的干涉条纹,从而证明了光具有波动的特性。
量子光学及其应用
![量子光学及其应用](https://img.taocdn.com/s3/m/29c8152015791711cc7931b765ce050877327541.png)
量子光学及其应用近年来,量子光学逐渐成为物理学领域的热门话题。
量子光学的研究涉及量子力学、量子光子学等多个学科,是一门极为前沿的学科。
随着技术的进步,量子光学在信息科学、通信、制造等多个领域都有着广泛的应用。
一、什么是量子光学?量子光学是指使用量子力学的方法研究光与物质之间的相互作用。
在经典电磁场理论中,光被视为波动性的电磁波,而在量子光学中,光被视为由光子构成的粒子,即光子具有粒子性。
量子光学的研究内容包括各种量子光学现象的研究和实验,如飞秒激光、单光子干涉、强烈场量子电动力学等。
相对于经典光学,量子光学更能够准确地描述光与物质的相互作用,因此在材料科学、信息科学、通讯等领域的应用也更多。
二、量子光学的应用1. 量子通讯量子通讯是利用量子力学特性保证通讯信息安全的一种通讯方式。
在量子通讯中,信息是通过量子叠加和纠缠来传输的,利用量子叠加和纠缠的不可复制性,能够进行安全的信息传输。
量子光学的应用是基础性的,例如 Quantomic Technologies 就是一个专门从事量子光学的公司,他们采用了最新的技术将量子物理学理论和超高精度测量器相结合,利用量子纠缠的特质远距离传输信息。
在量子通讯技术的研究和发展中,量子光学起到了非常重要的作用。
2. 量子计算量子计算是利用量子叠加和纠缠等量子力学特性进行的一种计算方式。
相对于传统的计算方式,量子计算能够更加高效地进行计算,增强了计算机在解决一些复杂问题时的处理能力。
在量子计算中,量子比特被用作单位,其相互作用能够实现复杂计算,这种高效的计算方式在未来的信息处理和人工智能领域有很大的潜力。
例如谷歌在2019年宣布,使用自己研发的量子计算机处理一项复杂算法,令世界瞩目。
3. 传感技术量子光学的另一个应用是在传感技术领域的研究和实践中。
例如,在量子成像技术中,光子的相位和幅度被用来捕捉图片和视频;在量子探测器中,利用光与物质的相互作用变化,实现对物质中极其微小变化的探测,这些探测在地质、化学、制造等领域中有广泛的应用。
量子光学第一讲
![量子光学第一讲](https://img.taocdn.com/s3/m/f998e594daef5ef7ba0d3c77.png)
自由空间中的场模为连续无穷多变量场模。 如何离散化行波场?
Dr. Shutian Liu @ HIT
11
自由空间中电磁场的行波展开
引入归一化体积:边长为 L 的立方体。与光腔的不同点:不存在任 何真实的边界条件;立方体内电磁场仍是行波模。行波场满足如下周 期性边界条件: E (r, t ) = E (r + Li, t )
ql = pl .
Dr. Shutian Liu @ HIT 7
电磁场按简正模展开
展开系数:
pl (t ) = − ε0 ∫ E ( r, t ) ⋅ El ( r)dV ,
V
ql (t ) =
µ0 ωl
∫
V
H ( r, t ) ⋅ Hl ( r)dV .
腔内所含的电磁能量 H c 为 1 H c = ∫ (µ0 H2 + ω0 E2 )dV 2 V ∞ ∞ 1 2 2 2 = ∑ ( pl + ωl ql ) = ∑ H l l 2 l 1 H l = ( pl2 + ωl2ql2 ) 频率为 ωl 的一个谐振子的能量 2 腔内的电磁场可视为一组无耦合的离散的辐射振子(谐振子)的无穷 集合,用 l 或 kl 标记第 l 个谐振子。
Dr. Shutian Liu @ HIT 4
经典电磁场
利用矢势和标势表示电磁场的目的是将场矢量 E 和 B 用一个变量表 示。一般矢势 A 和标势 V ( r) 通过某些规范可与场量 E 和 B 一一对 应。对于库仑规范,要求: ∇⋅A = 0 将场分解成横向场和纵向场两部分,后者只与标势 V (r) 有关,在无 源空间中,标势 V (r) = 0 无源场只是电磁波的横向场部分,由 A 唯一地确定
B = µ0 H = ∇ × A, E=−
《量子光学》PPT课件_OK
![《量子光学》PPT课件_OK](https://img.taocdn.com/s3/m/134d9a6a8762caaedc33d4b4.png)
2.11030
hn 6.6261034 0.71
2021/7/21
33
当量子数n改变一个单位,振动系统的能量改变的百 分比为
E n
1
10 30
E n 2.11030
可以看出,相对于宏观振子,其量子数n甚大、 能级
差很小, 振动系统能量的分立特性不明显。因此在经 典力学中,可视宏观振子的能量是连续变化的。
1. 选择性吸收体:在一定温度下,只对某些 或某段波长范围的辐射有明显吸收,对其他波 长吸收很少。 有色反光体 2. 灰体:单色吸收系数是一个常数,但小于1.
它对各种波长的辐射有同等程度的吸收和 反射. 3. 绝对黑体: 在任何温度下均能全部吸收投 射到它上面的辐射,即吸收系数为1,反射系数 为0.
轴截距 称为截止频率或
红限,
,入射光频率
小于截止频率时无论光 强多大
遏止电势差的大小与入射光 都不能产生光电效应。每种金 的频率成线性关系,与光强无关。 属有自己的截止频率。
与材料 无关的普适常量
与材料 有关的常量
时无论光强多弱41 ,光 照与电子逸出几乎同时发生。
波动理论的困难
42
光量子理论
43
普朗克常量 数值为 6.63×10- 3 J ·s 4
并很快被检验与实验结果相符。
27
Eo ( T )
4
理论曲线
1011 W m -2 m -1 普朗克的黑体
单色辐出度函数及曲线线
3
e 2phc 2
E o(T) = 5
1
hc
kT 1
2
1
0
0
1
2
波 长 28
3
4
5
10- 6m
量子光学 pdf
![量子光学 pdf](https://img.taocdn.com/s3/m/40559c4b6d85ec3a87c24028915f804d2b1687fb.png)
量子光学量子光学是量子物理学的一个重要分支,主要研究光和物质的相互作用。
其理论框架基于量子力学的基本原理,是描述光子和其他粒子如何相互作用的科学领域。
在量子光学中,光被视为由粒子(光子)组成,这些粒子具有波粒二象性,即同时具有波动和粒子的特性。
量子光学的发展始于20世纪初,随着激光技术的出现和发展,这一领域的研究取得了显著的进展。
激光技术为量子光学提供了实验手段和工具,使得科学家能够更好地研究和理解光的本质和行为。
在量子光学中,许多重要的概念和技术得到了广泛的研究和应用,包括:1、量子态和量子比特:量子态是描述光子和其他粒子的状态,与经典物理中的状态不同。
量子比特是量子计算中的基本单元,类似于经典计算机中的比特。
2、干涉和衍射:在量子光学中,干涉和衍射是描述光子行为的重要现象。
通过这些现象,科学家可以研究和了解光子的波动性质。
3、腔量子电动力学:这一领域研究光子在腔中的行为和相互作用。
腔可以看作是一个包含光子的“盒子”,光子在其中与物质相互作用并产生各种现象。
4、量子隐形传态和量子密钥分发:这些技术基于量子力学的原理,提供了一种安全的通信方式,可用于保护敏感信息不被窃听或干扰。
5、量子计算和量子模拟:利用量子力学的一些特性,如叠加和纠缠,可以加速某些计算任务或模拟复杂系统的行为。
此外,量子光学还在其他领域有着广泛的应用,如量子传感、量子材料、量子化学等。
这些应用涉及到许多不同的技术和方法,如光学腔、非线性光学、超快光学等。
总之,量子光学是一个充满活力和创新的领域,其研究不仅有助于理解光的本质和行为,还可以为未来的技术发展提供新的思路和方法。
虽然这个领域还有很多未解之谜和需要进一步研究的问题,但随着科学技术的不断进步和发展,相信量子光学将会在未来取得更多的突破和创新。
量子光学基础第一章
![量子光学基础第一章](https://img.taocdn.com/s3/m/da24d386680203d8ce2f24d7.png)
绪
论
理学院申请到一个国家重点基础研究发展计划(973计划 )课题:《基于表面等离激元效应的光子-电子相互作用的量 子调控研究》。光子-电子相互作用是量子光学研究的内容, 为了帮助部分同学能更好地投入这一课题研究,我们课程将 书中第六章《光孤子传输的量子理论》改为《表面等离体激 元中的量子效应》,将介绍表面等离体激元的量子化,光子 与表面等离体激元的相互作用,表面等离体激元在金属表面 的传输,光子与表面等离体激元之间量子态的转移以及表面 等离体激元的压缩与纠缠性质。这些有利于同学们深入了解 表面等离子体激元的量子特性,对研究其在量子通信和量子 计算中的应用有重要意义。
1905年,Einstein为解释光电效应,提出光量子的概念,给 出光子的能量为E=hν,ν是光的频率,h是Planck常数。
1917年 ,Einstein利用光量子概念唯象地解释了光在原子 中的吸收与辐射,提出了受激辐射的概念. 光的量子性提出,为量子力学的建立和发展起重要作用.
2
绪
论
量子力学建立于1925-1926年,Draic与海森堡的矩阵 力学和Schrö dinger的波动力学。 上世纪60年代前量子力学与物理光学独立发展。物 理光学实验大都利用经典电磁场理论来解释。1909年 Tayler利用很弱光束、长时间照射双缝干涉,希望观 测单光子通过双缝干涉的量子效应,没有成功。一阶 振幅相干实验显示不出干涉过程中的量子效应。要显 示干涉过程中的量子效应不是简单振幅相干,而应是 振幅平方即强度相干。 1956年Hanbury,Brown和Twiss进行了光子计数器 之间的相干,即二阶相干实验,称HBT实验。它是量 子光学的开创性实验。
10
第一节量子力学的基本原理
1,量子力学系统的状态用波函数 (r t ) 来描述
量子光学的实验与应用
![量子光学的实验与应用](https://img.taocdn.com/s3/m/5b8a9285ab00b52acfc789eb172ded630b1c98d6.png)
量子光学的实验与应用量子光学(Quantum Optics)是研究光与物质耦合的量子效应与量子信息的一个分支学科。
它是量子力学和光学的交叉领域,包括光子、原子和分子的相互作用过程。
在量子光学中,研究的物理现象基于光与物质之间的相互作用。
这些相互作用过程涉及传输、操控和检测光子计数等方面的实验和应用。
实验基础:量子光学实验已经成为了研究微观世界的有力工具。
实验室中常用的光子源包括弱相干光源和非相干光源。
弱相干光源是指光子具有较小的准经典随机性,并且具有可以被处理成所需量子态的抗干扰性质。
非相干光源是一种被文献研究得更多的方法,光的亮度和相位随机分布,没有明显的明暗条纹。
微观世界的量子规律比经典物理世界复杂得多,因此在研究量子光学时要用到大量的技术手段来制备所需的光子态。
利用激光与非线性晶体等元器件,量子光学实验得以突破传统光学的范畴和束缚,同时为物理学、信息科学等学科提供了新的研究工具。
实验应用:量子光学的实验应用非常广泛和重要。
其中最明显的就是在量子通讯领域的应用。
量子通讯是基于量子比特的通讯技术,利用量子态的变化进行编码和解码,通过量子隐私保密原理保障信息传输的安全性。
量子光学实验主要应用于量子光学兴趣,比如利用冷原子和光子实现光量子计量。
光子计量是量子通讯的基础,可以用于检测光子数量,通过对光的量子特性的物理参数的测量,实现特定的量子通信分配协议。
此外,量子光学也有很强的基础研究价值。
量子光学与量子计算之间具有密切的关联,可以为研究量子计算进程提供重要的实验工具。
量子比特纠错、量子纠缠和量子计算中的其他高级技术,都离不开量子光学实验与研究。
结语:随着量子光学和量子信息技术的不断发展,它们在物理学、信息科学和科技的发展中发挥了越来越重要的作用。
量子光学的实验和应用一方面为量子通讯、计算和测量领域提供了重要工具和技术,另一方面也为量子光学自身及其连接的其他研究领域开发了全新的方向和思想。
通过持续的投入和研究,量子光学和它的实验应用有可能会取得更多的突破和成果,带来更大的应用和改变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(8.2.1)
其中
,
的是二能级原子,即
, 为二能级原子的激发态, 为基态。系统对应 将方程(8.2.1)代入方程(8.1.7)得
期待值涉及到库的初始状态,因此我们选择一种具有特殊态模型的库。
2.2 热库
我们假定库变量是分布在无关联的热平衡混合态中,这样库约化密度算符就是 热密度算符的多模推广形式
(8.2.3)
(8.2.8) (8.2.9)
(8.2.8) 原子密度算符的矩阵元的运动方程可以通过方程(8.2.8)得到
我们可以注意到 aa bb 0 这是因为我们只考虑高能级 和低能级 之间的衰变
由概率守恒知 aa bb 1 当温度T为零时,即
上面的方程简化为
(8.2.11a)式正是采用态失导出的外斯可夫-维格纳(Weisskopf-Wigner) 理论结果
(8.1.1)
其中 SR 为系统和库的组合密度算符,TrR 表示对库求迹。
我们设系统与库的相互作用能量用
表示,SR 的运动方程为
(8.1.2)
对上式积分得
(8.1.3)
系统和库的耦合作用是从 t ti 开始的,将(8.1.3)式代回(8.1.2)式得
(8.1.4)
如果相互作用能量 成
为零,则系统和库是无关联的,并且当库平衡时,密度算符写 。因为 很小,所以把方程(8.1.4)解的形式写为
其中 kB 是玻尔兹曼常量,T是温度。我们很容易证明:
为热平均玻色粒子数
(8.2.5)
把(8.2.4)式代入(8.2.2)式中 得
(8.2.6)
(8.2.6)
现在我们进行如自发辐射的外斯可夫-维格纳(Weisskopf-Wign(8.2.7)
其中 为原子衰变速率
阻尼的量子理论——密度矩阵 和波函数方法
1.一般的库理论
在量子光学中经常要讨论小系统(如一个二能级原子,一个量子谐振子等)
由于受到周围环境(通常称之为库,如辐射场、腔壁原子)的作用所引起的效
应。我们一般考虑一个系统S和一个库R的相互作用,对于系统S,我们可以采
用约化密度算符 s 来描述。
s Tr(R SR)
其中 (C t)是
(8.1.5)
的高阶项,为了满足方程(8.1.1),(C t) 需满足
(8.1.6)
将方程(8.1.5)代入方程(8.1.4)中,并保留到 项,得
(8.1.7)
约化密度算符描述的是系统的统计性质,若令被积函数中显著不为零的部分是 t
接近t处,所以作为近似,又可以在积分中用 s
(Markov)近似,所以(8.1.7)式可写为
代替 (s t)这种近似称为马尔科夫
(8.1.8)
2.热库和压缩真空库作用下的原子衰变
我们考虑简谐振子库阻尼的一个二能级原子的自发衰变。用湮灭算符b,产生算
符 b 和密度分布的频率 k ck来描述库中的简谐谐振子。在相互作用绘景和旋波
近似下,相互作用能算符可以写成